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1. Introduction

In studies of higher dimensional field theories with branes, it is convenient to model

compact extra dimensions with the help of orbifolds [1, 2, 3]. Branes are usually put

at orbifold fixed points, and various matter and gauge sectors are localized on their

world volumes. Yet another gauge sector may propagate, together with gravity and

moduli fields, in the bulk of an orbifold, interacting with branes. In many cases, e.g.

when one considers AdS5 throats that form near stacks of D3 branes in string theory,

it is appropriate to restrict a discussion to the simplest class of five-dimensional field

theories. It has been noticed long ago [1] that there are two ways of looking at field

theory in such a geometry. One possibility is to notice that a circle divided by Z2
is actually a line segment with the ends at the fixed points of the action of Z2. In

this picture the fixed points are the ends of the world, beyond which the fields living

in the bulk cannot propagate. The second possibility, sometimes called the ‘upstairs

picture’, consists in working on the whole circle S1, but defining in a non-trivial

way the action of the Z2 on the fields. The second possibility turned out to be the

most convenient, especially in the case of supersymmetric theories. There, the fields

fall into one of two classes: the Z2-even fields, which have massless modes in their

Kaluza-Klein expansion and are continuous across the branes, and the Z2-odd fields,

which have non-zero modes only and may have finite discontinuities when crossing

the branes. Of course it would be wrong to say, as one may naively think, that only

the even modes survive when going over to the interval picture. The point is that,

away from the branes, the bulk does not know whether it is investigated in the first

or in the second picture; it must be therefore exactly the same in both. Hence the

difference between various fields must lie in the way they couple to the branes. The
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analogy with electrodynamics may be helpful. The electromagnetic scalar potential

is continuous across a surface with a non-zero charge density; however, it suffers a

discontinuity on a surface with a non-zero density of an electric dipole moment. The

difference between the two situations lies precisely in the form of the coupling of the

potential to the surface. In what follows we shall discuss in some detail the relation

between the upstairs and interval pictures for the Z2-even, Z2-odd and gravitational

fields. It comes down to the determination of the boundary terms (couplings) for

various fields in the interval picture, given the field theory defined in a natural way on

the circle. Alternatively, one may start with the action on the interval augmented by

Neumann or Dirichlet boundary conditions on the boundaries, depending on whether

we work with the field that is supposed to have a zero mode or not; given boundary

couplings, which enforce required boundary conditions, one can promote them to the

upstairs picture. Among other cases we discuss a situation where the boundary is

located at the position of a naked singularity (including one at coordinate infinity).

We find out that, boundary terms are necessary in the interval picture, to satisfy

consistency conditions that are analogous to those known from the upstairs picture

[4]–[7]. An interesting bonus for establishing the complete equivalence between the

two pictures is the possibility of adding together two orbifold theories, for example

of forming a supergravity that describes two supergravities living in two separate

throats near two separate stacks of D3 branes and connected through the common

Planck brane [8]. Adding two intervals with a common end is rather obvious, whereas

adding models living on two circles is not immediately clear.

2. Z2-even and Z2-odd scalar fields in the interval picture

We begin with the case of a Z2-even scalar field, that is the one which is allowed

to have a zero mode, in the interval picture. As usual, we take a five-dimensional

manifold that consists of a four-dimensional spacetime multiplied by an interval:

xM = (xµ, y) ∈ Ω = M4 × 〈0, L〉. Two four-dimensional branes, which couple to
the induced 4d metric tensor, are located at y = 0 and y = L and endowed with an

induced metric

g0µν(xρ) ≡ Gµν(xρ, y = 0) , gLµν(xρ) ≡ Gµν(xρ, y = L) , (2.1)

where GMN denotes a five-dimensional metric tensor, and M,N = 0, 1, . . . , 5. We

take the usual choice Gµ5 = 0. The classical action describing the scalar field in 5d

reads:

S = −1
2

∫
d4x

∫ L
0

dy
√−G (GMN∂MΦ∂NΦ + V (Φ)) , (2.2)
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where V (Φ) is a scalar potential. Its variation with respect to Φ after integrating by

parts is:

δS =

∫
d4x

∫ L
0

dy
√−G

(
∂M∂

MΦ
1√−G∂M

(√−GGMN) ∂NΦ− 1
2

∂V (Φ)

∂Φ

)
δΦ−

−
∫
d4x
√−GG55∂5ΦδΦ

∣∣∣
y=L
+

∫
d4x
√−GG55∂5ΦδΦ

∣∣∣
y=0
. (2.3)

