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We compute meson propagators in finite-volume quenched chiral perturbation theory.

Recent progress in the formulation of chiral
fermions on the lattice makes it possible to ap-
proach the regime of the physical light quark
masses. However, lattice volumes V = L4 needed
to ensure negligible finite size effects are pro-
hibitively large for such light quarks. Only when
L is very large compared to the Compton wave-
length of the lightest particles of the theory (i.e.
the pions) are the volume effects exponentially
suppressed. Fortunately chiral perturbation the-
ory (χPT) can predict the volume effects that oc-
cur in the regime mπL ≤ 1. In this way the fi-
nite volume becomes a distinct advantage, and a
finite-size scaling analysis is actually a very useful
tool to extract the physical low energy constants.
This has been demonstrated in simpler models
[1].

The χPT predictions in full QCD for the fi-
nite size scaling of quantities such as the chiral
condensate or the propagators of scalar and vec-
tor densities have been computed in [2,3]. Un-
fortunately, lattice simulations in the regime of
very light quark masses are presently only possi-
ble in the quenched approximation, and the pre-
dictions of chiral perturbation theory are quite
drastically modified in this approximation [4]. We
present here some results for the propagators of
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the scalar and pseudoscalar densities at finite vol-
ume in quenched χPT (QχPT). Full details will
be presented in a forthcoming publication.

The low-energy limit of QCD with light quarks
is a chiral Lagrangian of the Goldstone bosons re-
sulting from spontaneous chiral symmetry break-
ing. In an infinite volume, the effective La-
grangian is approximated by an expansion in
powers of the pion momentum p and mass mπ.
This is the standard p-expansion. In a finite vol-
ume the p-expansion is still good if the Compton
wavelength of the particle is much smaller than
the size of the box ( L � 1

mπ
). In the oppo-

site limit, L� 1
mπ

, the p-expansion breaks down
due to propagation of pions with zero momenta
[2]. A convenient expansion for this regime is the
so-called ε-expansion in which mπ ∼ p2 ∼ ε2

[2]. By the Gell-Mann–Oakes–Renner relation
this corresponds to keeping µi ≡ miΣV of or-
der unity while V is taken large. The zero
mode of the pion can be isolated by factorizing
U(x) = U0 exp i

√
2ξ(x)/Fπ into the constant col-

lective field U0 and the pion fluctuations ξ(x).
The difficulty then comes from the fact that the
integral over U0 needs to be done exactly, while
ordinary χPT applies to the non-zero mode inte-
gration. At leading order one obtains the suitably
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normalized partition function

Z =
∫

SU(Nf )

dU0 exp
[
Σ
2

V TrM
(
U0 + U+

0

)]
.

where M is the quark mass matrix. It is interest-
ing to consider averages in sectors of fixed topol-
ogy ν as well [5]. To the same order

Zν =
∫

U(Nf )

dU0 (detU0)
ν exp

[
Σ
2

V TrM
(
U0 + U+

0

)]
.

The ε-expansion can be worked out also in the
case of QχPT. We have considered two methods
to take the quenched limit. The first is the su-
persymmetric method [4], suitably refined to be
valid at the non-perturbative level [6]. Here the
fermionic determinant of Nv valence quarks is
cancelled by adding to the theory Nv flavors of
ghost bosonic quarks. Assuming a supergroup
generalization of the chiral symmetry breaking
pattern of QCD, the field U(x) becomes an el-
ement of a graded group with both Goldstone
bosons and Goldstone fermions. The integration
over these fields is taken on what is called the
maximal Riemannian submanifold of the super-
group Gl(Nv|Nv) [6]. This is a combination of
compact (as for the usual Goldstone bosons) and
non-compact integration domain (for the Gold-
stone bosons of the ghost-ghost block). The fac-
torization of U(x) is still as above, but ξ(x) is no
longer traceless since the singlet field does not de-
couple in the quenched approximation. To lead-
ing order in the ε-expansion the partition function
in a fixed topological sector is

Zν =
∫

dU0dξ (SdetU0)
νexp

{
Σ
2

V StrM
(
U0 + U−1

0

)

+
∫

d4x

[
−1

2
Str (∂µξ∂µξ) +

m2
0

6
Ξ2 +

α

6
∂µΞ∂µΞ

]}
,

with Ξ(x) = Strξ(x) and Str denotes the super-
trace.

