
A LEX-BASED MAD PARSER AND ITS APPLICATIONS∗

O. Krivosheev† , E. McCrory, L. Michelotti, D. Mokhov‡, N. Mokhov, J.-F. Ostiguy
FNAL, Batavia, IL 60510, USA

‡ University of Illinois at Urbana-Champaign, USA

Abstract

An embeddable and portable Lex-based MAD language
parser has been developed. The parser consists of a front-
end which reads a MAD file and keeps beam elements,
beam line data and algebraic expressions in tree-like struc-
tures, and a back-end, which processes the front-end data
to generate an input file or data structures compatible with
user applications. Three working programs are described,
namely, a MAD to C++ converter, a dynamic C++ object
factory and a MAD-MARS beam line builder. Design and
implementation issues are discussed.

1 INTRODUCTION

The MAD[1] lattice description language has become the
lingua franca of computational accelerator physics. In or-
der to achieve acceptance, new codes and libraries need to
recognize lattice descriptions expressed in MAD format.
Our objective was [2] to produce an embeddable parser able
to read, parse and store lattice descriptions in memory. The
parser had to be flexible enough to support various formats;
in particular, we needed to translate MAD input format files
into C++ files compatible with the BEAMLINE class li-
brary [3] as well as a dynamic C++ factory module com-
patible with that library.

2 DESIGN ISSUES

2.1 General Constraints

Because its grammar does not conform to the LALR(1)
conventions1, the MAD language as described in [4] is not
well-suited for parsing using standard tools like Lex and
YACC. While it is technically possible to hand-code a spe-
cialized parser, the flexibility arising from using Lex and
YACC is compelling. We therefore chose to eliminate am-
biguities by putting minor restrictions on admissible MAD
input files.

The first design decision we faced was to select an imple-
mentation language. We wanted the parser to be usable not
only with C++ class libraries, but also as a module linkable
with C or Fortran. C, the least common denominator, was
chosen.

The other design decision came directly from the MAD
language definition and parser requirements. Because

∗Work supportedby Universities Research Association, under contract
DE-AC02-76CH03000 with the U. S. Department of Energy.
† kriol@fnal.gov
1In brief, this means that it must be possible to tell how to parse any

portion of an input string with just a single token of look-ahead.

MAD variables, and thus beam element definitions, can be
altered at any point, the only sensible way to build a parser
is to make it a two-stage program. The first stage, or front-
end, reads the MAD input file and parses it in memory. The
second stage or back-end, generates output in a suitable for-
mat, e.g. C++. This design is very flexible since the back-
end can be modified to support other formats or to dynam-
ically instantiate data structures (C++ factory).

2.2 Front-End

The front-end uses a lexical analyzer built with Lex (in
its Flex[5] incarnation). It recognizes MAD keywords,
identifiers, numbers, strings, and comments from regular-
expression-based rules and returns corresponding tokens
and semantic values. The parser, written in YACC (we are
using the Bison[6] flavor of YACC), contains the gram-
mar for MAD definitions. It recognizes those definitions
and stores them into internal data structures. Because Lex
and YACC communicate with each other via tokens, sup-
port for abbreviated keywords is an issue. For example,
HKICKER is often shortened to HKICK. We decided not to
support shortened names and directives generically. Rather,
we handle several common cases separately. Any shortened
form can be handled by altering the lexical analyzer and
parser in a simple, non-intrusive way.

Because of its two stage design, the parser needs to store
constants, variables, beam element definitions and beam
line definitions in memory. In order to preserve as much
information as possible for further processing, expressions
are parsed and kept as expression trees, not as calculated
values. They can either be evaluated explicitly or appear in
the translated output in a form equivalent to the one used in
the original MAD input file.

Parser internals The MAD parser uses four tables for
storing constants, variables, beam element definitions and
beam lines. Since accelerator descriptions often require
thousands of symbols, there is a requirement to perform fast
searches. Hash tables provide O(1) performance and are
therefore used as the container for tables. C does not pro-
vide standard containers and algorithms, so we used those
provided by the Glib library[7]. The general parser schema
is shown below.

