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Beam-beam issues in the LHC and relevant experience from the SPS proton
antiproton collider and LEP

W. Herr CERN, SL Division

Abstract

The beam-beam effects observed in SPS and LEP in var-
ious operational modes are reviewed. Special emphasis is
put on effects relevant for the LHC. This includes orbit ef-
fects, crossing angle and PACMAN effects.

1 INTRODUCTION

In the LHC we have to expect numerous effects due to
the beam-beam interactions. It is worthwhile to consider
the experience gained running the SPS collider and LEP
and use it in LHC studies where relevant knowledge is
available [1, 2, 3]. The SPS was run approximately 10
years as a proton antiproton collider and the first hadron
collider where long range beam-beam effect became im-
portant. LEP as an electron positron collider is very differ-
ent from the LHC. The strong damping at its highest energy
of 94.5 GeV allows beam-beam strength parameters up to
0.075, i.e. approximately 20 times larger than the expected
values for the LHC of around 0.0034.

In SPS and LEP the two colliding beams had unlike
signs, i.e. they travel in the same vacuum chamber on (a
priori) identical orbits. However, both machines were run
in various modes of operation and some of the observed
features can be found again in the LHC, such as:

• Parasitic crossings for all modes of operation

• Orbit effects due to beam-beam kicks

• Effects from bunch trains

• PACMAN effects due to different types of beam-beam
interactions

• Strong-strong beam-beam effects

• Coherent beam-beam effects

• Crossing angles

One can therefore hope that the concepts developed and
tested for SPS and LEP can be applied to the LHC.

2 LHC LAYOUT

The conceptual layout of the LHC is shown in Fig.1. The
two beams travel in two separate rings and cross over in
the four experimental areas in interaction regions 1, 2, 5
and 8. To avoid unwanted interactions, crossing angles are
used in these areas. To compensate first order long range
effects, the crossing takes place in the horizontal plane in
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Figure 1: Layout of LHC beams and collision points.

interaction regions 5 and 8 and the crossings in 1 and 5 are
in the vertical plane.

3 SPS, LEP AND LHC PARAMETERS

A comparison of the most important SPS, LEP and LHC
parameters is made in Tab.1. A few significant differences
can be seen from Tab.1. The number of bunches per beam
in the LHC is orders of magnitude larger than in SPS or
LEP and consequently also the number of parasitic encoun-
ters. The damping time in both hadron machines, SPS and
LHC, can be neglected compared to the very fast damping
time in LEP of less than 4 ms at its highest energy. Another
feature of the LHC is a finite crossing angle that is required
to separate the beams. In SPS and LEP the crossing angles
were unintentional and very small, except in dedicated ex-
periments. The number of experiments is comparable and
the 2+(1) for the SPS indicates 2 experimental areas plus
one unavoidable head on collision. The SPS collider was
also operated with 3 bunches per beam without separation,
i.e. 6 head on collisions, but this mode of operation will not
be considered here since it is not relevant for LHC studies.



Table 1: Comparison of SPS, LEP and LHC parameters at high energy in collision

SPS LEP LHC
Bunches per beam 6 4 - 16 2808
Experiments 2+(1) 4 4
Parasitic interactions 9 4 - 28 120
∆Q (ξ)/ IP 0.0050 0.0450 (0.0700) 0.0033
Damping time - 0.004 s 105 s
Full crossing angle α small small 300 µrad

4 SPS AND LEP MODES OF OPERATION

4.1 SPS operation with pretzel scheme

When the SPS collider was operated with 6 bunches per
beam, a horizontal pretzel scheme was used to separate the
beams at the unwanted collision points (Fig.2). This pret-
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Figure 2: SPS operation with horizontal pretzel scheme and
6 bunches per beam.

zel extended over 5 of the 6 sectors and allowed head on
collisions in the two main experiments UA1 and UA2 and
an unwanted head on collision in between. During collid-
ing beam conditions the beams were separated by about
6 σ at the unwanted collision points. For injection a single
separator created a orbit distortion around the whole ring
providing separation between 1.5 to 6 σ at the 12 crossing
points.

4.2 LEP operation with bunch trains

During the last 6 years of its operation, LEP operated
with bunch trains and although it also successfully used
a horizontal pretzel scheme with 8 bunches per beam, I
shall concentrate on its operation with bunch trains since
this scenario gives more information relevant for the LHC.

To allow more than eight bunches per beam, a bunch train
scheme was developped and installed in LEP [17, 18]. The
basic idea is to start from the original four bunch scheme
and to replace a single bunch by a short train of bunches.
This requires a local separation at the unwanted collisions
around the nominal collision point. A horizontal crossing
angle was abandoned for background considerations and a
local vertical separation was installed, using already exist-
ing separators in the interaction area. The principle of this
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Figure 3: Principle of bunch train separation in LEP.

mode of operation is shown in Fig.3.

5 HEAD-ON BEAM-BEAM EFFECTS

The most basic beam-beam effects are due to the
(wanted) head on collisions. Some of the results from the
SPS collider are worth mentioning here. The working dia-
gram of the SPS together with the tune footprints is shown
in Fig.4. At injection energy the tune spread of the pro-
tons is dominated by the space charge tune spread of about
∆Qh ≈ −0.03 and ∆Qv ≈ −0.05 which is much
larger than their beam-beam tune spread. The tune spread
of the antiprotons is mainly due to the beam-beam effects
from the protons and has opposite sign (Fig.4). In collision
the total spread was about 0.015 to 0.018 and the life time
was limited by high order beam-beam resonances since the
footprint in collision is crossing the 13th and 16th order
resonances. This is true in particular when the beam sizes
of the two beams were not equal.



Figure 4: SPS working diagram at injection and in colli-
sion.

5.1 Unequal beam sizes

Without damping, the emittances of protons and antipro-
tons are determined by the injectors. On a single occasion,
the emittances of the three antiproton bunches (X, Y, Z)
were significantly different. It was noticed that the bunch
with the largest emittance had a lower lifetime, suggesting
a loss of particles from the tails of the distribution (Fig.5).
After these large amplitude particles were lost, the lifetimes

Figure 5: Decay rate for antiprotons with unequal beam
size.

of the bunches became similar. The antiproton emittances
were typically a factor two smaller (ε∗ ≈ 3 mm mrad)
than the emittances of the protons (ε∗ ≈ 6 mm mrad). The
large amplitude particles of the proton bunches now oscil-
late in the very non-linear part of the antiproton beam-beam
force and are more sensitive to high order resonances. In
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Figure 6: Resonance scan across 13th and 16th order res-
onances in the SPS.

the Fig.6 the result of a resonance scan is shown and the
proton losses correlate with the 13th and 16th order reso-
nance. This demonstrates the importance of resonances of
very high order under such conditions. In another, dedi-

Figure 7: Tune scan with protons before and after scraping
of antiprotons.

cated experiment the decay rate of a single proton bunch
was measured and shown in Fig.7 as a function of the pro-
ton tune for two different sizes of the antiproton bunch (be-
fore and after scraping to smaller emittance). While for
approximately equal beam sizes no significant effect is vis-
ible, the decay rate increases strongly in the neighbourhood
of the 16th order resonance when the size of the antiproton
bunch was decreased. The protons at large amplitudes ex-
perience now the very non-linear beam-beam force of the
antiprotons and high order resonances are excited.

In the LHC we have to expect bunch to bunch emittance
variations and for the reasons explained above they must
be kept as small as possible. We presently allow a 10%



variation in our calculations.

