
J
H
E
P
0
6
(
2
0
0
2
)
0
5
1

Published by Institute of Physics Publishing for SISSA/ISAS

Received: March 13, 2002

Revised: June 4, 2002

Accepted: June 24, 2002

Large-N bounds on, and compositeness limit of gauge

and gravitational interactions

Gabriele Veneziano

Theory Division, CERN

CH-1211 Geneva 23, Switzerland, and

Laboratoire de Physique Thèorique, Universitè Paris Sud
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Abstract: In a toy model of gauge and gravitational interactions in D ≥ 4 dimensions,
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interacting matter species, the physical gauge and gravitational couplings at the cut-off,

αg ≡ g2ΛD−4 and αG ≡ GNΛD−2, are shown to be bounded by appropriate powers of

1/N . This implies that the infinite-bare-coupling (so-called compositeness) limit of these

theories is smooth, and can even resemble our world. We argue that such a result, when

extended to more realistic situations, can help avoid large-N violations of entropy bounds,

solve the dilaton stabilization and GUT-scale problems in superstring theory, and provide

a new possible candidate for quintessence.
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1. The toy model and the claim

Consider a toy model of gauge and gravitational interactions in D ≥ 4 space-time dimen-

sions, minimally coupled to a large number of spin 0 and spin 1/2 matter fields. Let us

endow the model with a cut off Λ, assumed to be finite and to preserve gauge invariance

and general covariance. The toy model is supposed to mimic a bona-fide higher dimensional

UV-finite theory of all interactions such as those provided by superstring theory. Let us

also neglect, for the moment, matter self interactions. The tree-level action of the model

thus reads, in obvious notations

S0 = −1

2

∫

dDx
√−g

[

κ−20 R+
1

2
g−20

N1
∑

k=1

F k
µνF

kµν

]

+

N0
∑

i=1

(

(Dµφ)i(D
µφ)i +m2

0φ
2
i

)

+

+

∫

dDx
√−g





N1/2
∑

j=1

(

ψ̄j(iγ ·Dψ)j +m1/2ψ̄jψj

)

+ · · ·



 , (1.1)

where dots stand for an ultraviolet completion of the model implementing the UV cutoff.

We have given for simplicity a common mass m0 to all the spin zero fields and a common

mass m1/2 to all spin 1/2 fields. These masses are assumed to be small compared to the

UV cut-off Λ.

We are interested in the value of the renormalized gauge and gravitational couplings,

g2 and κ2 = 8πGN , as a function of their bare values, g20 and κ20, and of Λ, when the total

number of matter fields N = N0+N1/2 →∞, while their relative ratios are kept fixed. We

claim that, in the above-defined model, and modulo a certain generic assumption about

one-loop contributions, the following bounds hold:

αg ≡ g2ΛD−4 <
c1
Np

, D > 4 ,

αG ≡ GNΛD−2 <
c2
N
, D ≥ 4 , (1.2)

where c1, c2 are positive constants (typically smooth functions of the relative abundances

Ni/N) to be computed at the one-loop level, and p is a number between 0 and 1. The case

of the gauge coupling at D = 4 needs a separate discussion because of infrared effects.

We also claim that both bounds are saturated in the compositeness (infinite-bare-

coupling) limit and, therefore, that such a limit exists, is smooth, and can possibly be a

realistic one, in agreement with older proposals [1].
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2. Proving the claim

Consider the Feynman path integral corresponding to the action (1.1) and integrate out

completely (i.e. on all scales) the matter fields. Since they only appear quadratically the

exact result is:

I =

∫

dgµνdA
k
µdφidψj exp (i(S0,gravity + S0,gauge + S0,matter + . . .))

=

∫

dgµνdA
k
µ exp(iSeff ) , (2.1)

where
Seff = S0,gravity + S0,gauge −

1

2
tr log∇2(g,A) + tr log(γ ·D(g,A)) , (2.2)

and the trace includes the sum over the representations to which the matter fields belong,

in particular a sum over “flavour” indices.

The latter two terms in Seff can be evaluated by standard heat-kernel techniques [2].

