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1 INTRODUCTION

There are two important partial differential equations
(PDE’s) which describe the evolution of phase space den-
sity distributions (denotedψ) for beams in cyclic accelera-
tors and storage rings. The Vlasov equation
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applies when the forces are derivable from a potential. It
is written here just for the longitudinal degree of freedom
in conjugate timeτ and energyε variables. The Fokker-
Planck equation applies when there are incoherent cooling
or diffusive processes to be taken into account:
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Hereψ(E; t) is the energy distribution of a coasting beam.
It is often easier in practical applications to follow the evo-
lution of phase space density by tracking a representative
distribution of macroparticles using the equations of mo-
tion. There are scaling relations derived from the PDE’s
which can make dramatic improvements in the efficiency
or practical scope of macroparticle models. Scaling rules
reported previously are recapitulated below. Their useful-
ness in speeding up macroparticle model calculations is dis-
cussed with most attention to the simpler case of time scal-
ing in the Vlasov equation.

Andre Gerasimov found scaling for the Fokker-Planck
equation for longitudinal stochastic cooling permitting
macroparticle solutions correct even for macroparticle
number six or seven orders of magnitude less than the beam
population.[1] These ideas were used by the author in some
cooling simulations described briefly at the end of this note.
Their success encouraged the search for an appropriate scal-
ing for speeding up large scale longitudinal dynamics mod-
eling for synchrotrons, allowing time steps longer than a
beam turn without misrepresenting the dynamics. The re-
sult was more powerful than anticipated, being for a broad
range of cases the fourth power of the time scaling constant
rather than the first power one might expect.
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2 TIME SCALING IN THE VLASOV
EQUATION

The objective for scaling the Vlasov equation (eq. 1) is
to find variables in which the evolution of the density func-
tion is accelerated but not otherwise changed. In the ab-
sence of a multiparticle potential it is obvious from inspec-
tion of the equations of motion that multiplying the poten-
tial and the phase-slip-per-time-step by a constant acceler-
ates the change in the distributionproportionally. This scal-
ing constant is hereafter denoted byλ. Because the Hamil-
tonianH is the generating function for infinitesimal canon-
ical transformations of coordinates from their value at time
t to timet+dt, the Hamiltonian for the system that evolves
λ times as fast is simply

H ′(t′) = λH(t) for t′ = λt; ε′ = ε , (3)

from which one can get particle equations of motion for
an accelerated tracking. Note that writing the eq. 1 in the
scaled system
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and substituting according to eq. 3 leads directly to
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Thus, the invariance of the Vlasov equation under scaling is
almost trivial. This derivation of time scaling, which starts
from the existence of the multiparticle Hamiltonian, com-
plements the previously reported derivation from the parti-
cle equations of motion.[2] Somewhat more subtle is how
the scaled time will show up in the potential; any terms re-
lating to frequencies, including rf potentials and frequency
domain expressions for impedance, will be scaled.

Multiparticle tracking using the equations of motion
from the scaled Hamiltonian will go faster by the factorλ
because the clock runs faster by that factor. However, it is
through the scaling of frequencies and a statistical observa-
tion that the scaling gets most of its power, another three
powers ofλ. Scaling any frequencyf with the time scaling
givesf ′ = λf . Writing the potential in frequency domain,
one can see that it takesλ−1 as many harmonics of the beam
circulation frequency to span the domain; the sampling is,
of course, sparser by that same factor. If the potential is
smooth enough that the reduced sampling can be accepted,
the scaling will not compromise fidelity of the calculated
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distribution. In fact, for the space charge term, whose fre-
quency domain form is linear, there isno loss of fidelity
from reduced sampling.[2] Fewer harmonics in the poten-
tial mean fewer bins needed in calculating fourier compo-
nents of the beam current. It has been shown rigorously for
the space charge force in time domain[3] and heuristically
for smooth potentials in frequency domain[4] that when the
bin number is reduced byλ−1, the macroparticle number
can be reduced byλ−3 for the same statistical accuracy (nu-
merical noise) in the distribution. Therefore, in suitable cir-
cumstancesλ may be considerably larger than one, and a
tracking simulation can be accelerated byλ4.

Besides sampling deficiency, there is another way in
which the fidelity of a scaled macroparticle model can be
compromised;viz., the expanded time step can be too large
a fraction of a characteristic period in the motion like, espe-
cially, the synchrotron period. One must observe a limit on
scalingλνc << 1, whereνc is the synchrotron tune or the
tune of some parameter variation. Usually a factor ten for
each< sign is acceptable.

3 HYBRID MACROPARTICLE MODELS
VLASOV + FOKKER-PLANCK

Gerasimov’s scaling rules[1] for the Fokker-Planck
equation eq. 2 can be expressed in terms of their effect on
the gainG� at each harmonic� of the beam circulation fre-
quency, the cooling powerP� at each harmonic, the beam
circulation frequency as a function of energyω(E), the
scaled timet, and the scaled number of particlesN . There
are three rules which are called here number scaling, band-
width scaling, and gain scaling. The scale factors are de-
notedkN , kB, andkG respectively;ω◦ is the beam circula-
tion angular frequency at the central orbit energyE◦. The
rules are expressed in the following table:

Scaled Scaling Rule
Result Number Bandwidth Gain
G′� kNG� GkB·� kGG�
P ′� kNP� P�/kB kGP�
ω′ − ω◦ ω − ω◦ kB(ω − ω◦) kG(ω − ω◦)
t′ t/kN kBt t/kG
N ′ N/kN N N

There are limits on the size of the scale factors which in-
volve number of harmonics and particle statistics; they are
akin to those discussed above for time scaling in the Vlasov
equation. The reader is referred to ref. [1] for these limits
and the relations between tabulated quantities and the cool-
ing coefficientC(E) and diffusion coefficientD(E) of eq.
2. For the macroparticle approach, the tabulated quantities
are the ones of interest.

Consider a case where the beam particles are acted on by
an rf system, for example, as well as a cooling system. If
the Fokker-Planck scaling rules can be used to give an ade-
quate macroparticle model with a time step appropriate for
the phase motion at a macroparticle number low enough to
be practical, one can build a combined macroparticle model

by applying both the map for the equations of motion and
the Fokker-Planck operator for the cooling on each itera-
tion. Notice it is also possible to scale the map for larger
time step as discussed above. In the case of the hybrid
model, however, the macroparticle number will be deter-
mined by the Fokker-Planck scaling so that the Schottky
noise is correctly scaled. This technique has been used to
study rf stacking onto a cooled stack in the Fermilab Recy-
cler storage ring. It was meaningful to simulate minutes of
real time of cooling/stackingwith fewer than104 macropar-
ticles; computing times were a few hours.

4 CONCLUSIONS

Numerical simulations of cooling processes over min-
utes or hours of real time are usually carried out using di-
rect solution of the Fokker-Planck equation. However, by
using scaling rules derived from that equation, it is possi-
ble to use macroparticle representations of the beam distri-
bution. Besides having applications for cooling alone, the
macroparticle approach allows combining the cooling pro-
cess with other dynamical processes which are represented
by area-preserving maps. A time-scaling rule derived from
the Vlasov equation can be used to adjust the time step of
a map-based dynamics calculation to one more suitable for
combining with a macroparticle Fokker-Planck calculation.
The time scaling for the Vlasov equation is also useful for
substantially more rapid calculations when a macroparti-
cle model of a conservative multiparticle system requires
a large number of macroparticles to faithfully produce the
collective potential or when the model must simulate a long
time period.
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