5.2 Dynamic β effects

The beam-beam force changes the β-function at the col-
lision point and as a result the optics is modified. The real
tune shift ∆Q depends on this ’dynamic β’ effect which de-
pends on the optical parameters. Only in the limit of small
values of the beam-beam parameter ξ and for tunes well
above the integer the tune shift can be approximated by ξ.
During the last few years of LEP operation this dynamic
β effect became important. The unperturbed beam-beam
parameter was in the order of 0.07 to 0.08 per interaction
point and the phase advance between two interaction points
was just above the integer (fractional tune 0.19 and 4 inter-
action points). The actual tune shift was therefore in the
order of 0.04 [4]. The beating introduced around the ma-
chine was rather substantial leading to a reduction of β ∗

from 5 to ≈2.5 cm. Together with small phase advance er-
rors (a few degrees are sufficient) between the interaction
regions, a substantial difference of β∗ between the inter-
action points has to be expected, and was manifested in a
regularly observed luminosity imbalance between the four
experiments. With the nominal parameters a noticable dy-
namic β effect is not expected in the LHC.

5.3 Synchrobetatron resonances

The finite crossing angle or a non-zero dispersion at the
collision point can couple the longitudinal and transverse
motion via the beam-beam interaction. This leads to the
excitation of synchro-betatron resonances. The strength
of the coupling due to a crossing angle can be expressed
through the normalized crossing angle (or Piwinski an-
gle) which is α · σs

2σz
≈ 0.7 for the nominal crossing

angle of 300 µrad for the LHC. Resonances of the type
nQx+mQy → nQx+mQy+rQs are excited and should
show as additional lines in the tune spectrum. The ef-
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Figure 8: Simulation of synchrobetatron resonances due to
finite crossing angle.

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0.3 0.31 0.32 0.33 0.34 0.35

M
ax

im
al

 h
or

iz
on

ta
l a

m
pl

itu
de

Horizontal tune

Figure 9: Simulation of synchrobetatron resonances due to
finite dispersion at interaction point.

fect of the crossing angle was simulated [5] and a tune scan
with and without a crossing angle is shown in Fig.8. This
simulation shows the appearance of synchrotron sidebands
next to the main resonance lines but also a new resonance
can be observed. For a strictly head-on beam-beam col-
lision of round beams only even order resonances can be
excited due to the symmetry of the system. This symmetry
is broken either by long range interactions or by a crossing
angle as demonstrated in Fig.8. The Fig.9 shows a simi-
lar scan but now for a non-zero dispersion at the collision
point (Dx = 0.10 m). It can be derived [5] that a residual
dispersion of 0.10 m is equivalent to a crossing angle of
300 µrad, i.e. excites synchro-betatron resonances with the
same strength. Although these resonances have to be ex-
pected in the LHC, the synchrotron tune (Qs = 0.00212) is
very small compared to lepton accelerators (e.g. LEP Q s =
0.10) and therefore the sidebands are very close to the main
resonance line. The required space in the tune diagram is
therefore hardly increased.

6 LONG RANGE BEAM-BEAM
EFFECTS

Around the experimental regions the LHC beams travel
in a common vacuum chamber and therefore experience the
fields of the opposing beams, so-called long range interac-
tions. The number of these parasitic encounters depends
on the lengths of the common regions before the beams
are sufficiently separated by dipole magnets and the bunch
spacing. For the LHC we calculate 15 long range interac-
tions on either side of the four collision points, i.e. we have
approximately 120 distant interactions.

The effect of these interaction depends mainly on the
separation, normalized to the transverse beam size. It can
be shown that in the drift space between the collision point
and the first focussing element this normalized separation



is constant:

dsep ≈ αβ∗

σ∗ =
α
√

β∗√γ√
ε∗

= const. (1)

The long range interactions are therefore most important in
the high luminosity, i.e. low β∗ interaction regions. Al-
though increasing the crossing angle α can improve the
separation easily, other considerations have to be taken into
account which limit this angle. Too large angles reduce the
luminosity, require more aperture, strongly excite synchro-
betatron resonances and bring the beams into the more non-
linear part of the quadrupole fields of the insertion magnets.
The present crossing angle of 300 µrad is a compromise be-
tween the different requirements.

6.1 Beam separation

To provide the required crossing angles, dedicated dipole
magnets are used which act either on both or individual
beams [6, 7]. An example of such a crossing angle bump
is given for one beam in Fig.10. The orbit of the counter-
rotating beam is antisymmetric around the central collision
point. During injection, the beams are also separated in
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Figure 10: Vertical bump for crossing angle.

the second plane by a parallel bump of a few mm, ensur-
ing that the normalized separation is never smaller than ap-
proximately 14 σ. Such a parallel bump is shown in Fig.11.

6.2 Dynamic aperture

The beam-beam effects decrease the available dynamic
aperture of the LHC beams at injection and in collision, ei-
ther alone or in combination with the non-linearities of the
LHC lattice. Since this subject is treated in a different pre-
sentation [13] as well as simulations of the improvement
of the dynamic aperture [14] using a long range compen-
sation scheme [15], I do not give details on that subject in
this report.

6.3 PACMAN effects

An effect which is expected to play a very important role
is caused by the bunch filling pattern of the LHC, leading to

250. 300. 350. 400. 450. 500. 550. 600. 650. 700. 750. 800. 850.
s (m)

δE/ p 0c = 0 .

Table name = TWISS

IP1 (ATLAS) Ring 1, USE: Q4,Q6,Q7
 lhc version 6.0  collision optics (thick lens  thin not  &              availab
HP/UX version 8.22/14 05/07/99  15.01.00

-.0020

-.0015

-.0010

-.0005

0.0

.0005

.0010

.0015

.0020

x 
(m

) x

Figure 11: Horizontal bump for parallel bump at injection.

so-called PACMAN effects. The nominal bunch filling pat-
tern of the LHC is shown in Fig.12. The pattern exhibits a
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Figure 12: Bunch filling scheme for the LHC.

fourfold symmetry and has 39 batches of 72 bunches each,
i.e. in total 2808 bunches of a maximum possible of 3564
are filled. The gaps between the batches are required for
the injection and extraction kickers of the LHC injectors
and a large gap at the end is needed to allow for the rise-
time of the kicker of the beam dumping system. Ideally
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Figure 13: Origin of PACMAN effects.

the holes in the bunch train of one beam should meet holes
of the other beam. This is true for the head-on collisions
in interaction points 1 and 5. However the bunches at the
beginning and end of a batch miss long range interaction ei-
ther before or after the head-on collision (see Fig.13). This



left-right asymmetry cannot be avoided. In the worst case,
i.e. for the first or last bunch of a batch, only half of the
long range interactions are encountered [16]. Furthermore,
in collision points 2 and 8 the large dump gap will meet
a full batch and reduce the number of long range colli-
sions of some bunches further. The maximum and mini-
mum numbers of parasitic encounters become 120 and 40,
respectively. Due to this gap some bunches will miss also
head-on collisions. The interaction point 8 is moved longi-
tudinally by 3 half bunch spacings, adding further missing
head-on collisions to the interaction schedule and leaving
bunches with only 2 out of 4 nominal head-on collisions.
It is clear that all these bunches experience a very different
accumulated beam-beam effect which may lead to different
dynamics and, in the worst case, different life times. For
beam measurements it is also important to have a repro-
ducible reference and ideally one should use the nominal
bunches.