The result is well known to contain local as well as non-local terms. In D > 4 the non-local

terms start with at least four derivatives. In D = 4 this is still true for the gravity part

but non-local contributions appear already in the F 2 terms of the gauge-field action. Thus

we write:

Seff = S0,gravity
(

1 + (c0N0 + c1/2N1/2)κ
2
0Λ

D−2
)

+S0,gauge

(

1 + g20(β0 + β1/2)
ΛD−4

D − 4

)

+S′ ,

(2.3)

with the following explanatory remarks. S ′ contains higher derivative (and generally non

local) terms. The other terms in the gauge plus gravity effective action are local with

the already mentioned exception of the gauge kinetic term in D = 4: this is indicated

symbolically by the presence of a pole at D = 4, to be explained better below. Note that

the corrections to the tree-level action are independent of the bare gauge and gravitational

couplings (the explicit factors appearing in (2.3) being canceled by those implicit in the

definition of the tree-level actions). Finally, the constants c0, c1/2, β0, β1/2 are in principle

computable in any given theory; their order of magnitude in the large N limit will be

discussed below.

We now have to discuss the effect of including gauge and gravity loops or, if we prefer,

to complete the functional integral by integrating over gµν and Ak
µ after having introduced

suitable sources. This is, in general, quite non-trivial, however appropriate large-N limits

can help. Let us start with the effect of these last integrations on the gauge kinetic term, i.e.

with the renormalization of the gauge coupling due to gravity and gauge loops. Obviously,

such a renormalization adds to the one due to matter loops, and already included in (2.3).

If we consider a large-N limit such that, not only N0, N1/2 →∞, but also β0 + β1/2 →∞,

the effective coupling after matter-loop renormalization is arbitrarily small. In this case,

the one-gauge-loop contribution dominates the remaining functional integrals (the theory

having become almost classical) and we get for the final low-energy gauge effective action

Γgaugeeff = −1

4

∫ √−g
[

g−20 + (β0 + β1/2)

(

Λ2ε − (q2 +m2)ε
)

ε
− β1

(

Λ2ε − (q2)ε
)

ε

]

F 2
µν , (2.4)

where ε = (D−4)/2 and, for the sake of notational simplicity, we have takenm0= m1/2= m.
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In order for our approximations to be justified we need to argue that the quantity

(β0 + β1/2) is sufficiently large and positive, indeed that it is parametrically larger than

the gauge field contribution β1. The latter is proportional to the quadratic Casimir of

the adjoint representation CA. Recalling the way matter fields couple to gauge fields,

we find that this condition is satisfied provided β0 + β1/2 ∼ CMNf
dM
dA
À CA, where

dM , CM represent dimensionality and quadratic Casimir for the matter representation M ,

respectively. In a QCD-like theory with gauge group SU(Nc) this would correspond to a

large Nf/Nc ratio.

What happens to the effective theory at low energy depends very much on whether

D is larger or equal to 4. If D > 4, Γgaugeeff is local and we can neglect the corrections

proportional to m2 or q2. The renormalized gauge coupling is bound, at all scales, i.e.

4παg ≡ g2ΛD−4 ∼
[

g−20 Λ4−D + (β0 + β1/2)− β1
]−1 ≤ (β0 + β1/2 − β1)−1 , D > 4 ,

(2.5)

and the upper bound is reached at infinite bare coupling, g−20 → 0. Note that this conclusion

only holds “generically” i.e. under the assumption that no cancellation between β0, β1/2
and β1 prevents their combination appearing in (2.5) from growing large and positive (the

relative signs appearing there are a matter of conventions, the actual signs being dependent

of the explicit implementation of the cut-off)

If D = 4 the situation is more complicated and interesting. The poles in (2.4) at

D = 4 have to be interpreted as infrared logarithms containing in their argument the box

operator (as well as the mass for the matter contribution). They provide the well-known

logarithmic running of the gauge couplings. In this case the bound on the gauge coupling

is scale dependent and reads:

4παg(q) ∼
[

g−20 + (β0 + β1/2) log

(

Λ2

(q2 +m2)

)

− β1 log
(

Λ2

q2

)]−1

≤
[

(β0 + β1/2) log

(

Λ2

(q2 +m2)

