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SPLINAC: COMPUTER SIMULATIONS OF SC LINAC RF SYSTEMS WITH
BEAM

Joachim Tückmantel, CERN, SL-HRF

Abstract
 The beam in a proton linac is very sensitive to field

perturbations in the cavities. Therefore a simulation
program was written modelling longitudinal beam dynamics
in a realistic composite linac RF system. Fast RF vector
sum feedback loops control several cavities with β-dependent
transit time factors driven by one transmitter. Modelling of
feedback loops covers limited transmitter power and
bandwidth and possible loop-delay. Vector sum calibration
errors, power splitting errors and scatter in the coupling
strength to the cavities are optional as well as beam loading
of the pulsing beam. Different modes of mechanical cavity
perturbations including Lorentz force detuning can be
chosen. A multitude of phase-space representation of
bunches as well as RF quantity plots are available, most of
them can be assembled as a movie, showing the system
dynamics in ‘real time’

1 INTRODUCTION
The program, its capabilities and how to run it have been

described with ample details including a user guide to run
the program in [1]. Therefore we shall only summarise the
essential features here and show a few examples, including
the newly found spontaneous symmetry breaking effect.

 For many accelerator calculations and simulations the
main RF voltage is considered fixed and perturbations – e.g.
beam loading – are treated as independent superposition.
This approach is no longer valid for larger perturbations
asking for fast RF vector feedback loops, which then are
strongly influenced by this beamloading. Therefore the
author has modelled in a first program [2] (for storage rings
as LHC) an RF system with strong beam including the fast
RF vector feedback loops with loop delay, transmitter power
limitation and transmitter bandwidth.

For a superconducting proton linac also cavity
microphonics and Lorentz force detuning become important
and the new program ‘SPLinac’ has been developed to study
these questions. Hence some features for each cavity in
‘SPLinac’ are

• different types of external mechanical perturbations
(coherent and incoherent microphonics) as well as Lorentz
detuning

• β-dependent transit time factors

• the possibility of driving several cavities via an RF
vector sum with a single transmitter

• RF system errors
• pulsed operation mode, with or without beam loading
• a full longitudinal phase space representation of

bunches.
The main purpose of the program was considered the

examination of the beam dynamics in longitudinal phase
space, tracking bunches from cavity to cavity along the
whole linac with all possible system perturbations present.
For these investigations several graphic displays are
available for a representation of bunches in longitudinal
phase space along the machine and at its exit, optionally
superimposed.

Initially foreseen only for diagnostic means, for each
single transmitter with all its driven cavities, controlled by a
vector sum feedback (called ‘family’), special plots are
available:

• complex cavity voltages (I and Q-components), for each
cavity and their vector sum, either without vector sum
calibration errors (the true voltage as seen by the nominal
beam) or with errors (the measured voltage as seen by the
feedback system).

• transmitter incident and reflected powers and phase
• cavity detuning(s) – microphonics or Lorentz detuning.
These calculations can be executed without full beam

simulation.
The program is designed interactive1, i.e. the simulation

progress can be displayed on the screen and, by user
intervention, the execution can be held, cancelled or its
operational mode changed at any time. The program can
create series of pictures (from pulse to pulse) that can be
used individually – e.g. pasted into a report as the present
one (possibly after post-processing by a professional
graphics program) – or assembled as movies showing the
system dynamics. To build movies, the author uses
QuickTime®2, which assembles the pictures (built by
simple vector graphics instructions) without transformation,
so it does not produce storage wasting pixel maps – as some
other video programs do exclusively working e.g. in MPEG

                                                
1 Running on any Macintosh with PowerPC processor
2 QuickTime for displaying the movies can be downloaded   free         of
charge    at     http://www.apple.com/quicktime/download/   . (     Macintosh    or
IBM-compatible     versions). To get the possibility to assemble a movie, a
password must be bought for a small fee (the author paid $29.95 with
credit card over the net)



format – and the picture quality even of thin lines is
conserved.