To evaluate the strength of beam-beam interactions, a
standard tool is to compute the tune footprint, i.e. the
two dimensional tune shift as a function of the amplitude.
Such footprints are shown in Fig.14 where I show the foot-
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Figure 14: Footprints for head-on and long range interac-
tions for nominal (black) and PACMAN bunches (red).

print for nominal bunches (i.e. bunches with all head-on
and long range interactions) and the extreme PACMAN
bunches (i.e. minimum number of long range interactions).
The footprints are computed for the nominal parameters
and bunch intensities. Although not visible, the effect of
alternating horizontal and vertical crossing is all impor-
tant since they compensate for the first order tune shift [1].
With all crossings in one plane the footprint of PACMAN
bunches would be shifted rather far from the nominal and
thus produce a very large operational tune spread. The
bunches with one or more missing head-on collisions do
not show in Fig.14 since for those the overall head-on part
of the footprint just scales down and is therefore inside the
nominal area.

6.4 PACMAN effects with bunch trains in LEP

It can be shown that operating LEP with bunch trains
exhibits all properties of PACMAN effects. The separated
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Figure 15: Vertical separated orbits for bunch train opera-
tion around IP 4 for 45.6 GeV and central collision

orbits of electrons and positrons around an experimental
region is shown in Fig.15. While the central collision is
head-on, the parasitic encounters have to be accommodated
inside the separation bumps (Fig.15). This determines the
parameters such as bunch spacing and number of bunches
per train. The design allows a maximum of four bunches
per train, spaced by 87 RF wavelengths, i.e. three parasitic
collisions have to fit into the separation bumps on each side.

The left half of such a bump in an experimental region
is shown again in Fig.16 together with the position of the
parasitic encounters and the separation, normalized to the
local horizontal beam size σx. The central collision point
is at the right hand side of the figure and the horizontal
axis gives the distance from the collison point. The figure
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σx15

σ
σx4

Figure 16: Vertical separated orbits and normalized sepa-
ration for bunch train operation around IP 4

shows the situation when the bunches collide in the centre
and for 45.6 GeV. For injection, the central collision has
to be separated as well, imposing some constraints on the
choice of the separation scheme. It further has to allow the
fine adjustment of the head-on collision. Contrary to the



Table 2: Separation and parasitic beam-beam strength ξ
for parasitic collisions around IP 4 (for: εx = 30 nm,
Ib = 500 µA)

3 2 1
d/σx ≈ 8 ≈ 15 ≈ 4
ξx (10−3) ≈ 0.8 ≈ 0.2 ≈ 3.6
ξy (10−3) ≈ -4.8 ≈ -0.7 ≈ -0.3

four bunch case, the separation bumps cannot be switched
off during physics fills. The separation and the parasitic
beam-beam tune shift is summarised for the three parasitic
collisions in Tab.2. A horizontal emittance of 30 nm and a
bunch current of 500 µA was used for the calculation. It is
shown that in particular the outmost collision point gives
the largest vertical tune shift while the other encounters
give significantly smaller values. The Fig.17 and Tab.3
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Figure 17: Vertical separated orbits and normalized sepa-
ration for bunch train operation around IP 3

Table 3: Separation and parasitic beam-beam strength ξ
for parasitic collisions around IP 3 (for: εx = 30 nm,
Ib = 500 µA)

3 2 1 0
d/σx ≈ 13 ≈ 25 ≈ 8 ≥ 20
ξx (10−3) ≈ 0.3 ≤ 0.1 ≈ 0.7 ≈ 0.1
ξy (10−3) ≈ -0.2 ≈ -0.5 ≈ -0.2 ≈ -0.1

show the bump and tune shifts for a typical unused (i.e.
odd) interaction region. The interaction at the central col-
lision point is now also avoided. The separations are gen-
erally larger and the tune shifts smaller than for the experi-
mental (even) regions. We therefore expect more problems
from the parasitic encounters in the even than in the odd
points.

Interaction schedule For four equal bunches and a
high degree of symmetry of the optical layout of LEP, all
bunches experience practically the same beam-beam ef-
fects. For not equally spaced bunches or finite bunch trains
the interaction schedule can become rather complex. The
extreme case of LHC with closely spaced bunches and gaps
of different sizes leads to so-called PACMAN bunches [16]
with a very complicated interaction schedule. The scheme
with bunch trains in LEP shows a similar behaviour, al-
though with fewer bunches. While the first bunch of a train
has a head-on collision followed by the three parasitic en-
counters shown in Fig.16, the second bunch will first expe-
rience a parasitic encounter on the incoming side, followed
by the head-on collision and two parasitic encounters on
the outgoing side of the interaction point. Similar consid-
erations can easily be made for all bunches of a train. As a
consequence of this schedule every bunch of a train has a
different sequence of beam-beam interactions and therefore
experiences different effects. Some bunches may have very
unfavourable encounters, e.g. those with small separation,
and are likely to be most sensitive to unstable behaviour.
One can therefore identify at least four different classes of
bunches according to their beam-beam interactions, show-
ing a ”PACMAN-like” effect within the beams. In addition
to the differences within a train, a residual non-closure of
the separation bumps due to imperfections or energy mis-
match causes a global offset that needs correction at each
interaction point and can cause additional parameter splits
between the beams.

Offsets and orbit separation The beam-beam kicks
of the parasitic interactions distort the orbits of the indi-
vidual bunches and since the collision pattern is different
for different bunches, the orbits of all bunches are slightly
different. As a consequence, the orbits at the interaction
points are different and the bunches collide with a small
offset. In the design of the bunch train separation scheme
care was taken to make use of possible compensation ef-
fects to reduce these unwanted offsets [17, 18]. However,
small offset of the order of µm are unavoidable. Further-
more, the orbit at the parasitic encounters itself is changed
by the beam-beam kicks and a self-consistent calculation
is required to give the correct answer. A program TRAIN
was developped [19] to compute the individual orbits of all
bunches in a train and the relevant parameters, such as tune,
chromaticity, dispersion, offsets and crossing angles. The

Table 4: Orbit offsets and separation (at central collision
point) for 300 µA per bunch at 45.6 GeV

a b c d
e+ [µm] +5.75 +1.10 -1.65 -0.30
e− [µm] +0.30 +1.65 -1.10 -5.75
d [µm] +5.45 -0.55 -0.55 +5.75



orbit offsets and resulting separation of a train with four
bunches is shown in Tab.4 for an experimental interaction
point. An antisymmetry between the forward and back-
ward beam can be observed as expected. The calculated
separation amounts to more than the vertical r.m.s. beam
size and it is clear that it is impossible to adjust the colli-
sion such that all bunches of a train collide head-on. The
above example was computed for 45.6 GeV and bunch in-
tensities of 500 µA, i.e. above what was actually achieved,
but demonstrates the importance of this effect. The Fig.16
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Figure 18: Result of separation scans for three bunches per
train

shows the result of a vertical separation scan with simul-
taneous measurements of the luminosity for three bunches
per train, the preferred operational scenario in 1995. The
maximum luminosity, i.e. full bunch overlap, is reached at
different vertical positions for the three bunches within a
train, in full agreement with the calculation.

For four bunches per train this information is not avail-
able since most of the time LEP was operated with three
bunches per train, i.e. 12 bunches total. This small offset
proved to be an important performance limitation and the
best tune shifts obtained were always smaller than in pre-
vious years, leading to a performance that was lower than
expected. Nevertheless, the optimization of the bunch over-
lap was essential for a good performance. It should be men-
tioned, that from symmetry considerations a running with
two bunches per train is most favourable since the symme-
try of the collision is fully restored and both bunches of the
train can be collided head-on, although possibly in different
vertical position.

In the LHC the calculation of self-consistent orbits
would be necessary for almost 3000 bunches and it is
not obvious whether this is feasible nor whether a self-
consistent solution exists.

