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Finite-size scaling of interface free energies in the 3d Ising model
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We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising
model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions
of the 4d SU(2) Yang–Mills theory at the deconfinement phase transition.

1. Introduction

Finite Size Scaling (FSS) is a very powerful
tool, particularly useful in extracting numerical
estimates from Monte Carlo simulations. Nu-
merical simulations give results on systems of fi-
nite size, where phase transitions cannot occur.
Thus, a fundamental task in Monte Carlo studies
of phase transitions is the extraction of results
holding in the thermodynamic limit from data
obtained in systems of finite size. FSS describes
how a system of finite size approaches criticality
in the thermodynamic limit. One of its most far–
reaching aspects concerns the universality of the
FSS functions. If universality holds, complex sys-
tems share the same critical behaviour as simpler
systems. This opens the possibility to use simple
models to obtain accurate information on much
more complicated theories.
In a recent paper[1], a study of the FSS of spatial
’t Hooft loops of maximal size across the decon-
finement phase transition has been performed in
the SU(2) Yang–Mills theory. By this analysis, a
numerical estimate of the dual string tension - for
the first time observed in [2] - has been obtained.
Moreover, also the FSS of the electric free ener-
gies of the theory has been investigated.
According to the Svetitsky–Yaffe conjecture[3],
the 4d SU(2) Yang–Mills theory at the decon-
finement transition is believed to be in the same
universality class as the 3d Ising model at the
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hot/cold phase transition. Several numerical
studies have confirmed the validity of this con-
jecture. Thus, also the universal FSS functions of
the electric and magnetic free energies of the 4d
SU(2) theory measured in [1], should match with
FSS functions observable in the 3d Ising model.
We investigate the universality of the FSS func-
tions in the 3d Ising model at the hot/cold phase
transition. In particular we focus on the FSS of
interface free energies.

2. The observables

Our aim is to compare FSS functions measured
in the Ising model with those observed in SU(2)
for the magnetic and the electric free energies.
In order to set this connection, it is useful to re-
call the idea behind the Svetitsky–Yaffe conjec-
ture for the case we are considering now. If we
could integrate the degrees of freedom of the 4d
SU(2) gauge theory to write an effective action
for the Polyakov loop P (~x), this effective action
would be a 3d spin system with symmetry Z2.
Then Svetitsky and Yaffe give arguments accord-
ing to which the (complicated) effective action for
the Polyakov loop reduces - close to criticality -
to the nearest–neighbour Ising interaction. If we
now consider an SU(2) Yang–Mills theory on the
lattice, a spatial ’t Hooft loop in the xy plane
can be obtained by inverting the sign of the cou-
pling of a set of time–like zt plaquettes. In [1] it
is shown that P (~x)P †(~x + Lẑ) = −1, where L is
the extension of the system in direction z and ẑ
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is the unit vector along the z axis. This condition
can be accomplished in the effective Ising model
for the Polyakov loop, by changing the boundary
conditions from periodic (p.b.c.) to antiperiodic
(a.p.b.c.) in direction z. This generates a frustra-
tion in the spin system, which, in the cold phase,
creates a surface of defects. One can set a.p.b.c.
in one, two or in all three directions. In the SU(2)
theory, this corresponds to switching on 1, 2 or 3
orthogonal spatial ’t Hooft loops of maximal size.

3. The computation

We study the 3d Ising model on a cubic lattice
of size L3, with the usual ferromagnetic nearest-
neighbour interaction S = −β

∑
~xµ σ~xσ~x+µ̂. σ~x is

the spin at the lattice site ~x, µ̂ is the unit vector
in direction µ and β > 0 is the coupling. The
data presented in this paper have been collected
on lattices of size up to L = 32. More details
about the simulation parameters will be given in
a forthcoming paper. We consider p.b.c. and
a.p.b.c. in 1, 2 and 3 directions. Zk(i), with re-
spectively i = 0, 1, 2, 3 are the partition functions
for these 4 different choices. The observable we
consider is the free energy cost Fk(i) to create
such interfaces. It is given by

Fk(i) ≡ − log
Zk(i)

Zk(0)
i = 1, 2, 3 (1)

The counterparts of the electric free energies of
the SU(2) theory are obtained by performing the
Z2 Fourier transform [4] in (1). In terms of the
Zk(i), their expressions are

