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Abstract: An estimate of the energy of neutrino-induced muons in MACRO is provided

by a multiple Coulomb scattering measurement. The MACRO original upward-muon data

sample has been subdivided according to the reconstructed muon energy. The results are

interpreted in terms of neutrino oscillation

1. Introduction

MACRO[1] can be used as a neutrino detector by measuring neutrino induced muon events.

From the study of the upgoing muon deficit and from the distortion of the relative angu-

lar distribution, MACRO provided evidence for neutrino oscillations[2]. The oscillation

probability depends on the ratio Lν/Eν , where Lν is the distance travelled by neutrinos

inside the earth and Eν is the neutrino energy: an estimate of this ratio is fundamental

for any oscillation analysis. For high energy muons Lν is properly measured using the

reconstructed zenith angle of the tracked muon. As far as the Eν is concerned, part of the

neutrino energy is carried out by the hadronic component produced in the rock below the

detector while the energy carried out by the muon is degraded in the propagation up to

the detector level. Nevertheless, Monte Carlo simulations show that the muon energy at

the detector level still preserves information about the original neutrino energy.

Since MACRO is not equipped with a magnet, the only way to infer the muon energy

is through the multiple Coulomb scattering (MCS) of muons in the ' 25 radiation lengths
(Xo) of detector. We use the streamer tube system[1], which provides the muon coordinates

on a projected view. The other complementary view of the tracking system (“strip” view)

cannot be used for this purpose since the space resolution is too poor. In MACRO, a muon

crossing the whole apparatus has X/Xo ' 25/cosθ and y ' 480/cosθ cm, giving, on
the vertical, σMSx ' 10 cm/E(GeV). The muon energy estimate can be performed up to
a saturation point, occurring when σMSx is comparable with the detector space resolution
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σx. The MACRO streamer tube system, with a cross section of (3×3) cm2, provides σx'1
cm: the muon energy estimate through MCS is possible up to ' 10 GeV/√cosθ.
A first energy estimate has been presented in[5], where the feasibility of this approach

was shown. The deflection of the muons inside the detector depends on the muon energy

and was measured using the digital information of the limited streamer tube system. The

measured event rate vs. Lν/Eν is in good agreement with the expectations, assuming

neutrino oscillations with ∆m2=2.5×10−3eV 2 and sin22θ=1. Since the interesting energy
region for atmospheric neutrino oscillation studies spans from ' 1 GeV up to some tens
of GeV, it is important to improve the detector space resolution to push the saturation

point as high as possible. We improved the MACRO space resolution exploiting the TDCs

of the MACRO QTP system[3] to operate the limited streamer tubes in drift mode. The

QTP system is equipped with a 6.6 MHz clock which corresponds to a TDC bin size of

∆T=150 ns. Although the MACRO streamer tubes, operated in drift mode, can reach

a space resolution as good as σ'250µm[4], in MACRO the main limitation comes from
the TDC bin size. The expected ultimate resolution is σ'Vdrift×∆T/

√
12'2mm, where

Vdrift ' 4 cm/µs is the drift velocity.
Since the QTP electronics was designed
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Figure 1: Distribution of the residuals for

MACRO data (histogram) and for simulated

data (black circles). The dashed histogram

shows the streamer tube resolution used in dig-

ital mode.

for slow monopole analysis, in order to fully

understand the performance of the QTP TDCs

in this context and to perform an absolute en-

ergy calibration, we made two tests at CERN

PS-T9 and SPS-X7 beams. A slice of the

MACRO detector was reproduced in detail:

absorbers made of rock excavated in the Gran

Sasso tunnel, like those of MACRO, were used.

Following the MACRO geometry, the track-

ing was performed by 14 limited streamer tube

chambers, operated with the MACRO gas mix-

ture (He(73%)/n-pentane(27%)). The exper-

imental setup was exposed to muons with en-

ergy ranging from 1 GeV up to 100 GeV. Each

QTP-TDC time was converted into drift cir-

cles inside the chambers. The distribution of

the residuals of the fitted tracks showed a σ ' 2 mm, demonstrating the successful use of
the QTP-TDCs to operate the streamer tube system in drift mode. In order to implement

this technique in the MACRO data, we used more than 15·106 downgoing muons to align
the wire positions with an iterative software procedure. After the alignment, a resolution

of σ ' 3 mm was obtained. This is a factor 3.5 better than the standard resolution of
the streamer tube system used in digital mode (Fig. 1). The distribution of the MACRO

downgoing muon residuals is shown in Fig. 1 (black circles) together with the GMACRO

simulation (continuous line). In the same plot we superimposed the residuals distribution

obtained with streamer tubes in digital mode (dashed line). The difference between the

resolution obtained at test beam (σ ' 2 mm) with respect to that obtained with MACRO
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Figure 2: Average Neural network output as a function of the muon energy

data (σ ' 3 mm), comes from systematic effects such as the presence of δ rays produced
in the rock absorbers causing earlier stops to QTP-TDCs.

