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ABSTRACT

We summarize the physics motivations for future accelerators at CERN. We argue that (a)
a luminosity upgrade for the LHC could provide good physics return for a relatively mod-
est capital investment, (b) CLIC would provide excellent long-term perspectives within many
speculative scenarios for physics beyond the Standard Model, (c) a Very Large Hadron Collider
could provide the first opportunity to explore the energy range up to about 30 TeV, (d) a
neutrino factory based on a muon storage ring would provide an exciting and complementary
scientific programme and a muon collider could be an interesting later option.
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1 Introduction

The central motivation for any CERN accelerator beyond the LHC must be provided by physics
beyond the present Standard Model. LEP has tested the Standard Model very precisely, but has
provided no direct evidence for physics beyond it. Atmospheric and solar neutrino oscillation
experiments have provided the first experimental evidence for physics beyond the Standard
Model, and long-baseline experiments using accelerator neutrino beams are underway to verify
and explore this new physics. Recently, the Brookhaven experiment on the anomalous magnetic
moment of the muon has reported a hint of a possible discrepancy with the Standard Model.
Nevertheless, the possible direction of experimental physics beyond the Standard Model remains
uncertain, and any prediction which experiments will be interesting for CERN after the LHC
and the CERN-Gran Sasso neutrino project must be largely speculative.

The most prominent areas where the Standard Model leaves unsolved problems include the
origins of the particle masses, the variety of particle types (flavours), the unification of the
particle interactions, and a consistent quantum theory of gravity. All of these problems should
ultimately be resolved in a ‘Theory of Everything’, and the long-term goal of particle physics
is to discover and establish such a theory. Resolutions of the more immediate problems will
provide some of its ingredients.

Particle masses are believed to be due to a Higgs boson, and LEP provided last year a hint
that it might weigh about 115 GeV. The masses generated by the Higgs mechanism are, however,
destabilized by quantum effects, unless new physics is invoked. Favoured theoretical scenarios
for stabilizing particle masses have been the idea that the Higgs boson might be composite,
or that it might be accompanied by supersymmetric particles, which have identical quantum
numbers to the known particles, but have spins differing by half units. More recently, inspired
by string theory, it has been suggested that there might be additional spatial dimensions beyond
the three we know, and that these might remove the need for a large hierarchy between the
intrinsic scale of gravity and the observed particle masses [1].

These scenarios all predict new physics at the TeV energy scale, which will initially be
explored by the LHC. If confirmed, the Brookhaven measurement of a possible discrepancy
in the anomalous magnetic moment of the muon would also hint at new physics at the TeV
energy scale, and interpretations based on supersymmetry and lepton compositeness have been
proposed. On the other hand, there is no clear hint of the energy scale where new flavour physics
might be revealed, and the natural scales of grand unification and quantum gravity are beyond
direct reach at foreseeable colliders, unless there are large extra dimensions. However, these
might be tested indirectly, e.g., by the relations they predict between low-energy parameters,
or by novel phenomena such as neutrino oscillations.

Despite the lack of direct accelerator evidence for physics beyond the Standard Model,
LEP has provided some indirect indications which future directions might prove fruitful, and
disfavoured some others. For instance, the precision electroweak data suggest the existence of
a relatively light Higgs boson, favouring some weakly-coupled model of electroweak symmetry
breaking, such as supersymmetry or a theory with large extra spatial dimensions. On the other
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Process LHC LC SLHC VLHC CLIC
14 TeV 0.8 TeV 14 TeV 200 TeV 3 TeV 5 TeV

squarks 2.5 0.4 3 15 1.5 2.5
sleptons 0.34 0.4 1.5 2.5
Z ′ 5.4 8 6.5 30 20 30
q∗ 6.5 0.8 7.5 70 3 5
l∗ 3.4 0.8 3 5
Extra two dimensions 9 5 – 8.5 12 65 20 – 33 30 – 55
WLWL 3.4σ > 3.4σ 30σ 70σ 90σ
TGC (95%) 0.0014 0.0004 0.0006 0.0003 0.00013 0.00008
Λ compos. 35 100 50 130 300 400