Since the interval is finite, and branes are, presumably, physical objects, it is natural

to allow for non-vanishing variations δΦ at the endpoints. This leads to Neuman

boundary conditions for the field Φ. To obtain classical equations of motion we must

modify the action (2.2) by adding other boundary terms:

S ′ = S +
∫
d4x
√
−gLVL(Φ)

∣∣∣
y=L
+

∫
d4x
√
−g0V0(Φ)

∣∣∣
y=0
, (2.4)

with additional terms satisfying the conditions:

√−GG55∂5Φ
∣∣∣
y=0
= −
√
−g0∂V0
∂Φ

∣∣∣
y=0
,

√−GG55∂5Φ
∣∣∣
y=L
=
√
−gL∂VL

∂Φ

∣∣∣
y=L
.

(2.5)

One can think of an orbifold S1/Z2 as a sum of two intervals with ends at the fixed

points. Physics on the two spaces is correlated by the action of the orbifold symmetry

Z2. We shall take the action (2.4) for each interval, impose Z2 symmetry, compare

the resulting equation of motion with those directly derived in the orbifold picture,

and read off the relation between the boundary terms in both pictures. Let us denote

the boundary terms on the intervals as

S+ =

∫
d4x
√
−g01
2
V +0 Φ

∣∣∣
y=0
+

∫
d4x
√−gπrc 1

2
V +π Φ

∣∣∣
y=πrc

, (2.6)

for y ∈ (0, πrc), and

S− =
∫
d4x
√
−g01
2
V −0 Φ

∣∣∣
y=0
+

∫
d4x
√
−g−πrc 1

2
V −π Φ

∣∣∣
y=−πrc

(2.7)

for y ∈ (−πrc, 0), and impose Z2 parity Φ(y) = Φ(−y). This implies

V +0 = V
−
0 , V +π = V

−
π . (2.8)

The corresponding action on the orbifold is

S = −1
2

∫
d4x

∮ πrc
−πrc
dy
√−G (GMN∂MΦ∂NΦ + V (Φ)) +

+

∫
d4x
√
−g0V0Φ

∣∣∣
y=0
+

∫
d4x
√−gπrcVπΦ

∣∣∣
y=πrc

, (2.9)
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where y ∈ 〈−πrc, πrc〉, and the equations of motion are

√−GGMN∂M∂NΦ + ∂M
(√−GGMN) ∂NΦ =

=
√−G1

2

∂V (Φ)

∂Φ
−
√
−g0V0δ(y)−

√−gπrcVπδ(y − πrc) . (2.10)

We note that there are no additional boundary terms from the derivation of the

equation of motion, since the integral of a full divergence of any field vanishes on an

orbifold, even if the field is not continuous. A Z2-even scalar field is a function of an

absolute value of y. Hence one finds

Φ = Φ(|y|) , Φ′ = ε(y)Φ′(|y|) ,
Φ′′ = 2 (δ(y)− δ(y − πrc)) Φ′(|y|) + Φ′′(|y|) , (2.11)

and equation (2.10) leads to:

√−G∂yΦ
∣∣∣
y=0+

= −
√
−g0V0

2
,

√−G∂yΦ
∣∣∣
y=πr−c

=
√−gπrc Vπ

2
. (2.12)

It is clear that we have an identification between two intervals and an orbifold if

V0 = V
+
0 = V

−
0 , Vπ = V

+
π = V

−
π . (2.13)

In the next step let us perform the same analysis for a field, which has no zero

mode on the orbifold, that is for the field which is Z2-odd. The derivative of an odd

field with respect to y is Z2-even. Hence, one can construct an action where such a

field couples to branes through its first derivative

S = −1
2

∫ L
0

dy

∫
d4x
√−G

(
∂MΦ∂

MΦ− 2√−G∂M
(√−GGMNΦ∂NΦ

)
+ V (Φ)

)
.

(2.14)

This is the analogue of the coupling of the electric potential to the electric dipoles

on the brane, which appeared before in the 5d constructions of [9, 10, 11]. This action

differs from the action (2.2) by a full divergence of a vector field. On manifolds

without boundary, such as an orbifold, these additional terms vanish. On an interval

we obtain non-zero boundary contributions:

S = −1
2

∫ L
0

dy

∫
d4x
√−G (GMN∂MΦ∂NΦ + V (Φ))+

∫
d4x
√−GG55Φ∂5Φ

∣∣∣L
0
.

