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We review the exact results for microscopic Dirac operator spectra based on either Random Matrix Theory, or,
equivalently, chiral Lagrangians. Implications for lattice calculations are discussed.

1. Introduction

Exact statements can be made about the dis-
tributions of the smallest Dirac operator eigen-
values in gauge theories with spontaneous chiral
symmetry breaking. This extends previous ex-
act results for fermion zero modes in topologi-
cally non-trivial gauge field backgrounds to an
infinite series of non-zero modes. In this short re-
view we focus exclusively on these exact results
for the smallest Dirac operator eigenvalues in four
dimensions, and discuss why they are so impor-
tant for lattice gauge theory.

The one single assumption that has to be made
is that chiral symmetry is spontaneously broken.
Actually, this statement needs a small qualifica-
tion because the group of chiral symmetries de-
pends on the number of fermions, and on the
representation carried by them. We can be com-
pletely general and consider Nf (Dirac) fermions
in an arbitrary representation r of the gauge
group G with vectorlike couplings. As one could
suspect from Wigner’s classification of represen-
tations, there are just three symmetry breaking
classes to consider. It all depends on whether
the representation is complex, real or pseudo-real.
The case of complex representations is not only
the physically most relevant (QCD belongs to this
class), it is also the most simple. In the two
other cases the initial symmetry is larger than one
would naively have expected, namely SU(2Nf )
rather than just SUL(Nf )×SUR(Nf ). The ex-
pected patterns of chiral symmetry breaking are
as follows, depending on the representation r:
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• Complex: SUL(Nf )×SUR(Nf ) → SU(Nf ).

• Pseudo-real: SU(2Nf) → Sp(2Nf ).

• Real: SU(2Nf ) → SO(2Nf ).

By Goldstone’s theorem, the cosets of the
above symmetry breaking patterns determine the
low-energy properties of these theories. Note that
precise details about the gauge group G do not en-
ter at all. We are here getting a first bite of the
universality that turns out to govern the lowest-
lying Dirac operator eigenvalues.

As explained by Verbaarschot [1], there ex-
ists a remarkable relation between the three sym-
metry breaking classes above and the classifica-
tion of chiral Random Matrix Theories ensem-
bles. They are labelled by the so-called Dyson
indices β as follows: The coset SU(Nf ) of com-
plex fermion representations corresponds to the
chiral Unitary Ensemble chUE (β = 2), the coset
SU(2Nf )/Sp(2Nf ) of pseudo-real representations
corresponds to the chiral Orthogonal Ensemble
chOE (β = 1), while the coset SU(2Nf )/SO(2Nf)
of real representations corresponds to the chiral
Symplectic Ensemble chSE of β = 4. This ex-
hausts the Dyson classification.2

These symmetry breaking patterns concern
continuum fermions. Staggered fermions, away
from the continuum, have unusual patterns of chi-
ral symmetry breaking: all real and pseudo-real
representations are precisely swapped. This has
been known for a while for special cases (see, e.g.
ref. [2]), and has very recently been shown to
2The labelling in terms of the integers β is related to a
certain number occuring in the three different Random
Matrix Theories; there is thus no “missing” class of β = 3!
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hold in general [3]. Another peculiarity of stag-
gered fermions is their apparent insensitivity to
gauge field topology, which we shall return to in
detail below.

The relationship to Random Matrix Theory
has caused some confusion, although it can be
stated very clearly. To get there, the theory
first has to be formulated for fixed topological
charge ν. The order parameter for spontaneous
chiral symmetry breaking is formally defined by
Σ ≡ limm→0 limV→∞ |〈ψ̄ψ〉|. To zoom in on the
smallest Dirac operator eigenvalues, and to see
how the chiral condensate is formed, one takes
the chiral limit in an unorthodox way [4]. First,
the euclidean four-volume V is kept finite, and
it is convenient to work at fixed ultraviolet cut-
off Λ. We are thus temporarily working with
bare quantities which will have to be renormal-
ized eventually. Both the finite volume and UV
cut-off are ideal set-ups from the point of view of
lattice gauge theory.