Tune and chromaticity splits Once the self-consistent
orbits were calculated, this information was used to com-
pute the tune and chromaticity of the individual bunches in

a train. The result is summarized in Tab.5 where q indi-

Table 5: Fractional tunes and chromaticities are split in-
side a train for 300 µA per bunch at 45.6 GeV

a b c d
qx 0.3548 0.3612 0.3613 0.3547
qy 0.2127 0.2235 0.2234 0.2133
Qx’ 0.4526 0.5000 0.5025 0.4848
Qy’ 0.1872 -0.2218 -0.2259 0.0053

cates the fractional part of the tune and Q’ the chromatic-
ity. The example was computed for 300 µA per bunch and
45.6 GeV and four bunches per train. The maximum tune
difference was up to 0.010 and the chromaticity difference
0.41 units in the vertical plane. This is a significant limita-
tion to the operational parameter space for the optimization
of the performance.

When the machine was operated with four bunches per
train, some bunches always had a lower life time, usually
those who experienced a beam-beam interaction at small
separation. This was confirmed in dedicated tests.

6.5 Closed orbit effects in the LHC

The TRAIN program [19] originally developped for the
maximum 16 bunches of LEP was re-written to handle two
beams with almost 3000 bunches each. Furthermore it must
be able to handle different optics for the two beams. Details
about the algorithm and its performance can be found in
[8].

For the nominal bunch filling scheme the horizontal off-
set in interaction point 1 (IP1) is shown in Fig.19. The off-
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Figure 19: Closed orbit along bunch structure in the LHC.

set is shown in µm as a function of the bunch number, start-
ing the count with the bunch following the large gap. The
first bunch of beam one is assumed to collide with the first
bunch of beam two in IP1. For symmetry reasons they also
collide in IP5. In Fig.20 I show a zoom into the first part
of Fig.19. Clearly visible are the nominal bunches in the
middle of each batch (approximately 40). At both ends of



0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0
bucket number

−0.2

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

ho
riz

on
ta

l o
ffs

et
 [µ

m
]

Figure 20: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches.

a batch the orbit offsets change due to the decreasing num-
ber of long range dipole kicks. The spread of the offset is
in the order of 0.1 to 0.2 transverse beam sizes. Although
this small offset has practically no effect on the luminos-
ity, it needs to be studied whether quasi head-on collisions
with a crossing angle and a small offset lead to an emittance
growth or other unwanted side effects. In the Figs.21 and
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Figure 21: Closed orbit along bunch structure in the LHC.
No fourfold symmetry.

22 I show similar data for an alternative filling scheme [9]
which optimizes the number of bunches, however it does
not have a fourfold symmetry. The effect is immediately
visible: the offset is slightly increased but not dramatic,
however practically no nominal bunches can be identified.
This may lead to unwanted difficulties and uncertainties
for beam measurements. As a further complication, we
have to expect bunch to bunch intensity variations of 10 to
20%. In the TRAIN program this intensity variation can
be considered and the result of such a variation is shown in
Figs.23 and 24, again for the nominal filling scheme. The
additional offset variation is clearly visible [9], and close to
the acceptable level.
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Figure 22: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. No fourfold symmetry.
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Figure 23: Closed orbit along bunch structure in the LHC.
20% intensity variation between bunches.

7 COHERENT EFFECTS

7.1 Coherent effects in LEP

Coherent beam-beam modes were frequently observed
in LEP and due to the large beam-beam strength parameter
the separation between the main modes, i.e. the σ- and π-
mode is rather large allowing only a limited area in the tune
space. Some background problems experienced in 1998
were attributed to the excitation of the horizontal π-mode
near the half integer resonance. A clear demonstration of
the two principal modes is shown in Fig.25 [20]. The tune
spectra of two colliding bunches were recorded separately
and the sum of the spectra is plotted. From the top to the
bottom of the picture the phase of one spectrum is shifted
in steps of one degree from zero to 360 degrees and the sum
signal is shown. For zero and 360 degrees this corresponds
to an in-phase signal and the σ-mode is be observed. For
a phase difference of 180 degrees the out-of-phase signal
corresponds to the π-mode. Both modes are very clearly
visible, a clear demonstration that the modes observed at
the corresponding frequencies can be associated to an in-
phase and an out-of-phase motion of the two bunches.

A coherent quadrupole mode was observed once at LEP,
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Figure 24: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. 20% intensity variation between
bunches.

Figure 25: Demonstration of coherent beam-beam modes
in LEP

however was never reproduced afterwards.

7.2 Coherent effects in LHC

Possible excitation of coherent dipole modes in the LHC
were studied using new simulation techniques and details
can be found in [10, 11, 12].

8 CONCLUSION

Amongst the numerous information on beam-beam ef-
fects we have obtained at LEP, some are of importance
for the evaluation of LHC beam-beam effects although a
quantitative application is not possible. The orbit effects
caused by beam-beam kicks have been identified as a se-
vere problem. A self-consistent treatment was vital to un-
derstand the observations quantitatively and the PACMAN
like effects have limited the performance. The experience
has shown that parameter splits between the beams or the
bunches within a beam must be kept as small as possible

and self-compensation of these effects must be used wher-
ever possible in the design process.

9 REFERENCES

[1] W. Herr; Experience with beam-beam effects in LEP Proc.
workshop on beam-beam effects in hadron colliders LHC99,
(CERN, Geneva 1999) CERN SL/99-039 (AP) (1999) 7.

[2] R. Schmidt; Beam-beam observations in the SPS proton
antiproton collider Proc. workshop on collective effects in
large hadron colliders, (Montreux, 1994) Part. Accelerators
Vol.50, Number 1-3, p. 47, (1995).

[3] K. Cornelis; Beam-beam effects in the SPS proton antipro-
ton collider Proc. workshop on beam-beam effects in hadron
colliders LHC99, (CERN, Geneva 1999) CERN SL/99-
039 (AP) (1999) 2.

[4] D. Brandt, W. Herr, M. Meddahi and A. Verdier; Is LEP
beam-beam limited at its highest energy ? Proceedings of
1999 Part.Acc.Conf., New York, 29.3.-2.4. 1999.

[5] L. Leunissen; Influence of vertical dispersion and cross-
ing angle on the performance of the LHC Proc. workshop
on beam-beam effects in hadron colliders LHC99, (CERN,
Geneva 1999) CERN SL/99-039 (AP) (1999) 81.
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SELF-CONSISTENT ORBITS WITH BEAM-BEAM EFFECT IN THE LHC

H. Grote and W. Herr, CERN, Geneva, Switzerland

Abstract

In part of the straight sections of the LHC the two beams
share a common beam tube. Therefore the bunches cross
each other not only at the interaction point, but as well at
many places on either side, with a typical transverse separa-
tion of 10 times the transverse beam size. These ”parasitic”
encounters lead to orbit distortions and tune shifts, in addi-
tion to higher order effects. Since the string of bunches
from the injection machine contains gaps, not all possi-
ble 3564 ”buckets” around the machine are filled, but only
about 3000. This in turn causes some bunches to not always
encounter bunches in the opposite beam at one or several
parasitic collision points (so-called ”pacman” bunches),
or even at the head-on interaction point (”super-pacman”
bunches). With a special program self-consistent orbits in
the LHC have been calculated for the first time with the full
beam-beam collision scheme resulting from various injec-
tion scenarios [1]. The offsets at the interaction points, and
the tune shifts are shown to be small enough to be easily
controlled.