0-7803-7191-7/01/$10.00 ©2001 IEEE. 3036

Proceedings of the 2001 Particle Accelerator Conference, Chicago

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25325123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


MAD parser

Constants table Variables table Beam lines tableBeam elements table

name    constant* name    variable* name   beam element* name          beam line*

name    constant* name    variable* name   beam element* name          beam line*

...          ........ ... ........ ... ...... ... ......

In each hash table, the key is the name of the object and
the value is a pointer to an expression tree. The tables below
show all these structures. N-ary trees from Glib are em-

Constant
name

string value
algebraic expression
global line number
local file number

file name

Variable
name

algebraic expression
global line number
local line number

file name

Beam Element
name
kind

length
array of parameters
global line number
local line number

file name

Beam Line
name

beam element list
counter

global line number
local line number

file name

ployed by the parser for storing algebraic expressions used
by constants, variables, and beam elements. Doubly-linked
lists (GList pointers in Glib) are used for storing informa-
tion about the beamline elements. Finally, arrays of point-
ers (GPtrArray pointers in Glib) are used to store comments.

What is Handled

• MAD constant definitions are parsed and stored in the
relevant table. Constants can be assigned algebraic ex-
pressions as well as string values. Built-in constants
from MAD (π, etc.) are predefined.

• All variables with arbitrary algebraic expressions as
allowed by MAD syntax are parsed.

• All beam element definitions are parsed, including ex-
otic ones like matrix and lump elements.

• Beamline definitions are parsed and stored, including
beamline expressions: inversion, inclusion, and repli-
cation.

• All MAD comments are preserved. Because it is im-
possible to analyze a comment, we associate a com-
ment appearing on the same line as a statement with
that statement. A full-line comment is associated with
the statement that immediately follows it.

What Is NOT Handled

• The parser was designed for handling data definitions
only. Hence, MAD commands (e.g. TWISS) are not
interpreted with the exception of the INCLUDE com-
mand which imports definitions from another file. Al-
though the lexical analyzer recognizes all commands,
the output is limited to a message to the log file. The
parser can handle nested INCLUDE commands; infor-
mation about file names and local line numbers is pre-
served.

• As mentioned before, only a limited number of spe-
cific shortened directives are handled. The parser pro-
duces an error if unsupported shortened forms are en-
countered; it is usually a simple matter to substitute the
long form using a text editor.

Implementation Details Once MAD definitions are
stored into internal data structures and before any output is
generated, several actions need to be taken: checking for
variable loops, sorting, and dependence resolutions. Con-
stants, variables, beam elements, and beam lines are sorted
according to the line number on which they were defined in
the MAD input file. Forward dependencies are checked and
resolved by re-arranging the order of appearance of the def-
initions. To prevent and detect circular definitions, a stan-
dard Depth-First Search algorithm is used to walk the ex-
pression trees and verify that the corresponding graphs are
acyclic.

2.3 Back-End

Once the parsing step is completed, all tables are avail-
able for further processing. Using Glib support functions,
one can walk through the tables to either generate output in
a suitable format (e.g. C++) or alternatively, dynamically
instantiate objects as needed.

C++ output A major goal for us was to produce a tool
that would support translation of MAD input files into a
format suitable for the BEAMLINE[3] C++ class library.
This has been accomplished. In the BEAMLINE descrip-
tion, constants, variables, beam elements and beamlines are
defined in that order. This makes the resultant C++ file eas-
ier to use and better reflects the structure of the MAD input
language. All expressions and comments are preserved and
included in the translation.

Conversion Difficulties Difficulties arise in the
translation from from MAD to BEAMLINE input for-
mat(essentially C++) because of the absence of an exact
one-to-one correspondence between MAD and BEAM-
LINE elements. Elements like ELSEPARATOR and
collimators have no direct BEAMLINE equivalent for the
moment and are replaced by drifts. Other elements are cor-
rectly represented in memory but either generate comments
in the BEAMLINE input file or are treated as instances

3037

Proceedings of the 2001 Particle Accelerator Conference, Chicago



of placeholder classes (for example, SOLENOID). For
most elements, the generated output includes informative
comments whenever the correspondence is not exact.
Values of parameters that do not have any equivalent are
listed in these comments.