Table 1: Comparison of physics reaches with different colliders. The integrated luminosities
assumed are 100 fb−1 for the LHC and VLHC, 500 fb−1 for the 800 GeV LC, and 1000 fb−1

for the SLHC and CLIC, corresponding in each case to one full year of running at nominal
luminosity. Most of the numbers quoted are in TeV, but for strong WLWL scattering the numbers
of standard deviations are listed, and in Triple Gauge Coupling (TGC) case a pure number is
given for λγ. In some cases, the sensitivities of hadron colliders to electroweak physics have
not yet been evaluated accurately, and the corresponding entries are left blank. Many of the
numbers given for the SLHC, VLHC and CLIC are still provisional.

hand, these data disfavour strongly-interacting models with composite Higgs bosons, though
we do not ignore such a possibility in the following. If there is indeed a light Higgs boson with
mass close to the experimental lower limit set by LEP, the Standard Model cannot survive
unchanged until the Planck or unification scale, and, more specifically, new physics would be
required below about 105 to 106 GeV if the LEP hint of a 115 GeV Higgs boson were to be
confirmed [2].

Even if the existence of supersymmetry or large extra dimensions were to be discovered by
the LHC, full understanding of the theory behind would require additional measurements with
a complementary collider. For example, what breaks supersymmetry, or what fixes the sizes of
the extra dimensions? Plans for future CERN accelerators beyond the LHC should bear such
questions in mind.

The principal options [3] for possible CERN accelerators beyond the LHC that we have
considered include (i) an upgraded LHC with Ecm = 14 TeV and a luminosity of 1035 cm−2s−1

that we call the SLHC, (ii) a higher-energy hadron-hadron collider with Ecm= 100 to 200 TeV
(the Very Large Hadron Collider - VLHC) [4], (iii) a linear e+e− collider with Ecm = 3 to
5 TeV, such as the CLIC collider that is being studied actively at CERN [5], and (iv) a muon
collider (MC) with Ecm < 4 TeV. We couple the latter with other physics opportunities offered
by muon storage rings, such as a neutrino factory and Higgs factories [6, 7].
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2 Physics Reach of the LHC

We consider in the following a variety of possible physics topics beyond the Standard Model, in-
cluding a range of benchmark scenarios for supersymmetric models consistent with the present
experimental limits from LEP and elsewhere. We list in the Table the estimated physics reach
of the LHC [8, 9] for these various types of physics beyond the Standard Model, including the
accessible ranges for the masses of the possible supersymmetric partners for some known parti-
cles, of a new neutral weak boson Z ′ analogous to the well-known Z, of excited quark and lepton
states q∗ and l∗, the accessible size RD of a pair of extra dimensions (which we parametrize by
the energy scale MD equivalent to 1/RD), the sensitivities to strong interactions between pairs
of W bosons parametrized by a 1 TeV Higgs boson and to deviations from the Standard Model
value for the Triple Gauge Coupling (TGC) λγ , and the reach for a compositeness scale L at
which elementary particles might reveal internal structure.

As is well known, the LHC has a large reach for the strongly-interacting partners of quarks
and gluons (the squarks and gluinos), and would be capable of reconstructing many of their
intricate cascade decay modes. However, its reach for non-strongly-interacting supersymmetric
particles such as the supersymmetric partners of leptons (sleptons) is more limited. The set
of simplified benchmark supersymmetric models we have established [10] have universal super-
symmetric mass parameters that are chosen to be compatible with the various Higgs boson
and sparticle limits from LEP [1, 10, 11]. The universality we assume is just one of many
specific variants of supersymmetry, and one of the primary tasks of future accelerators may
be to probe its assumptions. The first panel of the Figure illustrates crudely the fractions of
the rich sparticle spectra in these benchmark models that we estimate to be accessible to the
LHC experiments. We see that the LHC discovers some supersymmetric particles in all these
scenarios, but never discovers them all. For this reason, the LHC alone will not be able to pin
down all the details of supersymmetry breaking.

Likewise, in models with large extra dimensions, the new physics may well show up within
the range shown in the Table, although mass scales up to 100 TeV are also possible. Also, if the
LHC were to discover a Higgs boson weighing about 115 GeV, but found no supersymmetric
particles, the LHC would not cover the energy range up to 105 to 106 GeV where new physics
should appear.

We infer from the Table and the Figure that, although the LHC has excellent prospects
of making fundamental discoveries beyond the Standard Model, with mass reach well into the
TeV range, it is unlikely to provide complete answers to all the ensuing questions.