(2.15)

The variation of this action with respect to the scalar field gives

δS=

∫ L
0

dy

∫
d4x
√−G

(
∂M∂

MΦ+
1√−G∂M

(√−GGMN) ∂NΦ−1
2

∂V (Φ)

∂Φ

)
δΦ+

+

∫
d4x
√−GG55Φδ(∂5Φ)

∣∣∣L
0
. (2.16)
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If we do not insist that δ(∂5Φ) vanishes on the boundaries, we need to add other

terms in (2.14), the variation of which cancels the boundary terms in (2.16):

S ′ = S +
∫
d4x
√−GG55V0∂5Φ

∣∣∣
y=0
+

∫
d4x
√−GG55VL∂5Φ

∣∣∣
y=L
, (2.17)

where Φ(0) = V0 , Φ(L) = −VL .
To make the relation between orbifold and interval pictures explicit, let us con-

sider a Z2-odd scalar field on an orbifold

S = −1
2

∮ πrc
−πrc
dy

∫
d4x
√−G (GMN∂MΦ∂NΦ+m2Φ2 + V0(y)Φ + Vπ(y)Φ) , (2.18)

where y ∈ 〈−πrc, πrc〉. Tensions V0, Vπ are proportional to one-point distributions δ
and δ′ at points y = 0 and y = πrc respectively. The variation with respect to the
scalar field leads to

GMN∂M∂NΦ+
1√−G∂M

(√−GGMN) ∂NΦ−m2Φ− 1
2
V0(y)− 1

2
Vπ(y) = 0 (2.19)

in five-dimensional spacetime. Again, no additional boundary terms appear, since

the integral over the whole orbifold of a total divergence always vanishes. A Z2-odd

scalar field may be represented as a function of an absolute value of y multiplied by

the antisymmetric step function ε(y) (we shall define ε(0) = 0). With this taken into

account we obtain

Φ = ε(y)Φ̄(|y|) , Φ′ = Φ̄′(|y|) + 2 (δ(y)− δ(y − πrc)) Φ̄(|y|) , (2.20)

Φ′′ = ε(y)Φ̄′′(|y|) + 2 (δ(y)− δ(y − πrc)) ε(y)Φ̄′(|y|) + 2 (δ′(y)− δ′(y − πrc)) Φ̄(|y|) ,
and the relation (2.19) leads to

V0(y) = 4G
55ε(y)Φ̄′(|y|)δ(y) + 4√−G

(√−GG55)′ Φ̄(|y|)δ(y) + 4G55Φ̄(|y|)δ′(y)
(2.21)

and

Vπ(y) = −4G55ε(y)Φ̄′(|y|)δ(y − πrc)− 4√−G
(√−GG55)′ Φ̄(|y|)δ(y − πrc)−

−4G55Φ̄(|y|)δ′(y − πrc) . (2.22)

Let us rewrite brane tensions in action (2.18) in such a way that they contain only

terms proportional to δ and no factors of δ′. A partial integration of the boundary
terms in (2.18) leads to:

S ⊃
∮ πrc
−πrc
dy

∫
d4x
√−G (−2G55Φ̄(|y|)Φ′(y)δ(y − πrc) + 2G55Φ̄(|y|)Φ′(y)δ(y)) =

= −
∫
d4x
√−GG55ΛπΦ′(y)

∣∣∣
y=πrc

+

∫
d4x
√−GG55Λ0Φ′(y)

∣∣∣
y=0
, (2.23)

where Λ0 = 2Φ̄(0) and Λπ = 2Φ̄(πrc).
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It should be noted that the action (2.18) is singular, because of non-vanishing

terms proportional to δ2:

S ∼
∮ πrc
−πrc
dy

∫
d4x
√−G (2G55Φ̄2(|y|)δ2(y)− 2G55Φ̄2(|y|)δ2(y − πrc)) . (2.24)

We can eliminate this singularity by adding to the initial action (2.18) new terms,

that do not change the equations of motion,

S ′ = S +
1

2

∮ πrc
−πrc
dy

∫
d4x
√−G (−G55Λ20δ2(y) +G55Λ2πδ2(y − πrc)) . (2.25)

This modified action can be put into a ‘full square’ form

S ′ = −1
2

∮ πrc
−πrc
dy

∫
d4x
√−G (Gµν∂µΦ∂νΦ +m2Φ2)−

−1
2

∮ πrc
−πrc
dy

∫
d4x
√−GG55 (∂5Φ− Λ0δ(y) + Λπδ(y − πrc))2 . (2.26)

This is the structure that plays a crucial role in the brane-bulk supersymmetric

models [1, 9, 10, 11].