Next, the quark masses are chosen so that
the pseudo-Goldstone bosons (“pions”) are too
light to fit inside the box, i.e. mπ � 1/L,
where L is the linear extent of the 4-volume V .
Now V is sent to infinity while the combina-
tion miΣV (mi being quark masses) is kept fi-
nite – it is always possible to satisfy these two
constraints by taking mi small enough. Because
L is taken much larger than 1/ΛQCD, the eu-
clidean partition function is dominated by the
pions. Higher-mass states do contribute to the
partition function, but as the volume is sent to in-
finity their contribution will eventually, for large
enough volume, be exponentially suppressed, of
order exp[−ML], with ML � 1. In contrast,
the pions do not yield exponentially suppressed
contributions: their masses can be tuned to zero,
and we precisely require mπL � 1 throughout.
It is in this sense that the results which will be
reviewed below are exact: given any required de-
gree of accuracy, this accuracy can be achieved by
simply tuning V and mi. The exact results hold
in the limit.

Leutwyler and Smilga proposed to combine the
above ingredients of V � 1/m4

π and fixed topol-
ogy [4]. Because the euclidean partition function
is dominated by the pions, it follows from the

coset of chiral symmetry breaking. It is a non-
renormalizable chiral Lagrangian with, in princi-
ple, an infinite number of terms. However, be-
cause of the peculiar finite-volume regime cho-
sen, only the zero-momentum modes need to be
considered (again an approximation that can be
made as accurate as we wish by tuning mi and
V ) [5]. Let us focus mainly on the symmetry
breaking class relevant for QCD. Then the effec-
tive partition function is dominated by one single
term in the effective Lagrangian:

Z =
∫

SU(Nf )

dU exp
[
V ΣReTr(eiθ/NfMU †)

]
(1)

One crucial point here is the dependence on the
vacuum angle θ. Because of the anomaly, the par-
tition function does not depend on the quark mass
matrix M and θ separately. A chiral rotation (in-
dependent phase rotations of the left and right
handed fields) gives a linear shift in θ, and since
the partition function is left unchanged by such
a change of integration variables, it can only de-
pend on the invariant combination exp[iθ/Nf ]M.
We normally do not consider QCD with a non-
zero vacuum angle, and here it is also just intro-
duced at a preliminary step, as a source of topo-
logical charge ν, and as a means for computing
the partition function in sectors of fixed ν [4]:

Zν =
∫

U(Nf )

dU (detU)ν exp
[
V ΣReTr(MU †)

]
(2)

The projection onto fixed topological charge has
been used as the additional U(1)-factor that ex-
tends the integration over the zero-momentum
modes to U(Nf ). Note that Zν does not depend
on mi, V and Σ independently, but only on the
combination

µi ≡ miVΣ . (3)

We will see that this finite-volume scaling is re-
flected in the Dirac operator spectrum.

There are two distinct advantages for consider-
ing the theory at fixed topological charge ν. The
first is that the zero-dimensional group integral
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can be done analytically for all Nf and ν [6]3,

Zν({µi}) = det[µj−1
i Iν+j−1(µi)]/

Nf∏
i>j

(µ2
i − µ2

j ) (4)

where In(x) is a modified Bessel function, and the
matrix in the numerator is of size Nf ×Nf . The
second is the big surprise: at fixed ν there is a
connection to Random Matrix Theory.

2. The relation to Random Matrix Theory

As observed by Shuryak and Verbaarschot [7],
the group integral (2) can be rewritten as a Ran-
dom Matrix Theory partition function which has
an uncanny resemblance to the original QCD
path integral. Consider

Z̃ν≡
∫
dW

Nf∏
f=1

det(iM+mf)exp
[
−N

2
TrV (M2)

]
(5)

where

M =
(

0 W †

W 0

)
. (6)

Here the integral is over complex matrices W of
rectangular size N × (N + ν). The m̃i’s are di-
mensionless numbers, and the potential V (M2) is
unspecificied at this point. The matrix M anti-
commutes with diag{1N ,−1N+ν}, and as a con-
sequence the eigenvalues of M occur in pairs ±λ̃
whenever λ̃ 6= 0. Because of the rectangular na-
ture of W , the matrix M also has precisely ν zero
modes. The intuitive idea is the analogy with the
determinant of the Dirac operator for complex
representation fermions: the matrix M has ν zero
modes, it is chiral, and in (5) one integrates over
complex matrices.