To complete the baseline for our subsequent discussion of future CERN colliders, we also
include in the Table a column showing the physics reach of a linear e+e− collider (LC) with
Ecm = 800 GeV, such as TESLA, the NLC or JLC. Such a LC would complement the LHC in
several respects, e.g., in the search for new weakly-interacting physics. This point is made in
the second panel of the Figure, where we see that such a LC would (in several supersymmetric
scenarios) observe non-strongly-interacting supersymmetric particles that would not be visible
at the LHC. Moreover, a LC would provide many detailed measurements of sparticle properties
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Figure 1: Comparison of the capabilities of various colliders to observe different species of
supersymmetric particles, in a range of supersymmetric models whose parameters are chosen
to be compatible with experimental constraints from LEP and elsewhere [10, 11]. The models
are ordered by their degree of compatibility with the recent BNL measurement of the muon
anomalous magnetic moment, as indicated by the line in the top right panel. We see that linear
colliders complement the LHC via their abilities to observe weakly-interacting sparticles, in
particular. In most of the restricted set of simplified models studied, CLIC (almost) completes
the supersymmetric spectroscopy initiated by the LHC.
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that would lie beyond the scope of a hadron-hadron collider.

3 Physics Opportunities with Possible Future Accelera-

tors

In this section we discuss the physics accessible to the possible accelerator options introduced
above, namely the SLHC, VLHC, CLIC and muon storage rings.

3.1 SLHC

Preliminary estimates by the LHC project team [12] indicate that it should be possible to
increase the peak luminosity from the design value of 1034 cm−2s−1 up to about 1035 cm−2s−1

by increasing the bunch intensity up to the beam-beam limit, replacing the inner quadrupole
triplets with larger aperture magnets to reduce the β-value at the interaction points, and by
halving the bunch spacing to 12.5 ns in order to preserve the luminosity lifetime.

On the other hand, more than a modest LHC energy upgrade looks much more difficult. The
present dipoles may ultimately sustain a 9 Tesla field, which would correspond to a maximum
Ecm = 15.2 TeV. Even if advances in magnet technology made a substantially larger field
possible, other problems such as the extraction of the increased synchrotron radiation power
would present difficulties for fitting a significantly higher energy machine into the LHC tunnel.

Although the ultimate LHC centre-of-mass energy with the present magnets could be up
to 15.2 TeV, the SLHC studies [13, 14] presented here [15] have conservatively assumed L =
1035 cm−2s−1 and Ecm=14 TeV. Running the LHC detectors at ten times the nominal LHC
luminosity would cause non-negligible radiation and occupancy problems, but solutions appear
feasible [16]. Here we only mention that one of the main consequences of the luminosity upgrade
would be that a large part of the inner detectors of both experiments, e.g., the innermost layers
of both trackers and the ATLAS Transition Radiation Tracker, would need to be replaced,
in order to maintain the required performance for bottom-quark tagging, electron and tau
measurements. On the other hand, calorimeters and the external muon spectrometers should
be less affected by the luminosity increase, and should remain fully functional with upgrades
of smaller scope.

The estimated physics reaches of the SLHC for supersymmetry, Z ′, q∗, l∗, MD, strong WW
scattering, TGC and Λ are shown in the third column of the Table. In the discovery channels,
we see that the SLHC reaches somewhat further than the LHC, typically by about 20%. The
order-of-magnitude increase in statistics should also make possible significant improvements in
precision measurements, as indicated by the increased sensitivity to the TGC shown in the
Table. Although these improvements are not dramatic, this relatively modest upgrade of the
LHC might be very interesting if the LHC finds hints of some phenomena that need to be pinned
down. For example, in some of our benchmark supersymmetric models, we expect gluinos to
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weigh between 2.5 and 3 TeV, which is most likely in the range covered by the SLHC but not
the LHC. Alternatively, in some supersymmetric models some flavours of squarks might be
heavier than others, and the SLHC could complete the squark spectrum revealed by the LHC.

The results shown in the Table were obtained for final states containing objects with very
large transverse energy, such as jets, leptons, photons or missing transverse energy. Since the
pile-up noise in the calorimeter increases only by a factor of about 3 for a factor of 10 increase
in luminosity, and gives a negligible contribution to the measurements of particles in the TeV
range, calorimetric measurements of jets, electrons, photons and missing transverse energy at
the SLHC should not suffer from the higher luminosity. However, electron identification requires
a combination of calorimeter and tracker information, and the latter will only be available if
the LHC inner detectors are largely replaced. Therefore, in order to be conservative, and not
knowing a priori what level of detector upgrade will be technically and financially possible, for
the studies presented here we have ignored electrons and considered only final states containing
muons, jets, photons and missing transverse energy. It is clear, however, that full detector
functionality, including the possibility of detecting and identifying all three lepton species,
would be essential to profit fully from the increased luminosity of the SLHC, and to obtain
more convincing results in the event of a discovery.

