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Abstract

We explore the allowed ranges of cross sections for the elastic scattering of neutralinos

χ on nucleons in the constrained minimal supersymmetric extension of the Standard Model

(CMSSM), in which scalar and gaugino masses are each assumed to be universal at some

input grand unification scale. We extend previous calculations to larger tan β and investigate

the limits imposed by the recent LEP lower limit on the mass of the Higgs boson and by

b → sγ, and those suggested by gµ − 2. The Higgs limit and b → sγ provide upper limits

on the cross section, particularly at small and large tanβ, respectively, and the value of

gµ − 2 suggests a lower limit on the cross section for µ > 0. The spin-independent nucleon

cross section is restricted to the range 6 × 10−8 pb> σSI > 2 × 10−10 pb for µ > 0, and

the spin-dependent nucleon cross section to the range 10−5 pb> σSD > 2 × 10−7 pb. Lower

values are allowed if µ < 0.
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One of the front-running candidates for cold dark matter is the lightest supersymmetric

particle (LSP), which is often taken to be the lightest neutralino χ [1]. Several experiments

looking for the scattering of cold dark matter particles on nuclear targets [2] have reached

a sensitivity to a spin-independent elastic cross section σSI of the order of 10−5 pb for

mχ ∼ 100 GeV [3], and one experiment has reported a possible positive signal [4]. A

new generation of more sensitive experiments is now being prepared and proposed, with

sensitivities extending as low as 3×10−9 pb [5]. It is therefore important to update theoretical

predictions for the elastic scattering cross section, including the spin-dependent component,

σSD, as well as the spin-independent part, σSI .

The cross-section ranges allowed in the general minimal supersymmetric extension of the

Standard Model (MSSM) are quite broad, being sensitive to the Higgs and squark masses,

in particular [6, 7]. It is common to focus attention on the constrained MSSM (CMSSM),

in which all the soft supersymmetry-breaking scalar masses m0 are required to be equal

at an input superysmmetric GUT scale, as are the gaugino masses m1/2 and the trilinear

soft supersymmetry-breaking parameters A. These assumptions yield well-defined relations

between the various sparticle masses, and correspondingly more definite predictions for the

elastic χ-nucleon scattering cross sections as functions of mχ [8]. This paper is devoted to

an updated discussion of σSI and σSD in the CMSSM as functions of m0, m1/2, and tanβ

for A = 0.

This is timely in view of two significant experimental developments since our previous

analysis [7]. One has been the improvement in the experimental lower limit from LEP on

the mass of the lightest MSSM Higgs boson h [9], which is now mh > 114.1 GeV in the

context of the CMSSM 1. The second major experimental development has been the report

of a possible 2.6 - σ discrepancy between the measured and Standard Model values of the

anomalous magnetic moment of the muon, aµ ≡ (gµ−2)/2: aµ = (43±16)×10−10 [10], which

we interpret as 11 × 10−10 < aµ < 75 × 10−10. The supersymmetric interpretation [11, 12]

of this result is not yet established: it could be that strong-interaction uncertainties in the

Standard Model prediction have been underestimated, or there might have been a statistical

fluctuation in the data. Even if the discrepancy is confirmed, it might be evidence for some

other type of physics beyond the Standard Model. Nevertheless, we are tempted to explore

its possible consequences for dark matter scattering within the CMSSM context [13].

Theoretically, there have also been improvements recently in the calculations in the

CMSSM of the supersymmetric relic density Ωχh2 for large values of the ratio tanβ of

1In the general MSSM, mh could be as low as ∼ 90 GeV, but this is only possible for variants in which
the Z − Z − h coupling is suppressed to an extent that does not occur within the CMSSM as studied here.
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Higgs vacuum expectation values [14]. These define better the interesting region of CMSSM

parameter space where the relic density may fall within the range 0.1 < Ωχh2 < 0.3 preferred

by astrophysics and cosmology [15].

We find that the expected ranges of both the spin-independent cross sections σSI and the

spin-dependent cross sections σSD in the CMSSM are quite restricted (see also [16]). The LEP

Higgs limit [9] sets upper bounds on σSI and σSD, not only via the direct contribution of Higgs

exchange to the scattering matrix element, but also because it provides a strong lower limit on

mχ at low tan β, in particular [17].2 At high tan β, the observed rate of b → sγ also provides

[18] an important lower limit on mχ and hence an upper limit on σSI,SD [19]. In view of these

upper limits, we are unable to provide a CMSSM interpetation of the DAMA signal [4]. More

excitingly for prospective experiments, the range 11× 10−10 < aµ < 75× 10−10 would imply

important upper limits on sparticle masses, and hence a lower limit: σSI > 2 × 10−10 pb.