Let us turn to the interval picture. We write a Z2-odd scalar field action (2.17),

on two separate intervals

S+ = −1
2

∫ πrc
0

dy

∫
d4x
√−G (∂M Φ̄∂M Φ̄ +m2Φ̄2)+

∫
d4x
√−GΦ̄∂5Φ̄

∣∣∣πr
−
c

0+
+

+

∫
d4x
√−GV +0 ∂5Φ̄

∣∣∣
y=0+

+

∫
d4x
√−GV +π ∂5Φ̄

∣∣∣
y=πr−c

, (2.27)

for y ∈ (0, πrc), and

S− = −1
2

∫ 0
−πrc
dy

∫
d4x
√−G (∂M Φ̄∂M Φ̄ +m2Φ̄2)+

∫
d4x
√−GΦ̄∂5Φ̄

∣∣∣0−
−πr+c

+

+

∫
d4x
√−GV −0 ∂5Φ̄

∣∣∣
y=0−

+

∫
d4x
√−GV −π ∂5Φ̄

∣∣∣
y=πr+c

, (2.28)

for y ∈ (−πrc, 0). It is easy to find, following the steps taken in the case of an even
field, that we obtain the identification between two intervals and an orbifold when

Λ0 = 2V
+
0 = 2V

−
0 , Λπ = −2V +π = −2V −π , (2.29)

and Φ(y) = εΦ̄(|y|).
We have established the correspondence between boundary terms and couplings

for fields of definite Z2 parity on S
1/Z2 and corresponding fields living on the sum

of two intervals. Since parity correlates the physics on the two intervals in a unique

way, it is sufficient to work with just one of them. From the point of view of the

interval, the difference between odd and even fields lies in the way they couple to the

branes.
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3. Gravity in the interval picture

To complete the discussion of the relation of brane worlds on orbifolds and intervals

we need to include gravity. It is well known that, on the interval, we need to add

Gibbons-Hawking boundary terms to recover Einstein equations; nevertheless, it is

instructive to find the form of the required terms from a reasoning analogous to that

used before for scalar fields. The procedure we are going to use was considered earlier

by Dick [12] (see also [13]). We begin with the classical gravitation action:

S =

∫
d4x

∫ L
0

dy
√−G (M3R +L )+

∫
d4x
√
−g0L0

∣∣∣
y=0
+

∫
d4x
√
−gLLL

∣∣∣
y=L
,

(3.1)

where L is a lagrangian of matter fields in the bulk, and L0, LL describe matter

fields on four-dimensional branes located at y = 0 and y = L respectively. It is well

known that the variation with respect to the metric tensor is

δS =

∫
d4x

∫ L
0

dy
√−GM3

[(
RMN − 1

2
RGMN − TMN

M3

)
δGMN +GMNδRMN

]
−

−
∫
d4x
√
−g0T 0µνδgµν0

∣∣∣
y=0
−
∫
d4x
√
−gLTLµνδgµνL

∣∣∣
y=L
, (3.2)

where

TMN =
1

2
LGMN− ∂L

∂GMN
, T 0µν =

1

2
L0g0µν−

∂L0

∂gµν0
, TLµν =

1

2
LLgLµν−

∂LL

∂gµνL
. (3.3)

The last term in the first line of (3.2) can be written as∫
d4x

∫ L
0

dyM3∂M

(√−GWM) =
∫
d4x
√−GM3W 5

∣∣∣
y=L
−
∫
d4x
√−GM3W 5

∣∣∣
y=0
,

(3.4)

where

WM = GOP δΓMOP −GOMδΓPOP . (3.5)

The difference between the case of a scalar field and the present one is that the

boundary terms contain variations of the metric tensor together with variations of

its derivatives. To improve this situation one can start with the modified action

S =

∫
d4x

∫ L
0

dy
√−G (M3F +L )+

∫
d4x
√
−g0L0

∣∣∣
y=0
+

∫
d4x
√
−gLLL

∣∣∣
y=L
,

(3.6)

where

F = GMN
(
ΓPMSΓ

S
NP − ΓPMNΓSPS

)
. (3.7)

The modified action gives Einstein equations in the bulk, but there appear boundary

terms ∫
d4x
√−GM3W 5MNδGMN

∣∣∣
y=L
−
∫
d4x
√−GM3W 5MNδGMN

∣∣∣
y=0
, (3.8)
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where

W 5MN =
1

2

(
GOM∂NG

O5 +GON∂MG
O5 −GOMGPN∂5GOP

)
+

+
1

2

(−GMN∂PGP5 −GMNGOP∂5GOP +GOP∂NGOP δ5M) . (3.9)