Ze(1)=
1

Ne

(Zk(0) + Zk(1) −Zk(2) −Zk(3)) (2)

Ze(2)=
1

Ne

(Zk(0) −Zk(1) −Zk(2) + Zk(3)) (3)

Ze(3)=
1

Ne

(Zk(0) − 3Zk(1) + 3Zk(2) −Zk(3))(4)

where Ne = Zk(0) + 3Zk(1) + 3Zk(2) + Zk(3).
The correlation length ξ sets the scale of the dis-
tances. It has a critical behaviour with exponent
ν ≈ 0.63: ξ ∼ |t|−ν , where t = 1 − βc/β. We
express the FSS functions in terms of the scal-
ing variable x = sign(t)L|t|ν ∝ L/ξ. In Fig-
ure 1, we compare the FSS functions of Fk(1)

10-5

10-4

10-3

10-2

10-1

100

101

102

-6 -4 -2 0 2 4 6

x

Fk (1)Fk (1)Fk (1)Fk (1)Fk (1)

Ising
SU(2)

Figure 1. Comparison of the FSS functions of
Fk(1) between the Ising model and SU(2).

between the Ising model and SU(2). We show
results both in the cold/deconfined phase (x > 0)
and the hot/confined one (x < 0). On one hand,
we observe that, according to FSS expectations,
the data collected at various values of L and β lie
on a single curve, depending only on x. On the
other hand, it turns out to agree excellently with
the FSS function of one spatial ’t Hooft loop in
SU(2). Note that the scaling functions for SU(2)
and the Ising model do not directly match from
the raw data. A rescaling of the correlation length
by a factor α is necessary: ξIsing = ξSU(2)/α. This
implies that the variable x defined for the Ising
model and the one used in SU(2) [1] are related
by: xIsing = αxSU(2). We have estimated the
value α = 1.88(2) by rescaling the x > 0 Ising
data in such a way that they overlap with the
SU(2) ones. We stress that, once α has been es-
timated, its value remains fixed and it is no more
a fitting parameter. In Figures 2 and 3 the x
variable for the SU(2) data has been rescaled by
α. In Figure 2, we display the comparison Ising–
SU(2) for Fk(i) i = 1, 2, 3 at x > 0. The interface
tension σi is a fitting parameter only for Fk(1):
we estimate the value σ1 = 1.495(15). For a full
comparison, we have used the same fitting ansatz
as in [1]. This result is consistent with – but more
precise than – the value measured in [5]. For Fk(i)
i = 2, 3, we have set σi = σ1

√
i, as follows from

the expectations of the minimal interface area.
This hypothesis is well satisfied, as apparent from
the good quality of the fits. The very good match-
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Figure 2. Comparison Ising-SU(2) of the FSS
functions of Fk(i), i = 1, 2, 3. The continuous
lines are fits according to the ansatz used in [1].

ing Ising–SU(2) of the FSS functions for the free
energy interface holds also for the cases of a.p.b.c.
in 2 and 3 directions. Figure 3 concerns the FSS
for Fe(1); similar results hold for Fe(2) and Fe(3).
Thus, also for the electric free energies, we ob-
serve very good agreement between the FSS func-
tions of the two theories, with much increased
accuracy in the Ising case. Finally, we have mea-
sured the product σ1ξ

2
+, where ξ+ is the correla-

tion length in the hot phase. At large x and close
to the critical point, the FSS functions of Fk(1)
and Fe(1) have the simple asymptotic forms:
Fk(1) ≈ σ1x

2 + Ck and Fe(1) ≈ |x|/ξ+ + Ce,
where Ck and Ce are two constants. Then at
large |x|, we have Fk(1)/Fe(1)2 → σ1ξ

2
+. In order

for this ratio to reach its asymptotic behaviour
sooner, we have subtracted a constant C to the
interface free energy Fk(1). In Figure 4 we plot
A ≡ (Fk(1) − C)/Fe(1)2 as function of |x|. The
data clearly show a flattening to a constant at
large |x|. Fitting the last 5 points to the right
with a constant, we obtain (σ1ξ

2
+) = 0.44(1). Ex-

tended discussions and details about the shown
results will be presented in a forthcoming paper.
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Figure 3. Comparison Ising-SU(2) of the FSS
functions of Fe(1). The data in the main figure
refer to the hot/confined phase. The insert dis-
plays the results in the cold/deconfined phase.
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