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ABSTRACT

We study in detail the main features of the unitarized Regge model (CFKS), recently proposed
to describe the small-Q2 domain. It takes into account a two-component description, which
handles with multiple soft Pomeron exchanges contribution, interacting with the large dipole
size configurations, and a unitarized dipole cross section, describing the interaction with the
small size dipoles. Its extrapolation to higher virtualities is performed, analysing the ratio
between soft and hard pieces and discussing the resulting dipole cross section in comparison to
that from the saturation model. Diffraction dissociation is also considered, showing the scaling
violations in diffractive DIS and estimating the corresponding logarithmic slope.
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1 Introduction

The study of a new regime of QCD, that of high density of partons, has drawn much attention
in the least years. The key discovery was the observation at HERA of the fast growth of parton
densities (mainly gluons) as the energy increases in experiments of deep inelastic scattering.
Taking σtot ∼ sα(0)−1 (F2 ∼ x−α(0)+1), values of ∆ ≡ α(0) − 1 in the range 0.1 – 0.5 have
been reported, depending on the virtuality Q2 of the photon. However, this steep growth
should be tamed, leading to the expected limit given by the Froissart bound (σ <∼ (log s)2 as
s → ∞)[1]. This boundary has been derived from very general properties of the S-matrix,
namely unitarity. A cross section growing as any positive power of s would violate unitarity
at asymptotic energies. Thus, theoretically, some kind of saturation of this growing due to
unitarity effects should be expected [2]. The dynamics of such very dense partonic systems
is very interesting and has been studied by many authors both in DIS [3] and in high energy
nuclear interactions [4].

The description of the γ∗p collision in the frame where the proton is at rest is very appro-
priate to include unitarity corrections. In this frame, the virtual photon γ∗ emitted by the
incoming lepton fluctuates into a qq̄ pair. This system then suffers multiple interactions with
the proton. Such multiple interactions restore unitarity even in the case where it would be
violated in a single collision. In the model developed in [5, 6], all these corrections have been
taken into account, and their strength is constrained by diffractive data. Therefore, the ratio
σdiff/σtot is related to unitarity corrections. This is a common feature to any realization of
the Gribov model [7], where the amount of rescatterings is related to diffractive production by
means of AGK-cutting rules [8].

In parton language, the increasing number of gluons in a proton as x → 0 makes gluon
fusion very probable. This fusion produces gluons of higher longitudinal momentum, stopping
the growing of those with the smallest x. In this way unitarity is not violated. Such a procedure
was implemented on theoretical grounds from QCD through the multiladder exchange in lines of
the GLR formalism [3], giving rise to non-linear effects in the standard linear DGLAP approach.
The outstanding quantity emerging from the unitarization procedure is the saturation scale
Q2

s(A, x, b), setting the region where saturation phenomenon starts to be meaningful. The
QCD-inspired phenomenological model [9], for instance, introduces a quite clear identification
for this scale Q2

s(x) ∼ 1/R2
0(x). There the saturation radius R0(x), related with the mean

transverse distance between partons, is properly extracted from the small-x data from HERA.

In any of the descriptions, unitarity corrections are given by non-linear terms, and a phe-
nomenon of saturation is expected when these terms become important. Since the gluons are
the partons driving of the high energy processes, signals for saturation effects should appear in
observables probing the gluonic content of the proton (or the nucleus) [10]. In the nuclear case,
the gluon density is ∼ A1/3 higher than in the proton. This makes unitarity corrections more
important for nuclei, producing the well-known shadowing of F2 [11]. Saturation will thus start
at smaller energies in nuclei than in protons. Such a fact is the main reason for the increasing
interest in the forthcoming eA experiments, where the nucleus will be studied at energies higher
than currently available [11].
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The open question is if unitarity corrections have already shown up at present energies and
if saturation has been reached. In particular, at HERA, they should appear in the small-x and
small-Q2 data [12]. There are several proposals in this direction [9] [13], mainly for the case of
heavy-ion collisions [14], but a definitive answer is still missing. The main difficulty that we are
faced with is the saturation scale Qs, lying in the transition interval of 1–2 GeV, which leads
the effects to be hidden in more inclusive observables. In this kinematical region the standard
QCD perturbative expansion is expected not to be completely reliable. For instance, higher
twist terms to the linear approach should take place in such a domain. Moreover, this region is
known to hold the interplay between the soft and hard domains, i.e. the perturbative approaches
(including saturation or properly adjusting initial conditions) and the Regge-inspired models
are competing, and both frameworks seem to describe the current small-x data.

