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Abstract 
The thermal shielding of the LHC magnets cryostats will make use of Multi-Layer 
Insulation. This is a sandwich of several Mylar (polyester) foils 6 µm thick coated 
with a thin film of aluminium, having a thickness of some 30 nm. The thickness of 
the aluminium film must be kept at a minimum to minimise lateral thermal 
conduction. The outer layer of this sandwich stays at a temperature of 20 K or below, 
and receives IR radiation from surfaces at 77 K (wavelength of 37.6 µm at the peak 
of blackbody radiation), which should be reflected with the highest efficiency. 
 
The minimum thickness for the aluminium layer to avoid transmission of the 
radiation can be calculated by making use of the skin effect theory, taking into 
account the changes in electrical properties that are due to the extremely low 
thickness of the film. 
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1. THEORETICAL BACKGROUND 

1.1 Influence of thickness on the resistivity of thin films 

The electrical resistivity of metals is usually described by the formula ρ = m/ne2τ where m is 
the effective mass of the electrons in the metal, n their density, e the electric charge and τ is the 
relaxation time of the electrons. In terms of the mean free path l it can be written as ρ = mvF/ne2l  i). 
Phonons are the major source of scattering at room temperature, but by cooling down the material 
their density is reduced and other sources of scattering can dominate. This is often described by the 
Matthiessen rule which states that ρ (T) = ρph(T) + ρdef, assuming implicitly that the scattering 
by phonons and by all the different types of defects have the same probability. In the case of 
aluminium ρph = 2.66 µΩcm at 293 K, and practically vanishes below 20 K, while ρdef can 
range from above 1 µΩcm to lower than 1 nΩcm for high quality specimens. The mean free 
path is 0.045 µm at 293 K, and scales inversely proportional to the resistivity. 

It is obvious that the surfaces of the specimen are also a source of scattering. In the case 
of films having a thickness d of the order or lower than 0.045 µm this can be a dominant process 
even at room temperature. A rough approximation of this effect can be done by simply applying the 
Matthiessen formula ρfilm = ρbulk + mνF/ne2d, replacing the mean free path l with the thickness d. 
The quantity mvF/ne2 which depends only on intrinsic quantities of the metal is often quoted as 
(ρl)bulk and in the case of aluminium is approximately equal to 1.2 x 10-15 Ωm2 [1]. More detailed 
calculations [2, 3] show that the Matthiessen rule overestimates the resistivity, as illustrated in 
Figure 1 where the result of the numerical integration of the Fuchs formulae [2] is compared 
with the Matthiessen formula. It is worth mentioning that the Fuchs theory includes the 
possibility that the scattering of electrons at the surfaces is either specular (elastic scattering 
implying only a change of direction) or diffuse (resulting in a redefinition of the wave function). 
However even the finest experiments have never identified a fraction of specular electrons 
larger than a few percent. For our purpose we assume that this fraction is equal to zero. 

1.2 Surface resistance and reflection coefficient 
Electromagnetic waves penetrate into metals, where some energy is dissipated by the 

currents induced by the high-frequency fields. In the well-known case of the normal skin effect 
the penetration depth is equal to δ = (2ρ /ωµ0)1/2, where ω is the angular frequency of the RF 
wave. The power dissipated is related to the surface resistance Rs = ρ /δ (which by definition is 
the ratio of the fields E/H at the surface of the metal) and equal to ½RsH2. The mechanism of 
power dissipation is the classic Joule effect, assuming that the induced currents are locally 
proportional to the electric field, J = E/ρ. 

This formulation is no longer valid when δ < l, regime described by the theory of the 
anomalous skin effect. A commonly accepted picture is that, when the mean free path is larger 
than the penetration depth, the conduction electrons “escape” from the region where the field is 
penetrating, and thus are no longer effective in screening the fields. As a consequence, an 
increase in mean free path does not further reduce the surface resistance. This happens either at 
high frequency, or at low temperature where the electron mean free path l increases due to the 
reduced scattering by phonons. In the case of aluminium at room temperature δ = l at about 
3 THz. It is beyond the scope of this short note to recall all the details of the anomalous skin 
effect. It is interesting to mention that in this regime the relation between field and current is no 
longer local [4 - 7]. 

                                                           
i) The relaxation time τ is the average interval between two successive scatterings of the conduction electrons in 

the metal, and is related to the mean free path through the obvious relation τ = l/vF, vF being the Fermi velocity. 
These scatterings are the origin of the electrical resistivity and are due to phonons, impurities, lattice defects, 
grain boundaries and also the surfaces of the metal. 
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When further increasing the frequency (or further increasing the mean free path, which in 
practice requires specimens of extremely high purity) another regime sets in when ωτ >> 1, 
where τ is the relaxation time. In this regime the period of the electromagnetic wave is typically 
much smaller than the relaxation time and the electrons cannot escape during a full RF period, 
and thus the surface resistance can again be described by the normal skin effect formulas. It is 
worth mentioning that the opposite condition ωτ << 1 is implicit in the condition δ > l for the 
normal skin effect regime. 