The performance of a hadron collider with Ecm = 28 TeV and L = 1034 cm−2s−1 has also
been looked at, in order to estimate the available physics as a function of energy as well as
luminosity. Such a machine would extend the LHC physics reach by a factor between 1.5
and 2, depending on the channel studied. For example, a signal from strongly-interacting W
pairs should be observable at the five-standard-deviation level with only 50 fb−1 of integrated
luminosity. However, it is not known currently how such a machine could be housed in the LHC
tunnel, since it would require very high-field magnets and new ways to deal with synchrotron
radiation.

3.2 VLHC

Studies have been made in the United States of the physics offered by a 100-200 TeV hadron
collider, the VLHC [4]. Some estimates of the reach of this machine for L = 1034 cm−2s−1

are also presented in the Table, providing useful information about the physics interest of the
energy regime beyond the LHC/SLHC.

Primarily for geographical reasons, we do not consider a VLHC to be the most likely option
for CERN’s future [3]. The most recent design study for a VLHC presents a machine with
a circumference of 233 Km for Ecm = 200 TeV. The maximum size of ring that could be
accommodated in the Geneva basin is guessed to have a circumference of about 80 Km, and
the closest that a larger machine could be placed is probably beyond the Jura mountains in
France. VLHC technical studies have been underway for several years in the United States. The
main engineering issue is to find technically and economically viable solutions for the machine
components, such as the magnets and cryogenics, and the tunnel.
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Just as the LHC will be the first machine to enter and explore the TeV energy range, the
VLHC will be able to explore the energy range up to about 30-40 TeV in the centre of mass for
constituent collisions. In the absence of input from the LHC, it is not yet possible to make a
compelling case for any particular scenario for new physics at the 10 TeV scale, in contrast to
the TeV energy scale. However, we can envisage several possible scenarios emerging from the
LHC data which would justify strongly the need for such a machine [15]. A few examples are:

• The LHC discovers supersymmetry, and supersymmetry is mediated by new gauge in-
teractions. In this case, by measuring several sparticle masses and the lifetime of the
next-to-lightest supersymmetric particle, the LHC experiments should be able to con-
strain, to within 30% or so, the scale at which supersymmetry breaking is communicated
to the visible world. If this scale is in the energy range up to a few tens of TeV, then a
VLHC could produce directly the corresponding new particles.

• The LHC discovers supersymmetry, and observes the squarks of the third generation,
the supersymmetric partners of the top and bottom quarks, but not the squarks of the
first two generations. This is possible in so-called inverted-hierarchy models, where the
squarks of the first two generations can weigh several TeV without creating naturalness
problems. We will then know that such squarks should exist, and a VLHC, which could
produce squarks weighing up to about 15 TeV, is the only presently foreseen machine
able to observe them.

• The LHC finds evidence for quark compositeness by observing a significant excess of
centrally produced high-ET di-jet events above the Standard Model expectation. It can
be seen from the Table that the compositeness scale Λ would then be in the energy range
up to a few tens of TeV. Then a VLHC could probe the production of new particles, such
as excited quarks, giving more direct and conclusive evidence for compositeness.

• The LHC finds a hint for strong WW scattering, in which case a VLHC could study it
with much higher statistics.

• The LHC finds evidence for large extra spatial dimensions, for instance by observing a
significant signal in final states with jets and missing transverse energy. It can be seen
from the Table that the fundamental scale of gravity would then be in the region of a few
tens of TeV, and a VLHC should again be able to probe directly the scale of new physics.