2 EXAMPLES OF RESULTS AND
PROGRAM CHECKS

In the following we shall show a few examples using data
from the CERN SPL study [3][4]. First outputs (Fig. 1-3)
will show the behaviour of a transmitter supplying four
cavities with ‘disabled’ Lorentz force. On the left the RF is
switched on, starting to load the empty cavities to the
nominal field. Fig. 1 shows the RF power (red) rising with
the highest speed possible with the given generator power
and bandwidth, soon hitting its maximum power. Fig. 2
shows the cavity voltage real parts, i.e. in phase with the
nominal voltage. Thin, light blue traces show all four
cavity voltages rising (zero suppressed). The true sum
voltage (normalised per cavity, resulting in the same graphic
scaling) is shown by a thick dark blue trace and the
measured and error prone sum voltage thick orange. The
latter rises till the measured voltage approaches the set value
(corresponding to the y=0 line). In parallel the reflected
power in Fig. 1 (magenta), goes down while the cavities are
loading. When the measured sum voltage approaches the set
value, the generator power reduces and settles to an
equilibrium necessary to keep the sum voltage at the set
value. Since superconducting cavities do not really consume
power, the reflected power settles on the same value. The
β=0.8 cavities of this section have the parameters
f=352.209 MHz, Qext=3 106, R/Q=192 Ω and
Vnom=15.3 MV per cavity (9 MV/m). Therefore analytically
the power for four cavities comes to 203.2 kW, while
Fig. 1 tells 203.8 kW in very good agreement (precise
numbers obtained by ‘info window’ [1] with RF system
errors switched off).
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Fig. 1: Transmitter (red) and reflected (magenta) power,
range 0-1 MW, 0-6 ms.

The quadrature voltages are shown in Fig. 3. When the real
part of the measured sum voltage (orange in Fig. 2) arrives
at the set value, the imaginary part of the measured sum
voltage (thick cyan) approaches also its set-value zero. The
true voltage (thick dark green) stabilises slightly off the set-
value due to the calibration errors in the vector sum. The
imaginary part of the four cavity voltages (light green)
shows distinct behaviour – changes to first order with a
resonant frequency change - depending on cavity tune status.
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Fig. 2: Cavity voltages and vector sum voltages per cavity
(real component, zero suppressed: the nominal value

corresponds to zero, range ± 2MV, 0-6 ms) Light blue the
four individual cavity voltages, dark blue true vector sum

(per cavity), orange measured vector sum (per cavity)
including calibration errors.
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Fig. 3: As Fig. 2 but quadrature voltage component
(imaginary part). Light green the four individual cavity
voltages, dark green true vector sum (per cavity), cyan
measured vector sum (per cavity) including calibration

errors.

After 2 ms the beam is injected and all real parts of the
cavity voltages show a fast decrease, while the transmitter
power shows a fast rise to supply the new power demand.
The particles arrive at the depicted cavities with 394 MeV
and leave with 437 MeV; the average relative transit time



factor amounts to 0.76 (see [1]). For a beam of 11 mA and a
phase angle of -15° analytically we expect a transmitter
power of 515 kW, from Fig. 1 (precise number by ‘info
window’) we read 525 kW. Analytically the induced
equilibrium voltage without feedback would be 9.63 MV
per cavity. With a feedback gain of 100 and four cavities we
expect a total residual voltage drop of 0.385 MV and the
measured sum voltage drops in fact by 0.364 MV (‘info
window’). The natural cavity filling time for the field is
2.7 ms and the feedback with gain g=100 shortens the
reaction time by this factor to about 0.03 ms which
corresponds also to the transient time for the sum voltages
in Fig. 2. All four cavities execute independent
microphonics movements. Therefore, despite the fact that
the nominal vector sum is stabilised by the feedback system,
individual cavity voltages drift with their natural filling time
to the new equilibrium (four diverging light blue lines).
Since the beam does not pass at the crest of the RF it
induces also an imaginary voltage, the latter also drifting
apart for the different cavities (Fig. 3)