One needs to take care of the variations of boundary terms. The requirement that

these variations vanish leads to the conditions

√−GM3W 5µν
∣∣∣
y=0
= −
√
−g0T 0µν

∣∣∣
y=0
,

√−GM3W 5µν
∣∣∣
y=L
=
√
−gLTLµν

∣∣∣
y=L
, (3.10)

and

W 555

∣∣∣
y=0
= W 555

∣∣∣
y=L
= 0 . (3.11)

Let us check whether these conditions are satisfied in the Randall-Sundrum model,

with ds2 = e−2k|y|ηµνdxµdxν + dy2 . Using (3.9), (3.3), and counting boundary terms
twice (because of the orbifold symmetry) we obtain

W 5µν = 6kGµν , (3.12)

and

T hidµν = −6kM3ghidµν , T visµν = 6kM
3gvisµν , (3.13)

in full agreement with (3.10).

To make the connection with the standard gravitational action, we note that

R = F +
1√−G∂M

(√−GW̄M) , (3.14)

where

W̄M = GNSΓMNS −GMNΓSNS . (3.15)

This leads to the following form of (3.6)

S =

∫
d4x

∫ L
0

dy
√−G (M3R +L )−

∫
d4x
√−GM3W̄ 5

∣∣∣
y=L
+

+

∫
d4x
√−GM3W̄ 5

∣∣∣
y=0
+

∫
d4x
√
−g0L0

∣∣∣
y=0
+

∫
d4x
√
−gLLL

∣∣∣
y=L
.(3.16)

As a result, we obtain the standard action augmented by boundary terms, which

should be further extended by brane potentials. One easily finds out that new terms

are equal to the well known Gibbons-Hawking terms:

SHG = −
∫
∂Ω

d4x
√−g2M3K , (3.17)
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where

K = −gµν∇µnν = gµνΓSµνnS , (3.18)

and nM is the unit normal to the surface ∂Ω. In the 5d case one has

K = −1
2
gµν∂PGµνn

P , (3.19)

implying

SHG =

∫
d4x
√
−gLM3gµνL ∂5Gµν

∣∣∣
y=L
−
∫
d4x
√
−g0M3gµν0 ∂5Gµν

∣∣∣
y=0
. (3.20)

This is equal to (3.16) after taking into account that

W̄ 5 = GNSΓ5NS −G5NΓSNS = −Gµν∂5Gµν .. (3.21)

The RS model on an orbifold should be equivalent to the same model on two

intervals. In the orbifold picture the effective cosmological constant vanishes [2].

Let us do the calculation in the interval picture. First, let us calculate without the

Gibbons-Hawking terms. After inserting the vacuum solution into the action, we

obtain

−Λeff = 2
∫ πrc
0

dy
√−Ge−4ky (−20M3k2 − Λ)+ V0 + Vπe−4kπrc , (3.22)

where

V0 = −Vπ = 12M3k , Λ = −12M3k2 . (3.23)

The result is non-zero:

−Λeff = 16M3k
(
e−4kπrc − 1) . (3.24)

Let us now take into account the Gibbons-Hawking terms

W̄ 5 = −Gµν∂5Gµν = 8k . (3.25)

This time we obtain the correct result

−ΛHG = −16M3k
(
e−4kπrc − 1) , (3.26)

Λeff + ΛHG = 0 . (3.27)

To be more explicit, let us take an action (3.16) defined on two separate intervals:

S+ =

∫
d4x

∫ πrc
0

dy
√−G (M3R +L )+

∫
d4x
√−G

[
M3W̄ 5 +

1

2
√
G55
L+0

]
y=0

+

+

∫
d4x
√−G

[
−M3W̄ 5 + 1

2
√
G55
L+π

]
y=πrc

, (3.28)
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for y ∈ (0, πrc), and

S−=
∫
d4x

∫ 0
−πrc
dy
√−G (M3R+L )+

∫
d4x
√−G

[
−M3W̄ 5+ 1

2
√
G55
L−0

]
y=0

+

+

∫
d4x
√−G

[
M3W̄ 5 +

1

2
√
G55
L−π

]
y=−πrc

, (3.29)

for y ∈ (−πrc, 0). The variation of the action with respect to the metric tensor gives
√−G