The fraction of electromagnetic energy reflected by a metallic surface is characterised by 
the reflection coefficient r, assuming the incident energy i equal to unity. This satisfies the 
obvious relation i = 1 = r + d + t, d being the fraction of energy dissipated in the metal 
(calculable with the surface resistance) and t the fraction which is transmitted (usually t ≠ 0 
only for very thin layers). The reflection coefficient may be approximated by r ≈ (1 − 4Rs /Rvacuum), 
whenever Rs is much smaller than the vacuum impedance Rvacuum = 376.6 Ω. The result is that in 
almost all practical cases, r is very close to unit except in some special conditions, and it is 
often more convenient to work with the quantity (1 − r)  ii) Figure 2 [4] illustrates this fact for a 
thick silver slab, showing also the difference between the predictions of the classical model and 
the full theory, which takes into account the anomalous effect. As discussed above, the classical 
theory gives correct results at very high frequencies however. 

2. REFLECTIVITY OF THIN ALUMINIUM LAYERS 
The resistivity of very thin aluminium films as a function of temperature for different 

bulk RRR values (defined here as the ratio of the resistivity at 293 K and 20 K) and thickness is 
illustrated in Figure 3. This has been calculated using the pessimistic Matthiessen formulation, 
which overestimates the thickness effect as already illustrated in Figure 1. The resistivity of thin 
films is clearly dominated by the size effect, while the RRR plays only a secondary role. For 
example, a 30 nm film has a room temperature resistivity which is almost three times larger 
than the corresponding bulk value (two times if the calculation is done with the full Fuchs 
theory), and its RRR is about 1.6 whatever the purity of the bulk might be. This modification of 
the resistivity must of course be taken into account for the calculation of the reflectivity. 

The value of ωτ at 20 K in the case of an incident IR radiation of 37.6 µm wavelength is 
approximately 1.5, 3 and 6 for the films of 30 nm, 60 nm and 120 nm respectively, almost 
independently of the bulk RRR value. Although the strong inequality ωτ >> 1 is not respected, 
the calculation of the reflectivity can be performed with the formulae of the normal skin effect 
without introducing serious deviations [8, 9]. It is however necessary to use a set of equations, 
which allow for the transmission of the radiation through the film in case its thickness is too 
small [10]. The reflection coefficient as a function of thickness is thus illustrated in Figure 4, 
for films having the same bulk RRR as in Figure 3. To obtain a reflectivity better than 99%, the 
thickness of the aluminium layer must be larger than 40 nm. The result depends only negligibly 
on the bulk RRR for films less than one µm thick, since the electrical resistivity is dominated 
by the thickness effect. For very thick films (solid foils for example) the reflectivity depends 
only on the purity however. At very small thickness the reflectivity decreases progressively, 
essentially because of the transmission of the wave through the film. The value of zero is 
however not reached even in the absence of a film, because the Mylar has a refractive index of 
1.64 at this wavelength, causing a reflection at the vacuum/Mylar interface. 

                                                           
ii) As a classical example, the surface resistance of an infinitely thick slab of aluminium at room temperature in the 

classic skin effect regime where δ > l (ω/2π < 3 THz) is always lower than 0.56 Ω, resulting in a reflectivity 
r > 0.994. 
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3. CONCLUSIONS 

To achieve reflection > 99% of IR radiation produced by surfaces at 77 K, an aluminium 
film at 20 K should be at least 40 nm thick. This has been calculated using the appropriate 
formulae for the reflection of an electromagnetic wave, taking into account the increase in 
resistivity due to the small thickness of the film. Possible non-uniformity of the coating may 
suggest increasing the thickness above this value to have a sufficient margin for tolerances. The 
presence of some oxide on the surface of the metal might nevertheless reduce the reflectivity 
below the theoretical values. 
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Figure 1: Resistivity as a function of thickness for an aluminium film at room temperature. 
For large thickness both plots converge to the bulk value of 2.66 µΩcm. 

 
(a) Numerical integration of the full Fuchs theory, assuming totally diffuse scattering at the 
surface 
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(b) Simplified formulation based on the Matthiessen rule. 
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Figure 2: Reflection coefficient, plotted as Log10(1-r), for an RRR = 480 thick silver slab at 
liquid helium temperature as a function of Log10(wavelength in meters) [4]. 
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Figure 3: Resistivity as a function of temperature for massive aluminium and for films of 
30 nm, 60 nm and 120 nm, calculated assuming a bulk RRR of 20, 50, 100 and 200. Data for a 
massive reference sample of RRR 3600 are included. 
 
(a) Plot in linear scale. For a given thickness, the data points of films with different RRR values 
are almost superposed. 
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(b) The same data plotted in logarithmic scale illustrating the change with RRR of the low-
temperature resistivity. 
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Figure 4: 

 
(a) Reflection coefficient r as a function of the thickness of an aluminium film at 20 K, for an 
incident IR wavelength corresponding to 77 K. The calculation is performed for four bulk RRR 
values as in Figure 3, although the curves look coincident. 
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(b) The quantity (1 – r) calculated from the above plot. When (1 - r) decreases from 0.02 to 
0.01 the reflected electromagnetic energy doubles. It should be noted that the thickness effect is 
no longer dominant for thickness larger than about 1 µm, where the purity starts to play a role. 
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