Putting together all the constraints, we find for µ > 0 a relatively narrow band 6 × 10−8 pb

> σSI > 2 × 10−10 pb. The allowed range is typically broadest at large tanβ. Lower cross

sections are possible if µ < 0.

As has been discussed in detail elsewhere, the regions of m1/2, m0 plane where the relic

density falls within the preferred range 0.1 < Ωχh2 < 0.3 can be divided into four generic

parts, whose relative significances depend on tanβ. There is a ‘bulk’ region at moderate m1/2

and m0 [1], where supersymmetry is relatively easy to detect at colliders and as dark matter.

Then, extending to larger m1/2, there is a ‘tail’ of the parameter space where the LSP χ is

almost degenerate with the next-to-lightest supersymmetric particle (NLSP), and efficient

coannihilations [20] keep Ωχh2 in the preferred range, even for larger values of mχ [21]. At

larger m0, close to the boundary where electroweak symmetry breaking is no longer possible,

there is the ‘focus-point’ region where the LSP has a more prominent Higgsino component

and mχ is small enough for Ωχh2 to be acceptable [22]. Finally, extending to larger m1/2 and

m0 at intermediate values of m1/2/m0, there may be a ‘funnel’ of CMSSM parameter space

where rapid direct-channel annihilations via the poles of the heavier Higgs bosons A and H

may keep Ωχh2 in the preferred range [14, 23]. In this paper, we focus on the case A = 0 and

use the SSARD code to calculate the relic density [24]. The precise values of m1/2 and m0 in

the ‘focus-point’ and ‘funnel’ regions are quite sensitive to the precise values and treatments

of the input CMSSM and other parameters [25, 26]. These regions are not emphasized in

the following discussion, but are commented upon where appropriate.

The code we use to calculate the elastic dark matter scattering cross sections σSI,SD was

2Apart from cancellations that occur in σSD when µ < 0, the elastic cross sections are monotonically
decreasing functions of mχ in the CMSSM [8].
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documented in [8, 7], together with the ranges of values of the hadronic matrix elements

that we use. The cross sections for protons and neutrons are similar within the quoted

uncertainties in these matrix elements. Codes are available [27] that include additional

contributions to the scattering matrix elements, but a recent comparison [28] shows that the

improvements are not essential in the CMSSM parameter space that we explore here. Fig. 1

displays contours of the spin-independent cross section for the elastic scattering of the LSP

χ on protons in the m1/2, m0 planes for (a) tan β = 10, µ < 0, (b) tanβ = 10, µ > 0, (c)

tan β = 35, µ < 0, and (d) tanβ = 50, µ > 0. The latter are close to the largest values of

tan β for which we find generic solutions to the electroweak symmetry-breaking conditions

for µ < 0 and > 0, respectively [14]. The double dot-dashed (orange) lines are contours

of the spin-independent cross section, and we have indicated the contours σSI = 10−9 pb

in panels (a, d) and σSI = 10−12 pb in panels (b, c). The other bolder contours are for

cross sections differing by factors of 10, and the finer contours for cross sections differing by

interpolating factors of 3 (in order to ensure clarity, not all of the interpolating contours are

displayed).

These cross-section contours are combined in Fig. 1 with other information on the

CMSSM parameter space. The lower right-hand corners of the panels are excluded be-

cause there the LSP is the lighter τ̃1. The light (turquoise) shaded regions are those with

0.1 < Ωχh2 < 0.3 [15]. The ‘bulk’ regions are clearly visible in panels (a,b) and (d), and

coannihilation ‘tails’ in all panels [14]. For our default choices A = 0, mt(pole) = 175 GeV

and mb(mb)
MS
SM = 4.25 GeV, the ‘focus-point’ regions [22] are at larger values of m0 than are

shown in any of the panels. Rapid-annihilation ‘funnels’ are visible in panels (c) and (d):

that in the former panel bisects the ‘bulk’ region. The near-vertical dashed (black) lines

at small m1/2 are the chargino-mass contours mχ± = 103.5 GeV [29], and the near-vertical

dotted (red) lines at larger m1/2 are the contours mh = 114.1 GeV [9], as calculated using

FeynHiggs [30]. The large medium (green) shaded regions in panels (a) and (c) are those

excluded by b → sγ [18]: smaller excluded regions are also visible in panels (b) and (d) at

small m1/2. Finally, the sloping shaded (pink) regions in panels (b) and (d) delineate the

±2 − σ ranges of gµ − 2 [12], which are absent for the µ < 0 panels (a) and (c).