But one is not simply trying to replace the
path integral over gauge potentials Aµ(x) by zero-
dimensional matrices. Instead, the precise rela-
tionship is as follows. Take a “microscopic limit”
of eq. (5) in which µ̃i ≡ mi(2N)ρ̃(0) is kept fixed
as N →∞. In that limit, and up to an irrelevant
(µi-independent) normalization,

Zν[{µi}] = Z̃ν [{µ̃i}]
∣∣∣
µ̃i=µi

. (7)
3An intermediate calculation by Berezin and Karpelevich,
from which this integral can be derived, dates back to
1958. I thank T. Wettig for informing me of this.

This was first demonstrated in ref. [7] for the
case of a Gaussian potential in the β = 2 chiral
ensemble. It follows from a series of universality
theorems that the identity holds for any generic
choice of V (M) [8], and that a fine tuning is re-
quired to reach other universality classes that are
of no obvious relevance here. Basically, the do-
main of universality is determined by the condi-
tion that ρ̃(0) 6= 0, as could have been expected
from the manner in which the microscopic limit
is taken. Identities similar to (7) exist for the two
other classes of chiral symmetry breaking [10]. As
outlined above, the chiral Random Matrix Theory
ensembles are different, but there are analogous
universality proofs for those cases [11].

Having two partition functions coincide as in
eq. (7) may not seem to give much informa-
tion. But one should rather view Zν [{µi}] as
a generating function for the chiral condensate.
Then the statement (7) is highly non-trivial since
it means that in the infinite-volume limit where
µi = miΣV is kept fixed we can just as well
compute the chiral condensate from Random Ma-
trix Theory. This observation is also the basis
for finally understanding why it is even possible
to compute the microscopic Dirac operator spec-
trum from Random Matrix Theory. More about
this below.

3. The microscopic Dirac operator spec-
trum

Although the two partition functions (2) and
(5) coincide in the microscopic limit, it is far from
obvious that the eigenvalues λ̃ of the matrix M
should be related to the eigenvalues of the Dirac
operator λ. The eigenvalue spectrum of the Ran-
dom Matrix Theory is very different from that of
the Dirac operator: for a Gaussian potential the
eigenvalue density of (5) is the famous Wigner
semi-circle, while the spectrum of the Dirac op-
erator is expected to approach ρ(λ) ∼ λ3 near
the UV cut-off. One may search for universal-
ity that makes such differences irrelevant. Here
it means going to a scale near the origin where
both spectra, on that scale, are trivially identical
(namely constant, near λ ∼ 0). This is possible,
because by the Banks-Casher relation Σ = πρ(0)
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and the assumption of spontaneous chiral symme-
try breaking we know that ρ(0) 6= 0. Similarly,
we must require of the potential in (5) that it
leads to ρ̃(0) 6= 0. Then one can define micro-
scopically rescaled variables, which for the Dirac
operator eigenvalues are ζ ≡ λV Σ (cf. eq. (3)),
and for Random Matrix Theory ζ̃ ≡ λ̃2Nπρ̃(0).
A microscopic spectral density (and similarly for
higher spectral correlators) of the Dirac operator
is analogously ρs(ζ) ≡ ρ(ζ/(V Σ))/V , which has
a finite well-defined limit as V →∞ [7]. The mi-
croscopic density in the Random Matrix Theory
context is defined analogously, and it can be com-
puted by various technqiues. The first analytical
expression, for Nf massless flavors in the β = 2
universality class, was obtained in ref. [13]:

ρs(ζ)=
ζ

2
[
JNf+ν(ζ)2−JNf+ν−1(ζ)JNf +ν+1(ζ)

]
(8)

which, as a first check, was found to reproduce
the Leytwyler-Smilga spectral sum rule for e.g.
〈∑n 1/ζ2

n〉 [13,14]. Corresponding expressions ex-
ist for β = 1, 4 [15].

Quark masses can be included without diffi-
culty by performing a “double-microscopic limit”
in which both mi and eigenvalues λ are blown up
as in (3). The precise analytical form of the spec-
tral correlators can then be worked out explicitly
[16,17].