Bearing in mind that the saturation phenomenon is required in a complete understanding
of the high energy reactions, and that a consistent treatment of both inclusive and diffractive
processes should be taken into account, in this work we study derivative quantities using the
Regge unitarized CFKS model [5, 6]. In this hybrid model, both soft (multiperipheral Pomeron
and reggeon exchanges) and hard (dipole picture) contributions are properly unitarized in an
eikonal way. This approach describes the transition region and can be used as initial condition
for a QCD evolution at high virtualities [15]. Its extrapolation to the higher-Q2 domain is also
performed here, discussing the similarities and/or connections with the phenomenological sat-
uration model [9], stressing that a QCD evolution is required for a correct description of higher
Q2 in the inclusive case. For the diffractive case, such a procedure is not formally required,
since the non-perturbative sector is dominant in this case. The diffractive structure function is
extrapolated to the available larger-Q2 range. In particular, the diffractive logarithmic slope,
which has been claimed as a possible new observable to disentangle dynamics [16, 17], was
calculated and compared with the result from the saturation model.

2 The inclusive case

Briefly reviewing the CFKS approach, it interpolates between low and hard virtualities Q2,
which are related to the dipole separation size, r, at the target rest frame, considering a two-
component model [5, 6]. Considering the unifying picture of the color dipoles, the soft piece
corresponds to the interaction of the asymmetric qq̄ pair configurations, the aligned jet case; the
hard piece is dominated by the symmetric pair configurations. Hereafter we use the notation
soft for the asymmetric photon fluctuation (in [6] it is named L) and hard for the small size
ones (named S in [6]).

The soft component considers multiple soft Pomeron exchange (and reggeon f) implemented
in a quasi-eikonal approach [18]. The corresponding diagrams are the fan ones. The initial
input is a phenomenological Pomeron with fixed intercept εIP = 1.2 (further changes are due to
absorptive corrections), and an exponential parametrization for the t dependence is considered.
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In the impact parameter representation, the b-space, it looks like (in photoproduction Q2 = 0):

χIP (s, b) ' CIP
fIP

Bel(s)

(
s

s0

)εIP

exp[−b2/Bel(s)] , (1)

where Bel(s) is the elastic slope, which is parametrized as in the hadronic reactions. The fIP

is an effective Pomeron–proton coupling. In the electroproduction case, the initial input is
described in an analogous way:

χIP (s, b, Q2) ' CIP

R(x, Q2)

(
Q2

s0 + Q2

)εIP

x−εIP exp[−b2/R(x, Q2)] , (2)

corresponding to the Regge parametrization for the amplitude of the soft Pomeron exchange,
similar to the Donnachie–Landshoff one [19]. The function R(x, Q2) comes from the exponen-
tial assumption about the t dependence and further transformation to the impact parameter
representation. We notice the authors consider a Pomeron fixed intercept taking a semi-hard
value rather than a soft one.

The resummation of the triple-Pomeron branches is encoded in the denominator of the
amplitude χn IP , i.e. the Born term in the eikonal expansion. Moreover, the corrected amplitude
is eikonalized in the total cross section,

χn IP (x, Q2, b) =
χIP (x, Q2, b)

1 + aχ3(x, Q2, b)
, (3)

σn IP (x, Q2, b) ' 1− exp
[
χn IP (x, Q2, b)

]
. (4)

where the constant a depends on the proton-Pomeron and the triple-Pomeron couplings at zero
momentum transfer (t = 0). Refs. [5, 6] give a more detailed discussion.

The eikonalization procedure modifies the growth of the total cross section from a steep
power-like behavior to a milder logarithmic increase. The above parametrization corresponds
to the interaction with the large size dipole configurations and therefore dominates in low-Q2

values. The total soft contribution is obtained by integrating over the impact parameter the
cross section at fixed b, σn IP (x, Q2, b),

σsoft(s, Q2) = 4
∫

d2b σsoft(s, Q2, b) . (5)

The hard component is considered in the color dipole picture of DIS [20]. The dipole cross
section, modeling the interaction between the qq̄ pair and the proton, σdipole(x, r), is taken from
the eikonalization of the expression above χn IP (s, b, Q2) already corrected by triple-Pomeron
branching (the fan diagrams contributions). The configurations (dipole size) considered are the
small transverse distance between the quark–antiquark pair in the dipole. The corresponding
cross section is extracted by considering contributions coming from distances between 0 and
r0 = 0.2 fm (1 GeV−1), whereas contributions for r > r0 are described by the soft piece already