(
RMN − 1

2
RGMN − TMN

M3

)
= 0 , (3.30)

in the bulk, and

√−GM3W 5µν
∣∣∣
y=0+
=−
√
−g0T

0+

µν

2

∣∣∣
y=0+

,
√−GM3W 5µν

∣∣∣
y=πr−c

=
√−gπT

π+

µν

2

∣∣∣
y=πr−c

,

√−GM3W 5µν
∣∣∣
y=0−

=
√
−g0T

0−
µν

2

∣∣∣
y=0−

,
√−GM3W 5µν

∣∣∣
y=−πr+c

=−√−gπT
π−
µν

2

∣∣∣
y=−πr+c

,

(3.31)

on the boundary. Taking the natural parity assignments Gµν(y) = Gµν(−y) and
G55(y) = G55(−y), we obtain

T 0
+

µν = T
0−
µν , T π

+

µν = T
π−
µν . (3.32)

On an orbifold the Gibbons-Hawking terms are absent; one is given the condition

√−GM3W 5µν
∣∣∣
y=0+

= −
√
−g0T

0
µν

2
,

√−GM3W 5µν
∣∣∣
y=πr−c

=
√−gπT

π
µν

2
. (3.33)

It follows that the identification of the interval and orbifold pictures requires

T 0µν = T
0+

µν = T
0−
µν , T πµν = T

π+

µν = T
π−
µν . (3.34)

The above considerations are easily extendable to fermionic fields and to AdS4 and

dS4 foliations. One additional rule, which should be followed, is that in the passage

from orbifold to two intervals the ε(y) becomes decomposed as ε(y) = H−(y)+H+(y)
where H−(y) = −1 if y < 0 and 0 otherwise, and H+(y) = 1 if y >

0 and 0 otherwise.

4. Consistency conditions in the interval picture

For a 5d metric of the form

ds2 = e2A(y)ḡµνdx
µdxν + dy2 (4.1)

10



J
H
E
P
1
1
(
2
0
0
1
)
0
2
7

one can derive, using equations of motion, consistency conditions [5, 6] — relations

between energy-momentum tensor and metric tensor, sometimes called sum rules [7]:

(
A′enA

)′
=

1

12M3
enA
(
T µµ + (2n− 4)T 55

)− 1− n
12
en−2R̄ , (4.2)

where n is an arbitrary number and R̄ denotes the 4-dimensional curvature scalar. As

an application of the orbifold picture-interval picture correspondence that we have

established, we shall formulate these sum rules in the interval picture.

The energy-momentum tensor derived from the orbifold action is

T TOTµν = Tµν + T
0
µνδ(y) + T

π
µνδ(y − πrc) , T TOT55 = T55 . (4.3)

After integrating (4.2) over the orbifold we obtain∮ πrc
−πrc

(
1

12M3
enA
(
T µµ + (2n− 4)T 55

)− 1− n
12
en−2R̄

)
dy =

= − 1

12M3
(
enA(0)(T 0)µµ + e

nA(πrc)(T π)µµ
)
. (4.4)

Let us consider the above set-up on a pair of intervals. In this case, the energy-

momentum tensor does not include the T 0
±
µν and T

π±
µν contributions. Instead, we have

additional boundary equations (3.31). Equation (4.2), integrated over the internal

space, leads to∫ πrc
−πrc

(
1

12M3
enA
(
T µµ + (2n− 4)T 55

)− 1− n
12
en−2R̄

)
dy =

= A′enA
∣∣∣
y=πr−c

−A′enA
∣∣∣
y=−πr+c

− A′enA
∣∣∣
y=0+

+ A′enA
∣∣∣
y=0−

. (4.5)

The tensor W 5MN calculated for the metric (4.1) reads

W 5µν = −3A′e2Aḡµν ,
W 555 = 0 . (4.6)

After taking equation (3.31) into account, we obtain

A′
∣∣∣
y=0+

=
(T 0

+
)µµ

24M3
, A′

∣∣∣
y=πr−c

= −(T
π+)µµ
24M3

,

A′
∣∣∣
y=0−

= −(T
0−)µµ
24M3

, A′
∣∣∣
y=−πr+c

=
(T π

−
)µµ

24M3
, (4.7)

and eventually (4.5) takes the form∫ πrc
−πrc

(
1

12M3
enA
(
T µµ + (2n− 4)T 55

)− 1− n
12
en−2R̄

)
dy =

= − 1

24M3

(
(T π

+

)µµe
nA(πr−c ) + (T π

−
)µµe
nA(−πr+c ) + (T 0

+

)µµe
nA(0+) + (T 0

−
)µµe
nA(0−)

)
.