At the end of the beam pulse the RF power is switched
off instantly and the reflected power produces a power spike
due to the sudden unloading of the cavities (magenta in
Fig. 1). All cavity voltages decay, approaching zero with
the apparent exception of the imaginary voltages in Fig. 3.
The imaginary voltage increase is caused by the fact that the
feedback is not active anymore and the complex voltage
vector starts to turn due to the detuning. The initially
mainly real vector now turns towards the imaginary
direction and thus increases this component in the
beginning, even while the absolute value of the vector
decays. In a plot of this function for a longer time, the
imaginary part also decays to zero, as it should do.

Transmit te r  7 4

dVac c ( - 2.00,  2.00) MV df ± 500.0 Hz 0  3.733e-01[s ] dt   53.333 ms oach im

9 th pulse 20th pulse 21st pulse 22nd

esonance

Fig. 4: Cavity with Lorentz detuning and pulsed beam, one
transmitter per cavity. The cavity voltage real part (blue) and

imaginary part (green) are shown together with the RF
resonant frequency changes (movement)  in black, range is

±500 Hz; the loaded bandwidth is about 120 Hz.

Fig. 4 shows a cavity with a Lorentz detuning of
–2Hz/MV2 = –0.75 Hz/(MV/m)2. The mechanical cavity
resonant frequency is 100 Hz at a Q-value of 38, the linac
pulse rate 75 Hz. The loaded bandwidth of the cavity is
about 120 Hz, the displayed frequency range ±500 Hz. One
(largely overpowered) transmitter supplies only this single
cavity statically ‘pretuned’ by +200 Hz in such a way that
it just oscillates through the resonant frequency when ‘RF
on’ is requested, i.e. when loading the cavity and during
beam pulse. The plot shows the dynamic equilibrium status
after the mechanical transients have just about died out.

2.1 Spontaneous symmetry breaking
During simulations with more than one cavity connected

to a single transmitter, after a short start-up transient, all
cavities settled to a dynamic equilibrium – cavity
movements and fields repeating exactly from pulse to pulse
– for medium fields. However, when increasing the field set
value above a certain threshold (not much above the planned
operational field for SPL), no equilibrium established
anymore, cavity fields shaking completely out of control.
Evidently such a system cannot be used in a real linac
anymore. Disabling all voluntarily introduced system errors
and inequalities (RF and mechanical) did not remove this
effect and all program checks did not reveal any
abnormalities. Thus it became apparent that this observation
is in fact a true feature of any system with more than one
(Lorentz detuning sensitive) cavity driven by a common
transmitter, controlled by a vector sum feedback.

To obtain a heuristic demonstration of such a process, the
field level (two cavities) has been adjusted corresponding to
a very slow growth; otherwise the system takes off straight
away into the chaotic state before establishing any apparent
equilibrium3. Then this instability, growing out of the
noise, does not reach visible size before the start-up
transient of the cavities has died out and cavities seem to
settle on equilibrium. Only few pulses later the instability
takes over destroying system control completely (Fig. 5a-e)

                                                
3 this was the main obstacle to the understanding of the mechanism



Transmitter 74 Cav[ 74, 75]

∆V/n ( -5.00,  5.00) MV ∆f ± 500.0 Hz t0   0.000[ms] <  13.326[ms]> Joachim Tuckmantel

Start with quiet cavities
pulse 0

Fig. 5a: Starting with a motionless pair of cavities supplied
by one transmitter. Voltage vector sum in blue (real part,
not yet visible – zero suppressed plot – for first pulse
above) and green (imaginary part), cavity movement in
black, both movements graphically overlapping here.

Transmitter 74 Cav[ 74, 75]

∆V/n ( -5.00,  5.00) MV ∆f ± 500.0 Hz t0  2.532e-01[s] <  13.326[ms]> Joachim Tuckmantel

Equilibrium established
pulse 20

Fig 5b: As Fig. 5a after 20 pulses, each pulse apparently
resembles the previous one. A dynamic equilibrium state,
identical for both cavities, seems to be established.