)

− β1 log
(

Λ2

q2

)]−1

, D = 4 , (2.6)

and, again generically, the limit is reached at infinite bare coupling. The physical meaning

of (2.6) is quite clear. Above the matter scale m the gauge theory is weakly coupled

at large-N . However, below that scale, the matter fields do no longer contribute to the

running and, for the non-abelian case, the theory evolves towards strong coupling in the

IR. It is quite easy to estimate the confinement scale of the theory at infinite bare coupling,

Λconf

Λ
=
(m

Λ

)1+βtot/β1

, (2.7)

where βtot = (β0 + β1/2)− β1 is the total one-loop β-function coefficient (which is positive

and large in the limit we consider). Note that eq. (2.7) can lead easily to exponentially large

scale hierarchies. It would be interesting to try and verify (2.7) by numerical simulations on

scalar QCD with a small gauge group (say SU(2)) and a large number of flavours, and work

along these lines is in progress. Note also that the logarithmic terms appearing in (2.6)

should be actually accompanied by ”threshold” corrections, i.e. by a scale-independent

– 3 –



J
H
E
P
0
6
(
2
0
0
2
)
0
5
1

renormalization that would also affect the value of the renormalized gauge coupling at the

cut-off. Like the terms appearing in (2.5), these finite corrections depend on the actual

implementation of the cut-off, but, quite generically, we expect their contribution to α−1g (Λ)

to be O(β0 ± β1/2 ± β1).
We now turn to the renormalization of the Newton constant. Here the situation is

the same at all D ≥ 4. The low-energy action is local and, since gravity couples equally

to all fields, the constants c0, c1/2 are just some calculable N -independent numbers. Since

the quantity (c0N0 + c1/2N1/2) is assumed to be parametrically large, graviton-loop con-

tributions are subleading at large-N . The gauge field contribution, given the fact that

it is dominated by large virtual momenta, can be estimated accurately in the one-loop

approximation so that, the final result is:

Γgravityeff = −1

2

∫ √−g
[

κ−20 + (c0N0 + c1/2N1/2 + c1N1)Λ
D−2

]

R , (2.8)

where N1 is the total number of gauge bosons (the dimensionality of the adjoint represen-

tation) and c1 is also a calculable number of O(1).

We thus obtain, at all scales, the bound on the effective Newton constant1

8παG ≡ κ2ΛD−2 ∼
[

κ−20 Λ2−D+ (c0N0 + c1/2N1/2 + c1N1)
]−1≤ (c0N0+c1/2N1/2+c1N1)

−1,

(2.9)

where, once more, the bound is saturated in the compositeness limit, κ0 →∞.

We can finally rewrite both bounds (2.5) and (2.9) in the following suggestive way:

αg ≤
〈

NfCM
dM
dA

+ CA

〉−1

, αG ≤ 〈NfdM + dA〉−1 (2.10)

where 〈. . .〉 denotes an average over all matter fields.

Before turning our attention to physical applications of our claims we have to add a

word of caution about the dependence of the bounds from the details of the UV cutoff.

Since the effects that we are interested in come from large virtual momenta in the loops,

it is clear that the UV completion of the model can influence the final result. Work is

in progress [5] to verify under which conditions the claims of this paper are supported by

explicit superstring theory calculations. Furthermore, like our toy model, the superstring

model should contain a parametrically-large and adjustable number of matter fields: such

a possiblility naturally arises in backgrounds that include a stack of N parallel D branes

and, correspondingly, SU(N) gauge fields.

3. Possible physical applications

Let us assume that the results obtained in the two preceeding sections extend in the

presence of matter self-interactions, leaving a detailed analysis of this assumption to future

work, and discuss some possible physical applications.