This is fully equivalent to equation (4.4) when the conditions (3.34) are satisfied.
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It has been established in [5, 6] that consistency of five-dimensional solutions

with naked singularities [14, 15] requires the insertion of finely tuned sources at the

positions of singularities. The usual way to arrive at such solutions is to start with

an infinite space with vanishing boundary conditions. We solve equations of motion

for all fields and arrive at a solution with naked singularity at a position ys. We then

notice that after inserting additional sources we can obtain a solution that is valid

in the whole infinite space by taking all fields to vanish beyond ys. Alternatively, we

can continue fields periodically for y > ys. Let us demonstrate how the same physical

situation is reached when one starts with the consistent action on the interval:

S = M3
∫
d4x

∫ L
0

dy
√−G

(
R− 4

3
∂MΦ∂

MΦ

)
−M3

∫
d4x
√
−g0V0eb0Φ

∣∣∣
y=0
−(4.8)

−M3
∫
d4x
√
−gLVLebLΦ

∣∣∣
y=L
+M3

∫
d4x
√−GW̄ 5

∣∣∣
y=0
−M3

∫
d4x
√−GW̄ 5

∣∣∣
y=L
.

(we have included Gibbons-Hawking terms). The variation with respect to the metric

tensor (here and below we follow the procedure given earlier, i.e. we allow for non-

vanishing boundary variations) leads to the Einstein equation in the bulk and to the

conditions
√−GW 5µν

∣∣∣
y=0
=
√
−g01
2
V0e

b0Φg0µν

∣∣∣
y=0
,
√−GW 5µν

∣∣∣
y=L
= −
√
−gL1
2
VLe

bLΦgLµν

∣∣∣
y=L

(4.9)

on the boundary. The variation with respect to the scalar field gives the standard

equations of motion in the bulk together with the boundary conditions
√−G8

3
∂5Φ
∣∣∣
y=0
= −
√
−g0b0V0eb0Φ

∣∣∣
y=0
,
√−G8

3
∂5Φ
∣∣∣
y=L
=
√
−gLbLVLebLΦ

∣∣∣
y=L
.

(4.10)

This problem has the following singular solution known from [15] (the warp factor is

eA(y)):

Φ(y) = −3
4
log

(
c− 4
3
y

)
+ d , A(y) =

3

4
log

(
c− 4
3
y

)
+ dA , (4.11)

where c, d, dA are integration constants. Since this solution has a singularity at

y = 3
4
c, we should take L = 3

4
c. One can see that this causes no problem in the

boundary conditions (4.9) and (4.10). This is so because the boundary terms in

(4.8) remain finite at the position of the singularity. One may suspect that the

regularity of this solution is somehow related to the fact that the vacuum action,

without contributions the boundaries, is non-vanishing, but finite. To clarify this

issue let us take a model, where the vacuum action is infinite (by vacuum action we

mean the vacuum lagrangian integrated over y only). This is for instance the case

for effective action of the nonsupersymmetric Type I string given in [16]. This action

in the Einstein frame reads

SE =
1

2k2

∫
d10x
√−G

(
R − 1

2
(∂Φ)2 − 2αEe 32Φ

)
. (4.12)
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Classical background preserving a nine-dimensional Poincare symmetry has the

form

ds2 = e2A(y)ηµνdx
µdxν + e2B(y)dy2 , Φ = Φ(y) , (4.13)

where µ, ν = 0, . . . , 8 and y denotes the transverse coordinate. The solution in the

Einstein frame is

Φ =
3

4
αEy

2 +
2

3
log |√αEy|+ Φ0 ,

ds2E = |
√
αEy|1/9e−αEy2/8ηµνdxµdxν + |√αEy|−1e−9αEy2/8e−3Φ0/2dy2 . (4.14)

Notice that this solution has singularities at y = 0 and y = ∞. Hence, it is natural
to restrict the transverse coordinate to the region 0 < y <∞. The naively calculated
cosmological constant is

Λeff =
1

2k2

∫ ∞
0

e
3
4
Φ0α

3/2
E

y

2
dy =

1

2k2
e
3
4
Φ0α

3/2
E

y2

4

∣∣∣∣
∞

0

, (4.15)

which is infinite. This points towards some inconsistency: 9d Poincare invariance is

maintained, but naive 9d cosmological constant is infinite. Let us try to repair the

system following the prescription formulated earlier. We add to the action (4.12) the