3



10
−5

10
−4

10
−3

10
−2

10
−1

x

0.2

0.4

0.6

0.8

1.0

R
S

O
F

T
(x

,Q
2 )

Q
2
=0.045

Q
2
=0.3

Q
2
=1.5

Q
2
=10

Figure 1: The ratio RSOFT as a function of x at fixed virtualities.

discussed. In such small distances, perturbative QCD is expected to work. The total cross
section considering this dipole cross section is expressed as [6]:

σhard
tot (x, Q2) =

∫ r0

0
d2r

∫ 1

0
dα |ΨT,L

γ∗q(α, r)|2 σdipole
CFKS(x, r) , (6)

σdipole
CFKS(x, r) = 4

∫
d2b σn IP (x, Q2, b, r) , (7)

σn IP (x, Q2, b, r) ' 1− exp[ r2χn IP (x, Q2, b) ] , (8)

where T and L correspond to transverse and longitudinal polarizations of a virtual photon,
ΨT,L

γ∗q (α, r) are the corresponding wave functions of the qq̄-pair.

A purely QCD phenomenon is introduced in the Born term of the eikonal expansion, pre-
sented in the last expression above. The dependence on the radius is introduced ad hoc to ensure
the correct behavior determined by the color transparency, namely for small r the growth in
radius should be proportional to r2.

The weight of each contribution (soft and hard) for the total cross section [and F2(x, Q2)]
can be obtained, providing a closer analysis of the role played by each piece constituting the
model. Such a procedure allows us to explicitate the regions of x and Q2 where the sectors
contribute. In Figs. 1 and 2 we calculate the ratio RSOFT , defining the fraction of the total
contribution arising from the soft sector:

RSOFT (x, Q2) =
σsoft

tot (x, Q2)

[σsoft
tot (x, Q2) + σhard

tot (x, Q2)]
. (9)

From Fig. 1 we note that the soft contribution slowly increases as the momentum fraction
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Figure 2: The ratio RSOFT as a function of Q2 at fixed momentum fraction x.

x goes to higher values, almost independently of the virtuality Q2. This is due to the fact that
higher reggeon trajectories f are included in the soft part, but not in the hard one. Regarding
fixed virtualities, the soft piece dominates completely the total cross section at Q2 = 0.045. As
Q2 increases the contribution goes down. For instance, at Q2 = 10 GeV2 it contributes about
half of the cross section. Extrapolating up to higher virtualities, the soft piece saturates at
about 5–15% of the total result.

Figure 2 clearly shows that the soft piece is dominant at Q2 = 0.01 and decreases as the
virtuality grows. The behavior is monotonic, almost independent of the momentum fraction x.
For instance, at Q2 = 100 GeV2, it contributes with 20% at x = 10−2 and 5% at x = 10−5.
Such a reduction on the soft content is related to the coupling of the photon to the asymmetric
dipoles g2

soft(Q
2) ∼ 1/(1 + Q2/m2

soft) and to the enhancement in Q2 provided by the photon
wave function (at high Q2 � Q2

s(x) the symmetric dipole configuration provides the scaling
with logarithmic violation).

An interesting issue is the relation between the dipole cross section coming from the CFKS
model and the phenomenological one of G.-Biernat-Wüsthoff [9]. The GBW cross section is
parametrized as:

σGBW (x, r) = σ0

[
1− exp(−r2/4R2

0(x))
]

, (10)

R2
0(x) =

(
x

x0

)λ

GeV−2 , (11)

where σ0 = 23.03 mb properly normalizes the dipole cross section. The remaining parameters
are λ = 0.288 and x0 = 3.04× 10−4, all of them determined from the small-x HERA data. The
R0(x) is the main theoretical contribution, defining the saturation scale, which is related with
the taming of the gluon distribution at small x (unitarity effects) [3]. The above expression has
been used to describe both inclusive and diffractive structure functions, in good agreement with
the experimental results. The comparison between this approach and the CFKS dipole cross
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Figure 3: The comparison between the saturation dipole cross section from G.-Biernat-Wusthoff
(GBW) and CFKS as a function of the transverse dipole separation r at fixed x (s).

section is shown in Fig. 3. We have plotted the adimensional result, since the normalization
for the CFKS dipole cross section, σ0, is not determined from data. Indeed, for a comparison
with experiment using only the hard piece from CFKS, the adjustable parameters would have
to be refitted. We consider here that this can be absorbed by a suitable normalization, and
carry the r interval beyond the range set by the model (r < r0). The main feature of the
GBW parametrization is that it ensures that the dipole cross section grows linearly with r2

at small transverse separation, whereas it saturates at large size configurations. The picture
emerging from the CFKS is slightly different, presenting a mild (logarithmic) increase with r,
away from huge separation sizes that shift the saturation scale up to very high virtualities.
Although the continuous and smooth increasing with radius, in the CFKS approach the cross
section underestimates the GBW one for all r.

