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1 Introduction

LEP was the large electron positron collider at CERN. This accelerator ran from 1989
to 2000 producing ete™ collisions at /s = 91 — 208 GeV in the four detectors around
the ring. Each of the detectors was used to measure the parameters of the Z boson
precisely and that of other standard model parameters. The large number of Z decays
and other measurements allow accurate tests of the standard model and constrain new
physics processes that would cause deviations from the standard model predictions.
Searches for new particles were performed by direct searches and indirectly using the
precision measurements. A brief overview of a few of these searches is presented here.

2 The LEP experiments

The 4 LEP experiments, ALEPH, DELPHI, L3 and OPAL, use different technologies
based around the same basic detector design, as described in [, @, B, f]l. They all rely on
precise vertexing with silicon detectors around the beam pipe, tracking charged particles
within a solenoidal magnetic field and measuring energy deposited in the electro-magnetic
and hadronic calorimeters and around the outside of the calorimeters dedicated muon
detectors.

3 Extra Dimensions

One possible solution to the problem of quantising gravity is to add additional dimensions
to the 3+1 space-time dimensions assumed in the standard model [B, B, [i]. These extra
dimensions are finite in size and so will have quantised energy states within them. Gravi-
tons, the particle that mediates the gravitational force, propagates in these compactified
extra dimensions. This can solve the hierarchy problem, which is the very large scale
difference between the Plank scale (Mp; ~ O(10®719) GeV) and the electro-weak scale
(Mpw ~ O(10273) GeV). In a space with D = § + 4 dimensions the Planck mass, Mp,
will be modified by the extra-dimensions. If the extra dimensions are of size R

GN' = 8TR M3, (1)

where G is the Newtonian gravitational constant.

In an ete™ collider at electro-weak scales a signature of this process is the production
a photon with a graviton, e"e™ — G7y. The graviton can not be detected and the visible
decay is a single photon and missing energy and momentum. In the ALEPH data there
was no excess seen in the single photon distribution over the expected SM backgrounds,
see Figure [ The largest possible size extra dimension is a function of the number of
assumed extra dimensions. Assuming 2 extra dimensions, which gives the least stringent
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Figure 1: ALEPH data (points) and SM expectation (line) for the missing mass and
| cos 6| distributions.

size limit, they must be smaller than 0.29 mm at 95% confidence which is equivalent to a
lower bound of 1.28 TeV on Mp, see reference [§ for the complete analysis.

Another signature is the modification of the 2 fermion production processes through a
virtual graviton, ete™ — G* — ff. Comparisons of the standard model distributions and
those with corrections for the extra dimensions can be made with the data. The largest
effect will be seen in Bhabha scattering:

do A A2

= A(s,t —DB(s,t —C(s,t 2
where s is the square of the centre-of-mass energy, ¢t = —%s(l—cos ) with cos 6 the electron

scattering angle. A is the SM term, B is the interference term and C' is the graviton
exchange term. M, is a mass scale related to Mp and A is a parameter that depends
on the theory. Using OPAL data and fitting for ee, uu, 77, vy and ZZ distributions a
measurement of \/MZ2 = 0.31 4 0.39TeV ™" was made, see reference [J] for the complete
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analysis.

4 Gauge mediated SUSY breaking

Minimal supersymmetry models (MSSM) assume that supersymmetry is broken in the
gravitational sector at high scale (>> 1 TeV). If supersymmetry is broken by gauge
forces (GMSB) then the gravitino will be a light particle, M5 < 1eV/c?, and the lightest
supersymmetric particle. Decays of the next to lightest supersymmetric particle (NLSP)
to the gravitino are possible and may have a significant life time (¢7 > 10 cm). NLSP
signatures in three lifetime ranges are shown in Table [I.

NLSP Lifetime sleptons neutralinos
Short (et < 10 cm) Acoplanar Acoplanar
leptons photons
Medium (5 cm < e < 10 cm) Track kinks Single non-pointing
photons
Long (et >2m) Heavy stable Invisible
charged particles
(dE/dx)

Table 1: GMSB signatures with a slepton or neutralino NLSP

4.1 Two photons and missing energy

The search for excess two acoplanar photons and missing energy constrains the neutralino
pair production cross-section in the case of rapid decay to gravitinos and photons. Using
the LEP combined data a limit on the production cross-section for neutralino pairs can be
set. Figure P for an example data and background comparison and corresponding limits,
see reference [[[(, [T for a discussion of the complete analyses.