There is a very compact formulation of all these
results. A central object is the so-called kernel
K(ζa, ζb) from which all spectral correlation func-
tions can be computed:

ρs(ζ1, . . . , ζk) = det
ab
K(ζa, ζb) (9)

A “Master Formula” for this kernel is [12],

K(ζ, ζ′) = C
√
ζζ′

Nf∏
f

√
(ζ2 + µ2

f )(ζ′2 + µ2
f ) ×

Z
(Nf+2)
ν ({µ}, iζ, iζ′)/Z(Nf )

ν ({µ}) . (10)

This formula encompasses all cases for β = 2, any
number Nf of fermions with masses µf , and any
ν. Moreover, although it is derived within Ran-
dom Matrix Theory, we have used the identity (7)
to express the r.h.s. entirely in terms of field the-
ory partition functions. There are closely related
formulas for the β = 4 case [12].

One can also compute an infinite series of in-
dividual eigenvalue distributions, beginning with
the smallest. They too can be expressed in terms
of the effective partition functions [18]. The ana-
lytical formula is known in all generality: it gives
the k’th eigenvalue distribution for all three uni-
versality classes, for any number of fermions Nf ,
and in an arbitrary sector of topological charge
ν.4 To give a simple example, the quenched dis-
tribution of the first eigenvalue in a sector of ar-
bitrary ν reads (i, j = 1, . . . , ν) [18]

Pmin(ζ) =
ζ

2
e−ζ2/4 det[I2+i−j(ζ)] (11)

for the β = 2 universality class.
One can perform the sum over topological

charge explicitly for all spectral correlation func-
tions, including the microscopic spectral density
itself [19]. The result can for Nf > 0 be writ-
ten in terms of the effective field theory partition
functions at vacuum angle θ = π when k is odd:

ρs(ζ1, . . . , ζk) = (−1)k[Nf /2]
k∏

j<l

(ζ2
j − ζ2

l )2 ×

k∏
i=1

(|ζi|
Nf∏
f

(ζ2
i + µ2

i ))
Z(Nf+2k)({µ},{iζi})θ=kπ

Z(Nf)({µ})θ=0
(12)

4. Derivation from chiral Lagrangians

All microscopic spectral correlation functions,
and all probability distributions of individual
eigenvalues, can thus be expressed in terms of
effective field theory partition functions. This
puts universality of these quantities on a very
simple footing. It also gives a strong hint that
in fact Random Matrix Theory is not needed
at all. These results can indeed be derived en-
tirely within the chiral Lagrangian framework. It
hinges on the crucial identity (7), and an exten-
sion of it which we will discuss next.

One way to compute the spectral density of the
Random Matrix Theory (5) is through the resol-
vent

Rν(mv) ≡
〈

Tr
1

M −mv

〉
, (13)

4The only exception is the β = 1 class where, for technical
reasons, ν must be odd in the general formula.
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where mv is an external parameter. In the mi-
croscopic limit this is, in view of eq. (7), nothing
but the partially quenched chiral condensate. To
be precise, consider the supersymmetric method
for computing this quantity from the chiral La-
grangian [20]: One adds a quark of mass mv + j,
and a bosonic quark of mass mv. Then the par-
tially quenched chiral condensate is ∂j lnZν |j=0.
In a similar way, one can modify the Random
Matrix Theory (5) and multiply the integrand by
det[M + m̃v + j̃]/ det[M + m̃v]. Taking the mi-
croscopic limit, this leads to a supersymmetric
generalization of the identity (7), where the chi-
ral Lagrangian is the supersymmetric one asso-
ciated with partial quenching. Naively this La-
grangian would be based on the Goldstone su-
permanifold U(Nf + 1|1), but in fact the proper
choice of integration domain is a more subtle
issue, as discussed at length in [21,23]. This
way of proceeding is only in order to establish
why the Random Matrix Theory approach really
does give exact answers for the microscopic Dirac
operator spectrum. If one is not interested in
this, one can proceed completely within the chi-
ral Lagrangian framework, and simply compute
the partially quenched chiral condensate directly.
As a simple β = 2 example, consider the fully
quenched case where, with µv = µ, one finds [21]:

Σν(µ)
Σ

=µ (Iν(µ)Kν(µ)+Iν+1(µ)Kν−1(µ))+
ν

µ
(14)

The microscopic spectral density of the Dirac op-
erator is given by [21]

ρs(ζ) =
1
2π

Disc Σν(µ)|µ=iζ (15)

which precisely agrees with (8)5.
Similar expressions exist for higher spectral k-

point functions. See ref. [22] for the β = 2 case.
There is again exact agreement with the Random
Matrix Theory results.