3.3 CLIC

As already mentioned, linear electron-positron collider (LC) projects are being pursued actively
in Germany [17], the U.S. [18] and Japan [19], as well as at CERN [5]. The first-generation LC
projects being pursued elsewhere typically aim at centre-of-mass energies in the range 0.5 to
1 TeV, and we have chosen Ecm = 800 GeV as a standard [17] for comparison with the LHC
and CERN’s future options.
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The physics reach for such a LC is inferior to the LHC for new strongly-interacting particles.
On the other hand, as also seen in the Figure, such a first-generation LC would be largely
complementary to the LHC, offering, for example, excellent opportunities to study in detail any
light Higgs boson and make precise measurements of any supersymmetric particles within its
reach, in particular the supersymmetric partners of weakly-interacting particles [17]. However,
there is no guarantee that any supersymmetric particles would be accessible to a LC with Ecm

= 800 GeV, and such a LC would not in general be able to complete the supersymmetric
spectroscopy, as seen in the second panel of the Figure. We assume that some such sub-TeV
LC will be built somewhere in the world, and that CERN should envisage constructing a
higher-energy lepton-lepton collider, such as CLIC or a muon collider.

CERN and its partner laboratories have been developing for several years the CLIC double-
beam technology for generating high accelerating gradients in the range 100 to 200 MV/m,
enabling a higher-energy LC to be constructed in a tunnel of length similar to that proposed for
a lower-energy LC with a lower accelerating gradient [5]. Preliminary geological studies indicate
that a tunnel up to about 35 Km long could be accommodated in good rock between the Jura
mountains and Lake Geneva, in the immediate neighbourhood of the present CERN site [3].
This would be sufficient to accommodate a CLIC machine with centre-of-mass energy up to 3
or 5 TeV. CLIC would be able to provide polarized beams, which are useful for several physics
topics such as sparticle studies and searches for extra dimensions (see the second numbers in
the last two columns of the sixth row of the Table), and would also have options for eγ and γγ
collisions, which have better reaches for some physics topics.

We see in the Table that CLIC with Ecm = 3 to 5 TeV has an impressive physics reach for
all the physics topics studied [20, 10], with many capabilities beyond those of the LHC and
a first-generation LC. Moreover, we see in the Figure that CLIC would be able to complete
much of the sparticle spectroscopy opened up by the LHC, going significantly beyond the reach
of a lower-energy LC. As an example, CLIC may be the first machine able to disentangle the
different squark flavours and complete the spectra in most of our simplified benchmark models if
it attains Ecm = 5 TeV. We think it is important not to lose sight of this ultimate goal for CLIC.
CLIC also has excellent potential for many of the other physics topics in the Table, such as
extra dimensions, strong WW scattering, measuring the TGC, and lepton compositeness. For
example, CLIC would enable multi-TeV Kaluza-Klein resonances in extra dimension scenarios
to be studied in great detail.

The experimental environment at CLIC offers several challenges, as compared to a lower-
energy LC. For example, the colliding beams are expected to radiate energetic photons much
more strongly, reducing and smearing the nominal centre-of-mass energy, and leading to an
imbalance in the visible momentum in the final state. Also, photon-photon collisions are ex-
pected to be relatively more copious than at a lower-energy LC, and large incoherent creation
of electron-positron pairs is also expected. Dealing with these problems requires close collab-
oration on the machine-detector interface, which has already started within the CLIC physics
study group.

Initial analyses do not reveal any showstopping problems created by the relatively large
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beam energy spread inherent to CLIC at high energy and luminosity. For example, direct
studies of a heavy Z ′ boson analogous to the known Z would be very easy at CLIC, enabling
many of its properties to be measured with per mille precision [21]. Studies have also been made
of the production of pairs of supersymmetric particles [22]. Their missing-energy signatures
would be quite distinctive, and the thresholds for their production could also be measured
easily. In addition to discovering and measuring precisely new supersymmetric particles, CLIC
would also be able to distinguish and measure more precisely sparticles discovered at the LHC.

There are several ways in which the extra information provided by CLIC could prove to be
essential. A few examples are:

• The LHC discovers supersymmetry and measures the masses of a few supersymmetric
particles, with the first-generation LC perhaps finding and measuring some more. As pre-
viously mentioned, in the simplified benchmark supersymmetric models we have studied,
CLIC would complete the supersymmetric spectrum and enable detailed measurements to
be made. Thus it might cast light on the mechanism of supersymmetry breaking, which
might be a window into string physics.

• The LHC finds evidence for large extra dimensions. In this case, the combination of data
at different CLIC energies will enable the number and size of the extra dimensions to be
determined independently. The LHC finds evidence for quark compositeness. In this
case, CLIC could reveal lepton compositeness, completing the revelation of a new layer of
fundamental structure. It might well also be that excited leptons would appear at CLIC
even if excited quarks have not appeared at the LHC, if CLIC attains 5 TeV.