The LEP lower limits on mh and mχ±, as well as the experimental measurement of b → sγ

for µ < 0, tend to bound the cross sections from above, as we discuss later in more detail.

Generally speaking, the spin-independent cross section is relatively large in the ‘bulk’ region,

but falls off in the ‘tail’ and ‘funnel’ regions. In the focus-point regions, the spin-independent

cross section is relatively independent of mχ and for tan β = 10, takes a value between 10−9

and 10−8 pb [22, 28]. Also, we note also that there is a strong cancellation in the spin-
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Figure 1: Spin-independent cross sections in the (m1/2, m0) planes for (a) tanβ = 10, µ < 0,
(b) tanβ = 10, µ > 0, (c) tan β = 35, µ < 0 and (d) tanβ = 50, µ > 0, assuming A0 =

0, mt = 175 GeV and mb(mb)
MS
SM = 4.25 GeV [14]. The double dot-dashed (orange) curves

are contours of the spin-independent cross section, differing by factors of 10 (bolder) and
interpolating factors of 3 (finer - when shown). For example, in (b), the curves to the right
of the one marked 10−9 pb correspond to 3 × 10−10 pb and 10−10 pb. The near-vertical lines
are the LEP limits mχ± = 103.5 GeV (dashed and black) [29], mh = 114.1 GeV (dotted and
red) [9]. In the dark (brick red) shaded regions, the LSP is the charged τ̃1, so this region
is excluded. The light (turquoise) shaded areas are the cosmologically preferred regions with
0.1 ≤ Ωχh2 ≤ 0.3 [14]. The medium (dark green) shaded regions that are most prominent in
panels (a) and (c) are excluded by b → sγ [18]. The sloping shaded (pink) regions in panels
(b) and (d) delineate the ±2 − σ ranges of gµ − 2 [12].
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independent cross section when µ < 0 [8, 7], as seen along strips in panels (a, c) of Fig. 1

where m1/2 ∼ 500, 1100 GeV, respectively. In the cancellation region, the cross section drops

lower than 10−14 pb. All these possibilities for suppressed spin-independent cross sections

are disfavoured by the data on gµ − 2 [10, 11, 12], which favour values of m1/2 and m0 that

are not very large, as well as µ > 0, as seen in panels (b, d) of Fig. 1. Thus gµ − 2 tends to

provide a lower bound on the spin-independent cross section.

Fig. 2 displays contours of the spin-dependent cross section in the m1/2, m0 planes for

(a) tanβ = 10, µ < 0, (b) tan β = 10, µ > 0, (c) tan β = 35, µ < 0, and (d) tanβ =

50, µ > 0. The dot-dashed (blue) lines are those of the spin-dependent cross section, and

the other notation is as in Fig. 1. The bolder lines are contours differing by factors of 10

from the indicated ones, and the finer lines, when shown, differ by interpolating factors

of 3. We note again that the cross section is generically larger in the ‘bulk’ region and

smaller in the coannihilation ‘tail’ and rapid-annihilation ‘funnel’ regions. In the focus-point

regions, the spin-dependent cross-section is also relatively constant and for tanβ = 10 takes

values between 10−5 and 10−4 pb [22, 28]. Unlike the spin-independent case, there are no

cancellations in the spin-dependent cross section.