5. Replicas

It is interesting that one can get quite far by
an alternative formulation of partial quenching
5The microscopic spectral density by definition does not
include the zero modes.

based on the replica method. The fermion deter-
minant is then removed by analytic continuation
in the number of flavors, so that eventually one
can take the limit Nv → 0. Here Nv denotes a
number of additional unphysical flavors added to
the theory with Nf physical quarks.

The first observation is that now the identity
(7) as it stands is all that is needed in order to
show equivalence to the Random Matrix Theory
approach. The integration in eq. (2) is over
U(Nf + Nv), and the limit Nv → 0 is taken
after differentiating w.r.t. µv. Small-mass and
large-mass expansions can be performed in this
way [24,25]. As an example, for the quenched
chiral condensate the replica method yields pre-
cisely small-mass and large-mass series expan-
sions of the expression (14), whose inversion in
turns yields the same microscopic spectral den-
sity as was originally derived from Random Ma-
trix Theory. It is a highly non-trivial check on
the consistency of the whole formalism that these
results all coincide.

6. Lattice results

This review has not proceeded in historical or-
der. The derivations of the microscopic Dirac op-
erator spectrum based directly on the partially
quenched chiral Lagrangian came after the first
lattice study [26] already had demonstrated the
viability of the Random Matrix Theory approach.
Since then there have been numerous lattice com-
parisons with the exact analytical expressions,
for different gauge groups, different representa-
tion quarks in both quenched and full theories
[27,28,3]. It is impossible to do justice to all that
work here, but a few points can be highlighted.

A quite systematic study of the smallest eigen-
value distributions in all three universality classes
and for zero and non-zero topological charge
showed perfect agreement with the analytical pre-
dictions [29]. The distribututions of a whole se-
quence of smallest eigenvalues have been com-
pared with the analytical formulas in ref. [30].
One sees clearly how the microscopic spectral
density is built up of the individual distributions.

Also higher-point spectral correlators have
been checked [26,31], again with spectacularly
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Figure 1. The first Monte Carlo measurement of
the microscopic spectral density of the Dirac op-
erator [26], for gauge group SU(2) and quenched
staggered fermions. The dashed curve is the an-
alytical prediction.

good agreement with the analytical predictions.
Extensions to the regime of chiral perturbation
theory have also been made [32].

Lattice calculations with staggered fermions
compare only with the analytical expressions for
the sector with ν = 0. This makes sense, since
it has been known for long [33] that staggered
fermions do not have exact zero modes at usual
gauge couplings. Even if one selects distinct topo-
logically non-trivial gauge field sectors, the mi-
croscopic Dirac spectrum seems completely unaf-
fected, and always agrees with the ν = 0 predic-
tions [34]. There is a much more direct way of
understanding this. The symmetry breaking pat-
terns of staggered fermions away from the con-
tinuum always have an additional U(1) factor6

which for the zero momentum modes is com-
pletely equivalent to a projection on the ν = 0
sector [35,3]. So we should only compare with
what can be viewed as ν = 0 predictions of the
theory without the extra U(1) factor. If one sees
sensitivity to topology [36], then continuum flavor
6They are U(N)×U(N) → U(N) [complex], U(2N) →
Sp(2N) [real], and U(2N)→ SO(2N) [pseudo-real]

symmetries are beginning to be recovered.
Instead of looking directly at the smallest Dirac

operator eigenvalues, one can also consider de-
rived quantities such as the (mass-dependent) chi-
ral condensate [37–41]

Σν(µ)
Σ

= 2µ
∫ ∞

0

dζ
ρ
(ν)
s (ζ, µ)
ζ2 + µ2

+
ν

µ
, (16)

or higher chiral susceptibilities, such as [38]

ων(µ)
V Σ2

= 4µ2

∫ ∞

0

dζ
ρ
(ν)
s (ζ, µ)

(ζ2 + µ2)2
+

2ν
µ2

(17)