1 INTRODUCTION

In the LHC [2] the two opposite beams share a common
beam tube for roughly 50 m on either side of the four in-
teraction points. Since the bunch spacing is only 7.5 m, in
order to avoid unwanted head-on collisions the beams cross
with an angle. Even so, in addition to the one head-on en-
counter at each interaction point there remain 15 positions
on either side of it where the closed orbits at nominal en-
ergy are only about 10σ apart, and even less in the focusing
quadrupoles at either side of each interaction point. Various
effects (alignment errors, field errors, momentum errors,
imperfect injection, beam-beam kicks) may lead to signif-
icant orbit distortions and further distance reduction. Be-
cause of “holes” in the filling scheme the situation differs
from bunch to bunch. The principal effects on the bunches
caused by the beam-beam encounters are tune shifts and
orbit offsets at the interaction points. The former are po-
tentially dangerous because they may shift the tune of a
bunch onto a resonance which may lead to its loss; the
latter reduce the luminosity, and the offset at the head-on
collision creates an extra orbit kick that adds to the distor-
tions already present. Further possible causes for worry are
changes in the chromaticity, non-zero dispersion at the in-
teraction point, odd order resonances, and possibly higher
order effects. The aim of the current study was therefore to
see whether acceptable closed orbits exist for all bunches in
both beams, whether the coherent tune shifts remain small
enough to be of no concern, and the other effects mentioned
can be corrected if necessary. The study provides as well

input for the layout of the correction system in that it gives
typical values for orbit errors caused by beam-beam effects.

The results are presented in graphical form because of
the large number of bunches. The bucket number for ring-
1 is constructed as follows: bucket number zero is at IP5,
bucket number one to the left of it (seen from top), number
two further to the left and so on backwards through IP4,
IP3, IP2, IP1, IP8 etc. until to the right of IP5. The beam
rotates clockwise. For ring-2 the numbering is done from
IP5 to the right, the beam rotates anti-clockwise.

2 BUNCH FILLING SCHEME

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 39 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 119 × 0

Whatever the bunch filling scheme, as long as it is the
same for both rings, and the injection is symmetric to IP1
and IP5, every bunch in ring-1 will collide with a bunch in
ring-2 (and vice versa) at IP1 and IP5. For this to be true
as well at IP2 and IP8, the following condition has to be
fulfilled:

The distance from IP to IP is 891 half-buckets (bunches
collide every half-bucket since both beams move) except
for IP8 which is 888 from IP7 and 894 from IP1. The rea-
son is the longitudinal displacement of IP8 with respect to
the symmetry point. If the injection scheme repeats itself
every 891 buckets, then at all IPs a bunch will always meet
a bunch. Therefore super-pacman bunches are created at
IP8 due to this displacement. The filling scheme shown
here respects this symmetry almost fully, only at the end a
batch of 72 bunches is missing to allow for the risetime of
the beam dump kickers, creating super-pacman bunches at
IP2 and IP8. In symbolic form it can be written as above (1
means bunch present, 0 absent).

3 ALGORITHM

The calculations are performed with two programs, MAD
[3] and TRAIN, the latter being a heavily modified version



of the program TRAIN [4] developped for LEP. Both pro-
grams communicate via a database DOOM.
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Figure 1: Horizontal offset at IP1 for all ring-1 bunches.
The offset in caused exclusively by beam-beam interac-
tions. The spread is about 1/10 of the beam size.

For the results presented here, a thin-lens model of the
LHC version 6.0 was used, containing the latest separation
and crossing schemes of version 6.1 [5], [6]. In the first
step, the two LHC lattice and optics files are prepared for
the TRAIN program: the lattice file for LHC ring-1 is read,
the crossing and separation bumps are matched, tunes and
chromaticities are adjusted, the places of head-on and para-
sitic encounters are marked, and the second order maps be-
tween all these beam-beam interaction points are lumped.
This is justified since the optics under study contains only
dipoles, quadrupoles, and sextupoles; field and alignment
errors are not present. The Twiss parameters, element, lat-
tice, force, and map tables are then stored in DOOM. The
same procedure is followed using a matched thin-lens ver-
sion for ring-2. At the end of this step, then, the database
contains the necessary information for both rings to per-
form the self-consistent orbit finding.

This second step is performed by the program TRAIN.
It first reads the description of the two rings from the
database, and in particular the number and position of all
beam-beam encounters. It then reads the injection sched-
ule from an independent file and establishes the ”encounter
list” for all bunches in both beams. Next the program finds
an initial closed orbit from the linear one-turn matrices with
beam-beam encounters switched off. The program then it-
erates in a double loop over all bunches in both rings, with
beam-beam encounters switched on. Where which bunch
meets which bunch in the other ring is known from the
bunch filling scheme. The inner loop is iterated with fixed
distances between bunches at the beam-beam encounters,
i.e. fixed beam-beam kicks. When it has converged to
closed orbits for all ring-1 and ring-2 bunches, then the
bunch positions at the beam-beam encounters are updated,
and the outer loop is iterated until these positions do not
change anymore. The bunch sizes are kept fixed as calcu-
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Figure 2: Detail of Figure 1. The 15 pacman bunches at
either end of each bunch packet of 72 bunches can clearly
be seen. The small irregularities are caused at IP2 and IP8.

lated from the undisturbed beta-functions, their change in
size is negligible. Once all orbits (i.e. their six-dimensional
initial coordinate vectors) are known, each bunch pair is
tracked with the second order maps to get the tunes, chro-
maticity, and dispersion. The total CPU time for 2808
bunches in each beam is of the order of a few minutes on a
fast workstation (e.g. Pentium III).

4 COHERENT TUNES, CHROMATICITY,
LUMINOSITY, AND DISPERSION
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Figure 3: Solid: horizontal (left) and vertical tunes for all
2808 bunches in ring-1. The two offset bumps belong to-
gether. They represent the 186 super-pacman bunches oc-
curing at IP8. Dashed: tune spread resulting from a Gaus-
sian beam current distribution.

The coherent horizontal and vertical tunes for all
bunches are shown in Figure 3. The offset batch stems from
the super-pacman bunches at IP8; IP2 has practically no ef-
fect since there the beams are separated by about 4σ. The
offset of the normal bunches is as expected, i.e. roughly
−3 × 0.00342/2 = −0.0051 (the undisturbed fractional
tunes are 0.31 and 0.32, respectively). When the bunch
currents in both rings have a Gaussian distribution rather
than being equal as in the results presented up to now, this
has very little effect on the orbit offsets, since they are



caused by over one hundred parasitic encounters and are
thus averaged; however, there is a visible effect on the co-
herent tune shift which is caused by the head-on collisions
only, of which there are up to three (the separation of 4σ at
IP2 makes this head-on collision insignificant for the tune
shift). Figure 3 shows the coherent horizontal tune shift
resulting from a Gaussian bunch current distribution with
σ = 0.2 cnom (cnom = 0.189 [mA] is the nominal bunch
current). The spread doubles with respect to the case with
fixed beam current, but is still within ±2 × 10−3 which is
not dramatic. Bunch current variations of this order can
therefore be tolerated, provided there are no other effects
not studied here that give reasons for concern.

The change in the dispersion is below 1 mm for all
bunches. The luminosity resulting from the offset at the
collision points lies between 0.98 and 1 without correction.
When the average offset (see Figure 2) is corrected, the
overall luminosity drops by less than 0.001.

The horizontal and vertical chromaticity without beam-
beam effect were adjusted to 1.6 and 1.8, respectively. The
chromaticities with beam-beam effect are given in Figure
4. This effect can be tolerated since the range of acceptable
chromaticities is between one and two.
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Figure 4: Horizontal (black) and vertical chromaticities for
bunches in ring-1.