Fig. 3 illustrates the effect on the cross sections of each of the principal phenomenological

constraints, in the particular cases tanβ = 10 and (a, b) µ > 0, (c, d) µ < 0, (e) tanβ =

35, µ < 0 and (f) tan β = 50, µ > 0. The solid (blue) lines mark the bounds on the cross

sections allowed by the relic-density constraint 0.1 < Ωχh2 < 0.3 alone [15]. For any given

value of m1/2, only a restricted range of m0 is allowed. Therefore, only a limited range of

m0, and hence only a limited range for the cross section, is allowed for any given value of

mχ. The thicknesses of the allowed regions are due in part to the assumed uncertainties in

the nuclear inputs. These have been discussed at legnth in [7, 8] and we refer the reader

there for details. In the case (e) of tanβ = 35, µ < 0 and (f) of tan β = 50, µ > 0, two or

three different narrow ranges of m0 may be allowed for the same value of m1/2, but they

have quite similar cross sections, as seen already in Figs. 1(c,d) and 2(c,d). On the other

hand, a broad range of mχ is allowed, when one takes into account the coannihilation ‘tail’

region at each tan β and the rapid-annihilation ‘funnel’ regions for tanβ = 35, 50 [14] 3.

The dashed (black) lines in Fig. 3 display the range allowed by the b → sγ constraint [18]

alone, which is more important for µ < 0. In this case, a broader range of m0 and hence

the spin-independent cross section is possible for any given value of mχ. The impact of the

constraint due to mh is shown by the dot-dashed (green) lines in Fig. 3. We implement this

constraint by requiring that mh > 114.1 GeV when calculated using the FeynHiggs code [30].

3We do not show predictions in the ‘focus-point’ region [22].
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Figure 2: Spin-dependent cross sections in the (m1/2, m0) planes for (a) tan β = 10, µ <
0, (b) tanβ = 10, µ > 0, (c) tanβ = 35, µ < 0 and (d) tan β = 50, µ > 0, assuming

A0 = 0, mt = 175 GeV and mb(mb)
MS
SM = 4.25 GeV [14]. The dot-dashed (blue) lines

are contours of the spin-dependent cross section, differing by factors of 10 (bolder) and
interpolating factors of 3 (finer - when shown). The near-vertical dashed lines are the LEP
limits mχ± = 103.5 GeV (black) [29], mh = 114.1 GeV (red) [9]. In the dark (brick red)
shaded regions, the LSP is the charged τ̃1, so this region is excluded. The light (turquoise)
shaded areas are the cosmologically preferred regions with 0.1 ≤ Ωχh2 ≤ 0.3 [15]. The medium
(dark green) shaded regions are excluded by b → sγ [18].
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Comparing with the previous constraints, we see that a region at low mχ is excluded by mh,

strengthening significantly the previous upper limit on the spin-independent cross section.

Finally, the dotted (red) lines in Fig. 3 show the impact of the gµ − 2 constraint [12]. This

imposes an upper bound on m1/2 and hence mχ, and correspondingly a lower limit on the

spin-independent cross section.

We emphasize again the important impacts of the updated LEP limits on the chargino

and (particularly) Higgs masses. Significantly smaller LSP masses and correspondingly larger

cross sections could be found if one used earlier, weaker LEP limits.

The shaded (pale blue) regions in panels (a,b,f) of Fig. 3 show the ranges of mχ and the

cross sections that survive all the phenomenological constraints. We find for tan β = 10,

135 GeV <
∼ mχ <

∼ 180 GeV for µ > 0 (1)

and the lower limit is mχ >
∼ 190 GeV for µ < 0. The upper bound in (1) is due to gµ − 2,

and there is no such upper bound for µ < 0, unless one interprets the LEP ‘hint’ as a real

Higgs signal [9], and imposes mh < 117 GeV, in which case one finds mχ <
∼ 370 GeV. The

ranges of cross sections corresponding to (1) are

5 × 10−10 pb <
∼ σSI <

∼ 3 × 10−9 pb, (2)

1 × 10−6 pb <
∼ σSD <

∼ 4 × 10−6 pb, (3)

for tan β = 10 and µ > 0, and we find

σSI <
∼ 2 × 10−11 pb, (4)

σSD <
∼ 1 × 10−6 pb, (5)

for tan β = 10 and µ < 0. No lower limits for the spin-independent cross section are possible

with the constraints considered above, both because the gµ − 2 constraint is inapplicable

and must be discarded if this sign of µ is to be considered at all, and also because of the

cancellation in σSI that is visible in panels (a) and (c) of Fig. 1. Even if we take the LEP

‘hint’ of a signal for a Higgs boson, and impose the upper limit mh < 117 GeV, because the

bound on mχ is past the cancellation region, we find no useful lower bound for tan β = 10

and µ < 0. For the spin-dependent cross section, a lower limit due to the relic density is

determined by the endpoint of the coannihilation region, namely σSD >
∼ 2 × 10−8 pb. A

Higgs mass bound of 117 GeV in this case would impose σSD >
∼ 10−7 pb.