• The Higgs boson weighs 115 GeV, as suggested by LEP, but the LHC finds no super-
symmetry or evidence for quark compositeness. CLIC would be able to measure the
Higgs self-coupling with better than 10% precision, enabling the effective potential to be
mapped, would observe any charged Higgs bosons weighing up to 2 TeV or so, and would
provide new opportunities to observe the heavier neutral Higgs bosons in supersymmetric
models. Moreover, we see from the Table that CLIC is best placed to find compositeness
over essentially all the energy range up to about 105 to 106 GeV, where new physics must
appear if the Higgs boson weighs 115 GeV.

• The LHC finds a hint of strong WW scattering, in which case CLIC could study it with
high statistics and precision [23].

3.4 Muon Storage Rings and Colliders

Another possible option for CERN’s future is to develop a complex of muon storage rings. The
first component would be a high-intensity proton driver, for example a superconducting proton
linac (SPL) that would reuse LEP radiofrequency cavities [24]. This could also make possible
interesting upgrades for other CERN facilities, ranging from ISOLDE to the CERN-Gran Sasso
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neutrino beam and the LHC. The SPL would also offer interesting possibilities in short-baseline
neutrino physics and studies with stopped muons.

The next steps in a programme of physics with muons would be to capture them, cool them,
and accelerate them in recirculating linacs. The first physics option offered would be simply to
store the energetic muons, allowing them to decay producing intense and well-understood beams
of electron and muon neutrinos – a neutrino factory [6, 7, 25]. This would offer interesting
physics opportunities in the search for long-baseline oscillations between electron and muon
neutrinos and matter effects on neutrino oscillations. The most exciting opportunity may be
the search for CP violation [25]. A neutrino factory would be the logical next step after the
current generation of long-baseline neutrino experiments, and might provide a unique window
on grand unification via the lepton sector.

If the technique of muon cooling could be refined, the next options might be to collide muons
in one or more Higgs factories, exploiting the direct-channel µ+µ− → H production mechanism.
Such a MC would be a unique machine for measuring the Higgs line shape, as LEP did for the
Z. It would also offer ideal opportunities to study CP violation in the Higgs sector, as expected
in some supersymmetric models. In the longer run, one could also envisage building a high-
energy MC, which would probably be limited to Ecm < 4 TeV by the neutrino radiation hazard.
Its physics reach would be equivalent to that of CLIC for the same Ecm and luminosity, and
the smaller beam-energy spread and better energy calibration would confer some advantages
on a MC, though the absence of µγ and γγ collisions might be a handicap. There are some
physics scenarios in which colliding muons may be preferable to colliding electrons, for example
in Higgs physics or in certain supersymmetric models that violate R parity. On the other hand,
muon decays will provide important challenges to detector builders, and large controlled beam
polarization will not be available, unlike at CLIC.

Since there are many technical hurdles on the route to a MC, which surely has a longer
development time-scale than CLIC, we do not discuss it further, except to comment that a
muon storage ring complex, including a high-energy MC, could fit comfortably within the area
of the existing CERN accelerators.

4 Summary

We have discussed briefly possible future high-energy accelerator options for CERN, and note
the following preliminary impressions.

• (a) The SLHC presents interesting possibilities that may provide good physics return for
the relatively modest capital investment required to upgrade the LHC luminosity and the
LHC detectors.

• (b) CLIC provides excellent long-term perspectives within all the speculative scenarios
for physics beyond the Standard Model that we have considered, and is therefore a very
attractive option for CERN’s long-term future beyond the LHC. CLIC would complement
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and go beyond the LHC, being an ideal machine to study heavy new weakly-interacting
particles, and could fit comfortably in the neighbourhood of the CERN site.

• c) A neutrino factory based on a muon storage ring would provide an exciting and com-
plementary scientific programme, probing grand unified theories, but a high-energy muon
collider is not a prospect for the near future.

• d) A decision on the construction of a VLHC, which is unlikely to fit in the neighbourhood
of the CERN site, could only be taken after a few years of LHC running at the design
luminosity. Should the LHC data give indications that the next energy scale, e.g., that
of supersymmetry breaking, compositeness or extra dimensions, lies around 50 TeV or
below, then a VLHC would be the ideal machine to produce directly the corresponding
new particles and probe their interactions.