5 OTHER APPLICATIONS

The program TRAIN has some very important applications
in the definition of LHC parameters. Various different fill-
ing schemes have been proposed, mainly to optimize the
number of bunches and therefore the luminosity. However,
possible implications of the filling scheme on the beam dy-
namics, in particular on the beam-beam induced orbits have
been ignored or estimated on an averaged basis. This pro-
gram now allows to test the different proposals and chose
the most suitable one.

5.1 Test of alternative filling schemes

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 38 × 0

72 × 1 8 × 0 72 × 1 8 × 0 72 × 1 8 × 0 48 × 1 126 × 0

The bunch filling scheme defined above can provide
the largest number of bunches (2856), but does not any
more exhibit a fourfold symmetry, but rather a ten fold
symmetry. That does not match the periodicity of the
LHC layout and, although the luminosity is highest in the
interaction points 1 and 5, the symmetry is strongly broken
by interactions points 2 and 8, leading to a much more
irregular structure. In particular the number of bunches
missing head-on collisions is largely increased. This is
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Figure 5: Closed orbit along bunch structure in the LHC.
No fourfold symmetry.

0.0 50.0 100.0 150.0 200.0 250.0 300.0
bucket number

−0.2

0.2

0.6

1.0

1.4

1.8

h
o
ri
z
o
n
ta

l 
o
ff
s
e
t 
[µ

m
]

Figure 6: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. No fourfold symmetry.

shown in Figs.5 and 6. Most important, it is difficult to
identify nominal bunches (see Fig.6). This bunch filling
scheme was discarded following these studies.

5.2 Effect of bunch to bunch intensity variations

Another effect can easily be studied using the TRAIN pro-
gram. It allows to assign individual bunch intensities to
all bunches of the train. The presently assumed bunch to



bunch variation is about 20%. The result of the calcula-
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Figure 7: Closed orbit along bunch structure in the LHC.
20% intensity variation between bunches.
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Figure 8: Closed orbit along bunch structure in the LHC,
zoomed into 3 batches. 20% intensity variation between
bunches.

tion is shown in Figs.7 and 8. Although the orbits are now
all different for the originally nominal bunches, the varia-
tion is small (1 - 2% of the beam size).

6 CONCLUSIONS

The self-consistent bunch orbits presented here for the lat-
est bunch filling scheme allow the following conclusions
which of course concern only the closed orbits for zero
phase-space amplitude, and not any other parameter such
as long-term stability, lifetime, emittance blow-up, dy-
namic aperture etc.:

• The bunch offsets lie within ±0.1σ at the physics col-
lision points

• The effects on other parameters (tune, chromaticity,
dispersion) are small, and their shifts can easily be
corrected (not their spread)

• The algorithm allows to evaluate and decide on filling
schemes

• The effect of bunch to bunch intensity variations can
be studied
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A Hybrid Fast Multipole Method applied to beam-beam collisions in the
strong-strong regime.

W. Herr, M.P. Zorzano, CERN, and F. Jones, TRIUMF

Abstract

The strong-strong interactions of two colliding beams
are simulated by tracking the motion of a set of macropar-
ticles. The field generated by each distribution is evalu-
ated using the Fast Multipole Method (FMM) together with
some elements of particle-mesh methods. This technique
allows us to check the exact frequencies of the coherent
modes and the frequencies of oscillations of individual par-
ticles in the beam. The agreement between the simulations
and analytical calculations is largely improved. Further-
more it is an efficient method to study the coherent modes
in the case of separated beams.

1 INTRODUCTION

Two colliding beams exert a force on each other which is
defocusing for beams of equal polarity as in the case of the
LHC. Solutions of the linearized Vlasov equation show that
for round beams and in the case of one bunch per beam with
equal parameters (intensity, beam size, betatron tune) two
coherent dipole modes of oscillations appear: the σ mode,
whose frequency is equal to the unperturbed betatron tune,
and the π-mode with a tune shift of Y = 1.21, where Y is
the Yokoya factor [1], times the beam-beam parameter ξ.

In this paper the transverse coherent motion of two col-
liding proton beams is studied by multiparticle tracking. In
a self-consistent model of the coherent interaction, the dis-
tributions of both beams evolve as a consequence of the
mutual interaction and are used at the interaction points
to calculate the force on the individual particles. A num-
ber of studies have been done for LHC using the so-called
“soft Gaussian model” [2]. This model assumes the force
experienced by a particle when traversing the counter ro-
tating beam as originating from a Gaussian beam distribu-
tion with variable barycenters and rms beam sizes. This al-
lows the use of an analytical expression for the forces. This
Gaussian model cannot take into account the non-Gaussian
deformations of the distribution and as a result underesti-
mates the force and yields a Yokoya factor that is slightly
smaller (Y = 1.1 in our case). This symptom has also
been recently discussed by Yokoya [3]. In the worst case
this simplification can inhibit the appearance of coherent
effects. Nonetheless the use of the analytical expression
of the force generated by a Gaussian beam allows simu-
lations in a reasonable computing time and it is therefore
more convenient for studies with multiple bunches.

It has been predicted [4, 5] that the coherent π-mode may
not be Landau damped for certain strong-strong conditions

and therefore an accurate knowledge of the Yokoya factor
is highly desirable.

2 SIMULATIONS BEYOND THE SOFT
GAUSSIAN MODEL

To avoid this problem and to increase the accuracy of
the simulations, we have to introduce a field solver for an
arbitrary distribution of charges in space. The choice of the
solver is constrained by the problems under investigation:

• Large number of particles in simulation ( 104).

• Separated beams (separation between zero and 10
times the beam size or more).

A direct integration of forces (particle-particle methods) is
ruled out since the necessary time grows with the square of
the number of particles (O(N 2

p )). For the number of parti-
cles used in our simulation this is impossible. Other pos-
sible solvers employ so-called particle-mesh methods and
have been shown to give good results [6]. Their advantage
is speed since the number of computations is smaller and
depends on the number of grid points Ng: (O(NglnNg)).
A strong disadvantage is that particle-mesh methods have
problems handling non-uniform distributions. For the case
of separated beams (as in our case with the important ef-
fect of long-range collisions) most of the space is basically
empty. Moving or adaptive grids may be used for that pur-
pose, but may lead to a rather complicated structure.

Another possibility is to use Fast Multipole Methods
(FMM). In this algorithm the potential or force acting on
a particle is divided into two components. The compo-
nent of close particles is computed directly and between
distant particles the potential is approximated by multipole
expansion [7, 8]. This method is therefore well adapted
to handle problems like separated beams. Problems with
FMM are close encounters and ”charge-overloading”, i.e.
for the LHC bunches 1011 particles are represented by 104

macroparticles.

3 BASIC HFMM ALGORITHM

For our problem we studied a modified version of FMM,
a Hybrid FMM (HFMM) [9]. It resembles a particle
mesh method for the handling of charges and super par-
ticles, however the forces on the superparticles are evalu-
ated using the FMM. Smoothing can help to avoid charge-
overloading. The HFMM is a robust implementation of a



Fast-Multipole Method (FMM) field solver, which is de-
signed to solve the field for an arbitrary collection of dis-
crete charges. It divides the solution domain into a grid
and a halo area. The grid area is subdivided into a hierar-
chical tree of square regions. In the first step of the cal-
culation, the macroparticles inside the grid are assigned to
grid points. All macroparticles outside the grid are treated
as discrete, independent superparticles and form the halo.
The charge assignment can be done with a ’nearest-grid-
point’ method, i.e. the charge is assigned to the nearest
grid point. This is the simplest method, however the field
values are not continuous and the results are more noisy.
Alternatively one can use the cloud-in-cell (CIC) charge
assignment where the charge is shared between the neigh-
bouring grids points. This method gives continuous field
values but requires more book-keeping.