A comment on the normalization is in order. The GBW formula would correspond to the
hard part of CFKS without triple-pomeron (a = 0), and taking a step function for the profile
instead of a gaussian. This makes unitarity corrections stronger. In any case, modifying in this
way CFKS one obtains σ0 = πR(x, Q2) ∼ 20 mb, in agreement with GBW value. This value,
however, depends logarithmically on x and Q2, because of the increase of the proton radius,
which is taken into account in (2).

3 The diffractive case

The diffractive sector in the CFKS approach is constructed by a three-component model [5, 6],
using the AGK cutting rules to relate the elastic multiple scattering amplitude to the inelastic
diffractive contribution [8]. The first term comes directly from the soft piece, the second one
from the triple-Pomeron (and the reggeon f) interaction and the last one from the hard (dipole)
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piece. We notice that these contributions define only the energy, s (and momentum fraction
x), and the virtuality dependences. The spectrum on β is introduced by hand, based on earlier
soft and hard (pQCD) calculations. The first component is written as:

F D
2 (soft)(x, Q2, β) ∼ F

D (Born)
soft KL(s, Q2) β−εIP (1− β)np(Q2) , (12)

where FD (Born)soft ∼ χn i(s, Q2)χn k(s, Q2) is the lowest-order (Born) approximation for that
function, with i, k = IP , f . The suppression factor due to higher order multipomeron exchanges
is KL(s, Q2) = σ

(0)
soft/σ

(0) Born
soft , with σ

(0)
soft = 4g2

L(Q2)
∫

d2b [σsoft(s, Q
2, b)]2. Further details can be

found in [6]. The β dependence is taken from the typical CKMT Pomeron structure function,
which is connected with the deuteron structure function by the identification x→ β [21].

The hard contribution is expressed as:

FD
2 (hard)(x, Q2, β) ∼ σ

(0) T
hard β3(1− 2β)2 + σ

(0) L
hard β2(1− β) , (13)

where the β dependence comes from a pQCD guess for the Pomeron structure function [22].

Also, σ
(0) T,L
hard =

∫
d2b [σT,L

hard(s, Q
2, b)]2. However, the β spectrum is slightly different from the

most recent pQCD calculations, where the transverse contribution behaves like ∼ β(1−β) and
the longitudinal one as ∼ β3(1− 2β)2 [23].

Regarding the β dependence, the region for medium values (β ∼ 0.4) is dominated by the
soft term, which in pQCD is associated to the transverse photon contribution [23]. The small
β region is dominated by the triple-Pomeron piece, in agreement with the pQCD expectations,
which is obtained by considering the higher twist qq̄+gluon configuration. Moreover, the hard
contribution is leading in the large-β region, associated in this case with a suppression of the
transverse contribution and an enhancement of the longitudinal piece in comparison with the
expected pQCD behavior [23].

The CFKS approach describes with good agreement the diffractive DIS data in the broad
range 0 < Q2 < 18 GeV2. In order to study the model in comparison with the pQCD ap-
proaches, here we extrapolate the prediction for the diffractive structure function of the CFKS
approach for higher values of the virtuality. We use the preliminary ZEUS analyses, considering
the Q2 dependence at fixed mass MX and centre-of-mass energy W [24]. These data provide
information at both small and large virtualities bins. An interesting comparison is between
the CFKS model and the saturation model [9] prediction for the diffractive structure function.
Both models are depicted in the plots of Fig. 4.

The agreement of CFKS approach with data is noticeable even at higher virtualities, where
the model is expected not to be reliable. However the interpretations at low Q2 are quite
different. In the saturation model, the reliability of the pQCD calculation is extended to
smaller virtualities through the saturation scale R0(x) and where the dependence is mostly
due to the longitudinal photon configuration and by the higher twist qq̄+gluon. Instead, in the
CFKS model the main contribution in the region of interest comes from the soft triple-Pomeron
contribution.

7



10
−2

10
−1

10
0

10
1

Q
2

10
−3

10
−2

10
−1

10
−2

10
−1

10
−2

10
−1

10
−2

10
−1

F
2D

(3
)

 GBW
CFKS

10
−2

10
−1

10
0

10
1

Q
2

MX= 5 GeV MX = 11 GeV

W=100 GeV

W=122 GeV

W=149 GeV

W=182 GeV

Figure 4: The diffractive structure function as a function of Q2 at fixed MX and W . The
preliminary data are from ZEUS Collaboration (triangles). The published data are the circles.
The CFKS and GBW results are shown in the same plot.