In conclusion, we comment that many open questions will be answered by the LHC, and
possibly other experiments, before the decision about CERN’s following high-energy accelerator
needs to be finalized. The LHC will certainly provide many clues to the ‘Theory of Everything’,
but further accelerator experiments will be needed to identify it. Quite possibly, some com-
pletely new phenomenon will be discovered at the LHC that will be more exciting than any of
the theoretical speculations discussed here. This brief survey has indicated that there are al-
ready many strong options for new CERN accelerators beyond the LHC, suitable for addressing
the questions it will leave open.

CERN has, in the LHC, a forefront project that will establish its leadership in high-energy
physics. The organization should have similar ambition for its projects after the LHC.

Acknowledgements

We thank M. Battaglia, U. Baur and A. Blondel for their help.

11



References

[1] J. Ellis, talk at CERN EP-TH Faculty Meeting, The Future Scientific Options of CERN,
organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

[2] See, for example, T. Hambye and K. Riesselmann, hep-ph/9708416.

[3] J. Ellis, E. Keil, G. Rolandi, Options for Future Colliders at CERN, CERN-EP-98-
03/CERN-SL-98-04-AP/CERN-TH-98-33.

[4] See, for example: http://www-theory.fnal.gov/vlhc/vlhc.html and references therein;
Design Study for a Staged Very Large Hadron Collider, Fermilab-TM-2149 (2001);
U. Baur, talk at Snowmass 2001, Physics Opportunities at Future Hadron Colliders: SLHC
and VLHC.

[5] A 3 TeV e+e− Linear Collider based on CLIC Technology, the CLIC Study Team, R.W.
Assmann et al., ed. G. Guignard, CERN Report 2000-008.

[6] Prospective study of muon storage rings at CERN, eds. B. Autin, A. Blondel and J. Ellis,
CERN Report 99-02.

[7] A. Blondel, talk at CERN EP-TH Faculty Meeting, The Future Scientific Options of
CERN, organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

[8] ATLAS Collaboration, Detector and Physics Performance TDR, CERN/LHCC/99-15.

[9] CMS Collaboration, Technical Proposal, CERN/LHCC/94-38.

[10] M. Battaglia, A. De Roeck, J. Ellis, F. Gianotti, K. Matchev, K. Olive, L. Pape and
G. Wilson, hep-ph/0106204.

[11] A. De Roeck, talk at EP-TH Faculty Meeting, The Future Scientific Options of CERN,
organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

[12] L. Evans, private communication.

[13] G. Azuelos et al., Physics in ATLAS at a possible upgraded LHC, ATLAS note ATL-PHYS-
2001-002.

[14] S. Abdullin, N. Stephanov and P. Sphicas, for the CMS Collaboration, private communi-
cation.

[15] F. Gianotti, talk at CERN EP-TH Faculty Meeting, The Future Scientific Options of
CERN, organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

[16] T. S. Virdee, talk at CERN EP-TH Faculty Meeting, The Future Scientific Options of
CERN, organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

12



[17] TESLA Technical Design Report, eds. R.D. Heuer, D. Miller, F. Richard and P. Zerwas
(DESY, Hamburg, 2001).

[18] The Case for a 500 GeV e+e- Linear Collider, American Linear Collider Working group,
J. Bagger et al., SLAC-PUB-8495, BNL-67545, FERMILAB-PUB-00-152, LBNL-46299,
UCRL-ID-139524, hep-ex/0007022.

[19] JLC-1, JLC Group, S. Matsumoto et al., KEK Report 92-16.

[20] CLIC Physics Working Group, for a web page with more information, see:
http://clicphysics.web.cern.ch/CLICphysics/.

[21] M. Battaglia, S. De Curtis, D. Dominici, A. Ferrari and J. Heikkinen, hep-ph/0101114.

[22] G. Wilson, Completing the Sparticle Spectrum?, talk at LCWS2000, Fermilab, October
2000, see also [20].

[23] A. De Roeck, WW Scattering at CLIC, talk at LCWS2000, Fermilab, October 2000, see
also [20].

[24] Conceptual Design of the SPL, a High-Power Superconducting H− Linac at CERN , the
SPL Study Group, B. Autin et al., ed. M. Vretenar, CERN Report 2000-012.

[25] P. Hernandez, talk at CERN EP-TH Faculty Meeting, The Future Scientific Options of
CERN, organized by G. Altarelli and V.G. Goggi, 17th Jan. 2001.

13


