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Abstract

Beetle is a 128-channel readout chip, which will be
used in the silicon vertex detector, the pile-up veto
counters and the silicon tracker of the LHCb exper-
iment at CERN. A further application of the Beetle
chip is the readout of the LHCb RICH, in case it is
equipped with multi-anode PMTs.
The scope of this paper is the design changes leading

to the latest version 1.3 of the Beetle readout chip. In
addition, measurements on earlier versions and simu-
lation results driving these changes are shown.

I. Introduction

The development of the Beetle chip started in 1998,
and up to now resulted in �ve 128-channel readout
chips. The history of the Beetle chip is summarised in
Table 1.

II. Chip Architecture

The Beetle [1] is an analogue pipelined readout chip
and implements the RD20 front-end architecture [2].
For a fast trigger decision it provides a comparator
with prompt binary output signals. Using the com-
parator output signals instead of analogue front-end
signals, the Beetle can alternatively operate in a bi-
nary pipelined mode. The chip integrates 128 chan-
nels. Each channel consists of a low-noise charge sen-
sitive preampli�er, an active CR-RC pulse shaper and
a bu�er. The rise time of the shaped pulse is � 24
ns, the spill-over at 25 ns after the peak is less than
30 % of the maximum. The chip provides two di�er-
ent readout paths. For the binary readout the front-
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end's output couples to a comparator which features
invertable outputs to detect input signals of either
polarity and individually adjustable threshold levels.
Four adjacent comparator outputs are logically ORed,
latched, multiplexed by 2 and routed o� the chip via
low voltage di�erential signaling (LVDS) ports at 80
MHz. The pipelined readout path can operate in either
a binary mode by using the comparator outputs or
an analogue mode by sampling the front-end bu�er's
output with the LHC bunch-crossing frequency of 40
MHz. The sampled amplitudes are stored in an ana-
logue memory (pipeline) with a programmable latency
of at maximum 160 sampling intervals. This is com-
bined with an integrated trigger bu�er of 16 stages.
Upon a trigger the corresponding signals stored in the
pipeline are transferred to the multiplexer via a reset-
table charge sensitive ampli�er. The number of output
ports is con�gurable and allows a readout time of at
minimum 900ns per triggered event. The output of a
sense channel is subtracted from the analogue data to
compensate common mode e�ects. On-chip digital-to-
analogue converters (DACs) with a resolution of 8 bits
generate the bias currents and control voltages. For
test and calibration purposes, an adjustable charge
injector is implemented on each channel. For appli-
cations which require a minimum number of transmis-
sion lines and put less strict demands on the readout
speed, several Beetle chips can be read out in a daisy
chain. All bias settings and con�guration parameters,
e.g. trigger latency, readout mode and readout speed,
can be programmed and read back via a standard I2C-
interface [3]. All digital I/Os, except for the I2C-lines
and the daisy chain ports, use LVDS signals.

The Beetle is designed in a commercial 0.25µm
CMOS technology and has a die size of 6:1� 5:4mm2.
The pitch of the analogue input pads is 40.24µm. If no
prompt readout is required, the chips can be mounted
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Table 1: History of the Beetle chip. The table lists all versions of the chip and summarises important informations
together with submission dates and chip sizes.

Version Size [mm2] Submitted Comments

1.0 6:1� 5:5 04/2000 First 128-channel pipelined readout chip
Had to be patched with an FIB (Focused Ion Beam) to become operational

1.1 6:1� 5:5 03/2001 Mask change of 1.0 to become operational
Analogue front-end too slow
Readout time 925 ns
"Sticky Charge" in subsequent readout (c.f. sect. III.D.)

1.2 6:1� 5:1 04/2002 Faster front-end
Readout time 900 ns
New feature: triple redundant logic circuits (SEU protection)

1.2 MA0 6:1� 5:1 12/2002 Prototype for RICH readout
Front-ends partly modi�ed to accept multi-anode PMT signals
Modi�ed power routing

1.3 6:1� 5:4 06/2003 Correction of cross talk problems
Removal of "Sticky Charge" e�ect
Improved comparator (lower spread, better o�set compensation)
Improved Output driver

side-by-side, since no connections to the top and bot-
tom side of the chip are required. This allows an overall
pitch of 50µmmatching most silicon sensors. In case of
the silicon vertex detector, the readout chip will be po-
sitioned only 5 cm from the LHC beam, which means
that the Beetle has to be radiation hard. The chip is
designed to withstand a total dose in excess of 10 Mrad
(100 kGy) by taking the following design measures [4]:
forced bias currents are used in all analogue stages in-
stead of �xed node voltages; enclosed gate structures
for NMOS transistors suppress increasing leakage cur-
rents under irradiation; a consistent use of guard rings
minimises the risk of Single Event Latch-up (SEL) [5].

III. The Beetle 1.3 chip

The Beetle 1.3 chip only includes design changes in-
tended to �x all known (and understood) problems
with its predecessors. These changes are detailed to-
gether with the measurements and simulations which
drove them.