2. Muon energy estimate and data analysis

For the muon energy estimate we followed a neural network (NN) approach. We chose

JETNET 3.0, a standard package with a multilayer perceptron architecture and with back-

propagation updating. The NN has been configured with 7 input variables, related to the

multiple scattering, 1 hidden layer and we chose the Manhattan upgrading function. The

NN was trained using a set of Monte Carlo events with known input energy, crossing the

detector at different zenith angles. In Fig. 2 we show the average output of the NN as a

function of the residual muon energy before entering the detector. The output of the NN

increases with the muon residual energy up to Eµ ' 40 GeV, (Eν ' 200 GeV). For the
analysis, we used the whole sample of upgoing muon events collected with the upper part

of MACRO (Attico) running, for a total live time of 5.5 years. We considered upgoing

muons selected by the TOF system and the muon tracks reconstructed with the standard

MACRO tracking. We then selected hits belonging to the track and made of a single fired

tube, to associate unambiguously the QTP-TDC time information. Spurious background

hits have been avoided by requiring a time window of 2 µs around the trigger time. Finally,

we selected events with at least four streamer tube planes with valid QTP-TDC data. After

the selection cuts 348 events survived, giving an efficiency of about 50%.

We used the information provided by the neural network to separate the upgoing

muons into different energy regions and to study therein the oscillation effects. We studied

the zenith angle distributions of the upgoing muon events in four regions with different

muon energy, selected according to the NN output. The same selection has been applied to

simulated events. To make a comparison between real data and Monte Carlo expectations,

we performed a full simulation chain by using the Bartol neutrino flux and the GRV94 DIS

parton distributions [7]. The propagation of the muons from the interaction point up to the
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Figure 3: Zenith angle distributions for upward going muons in four energy windows (black

squares). Rectangular boxes show the Monte Carlo expectation with the no-oscillation hypothesis

(statistical errors plus 17% systematic uncertainty on the overall flux).

detector has been done using the FLUKA99 package[8], while the muon simulation inside

the detector was performed with GMACRO (the GEANT 3.21 based detector simulation).

Should the upgoing muon deficit and the angular distribution distortion (with respect

to the Monte Carlo expectation) pointed out by MACRO come from neutrino oscillations

with parameters ∆m2=O(10−3 eV 2) and sin22θ'1, such deficit and such angular distri-
bution distortion would not manifest at all neutrino energies. The effect is expected to

be stronger at low neutrino energies (E≤ 10 GeV) and to disappear at higher energies
(E≥100 GeV). We used the NN to separate four different neutrino energy regions whose
median energy is respectively 12 GeV (low), 20 GeV (medium-low), 50 GeV (medium

high) and 102 GeV (high). In Fig. 3 we show the zenith angle distributions of the upgoing

muon events in the four energy regions selected compared to the expectations of Monte

Carlo simulation, assuming the no-oscillation hypothesis. It is evident that at low energy a

strong disagreement between data and Monte Carlo (no-oscillation hypothesis) is present,

while the agreement is restored with increasing neutrino energy. The corresponding χ2-

probabilities for the no-oscillation hypothesis in these four windows are respectively 1.8%

(low), 16.8% (medium-low), 26.9% (medium-high) and 87.7% (high): the χ2/DoF values

are clearly running with the neutrino energy, spanning from 13.7/5 to 1.8/5. The χ2 has

been computed using only the angular shape. Finally, we tried to get information on the

ratio Lν/Eν . The output of the NN was calibrated on an event by event basis to have

a linear response as a function of log10(Lν/Eν). The ratio of DATA/ Monte Carlo( no

oscillation) as a function of log10(Lν/Eν), is plotted in Fig. 4: a good agreement is found

with the oscillation probability function we expect with the parameters quoted above.
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3. Conclusions

The sample of upward through-going muons measured by MACRO has been analyzed in
terms of neutrino oscillations using multiple Coulomb scattering to infer muon energy.
The improvement of the space resolution obtained by exploiting the QTP electronics
extended the muon residual energy reconstruction up to ' 40 GeV. Two dedicated runs
at the CERN PS-T9 and SPS-X7 beams allowed us to check the MACRO QTP-TDCs
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Figure 4: Data/MC (without oscillation) as a function of the ratio Lν/Eν .

and showed the feasibility of operating the limited streamer tubes in drift mode. The
angular distribution of the upward going muon sample has been subdivided into four
energy windows, showing the energy trend expected from the neutrino oscillation
hypothesis. Moreover, we performed a study in terms of Lν/Eν . Also in this case, the
observed transition from 1 to 0.5 in the ratio of data to Monte Carlo prediction is the one
expected from the neutrino oscillation hypothesis with oscillation parameters ∆m2 =
O(10−3 eV 2) and sin22θ=1.
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