As a final study, we perform the calculation of the Q2 logarithmic slope of the diffractive
structure function F

D(3)
2 . The motivation is that this observable is a potential quantity to

distinguish soft and hard dynamics in diffractive DIS [16, 17]. We have calculated the slope
as a function of the Pomeron momentum fraction xIP and perform a comparison between the
CFKS approach and the G.-Biernat-Wusthoff (GBW) one.

Here, some comments are in order. The main feature of the GBW approach is the presence
of a transition between positive and negative slope signals, instead of a predominantly positive
slope, as in the pQCD non-saturated case [17]. The transition is not present in the pQCD model
without saturation because of the assumptions made in the parametrization of the HERA
data in the region of large Q2 (large β). We notice that this situation can be changed by
further reanalysis, considering the updated runs at the H1 experiment, which has enlarged the
kinematical range and news measurements [25]. It is important to emphasize that a transition
is verified in the preliminary ZEUS analyses of diffractive DIS [24] , where the saturation model
[9] is considered to describe the Q2 dependence of the diffractive structure function, using as
kinematical variables MX and W rather than β and xIP . Such a procedure is performed because
of the similarity of the behaviors of dσ/dMX and σtot(γ

∗p) in the same kinematic range. In that
analysis, the growth of xIPF D

2 versus Q2 is stopped at Q2 ∼ 10 GeV2 and decreases smoothly
for larger virtuality values. The transition region corresponds to β ∼ 0.2 for MX = 5 GeV and
β ∼ 0.07 for MX = 11 GeV.

The saturation model produces a transition between positive and negative slope values at
low β = 0.04, while it presents a positive slope for medium and large β. Instead, the CFKS
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same plot.

approach shows a positive slope for the whole Q2 and xIP ranges, flattening at large β, much
in the same way as the non-saturated pQCD calculations.

4 Conclusions

A deeper understanding of the saturation phenomenon is required to perform reliable estimates
for the current and forthcoming high energy reactions. The saturation scale, which sets the onset
of the unitarity corrections, is found to be lying in the transition regime of low x and Q2. In this
domain, both Regge-inspired phenomenology and improved pQCD calculations (perturbative
shadowing, higher twist), considering unitarity effects, are able to describe the high precision
data. The most advantageous ones are those describing in an unified way the inclusive processes
as well as diffractive ones. In this letter we have considered the two-component multireggeon
model of [5, 6] and calculated some derivative quantities.

The ratio of the soft content in the model was calculated, verifying that it dominates at low
Q2, diminishing at higher virtualities. This shows that the unitarity corrections in this model
are more important in the soft component than in the hard one. Moreover, these corrections
are higher twist at large Q2 in the second case.

It remains the issue if the model is able to describe a larger range in Q2 without to consider
a pQCD evolution. A good hint to answer this question is to analyse the hard piece (symmetric
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dipole configurations), in particular the corresponding dipole cross section. We have found that
the saturation in r of this quantity lies at values of the radius bigger than the phenomenological
GBW model. A similar consideration is far from clear for the diffractive case, where non-
perturbative (soft) content plays a more important role.

We have extrapolated the estimates for the diffractive structure function at higher virtuali-
ties. It was verified that a broad description is obtained, and that it is in reasonable agreement
with the saturation pQCD model. An additional quantity has been proposed in order to de-
scribe dynamics at diffractive dissociation [16, 17], namely the diffractive slope. It is calculated
using the CFKS model, and its main feature is a similar behavior to the one predicted by pQCD
calculations [23].
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[23] J. Bartels and M. Wüsthoff, J. Phys. G: Nucl. Part. Phys. 22, 929 (1996);
J. Bartels et al., Eur. Phys. J. C7, 443 (1999).

[24] ZEUS Collaboration, Eur. Phys. J. C6, 67 (1999).
ZEUS Collaboration, Measurement of the diffractive cross section at Q2 < 1 GeV 2 at
HERA, in Proc. ICHEP2000, Osaka, Japan (2000) [plenary session 12, paper 435].

[25] H1 Collaboration, Measurement of the Diffractive Structure Function F
D(3)
2 (xIP , β, Q2) at

HERA, in Proc. Conference EPS2001 Budapest, July 12 (2001); and in Proc. Conference
Lepton-Photon2001, July 23 (2001).

12