1Similar statements on the large-N limit of gravity were made long ago by Tomboulis [3] and, more

recently, were used in the context of black-hole physics by several authors [4].
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The first is related to recent discussions of entropy bounds. It is well known (see

e.g. [6]) that holographic bounds on entropy, as well as any other bounds involving the

Planck length are easily threatened in the presence of a large number N of species. This

is because those bounds, being themselves geometrical, do not depend explicitly on N ,

while the actual value of the entropy does increase with N . However, since the bounds

scale like an inverse power of the Planck length, they can be saved if the latter decreases

sufficiently fast with N . Let us consider, in particular, the example of the Causal Entropy

Bound (CEB) [7], recently discussed [8] in connection with explicit, small-coupling, large-

temperature calculations in CFTs [9]. It was found [8] that CFT entropy both at small

and, for CFTs with AdS duals, at strong coupling, fulfills CEB provided:

(

T

MP

)(D−2)

<
c

N
(3.1)

Clearly, if the maximal temperature is identified with MP , this inequality is in trouble at

large-N . However, in a cut-off theory of gravity, the maximal temperature should rather

be identified with the UV cutoff Λ (cf. Hagedorn’s temperature in string theory) and, in

that case, the inequality (3.1) just becomes, at any D, our bound (1.2). The bound (1.2)

also avoids the potential problems, pointed out in ref. [10], with gravitational instability

against formation of black holes from quantum fluctuations in finite-size regions.

The second possible use of the bounds (1.2) concerns the dilaton stabilization and

GUT-scale problems in string theory. At tree-level, the gauge coupling and the ratio

of the string (cutoff) scale to the Planck mass are given by the expectation value of a

scalar field, the dilaton. Perturbatively, the dilaton’s VEV is undetermined, since the

dilaton acquires no potential/mass. This leads both to possible large violations of the

EP [11], and to a possibly large space-time dependence of fundamental constants, such

as α. Furthermore, the ratio of the GUT scale to the Planck mass tends to come out

too large [12], in perturbative heterotic theory. The first two problems can be solved if

non-perturbative effects induce a dilaton potential that provides the dilaton with a mass

and freezes it together with the gauge and gravitational coupling. The problem with GUT

and Planck scales can be probably solved [13] by going to strong string coupling (i.e. to

11-dimensional supergravity) while keeping the 4D couplings small.

It looks highly improbable, however, that dilaton stabilization can be achieved at weak

4D coupling, since any non-perturbative potential falls to zero asymptotically (at zero

coupling). Strong-weak S-duality makes stabilization very unlikely also in cases where a

strong 4D coupling regime can be replaced by a weak coupling one in a dual description. It

looks therefore that dilaton stabilization may occur either near the self-dual value, (S ∼ 1),

where S-duality is of no help [14], or at strong bare 4D coupling, if this case cannot be

mapped into a weak-coupling situation. At first sight, however, either solution of the dilaton

stabilization problem would lead to unphysical values for the unified gauge coupling and

for the ratio MP /MGUT.

Our point is that these problem can be avoided if the tree-level value of MP /Ms is

renormalized down to a value O(1/N) by loop effects. Similarly, αGUT gets renormalized

downward, from a large tree-level value to αGUT ∼ 〈Nf CM
dM
dA

+ CA〉−1. For large-rank

– 5 –



J
H
E
P
0
6
(
2
0
0
2
)
0
5
1

gauge groups (like E6) and/or large matter representations this could easily give an accept-

able value for the renormalized gauge coupling. Furthermore, given the fact that, typically,

〈Nf CM
dM
dA

+CA〉/〈NfdM + dA〉 ∼ (CA, CM )/dA one would find, as an order-of-magnitude

relation,
M2

P

M2
GUT

∼ N ∼ α−2GUT , (3.2)

in close similarity with the open-string relation that is known to provide a much better

agreement between MGUT and Ms. Finally, a decoupling mechanism similar to the one

proposed in [15] would be operational near these non-trivial minima of the dilaton potential.

Notice that, form this point of view, a self-dual value of S or an infinite bare coupling

(S → 0) give essentially the same physics.

As a final application of this picture, I will mention the recently investigated possibility

that a runaway dilaton may play the role of quintessence [16]. For this to work we have to

assume that, besides automatically decoupling from baryonic matter in the strong-coupling

limit, the dilaton retains, in the same limit, a non-trivial coupling to dark matter. The

model naturally leads [17] to acceptable, though not necessarily unobservable, violations of

the equivalence principle (in particular of universality of free fall) and to tiny (and probably

unobservable) variations of the fundamental “constants”.
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