A. Front-End

The schematic of the front-end implemented on
Beetle 1.2 was not changed, since it ful�lls all re-
quirements and exhibited the performance expected
from simulation and earlier test chips. However, some
changes were applied to its layout and peripheral cir-
cuits:

� Test pulse circuit: The original 4-level (staircase)
pattern was abandoned in favour of a 2-level pat-
tern (i.e. same charge with alternating polarity).
The maskability of the test pulse together with
the single charge simpli�es chip testing and gain
checks on individual channels, since no corrections
for the test pulse amplitude have to be applied.

Figure 1: Patched Beetle 1.2 with bond wires attached to
the front-end power supply to measure the voltage drop
across the channels.

� Power Routing: The readout baseline of the Bee-
tle shows a sagging shape, which was still present
on Beetle 1.2MA0, but to a lesser extent. This
improvement resulted from changes of the power
supply lines in the pipeline readout ampli�er.
Triggered by this observation, the power rout-
ing of the front-end was also investigated. One
Beetle 1.2 was patched such, that wires could be
bonded to the front-end power supply as shown
in �g. 1. Interestingly the voltage drop measured
across the 128 channels closely resembled the sag-
ging shape of the readout baseline. In turn a simu-
lation of all 128 front-end channels, connected by
resistive power nets was done. Adding resistors
representing the connections to the power pads
led to the results shown in �g. 2. This simula-
tion also con�rmed, that the power distribution
of the shaper's folded cascode was the sole source
of the baseline sag: The DC-o�set of the preampli-
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Figure 2: Readout �gure of Beetle 1.2 superimposed with a
simulation of the front-end channel's DC-o�set, including
resistive power nets.

�er is removed by the AC-coupling to the shaper,
while the bu�er stage is a source follower, which is
greatly independent from the power supply volt-
age. To solve this problem, the power bars con-
necting the 128 channels were widened and ad-
ditional pads for both power nets were placed on
bottom and top of the chip. Along with these mea-
sures, blocking capacitors were placed between
the power nets for reasons described later.

� Bias networks: The investigations on the front-
end's power supply also revealed a minor design

aw in the biasing of the front-end. The DAC gen-
erating the bias current was located at the bottom
side of the chip. The diode-connected transistor
of the current mirror, which operates as a cur-
rent sink, was located on the top side, leading to
a considerable voltage drop across the intercon-
nection. In turn the gate voltages of the current
sources in the di�erent channels varied, causing a
gain drop towards the higher channel. A similar
e�ect was observed in test beam data taken with
a NIKHEF hybrid. On Beetle 1.3 the diode con-
nected transistor of the current mirror was moved
to the bottom side of the chip to eliminate this ef-
fect.

B. Discriminator Circuit

Measurements of the discriminator done at NIKHEF
resulted in a measured threshold spread equivalent to
� = 2:4DAC units (or 4800e�), as shown in �g. 3. This
meant that the bipolar spread is of the same magni-
tude as the range of the unipolar 3 bit local DACs in-
tended for its compensation. The measured spread was

Figure 3: Measured (left) and simulated (right) thresh-
old spread of the Beetle 1.2 comparator circuits. 1LSB �
200 µA.
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Figure 4: Schematics of the comparators on Beetle 1.2
(top) and Beetle 1.3 (bottom).

also found in good agreement with the spread expected
from process parameter variations, which resulted in
� = 2:8 DAC counts (or 5600e�). A major culprit for
this spread was found to be the split input bu�er of
the comparator, which was in turn replaced by a sin-
gle one with an increased gain (1 instead of 0.7) on
Beetle 1.3. To provide a suÆcient safety margin, the
channel's local DACs intended for o�set compensation
were improved with a bipolar range of 14400e� and
5 bit resolution. Fig. 4 shows the block schematics of
the comparators on Beetle 1.2 and 1.3.

C. Control Core

The Beetle's control circuit was re-synthesised
for Beetle 1.2, especially to include SEU protec-
tion/correction circuits. This was done by using triple
redundant Flip-Flops with majority voting outputs
for all registers, enhanced by self-triggered reprogram-
ming circuits for the static ones. The schematics of
these registers are shown in �g. 5. Regarding the
digital functionality, the control circuit of Beetle 1.2
worked as expected. But its operation a�ected almost
all other circuits by coupling switching spikes to the
chip's outputs and power lines. These spikes appeared
on both clock edges (and thus were named "80MHz
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Figure 5: Schematics of a triple redundant register with
(right) and without (left) self-triggered reprogramming cir-
cuit.

X-talk"), which pointed to the clock tree. The latter
had grown from 21 bu�ers on 1.1 to 275 on 1.2 and
was consequently considered as the primary source of
the e�ect. A further increase of the crosstalk was prob-
ably due to a guard ring, which was moved from the
analogue supply on 1.1 to the digital one on 1.2.