In the quenched and partially quenched cases
there is a one-to-one correspondence between
Σ(µ)ν and the microscopic spectral density
ρ
(ν)
s (ζ). But: Σν(µ) has a short-distance singu-

larity that is not taken into account in the above
description. At fixed UV cut-off Λ this is not a
problem when one takes the infinite-volume limit,
as one should in order to compare with (14).
Corrections are of the form AmΛ2 + Bm3 ln Λ,
where A and B are constants. This looks scary,
but we are taking the limit in which µ = mΣV
is kept fixed as V → ∞. So these UV cor-
rections actually vanish; they are suppressed by
inverse factors of the volume, and really read
(A/Σ)(µ/V )Λ2 +(B/Σ3)(µ3/V 3) ln Λ. If the vol-
ume V is not large enough these terms can be
annoying, and then one should subtract them.

There are cases where very, very few Dirac op-
erator eigenvalues play any rôle in building up
the chiral condensate (14) in the interesting mass
range. As an example, let us compare the exact
result (14) with what one gets by keeping only
one single Dirac operator eigenvalue in the inte-
gral of eq. (16) for ν = 0. We then simply replace
ρ
(0)
s (ζ) in the integrand of (16) by the probabil-

ity distribution of just one single Dirac operator
eigenvalue, the smallest, P (0)

min(ζ) = (ζ/2)e−ζ2/2.
This may seem like an absurd truncation, and
of course an unnecessary one, since we know the
full analytical form of ρ(0)

s (ζ). But the compar-
ison between this approximation, and the exact
answer is shown in figure 2.

The two curves are basically indistinguishable
(up to µ ∼ 0.1 the difference is less than 5%, de-
creasing fast as µ is lowered). If one sees good
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Figure 2. The exact quenched chiral condensate
(here m stands for µ) for ν = 0, compared with
keeping only one single eigenvalue in eq. (16).

scaling of the ν = 0 quenched chiral condensate
in such a mass range, then one is probing, and
having good statistics of, only one single Dirac
operator eigenvalue. Of course, we could just as
well have included all the other eigenvalues, and
then the relation would be exact. For extracting
Σ in this way it seems more logical to measure the
distributions of the Dirac operator eigenvalues di-
rectly. When ν 6= 0 the eigenvalues are shifted
further away from the origin, the integral (16) is
not as infrared sensitive, and the brutal approxi-
mation of keeping only the first eigenvalue is not
nearly as good. The error is easily assessed if we
rewrite, for ν 6= 0 [38],

Σν(µ)
Σ

=
ν

µ
+ 2µ

〈∑
n>0

1
ζ2
n

〉
+ . . . , (18)

which shows that to leading order one is simply
trying to measure the first Leutwyler-Smilga sum
rule [4], 〈∑n 1/ζ2

n〉 = 1/(4ν). It seems advanta-
geous to instead measure the first few eigenvalue
distributions, or, for lower statistics data, at least
individual averages. That way one avoids con-
taminating the result with the larger eigenvalues
which at the limited finite volume will have distri-
butions that are incompatible with the analytical
formulae.

7. Beyond Random Matrix Theory

We have emphasized that the results reviewed
here are exact in the sense that they can be made
as accurate as we wish by tuning the quark masses
mi and the volume V . It immediately suggests
that it is possible to compute corrections to this
scaling, which would improve convergence and
bring in more terms from the chiral Lagrangian.
This is indeed the case. A computational frame-
work was laid out by Gasser and Leutwyler, who
called it the ε-expansion [5].7

The idea is simple. Instead of keeping only the
zero-momentum mode in the chiral Lagrangian,
one includes the modes of non-zero momentum
in a perturbative manner. Thus, one starts with
the full chiral Lagrangian and then separates out
the zero-momentum modes of U(x):

U(x) = uei
√

2ξ(x)/Fu (19)

where u ∈ SU(Nf ) is a space-time independent
collective field, and ξ(x) contains only modes of
non-zero momentum. To leading order, where one
simply ignores ξ(x), this gives the effective par-
tition function (1) after identifying U ≡ u2. To
next order the kinetic energy term contributes,
and one resorts to the usual loop expansion in the
fluctuation field ξ(x). The modes of zero momen-
tum are still treated exactly. So this expansion
is a combination of the exact, non-perturbative,
leading-order result for V → ∞, and a pertur-
bative expansion where each term should be sup-
pressed by powers of 1/L ≡ 1/V 1/4. In 4 dimen-
sions the expansion is even better behaved, as the
first correction goes as 1/L2, rather than just 1/L
[5,42]. Leading terms are what we alternatively
could obtain from Random Matrix Theory. The
corrections take us beyond.