We see in panel (f) of Fig. 3 that the spin-independent cross section for µ > 0 may be

rather larger for tan β = 50 than for tan β = 10 [16], as shown in panel (a). This analysis is
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Figure 3: Allowed ranges of the cross sections for tan β = 10 and (a, b) µ > 0, (c, d) µ < 0,
for (a, c) spin-independent and (b, d) spin-dependent elastic scattering. Panel (e) shows the
spin-independent cross section for tan β = 35 and µ < 0, and panel (f) the spin-independent
cross section for tanβ = 50 and µ > 0. The solid (blue) lines indicate the relic density
constraint [15], the dashed (black) lines the b → sγ constraint [18], the dot-dashed (green)
lines the mh constraint [9], and the dotted (red) lines the gµ − 2 constraint [12]. The shaded
(pale blue) region is allowed by all the constraints.
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extended in panels (a) and (c) of Fig. 4 to all the values 8 < tanβ ≤ 55 (below tanβ ≃ 8

it is not possible to satisfy both the Higgs mass and g − 2 constraints [11, 12], and above

tan β ≃ 55 we no longer find consistent CMSSM parameters), and we find overall that

2 × 10−10 pb <
∼ σSI <

∼ 6 × 10−8 pb, (6)

2 × 10−7 pb <
∼ σSD <

∼ 10−5 pb, (7)

for tanβ ≤ 55 and µ > 0. As we see in panels (a) and (c) of Fig. 4, for µ > 0, mh provides the

most important upper limit on the cross sections for tanβ < 23, and b → sγ for larger tanβ,

with gµ − 2 always providing a more stringent lower limit than the relic-density constraint.

The relic density constraint shown is evaluated at the endpoint of the coannihilation region.

At large tan β, we have not considered moving far out into the Higgs funnels or the focus-

point regions, as their locations are very sensitive to input parameters and calculational

details [25]. In the case µ < 0, there is no lower limit on the spin-independent cross section,

for the reasons discussed earlier. We find

σSI <
∼ 2 × 10−10 pb, (8)

2 × 10−8 pb <
∼ σSD <

∼ 2 × 10−6 pb (9)

for µ < 0 and 5 < tan β ≤ 35 (below tanβ ≃ 5 it is not possible to satisfy both the Higgs

mass and relic density constraints [17], and above tanβ ≃ 35 we no longer find consistent

CMSSM parameters), with the upper limits being imposed by mh for tan β < 12 and by

b → sγ for larger tan β, as seen in panels (b) and (d) of Fig. 4. The relic-density constraint

imposes an interesting lower limit on σSD, but not on σSI , as discussed above. Again,

requiring mh < 117 GeV would impose a lower limit σSD >
∼ 3 × 10−7 pb, and since a 117

GeV bound would cut out the cancellation region, we can obtain a lower bound on the

spin-independent cross section, σSI >
∼ 10−11 for tanβ = 35 and µ < 0.

We conclude that the available experimental constraints on CMSSM model parameters

greatly restrict the allowed ranges of elastic scattering cross sections for supersymmetric dark

matter. Upper limits are imposed on both σSI and σSD by both the LEP Higgs constraint

and b → sγ. If one takes at face value the gµ − 2 constraint, in addition to requiring µ > 0,

it also imposes lower limits on both σSI and σSD, providing experiments with a plausible

sensitivity to aim for. On the other hand, if one drops the gµ − 2 constraint and tolerates

µ < 0, there is no useful lower limit on σSI . A lower bound on σSD is possible if one imposes

mh < 117 GeV, motivated by the LEP Higgs ‘hint’. The LEP constraints are now stable,

but the situation with gµ −2 can be expected to clarify soon. If the apparent deviation from
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Figure 4: The allowed ranges of (a, b) the spin-independent cross section and (c, d) the
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the Standard Model [10] is confirmed, direct searches for supersymmetric dark matter may

have bright prospects, at least within the CMSSM framework studied here.
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