4.2 Heavy stable charged particles

Heavy particles decaying with a distance of greater than 10 m will be seen as tracks with
very high specific ionisation along their path and will pass through the muon chamber
when leaving the detectors. In DELPHI the additional information given by the Cerenkov
detectors is an additional discriminant. These particles can be the signature of several
types of new physics including stable lepton species, see section [, NLSP states in GMSB
or MSSM states with small R-parity violating couplings. Figure f shows the DELPHI
data and Monte Carlo prediction for several stable charged particle masses for dF /dx and
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Figure 2: Plot a: L3 data and SM background predictions for the recoil mass from two
photon events, two different mass neutralino predictions are also shown. Plot b: the

cross-section x branching ratio exclusions for Iy — GGy~v and the cross-sections for
two extreme case neutralino mixings.

Cerenkov angles, for a full analysis see [1J]. This data allows the setting of a cross-section
limit as a function of the mass of the proposed particle, for stable smuons or staus the
limit corresponds to 97.4(97.1) GeV for left(right) handed sleptons [[J]. For selections

production the t-channel processes depend on the masses of the neutralinos and so a
general limit can not be set.

4.3 Track kink searches

If a particle has a decay length of the order of the size detector it will be characterised
by decays in the bulk of the detector, characterised by a kink in the track. Backgrounds
to these topologies are usually caused by nuclear interactions, where a track elastically
collides with a nucleus, and cosmic rays in which particles, predominantly muons, arriv-
ing out of time with a beam crossing are reconstructed in the wrong positions. These
searched when combined with the long and short lifetime searches can completely cover
the parameter space with a slepton NLSP. The limits set by the OPAL data is that for

all lifetimes cross-sections of larger than 0.1 pb are excluded for each of the three slepton
flavours, see Reference [[[3] for a complete discussion of the analysis.
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Figure 3: Normalised dE/dx and Cerenkov angle distributions for DELPHI data and
predictions for several signal heavy lepton masses.

5 Exotic Leptons

Exotic leptons can be of several types depending on the extension to the standard model
assumed. They can be classified according to their SU(2) x U(1) quantum numbers [[I4].
Three possible cases are

Sequential leptons [13]: a fourth family of standard model leptons is assumed,

Vector leptons [[[d]: which are vector particles and occur in left and right handed Iso-spin
doublets,

Mirror leptons [[7]: which have opposite chiral properties to the SM leptons.

Using the data collected by the L3 experiment with the assumptions that the charged
current mode dominates, which is valid for the kinematically accessible regions, and a



short (< 1cm) lifetime or long lifetime the limits set are listed in Table . Reference [[L§]
has a complete discussion of the analysis and limits set.

Sequential Vector Mirror

LY — 7W (Dirac) 90.3 99.3 90.3
LY — 7W (Majorama) 80.5 - 80.5
I* — W 100.8 101.2  100.5

LT — LW 101.9 102.1  101.9
Stable L* 102.6 102.6  102.6

Table 2: Lower limits in GeV/c? on the masses of exotic lepton species set using the L3
data.

6 Technicolor

Technicolor [I9] is an alternative to the Higgs mechanism for electro-weak symmetry
breaking. A new charge which is similar to the colour charge in QCD is proposed. This
would be carried by a set of new particles called technifermions. It is the breaking of the
chiral symmetry associated to these which gives masses to the Standard Model bosons.
The simplest models are ruled out by precision electro-weak measurements [RQ] and so
more complex models that avoid these limits are proposed. One way is to require that
the coupling parameter changes more slowly with scale that that of QCD, rather than a
running parameter it is described as a walking one. The most basic technicolor model
used to set exclusions in LEP searches is the straw man model [RI], in this model the
lightest technicolor vector mesons could be seen at LEP.
The two channels used to search for technicolor decays are

ete” — pp/wp — mimy — bgbg' (3)

ete” — pp/wp — mpy — by (4)
which are resonant production processes. The cross-section is much greater if M (p%./w3) ~
/s, although there is some sensitivity at other centre-of-mass energies through radiative
events and by producing virtual techinparticles. Cross-section limits on the processes
listed above are shown in Figure [l PJ]. Limits are set using both OPAL and DELPHI
data on possible parameters of the see references [P, B3| for a complete discussion of the
analysis and limits.
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Figure 4: Limits set with the OPAL data on two topologies for technicolor production.
The blue curve is the upper limit on technicolor production, the dashed curve is the
expected limit and the green and yellow bands are the 1o and 20 curves around this.

7 Conclusions

The data taken from 1989-2000 by the four LEP experiments have been analysised and
many searches for physics beyond the standard model have been performed. So far there
has been no evidence for any such process. This is only a partial survey of the large
number of direct and indirect searches performed by the LEP collaborations.
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