The one-loop correction to the chiral conden-
sate computed in this way can be re-absorbed into
a volume-dependent Σeff (V ) [5],

Σeff (V )
Σ

= 1 +
N2

f − 1
Nf

1
F 2

β1(Li/L)
L2

(20)

where β1 depends on the geometry [42,45]. This
7The quantity ε counts orders in 1/L, where L is the linear
extent of the volume. There is no relation to the expansion
around critical dimensions.
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carries directly over to the Dirac operator eigen-
values, on account of the relation (15). From the
small 1/L2-correction one can thus, with suffi-
cient statistics, also measure the pion decay con-
stant F from the eigenvalue distributions.

The quenched ε-expansion meets the usual dif-
ficulties of the quenched theory. We outline
the problem here using the replica version of
quenched chiral perturbation theory [43] because
it is simpler to explain. Then (19) still defines the
split between modes of zero and non-zero momen-
tum, but now U(x) ∈U(Nv). Let Ξ(x) ≡ Trξ(x)
denote the flavor singlet fluctuations. The lowest-
order chiral Lagrangian in a sector of fixed topol-
ogy reads [35]

Tr
[
1
2
∂µξ(x)∂µξ(x)+

m2
0

6
Ξ(x)2+

α

6
∂µΞ(x)∂µΞ(x)

−Σ
2
M(U + U †)

(
V − 1

F 2

∫
dx ξ(x)2

)]
. (21)

and the propagator of Ξ(x) is thus modified due
to the m0-term (the precise form is given in
[43]), and one again takes the limit Nv → 0
after having differentiated with respect to the
sources. A new scale is introduced by the m0-
term, and in order to proceed perturbatively one
must assume that m2

0/(4πF
2) is small. At one-

loop level the quenched analog of the effective
volume-dependent Σeff (V ) is [35]

Σeff (V )
Σ

=1− 1
3F 2

[
αβ1

L2
− m2

0

8π2
ln(L)

]
(22)

In the full theory logarithms are typically multi-
plied by m2

π, and hence in this regime suppressed
by at least 1/L2. Here it survives at fixed m0,
indicating difficulties with the whole expansion.
It is not a quenched chiral logarithm, but, in this
regime, a quenched finite-volume logarithm that
signals the limitations of the expansion.

The ε-expansion has also been worked out for
correlation functions of the full theory [42,44],
and very recently these results have been gener-
alized to the quenched case [46]. By measuring
correlation functions in this regime one can ex-
tract the low-energy constants of QCD.

8. Conclusions

The microscopic tail of the Dirac operator spec-
trum is computable by a precise comparison with
the associated effective field theory. The result
is a series of exact expressions for observables in
finite-volume gauge theories. This is a highly un-
usual situation for such strongly coupled theories,
and one can make good use of these results. In
particular:
• Reliability of fermion algorithms can be

checked by comparing with the exact expressions.
• Gauge field topology gives distinct predic-

tions, and is probed at the “quantum level”.
• Physical observables derivable from the mi-

croscopic spectral correlation functions are known
in exact analytical forms. Simple models,
ansätze, or unknown extrapolations for the small-
mass finite-volume behavior can be replaced by
the correct analytical expressions.
• By going to unphysical regimes we can ex-

tract physical observables. This includes unphys-
ical volumes, and, if need be, fixed gauge field
topology. The most extreme example was given:
From the distribution of just one single Dirac
eigenvalue we learn i) whether spontaneous chiral
symmetry occurs in the infinite-volume theory, ii)
which symmetry breaking class it belongs to, iii)
the value of the infinite-volume chiral condensate
Σ, and finally, by looking even closer, iv) the pion
decay constant F . If one is willing to push it, in
principle the infinite series of parameters of the
chiral Lagrangian can be probed by the Dirac op-
erator eigenvalues.
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