Transmitter 74 Cav[ 74, 75]

∆V/n ( -5.00,  5.00) MV ∆f ± 500.0 Hz t0  9.195e-01[s] <  13.326[ms]> Joachim Tuckmantel

Running on equilibrium 
pulse 75

.. at least it looks like ....

Fig. 5c: At pulse 75, looking exactly as Fig. 5b. It seems
that the system will continue like this forever

Transmitter 74 Cav[ 74, 75]

∆V/n ( -5.00,  5.00) MV ∆f ± 500.0 Hz t0  1.039e+00[s] <  13.326[ms]> Joachim Tuckmantel

Start of symmetry breaking
pulse 80

Fig 5d: As above at pulse 80, the movement of the two
cavities start to split: spontaneous symmetry breaking takes
place

Transmitter 74 Cav[ 74, 75]

∆V/n ( -5.00,  5.00) MV ∆f ± 500.0 Hz t0  1.106e+00[s] <  13.326[ms]> Joachim Tuckmantel

.. and then chaos takes over ...

Fig 5e: As 5d for the following pulses, the system enters
into an irrecoverable chaotic state.

The above simulation with adjusted field level leads to a
first idea on the driving mechanism. We suppose a
microscopic scatter in the mechanical movement of the
cavities, in reality always present due to noise4. Then the
RF tuning of the cavities differ microscopically and hence
also the excited field levels, only the vector sum being
forced constant5. Due to the scatter in the field levels, the
mechanical excitations during the RF pulse, the ‘Lorentz
kick’, are not uniform and hence also the additionally excited
mechanical amplitudes. These are still present at the next

                                                
4 This can be a problem in computer simulations when the calculations
for all cavities may be absolutely identical up to the least significant bit,
the system apparently remaining stable. Some tiny artificial noise must be
introduced then as was done in the demo program in [5]
5 The voltage sum  is the only controlled system degree of freedom,
otherwise we have no handle whatsoever on the individual cavity fields
or mechanical amplitudes



pulse – reduced by the influence of the mechanical Q-value –
and hence the amplitudes again will have a scatter, its size
depending on the scatter at the previous pulse. Now it
cannot be excluded that the scatter at the following pulse is
larger than at the previous one, thus the scatter may grow
from pulse to pulse, raising the initially microscopic noise
to a macroscopic perturbation.

To demonstrate that the observations with SPLinac
correspond to reality and develop comprehension for the
decisive parameters and their critical values, a model very
close to the real system was designed and analysed
mathematically [5]. It shows exactly such behaviour,
predicting under which conditions this effect should appear
in the real system, agreeing with good precision the
corresponding SPLinac simulations. In [5] also a demo-
program (listing of a few lines) is attached modelling such a
system with two cavities. With it one can demonstrate by a
very simple numerical application – completely independent
from the more painstaking mathematical analysis – that
there exists in fact a sharp threshold6 above which the
system starts to diverge, manifesting typical features of
chaotic behaviour.

Under certain conditions there appears e.g. a bifurcation
where the two cavities alternatively exchange their
movement pattern for one pulse to come back again to the
original pattern at the following pulse. For other conditions
we first diverge and then converge against a state with
dynamic equilibrium, repetitive from pulse to pulse, for
both cavities, but despite identical static cavity parameters
not identical movement pattern.

2.2 Beam Dynamics Simulation
The program is basically foreseen to simulate bunches in

phase space as they travel along the linac through perturbed
cavities till the end. Fig. 6 shows a phase space image of a
bunch travelling along the linac just passing a certain
cavity. The centre most part of the bunch is presented in red,
the outer parts in more and more yellow shade. The
(relative) cavity voltage as function of time is superimposed
as red line, showing the position of the bunch relative to the
RF wave. On the screen during the simulation (or in a
separate movie) the ‘shaking’ of the voltage from cavity to
cavity due to microphonics or RF system scatter can be
observed.