Finally, multipole expansions of the field are computed
for every point, i.e. for each grid point as well as for every
halo particle, and the program derives the resulting forces
on the particles of the counterrotating beam. In the case
of a CIC charge assignment, appropriate interpolation be-
tween the fields calculated for the grid points have to be
applied. The grid size and shape does not have to follow
any special geometry and can be chosen freely to achieve
the desired speed and precision, depending on the problems
under investigation. Unlike other Poisson solvers, the grid
points with no charges assigned are left out of the compu-
tation and the number of computations scales roughly with
the number of particles. More details of the method used in
this report are found in [9]. This method is already imple-
mented in the ACCSIM program [10] to study space charge
problems.

In this work we have implemented the HFMM in our
beam-beam simulation program to evaluate the force on a
test particle generated by an arbitrary charge distribution.
This will be applied to study the strong-strong collision of
two bunches colliding at one interaction point (IP). We will
study the coherent modes that are excited in the collision
of two equal round bunches similar to those of LHC, when
colliding head-on or separated by a constant offset at one
interaction point (long-range interactions). This will en-
able us to obtain the correct Yokoya factor by multiparticle
tracking and in a later stage to study in detail the modes
excited by long-range interactions. Finally, it should allow
us to study the possible emittance growth of collisions of
partially overlapping bunches [11].

4 TRACKING WITH HFMM.

We simulate the collision of two strong proton beams.
Our variables are: horizontal position x, vertical position y,
horizontal angle vx = x′, and vertical angle vy = y′. The
prime denotes the derivative with respect to longitudinal
position s, e.g. x′ is the slope of the horizontal trajectory.

Each of the beams has one bunch that is represented by
a set of Np macroparticles, whose trajectories are followed
over n turns, assuming linear betatron motion without cou-

pling and a beam-beam collision at one interaction point
(IP). At the IP every particle in the bunch experiences a
deflection by the field of the counter-rotating beam that de-
pends on its position.

The deflection applied to a single particle in one of the
beams is calculated using the HFMM.

The linear map from one IP to the next is
(

x(n + 1)
vx(n + 1)

)
=

(
cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

) (
x(n)

vx(n) + ∆vx(n)

)
(1)

An equivalent map is applied in the vertical plane, (y, vy).
The horizontal deflection experienced at the interaction

point is:

∆vx(n) =
rpN

∗

γ
Ex(x, y) (2)

where Ex(x, y) is the horizontal force evaluated with the
HFMM technique at the particle position (x, y). The num-
ber of particles in the opposing beam is N ∗.

For the simulation of parasitic (long-range) collisions,
the same model is employed. The two beams collide with a
horizontal separation Lx (in units of σx). For a low β inser-
tion we have about 90◦ phase advance between the IP and
the long-range collision region. Since in the LHC the be-
tatron phase advance between long-range collisions on one
side of the interaction region is very small, we can lump
all npar parasitic collisions into a single one, to reduce the
computing time. This overestimates the effect slightly be-
cause the bunches oscillate with different phases with re-
spect to each other.

Because a static dipole kick would change the closed or-
bit of the bunch, the static kick from the long-range colli-
sion must be subtracted [12]. The beam-beam long-range
kick used in our simulation code is then

∆vx(n) =

npar

2rpN
∗
p

γ
(Ex(x + Lxσx, y) − Dx(Lxσx, 0)). (3)

where Dx(Lxσx, 0)) = −1/Lxσx(1.0 − exp (−L2
x

2.0 )) is
the (constant) dipole kick generated by a Gaussian distribu-
tion at a distance x = Lxσx. This assumes that a closed or-
bit exists [11] and the bunches oscillate coherently around
this orbit. At the LHC, there are about npar = 16 par-
asitic encounters on each side of an IP, with a minimum
transverse separation of Lx = 7.5 (in units of σx). The
fractional part of the horizontal and vertical tunes are 0.31
and 0.32, and unlike LEP [13], the results are not strongly
affected by dynamic beta effects. In Figs.1 and 2 we show
comparisons between the beam-beam kicks calculated with
the HFMM and those obtained from an analytical expres-
sion, both for the case of round, exactly Gaussian beams.



In the Fig.1 we test the different methods for the charge as-
signment for a grid spacing of 0.25σ with a grid of 81x81,
where 81 is the number of grid points in each plane. Thus
the grid for the head-on collisions covers the amplitudes
between −10σ to +10σ. While the ’nearest-grid-point’ as-
signment gives visibly discontinuous values, the force eval-
uated with the CIC assignment is continuous and therefore
preferable.

In the Fig.2 we have used a different grid spacing of
0.10σ with a grid of 201x201 to test the obtained accuracy.
The effect of the discontinuous values in the ’nearest-grid-
point’ assignment is now smaller and barely visible as one
could expect. The grid size for the simulation is a com-
promise between precision and computing speed. A grid
spacing of 0.1 σ or below gives good results. For most
simulations we have therefore chosen such a spacing and
the Cloud-in-Cell (CIC) charge assignment.

5 SIMULATION RESULTS

In this section we shall give quantitative results on the
coherent modes for head-on as well as some first results
with long-range interactions. Since the symmetry of beam
parameters plays an important role for the coherent mo-
tion, we study the relevance of intensity differences as well
as tune and beam size asymmetries. They are expected to
make it more difficult to maintain a coherent motion and
will eventually help to avoid it.

5.1 Head-on collisions with equal betatron
tunes and intensity

First let us consider the strong-strong case and head-on
collisions of two round bunches, using the previous maps.
The statistical variation in the initial distribution of parti-
cles is sufficiently large to excite the coherent modes. We
start with equally strong beams, i.e. the intensity ratio RI

between the weaker and stronger beam is 1.0. If we per-
form a harmonic analysis of the motion of the barycentre
of one bunch, we find two coherent modes. One is located
at the unperturbed tune Q, the other has a lower frequency.
In Fig. 3 we plot the amplitude frequency spectrum. The
horizontal axis gives the tune shift from the unperturbed
tune Q in units of ξ (i.e.: w = ν−Q

ξ , for the round beam
case ξx = ξy = ξ = 0.0034, Qx = 0.31, Qy = 0.32). For
the other beam and the other plane a similar picture is ob-
tained. Analysing the spectra of the distance between the
centroids, i.e. the expressions < x(1) > − < x(2) > and
< y(1) > − < y(2) >, the coherent mode at the unper-
turbed frequency disappears. On the other hand, when we
analyse the sum of the centroids (< x(1) > + < x(2) >,
< y(1) > + < y(2) >) the lower mode frequency disap-
pears. We can thus identify the mode at the unperturbed
frequency as the so-called σ-mode, for which the centroids
of the bunches oscillate in phase with equal frequencies and
amplitudes. The lower frequency mode is called π-mode
and in this mode the centroids oscillate also with equal fre-

quencies and amplitudes but in opposite phase. The mo-
tion of the bunch centroids is a superposition of these two
modes.

Between the π- and the σ-mode in Fig. 3 we find the
incoherent continuum. A single particle crossing the op-
posing beam at a distance from its axis feels a defocusing
force (or focusing force in the case of oppositely charged
beams like LEP), which leads to a change in its tune. For
particles near the centre of the counter rotating beam this
tune shift is equal to −ξ. For particles further away the
defocusing force is smaller (due to the non-linearity of the
beam-beam force) and vanishes asymptotically. This cre-
ates an incoherent tune spread which extends from 0 to −ξ.

In our simulations we find the π-mode at a tune shift of
exactly 1.21 ± 0.005 in units of ξ (and ξ = 0.0034). The
π-mode is thus shifted outside of the continuum. The shift
calculated with HFMM is therefore in excellent agreement
with the theoretical prediction [1, 4].