Hawking-Gibbons terms

SHG = − 1
2k2

∫
d9x
√−GW̄ 10

∣∣∣∣
∞

0

, (4.16)

and, in addition, we augment it by boundary branes

Sbr =
1

2k2

∫
d9x
√
−g0V0(Φ)

∣∣∣∣
y=0

+
1

2k2

∫
d9x
√−g∞V∞(Φ)

∣∣∣∣
y=∞
, (4.17)

with tensions determined by the conditions

√−GW 10µν
∣∣∣
y=0
= −
√
−g01
2
V0(Φ)g

0
µν

∣∣∣
y=0
,
√−GW 10µν

∣∣∣
y=∞
=
√−g∞1

2
V∞(Φ)g∞µν

∣∣∣
y=∞
.

(4.18)

Adding the brane at infinity may seem questionable; however, it should be noticed

that the volume of the transverse dimension,

L10 =

∫ ∞
0

dyeB(y) = e−3Φ0/4α
− 1
4
E

∫ ∞
0

dy

y1/3
e−9αEy

2/16 , (4.19)

is finite. Hence, when one goes over to the coordinate that is proportional to the

proper volume of that dimension, the position of the second singularity becomes

finite as well.
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Let us check how the boundary terms modify the 9d cosmological constant. After

inserting the vacuum solutions into (4.16) and (4.17) we obtain

SeffHG = −
1

2k2
e
3
4
Φ0α

3/2
E

9y2

4

∣∣∣∣
∞

0

, Seffbr =
1

2k2
e
3
4
Φ0α

3/2
E

8y2

4

∣∣∣∣
∞

0

. (4.20)

Thus the final result vanishes,

Λ′eff = Λeff + S
eff
HG + S

eff
br = 0 , (4.21)

as it should be. This example has a number of interesting features. Firstly, we

note that brane tensions at the endpoints can easily be computed with the help of

(4.18); the tension V0 vanishes, whereas the second one, V∞, becomes infinite. One
might wonder whether a brane with an infinite tension may arise within a physical

system. One way to make sense of such a situation is to view the tension V∞ not as
an independent parameter of the system, but rather as a quantity adjusting itself,

through equation (4.18), to the dynamics of the rest of the system. This is another

face of the fine-tuning identified in [5]. Secondly, one can test the infinite tension

brane by computing the acceleration of a freely falling test particle in its vicinity. It

turns out that such a particle accelerates towards the infinite tension brane (and the

acceleration becomes infinite on the brane). The second brane, at y = 0, attracts test

particles as well, but this time the acceleration vanishes on the brane. This behaviour

corresponds to the case of a positive mass Schwarzchild black hole, thus indicating

that the branes at singularities are physical in the present case [17]. Further, we

note that the acceleration vanishes at a special point between branes: ya =
2
3
√
α
(we

note that A′(ya) = 0). It is therefore natural to propose to regularize the system by
defining a thick brane, which corresponds to integrating the 10d lagrangian between

ya and y = ∞. This can easily be done, using the formulae derived earlier and the
explicit form of the vacuum solution. The effective brane tension Va, eff is found to be

zero. This is the same as for a thin brane put at the position ya, with its brane tension

determined directly from the jump conditions (4.18). Thus the infinite tension brane

can be made a ‘physical’ object through smearing it over a finite distance along the

transverse dimension, and this turns out to be equivalent to putting a thin regulator

brane in front of the singularity.

5. Summary

In this note we describe the role of boundary terms when passing from the orbifold

description of a brane world to the interval description. We have noticed that it

is natural, in the interval picture, to use field variations that are non-vanishing at

the endpoints. This, although equivalent to results obtained with any other form of

the variational principle, gives rise to the observation that boundary terms can be
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seen as related to certain bulk operators through equations of motion. We discuss

the case of Z2-even and Z2-odd orbifold scalars and that of the metric tensor. The

relations between orbifold and interval pictures, described here for scalar fields, can

be extended to fermionic fields as well.

As one of the applications of the interval picture, we reconsider models with

naked singularities. In particular, we discuss the situation, where the naive (d − 1)
- dimensional cosmological constant appears to be infinite. We show that proper

inclusion of boundary terms makes the solution consistent, and in particular makes

the effective cosmological constant vanish. Moreover, we argue that sense can be

made of an infinite tension brane, by making it a finite width brane, which turns

out to be equivalent to putting into a system a thin shielding brane in front of the

troublesome singularity.
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