                                                
6 In fact its value can be predicted exactly by an expression developed in
the mathematical analysis!

[+30.00MeV

 -30.00MeV]

[ -0.10ns  +0.10ns]

Cav[100] Ebeam      0.773 GeV

Fig. 6: Longitudinal phase space image of a bunch along
the linac (at cavity 100), the RF waveform of this cavity

with respect to the bunch is depicted(top)  in red

Fig. 7 shows the longitudinal phase space image of such
a bunch at the end of the linac (yellow/red) and for
comparison the injected bunch (green/blue, flat close to the
x-axis); the deformation in longitudinal phase space is
clearly visible.

The program allows then plotting of dot maps of the
centroids as shown in Fig. 8 or overlay plots of the full
phase space area covered at the end of the linac as the
example shown in Fig. 9 (the same conditions as Fig. 8).

[+20.00MeV

 -20.00MeV]

[ -0.10ns  +0.10ns]

Pulse   2 (1/5) Ebeam      2.321 GeV

Joachim Tuckmantel

Fig. 7: Longitudinal phase space image of a bunch at the
end of the linac (red/yellow) and the injected bunch (centred,

green/blue)
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[ -0.10ns  +0.10ns]

Shot map

Fig. 8: Centroid dot map of bunches at the end of the
linac. This plot pretends to show a much nicer pattern than
the full truth as shown in the following figure.

Fig. 9: Overlay plots for many bunches of many pulses
depicting the full phase space area ‘sprayed’ at the end of the
linac.

3 SOME PRACTICAL DETAILS
The program can be started simply clicking its icon. Data

are entered using self-explaining panels (example in
Fig. 10) and the complete data set for the run is conserved –
transparent for the user – available as starter for the
following run. Also data sets can be saved separately;
clicking then the corresponding ‘SPEC’ icon (similar to the
document of a word processor) will load program and data
ready for execution, maybe after some parameter changes.
Also pictures (PICT files) are saved keeping the run data set
conserved ‘in the background’7 so that all run parameters are
permanently linked to the picture. This makes archiving of
pictures and their parameters automatic, simply clicking the
‘PICT’ icon loads the program and all parameters can be
enquired. These PICT files can be read into all professional
graphics programs allowing post-processing if desired, or
can be pasted directly into papers.

                                                
7 in a so-called resource fork

Fig. 10: One of the available entry panels, here the one for
the cavity and transmitter specifications for a linac section

4 CONCLUSIONS
A new simulation program exists modelling a linac with

a realistic RF system and beam offering many different
options. The linac is assumed to be composed of sections of
different internal parameters, the cavities having β-dependent
transit time factors. Fast RF vector (sum) feedback loops
control one or several cavities driven by one transmitter. RF
feedback loops include limited transmitter power and
bandwidth and possibly loop-delay as well as vector sum
calibration errors, power splitting errors and scatter in the
coupling strength to the cavities. Beam loading of a pulsing
beam can also be considered. Coherent or incoherent
mechanical cavity perturbations are possible with scattered
or sharp values as well as Lorentz force detuning. Bunches
can be defined in full longitudinal phase space representation
or as a point bunch.

The program offers a multitude of graphic displays
including phase-space images along the linac or at the exit,
summary dot-map or overlay plot at the exit as well as all
RF quantities of any transmitter or cavity. Precise numbers
of voltages, powers, phases or phase-space points in plots
can be obtained online at the cursor position in an ‘info
window’. All plots can be saved as standard graphic files,
accessible to professional word-processors or graphic
postprocessors and frames may be assembled to movies,
showing the dynamics of the system.



The program is easy to use, offering explanatory panels
for entering or changing data or options. Default sets of data
are saved automatically – e.g. together with a picture file –
or on user request, keeping an easy track of the different run
parameter sets.
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