An alternative to the supersymmetric method
is the replica method [7], which amounts to taking

the Nf → 0 limit of the full QCD result. Chiral
perturbation theory done this way is equivalent
to that of the supersymmetric method, but the
Feynman rules are somewhat simpler. Its short-
coming in the present context is that the inte-
gral over the zero momentum modes in general
can only be performed through series expansions
[8]. As a first check, we have confirmed the cal-
culation of the leading correction to the chiral
condensate in the ε-expansion [9], now using the
supersymmetric method. Likewise, as a check on
the results presented below we have performed
all calculations both ways, and thus compared
the resulting series expansions from the replica
method with the closed expressions obtained by
the supersymmetric method. In all cases we find
complete agreement.

Here we present the first quenched results for
correlation functions in the ε-expansion. We be-
gin with the scalar and pseudoscalar correlation
functions sa(x) ≡ 〈Sa(x)Sa(0)〉 and pa(x) ≡
〈P a(x)P a(0)〉 to O(ε2), which is the leading order
contribution to the space-time dependent terms.
The O(1) contributions are constant. In a sector
with fixed topology we find for the space integrals
of flavor singlets

s0(t) = const− Σ2

2F 2
π

[
G(t)a− −∆(t)

a+ + a− − 4
2

]

p0(t) = const +
Σ2

2F 2
π

[
G(t)a+ −∆(t)

a+ + a− + 4
2

]

where V = L3T and

a+ = 4
Σ′

ν(µ)
Σ

+ 4 + 4
ν2

µ2
,

a− = − 4
µ

Σν(µ)
Σ

+ 4
ν2

µ2
,

with the chiral condensate [6],

Σν(µ)
Σ

=µ(Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)) +
ν

µ
.
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The functions G(t) and ∆(t) are, with τ = t
T ,

∆(t) = Th1(τ)

G(t) = −m2
0

3
T 3h2(τ) +

α

3
Th1(τ)

h1(τ) =
1
2

[
(τ − 1

2
)2 − 1

12

]

h2(τ) =
1
24

[
τ2(1− τ)2 − 1

30

]
.

The origin of the functions h1,2(τ) has been dis-
cussed in detail in the literature [10]. As a check
on the above result, in the limit µ →∞ we find

p0(t) → +
2Σ2

F 2
π

[G(t) −∆(t)] ,

which coincides with the leading order result from
the p-expansion. This is simply tree level propa-
gation of the flavor singlet.

We have also computed the flavored correla-
tion functions. The calculation is more involved
because in the supersymmetric formulation it is
necessary to work with at least Nv = 2 [11] since
the sources contain two flavors. All details will be
given in a forthcoming publication. Here we just
show a plot of the pseudoscalar correlation func-
tion pa(t), a = 1, 2, 3 in the ε and p-expansions,
for different values of the quark mass close to
the range of validity of both regimes4. As in
the unquenched case, there is an overlap region
at MπL ∼ 1 where both expansions are good if
mΣV � 1.

The volume dependence of the above formu-
lae provides an extra handle to extract the low-
energy constants Σ, Fπ, m2

0 and α in this regime.
This technique has already been successfully ap-
plied to extract the constant Σ from the spectral
density of the Dirac operator and from the quark
condensate at finite volume [12].

4The constant terms have here been included only to lead-
ing order in the ε expansion.
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Figure 1. Flavor-non-singlet pa(t) in lattice
units with a−1 ∼ 1.5GeV, V = 323 × 64.
Shown is the p-expansion (dashed lines, m =
10, 3, 0.48MeV) and the ε-expansion (solid lines,
for m = 0.48, 0.2MeV). As m is decreased the
curves go upward, as expected. In the intermedi-
ate mass region (m ∼ 0.5Mev) there is nice agree-
ment between the two expansions.
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