Another feature of the 1.2 core was the absence of a
multiplexer at the return-token inputs used for daisy-
chained readout. It required that these pads were
pulled to ground, if unused. For the core of Beetle 1.3
special care was taken for the clock tree, which was re-
duced to 104 bu�ers. In addition the o�ending guard
ring was moved back to the analogue supply and the
missing multiplexers were added. Targeted on a fur-
ther reduction of crosstalk, the digital power supply
of the multiplexer was separated from the core supply
and both were blocked with gate capacitors on chip.

D. Pipeline Readout Ampli�er

The decrease of a readout cycle to the LHCb-required
900ns on Beetle 1.2 caused the activation of two
switches at the same time. Besides some charge injec-
tion, this also lead to the back-transfer of the charge
present on the multiplexer's hold capacitor to the pi-
peamp. As a result, a remainder of up to 60% with
opposite polarity and a strong distortion of the read-
out baseline in the next data frame was visible. This
so-called sticky charge e�ect is depicted in �g. 6. A
simulation, in which the relative timing of the two
switching signals was swept is shown in �g. 7. It re-
vealed that the simultaneous timing on Beetle 1.2 was
almost the worst case and delaying either signal would
result in a considerable improvement. On Beetle 1.3
the MuxTrack signal is delayed by 5ns, which removes
the sticky charge. This was also proven in advance by
a patch applied to a Beetle 1.2: An external mux track

signal was coupled to the corresponding line, overrid-
ing the internal signal. The result is shown in �g. 6.

A further modi�cation of the Beetle 1.3 Pipeamp
is widened power lines, as already present on
Beetle 1.2MA0.

Figure 6: Trace R1: The readout �gure of the 2nd data
frame shows up to -60% remainder of the �rst one and
a strong distortion of the baseline, the so-called "Sticky
Charge" e�ect. Trace 1: Patched Beetle 1.2 with delayed
MuxTrack signal. It does not show the "Sticky Charge"
e�ect.
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Figure 7: Sticky Charge E�ect: The picture shows the
"sticky charge" in fractions of the preceeding signal as
a function of the relative timing of the two switches
ROAmpReset and MuxTrack. On Beetle 1.2 the timing is in
the steeply falling pattern of the curve. In that case dif-
ferent delays across the channels also explain the baseline
distortion.
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Figure 8: Schematic of the fully di�erential current driver
on Beetle 1.3.

E. Multiplexer

Three changes were applied to the multiplexer of
Beetle 1.3: The number of reference channels used for
DC level subtraction was increased to 4 { one for each
block of 32 channels. This modi�cation is intended to
remove spikes at the start and end of a data frame,
originating from block to block crosstalk via the ref-
erence channel. Also the balance of the switch opera-
tion was improved, again targeting on the suppression
of spikes. The biggest modi�cation was in the digital
part: It received its own power supply and the triple
redundant Flip-Flops were removed. This was moti-
vated by the lower switching noise, which was consid-
ered more important than SEU robustness in this part.
It should be noted, that an SEU can at maximum cor-
rupt 2 data frames by injecting an additional token,
since the multiplexer token is discarded after leaving
the last channel.

F. Output Driver

The output driver underwent a major redesign, pri-
marily driven by an excessive current density in some
part of the circuit. In case of an increased power supply
voltage, the latter also caused a failure of the circuit.
On Beetle 1.3 the output driver is now a fully di�eren-
tial current driver, which also has a higher gain when
driving a 150
 load. The schematic is shown in �g. 8.

G. Other Changes

With very few exceptions, almost all other changes on
Beetle 1.3 only a�ected the layout of the chip. The
minor changes are summarised in the following list:

� Merged openings of power pads to apply more
bond wires

� Test pad for direct access to the output of the
current DAC

� Separated supply for comparator LVDS outputs

� 2 additional supply pads for core power

� 5V-compatible I2C pads provided by CERN to
get rid of external non radiation-hard level shifter
FETs.

IV. Summary and Conclusions

The previous revision, Beetle 1.2, already ful�lled all
LHCb requirements regarding signals and timing. It
also complied with the VELO1 requirements regarding
the analogue characteristics of the front-end. Its major
shortcomings are excessive crosstalk, originating from
digital circuits and the "sticky charge" problem. Both
were �xed on Beetle 1.3. Detailed invstigations and
patches on the Beetle 1.2 and Beetle 1.2MA0 led to a
redesign of the power routing on Beetle 1.3. Further
improvements on this chip are a comparator with less
o�set and better compensation and a fully di�erential
current output driver. Various measures were taken
against the crosstalk from the digital part of the chip,
since a single source of this disturbance could not be
isolated. Beetle 1.3 was submitted for manufacturing
end of June 2003 and came back from the manufac-
turer at the end of September 2003. Much like its di-
rect predecessor, it is designed to ful�ll all LHCb spec-
i�cations and to seamlessly �t in the LHCb readout
chain. A production run to equip the vertex detector,
silicon tracker and pile-up veto counters of the LHCb
experiment is planned for 2004.
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