C++ factory The MAD parser module can also be used
in C++ factory mode. In that case, there is no need to pre-
serve expressions; and they are therefore evaluated. Once
execution of the first stage is completed, the code walks
through the beamline element table and instantiates objects
for every entry. Beamlines are then instantiated and pop-
ulated with cloned (i.e. deep copies) of the previously cre-
ated elements. Beamlines objects, as defined in the BEAM-
LINE class library, contain pointers to beamline elements
rather than the elements themselves. Cloning the elements
ensures that all beamline elements are distinct. Once all
beamlines have been instantiated, the tables and the parser
itself may be destroyed.

3 MAD-MARS BEAM LINE BUILDER

The parser has been adapted to serve as a basis for the
MAD-MARS Beam Line Builder (MMBLB). This module
reads a MAD lattice file and constructs the corresponding
MARS [8] geometry to allow realistic Monte Carlo simu-
lations of beam-induced energy deposition effects in arbi-
trary accelerator and beamline configurations. The MMBLB

is already successfully used in applications to the Fermi-
lab Booster, Proton Driver, extraction of the Main Injector
beam to the NuMI beam line, and to the joint KEK-JAERI
project to study beam loss distributions, induced radiation
effects and design beam collimation systems. An example
of the injection-collimation region description created for
the Proton Driver is shown in Fig. 1.

4 TOOLS

Several tools were used for developing and testing the
MAD parser. The parser code was tested with the GCC
v.2.95 compiler. It should be fairly portable (it passes gcc
with -Wall options without warnings) and we expect that
compilation with any ANSI-C-compatible compiler should
not pose any problem. The lexical analyzer was created us-
ing the GNU Flex v.2.5.4 scanner generator. It should be
fairly compatible with AT&T Lex but minor changes to the
input file may be required. Similarly, the GNU Bison v.1.27
parser generator was used to create the parser and the in-
put file should be highly compatible with AT&T YACC.
The program can be compiled and linked using the pro-
vided makefile, which is written for GNU Make v.3.77. As
mentioned, the C data structures for storing the information
about MAD objects were created using the Glib v.1.2.4. li-
brary. The source code for this library can be freely down-
loaded from http://www.gtk.org. The GNU tools can
be obtained from the GNU project website http://www.
gnu.org.

Z

Y

−1.65e+03

−1.10e+03

−550

00

cm

0 1.00e+03 2.00e+03 3.00e+03 4.00e+03 5.00e+035.00e+03

cm

Figure 1: Longitudinal view of the collimation region with
shielding as built with MMBLB and implemented into the
MARS14.

5 CONCLUSION

The MAD parser is now functional and development
continues. It was successfully tested with several very large
lattice descriptions including the Tevatron, the Recycler
Ring and the NLC. For information about the code and its
availability contact kriol@fnal.gov.

6 REFERENCES

[1] F.Christoph Iselin, “The MAD program(Methodical Accel-
erator Design) Version 8.13/8”, Physical Methods Manual,
CERN/SL/92, 1992.

[2] D.N. Mokhov et al.: “MAD Parsing and Conversion Code”,
Fermilab-TM-2115, 2000.

[3] Leo Michelotti et al, MXYZPLTK/Beamline class library,
http://www-ap.fnal.gov/~michelot/, 1999.

[4] Hans Grotte, F.Christoph Iselin, “The MAD pro-
gram(Methodical Accelerator Design) Version 8.13/8”,
User’s Reference Manual, CERN/SL/90-13(AP), 1990.

[5] Vern Paxson, Flex, version 2.5.4. A fast scanner generator,
Free Software Foundation, 1999.

[6] Charles Donnelly and Richard Stallman, Bison, version 1.28.
The YACC-compatible parser generator, Free Software Foun-
dation, 1999.

[7] Now part of Free Software Foundation GNOME project,
http://www.gtk.org, 1999.

[8] N. V. Mokhov, “The MARS Code System User’s
Guide”, Fermilab-FN-628 (1995); N. V. Mokhov and
O. E. Krivosheev, “MARS Code Status”, Fermilab-Conf-
00/181 (2000). http://www-ap.fnal.gov/MARS/.

3038

Proceedings of the 2001 Particle Accelerator Conference, Chicago