5.2 Head-on collisions with equal betatron
tunes and different intensity

It has been predicted [4] that for intensity ratios of 0.6
or lower, the π-mode merges with the continuum. In the
soft Gaussian model this prediction cannot be tested ex-
actly since the π-mode tune shift is underestimated [2, 3].
In this section we can now make a more precise quantita-
tive comparison. Fig. 4 clearly confirms this prediction: the
π-mode merges into the incoherent spectrum at Alexahin’s
ratio of 0.6 and is Landau damped. In the LHC the ex-
pected bunch to bunch intensity difference may be as large
as ± 20%. Although this alone will not be sufficient to
recover Landau damping, together with other uncertainties
(see e.g. section 5.4) and suggested remedies (see next sec-
tion) it should simplify the damping of the modes.

5.3 Head-on collisions with different betatron
tunes

The first proposed remedy to avoid coherent beam-beam
modes was to decouple the two beams by using different
fractional tunes for their tunes [14]. This is possible in
the LHC since we have two separate rings. Possible un-
wanted side effects of such a scheme were discussed in
[15]. The sensitivity to the expected small tune differences
is demonstrated here quantitatively. While the fractional
part of beam 1 is kept at 0.310, the tune of the second beam
is slightly varied. For a tune difference between the two
beams of more than approximately ≈ 0.7 ξ the π-mode
disappears into the continuum as shown in Fig.5.

5.4 Head-on collisions with different beam
sizes

Similar to an intensity imbalance, different beam sizes
of the two beams can lead to loss of coherence and damped
coherent modes. In Fig.6 we show the spectra for beam



size ratios of 0.90 and 0.70. Since the beam size (of the sec-
ond beam) is now smaller, the tune shift is slightly larger
than in the original case. While for a ratio of 0.90 the π-
mode is still very visible, it has merged with the incoherent
spectrum for 0.70. The mechanism is the same as for a
beam intensity imbalance. At this point one can speculate
whether the size imbalance can be compensated by an in-
tensity imbalance, adjusted to give the same beam-beam
tune shift parameter ξ. The result of such a simulation is
shown in Fig.7 with the beam radius of the second beam re-
duced to 0.7, but with a smaller beam intensity (50%). The
beam-beam parameter is therefore the same. We observe
a clear coherent mode again. This observation however is
non trivial. When the beams have different sizes and geo-
metrical distributions, the fields seen by the two beams are
rather different, although the tune shift parameter for the
small amplitude particles is the same. The reason is that
the larger beam experiences a very non-linear force for par-
ticles at much smaller amplitudes than the smaller beam.
Particles at larger amplitudes must therefore behave rather
differently. For the single particle behaviour, i.e. popula-
tion of beam tails and lifetime, this is known to be of ex-
treme importance [16, 17]. For a coherent oscillation it is
mainly the oscillation frequency that must be the same and
it is known that for the head-on collisions studied in this
example, it is mainly the core of the beam contributing to
the coherent oscillation and the tune shift. The core parti-
cles experience always an almost linear force proportional
to the beam-beam parameter and this explains the observa-
tion.

Similar observations have been made in simulations of
asymmetric colliders such as PEP-II [18] where the energy
transparency condition was studied, i.e. where the energy
asymmetry was compensated by an asymmetry of the beam
currents.

5.5 Coherent modes from long-range collisions

Since the transverse distance between two bunches at the
parasitic collision is larger than the rms beam size, the ef-
fects will be similar to the coherent interaction of rigid,
point-like bunches. In that case the contribution of parasitic
crossings to the tune shift of coherent oscillation modes
would be

∆νπ = 2 × (incoherent long-range tune shift) ∝ 1/L2
x

∆νσ = 0.

Moreover, the incoherent long-range tune shifts for beam
separations larger than ≈ 1.5 σ have different signs for the
two planes. Both, the coherent and incoherent tune shifts
depend on the separation and for sufficiently large separa-
tion they scale with the inverse of the separation squared.

Most important however, the width of the incoherent
spectrum (tune spread) of long-range collisions alone de-
pends on the separation and in the LHC is smaller than the
tune spread from head-on collisions [19, 20]. The distance
of the π-mode from the edge of the incoherent spectrum

is therefore rather different from the head-on case and one
must expect a different behaviour. In particular the nec-
essary measures to merge the coherent modes with the in-
coherent spectrum must be at least quantitatively different.
In this report we have a first look at the dynamics of long-
range collisions separately to demonstrate the differences.
For an evaluation of the necessary operational parameters,
both head-on as well as long-range collisions must be con-
sidered together, like it was done with the Gaussian approx-
imation [2]. A more complete study should also include
multiple bunches and interaction points and will be treated
at a later stage [21].

5.6 Simulation of long-range collisions

The simulation of coherent modes from separated beams
is a good example where the HFMM can be used to great
advantage. In a conventional particle-mesh method, most
grid points between and around the beams are empty and
with a typical separation around 10 σ the necessary com-
puting time becomes unacceptable. With the HFMM we
have the option to either treat the opposing beam as a halo
or to choose the grid large enough to cover both beams.
Although at first sight the second option looks like a con-
ventional grid method, the advantage is clear: the fields
are calculated with the FMM field solver only at the grid
points with charges and the saving in computing time is
large. Treating the opposing beam as a real halo object
usually requires more time than covering the whole area.
In Fig.8 we show the horizontal spectrum for long-range
collisions with a horizontal separation Lx = 10.0 (in units
of σx). We plot it again as a function of the distance to the
unperturbed tune, normalized to the head-on beam-beam
tuneshift ξ, to allow a quantitative comparison to the head-
on modes. For one of the figures (left) the particles in the
opposing beam were treated as halo particles, i.e. were not
covered by the grid. In the right figure the grid was ex-
tended to 15σ, i.e. included both beams. Both methods
give the same results, however the computing speed is very
different. The treatment as real halo is very time consum-
ing. The real difference to a particle-mesh code then comes
from the fact that only grid points with particles are treated,
thus the number of computations scales like O(Np). The
computing speed difference is about a factor 2.5 between
the two options, therefore in all simulations we choose the
procedure to cover the whole area with a grid, including
both beams.

Like in the case of head-on coherent modes we identify
the σ- and π-mode easily by analysing the sum and the
difference of the barycentres separately. The peaked struc-
ture between the two modes represents again the incoherent
continuum, this time arising from the long-range interac-
tion. As expected, the coherent shift is two times larger
than the shift of the incoherent spectrum.



5.7 Long range collisions with equal tunes

Fig. 9 shows the horizontal and vertical spectra of cen-
troid oscillations of a bunch subject to long-range colli-
sions with a horizontal separation of Lx = 10.0σx. To
obtain realistic tune shifts, we have lumped all 32 long
range interactions of a LHC interaction region into a sin-
gle collision. The optics and geometry of the interaction
regions permits this simplification [2, 12]. The horizon-
tal axis gives the tune shift relative to the unperturbed
tune Q in units of the head-on beam-beam parameter ξ:
w = ν−Q

ξ . In the horizontal plane, the tune shifts are pos-
itive, and the coherent dipole π-mode has twice the inco-
herent tune shift. In the vertical plane, the tune shifts are
negative. The normalized tune shifts of the π-modes are
(wx, wy) = (0.645±0.005,−0.644±0.005). In Fig.10 we
show the results for a separation of 6.0 σx and find values
of (wx, wy) = (1.828 ± 0.005,−1.762 ± 0.005). Com-
paring Figs. 9 and 10, the larger tune shift for the smaller
separation is clearly visible as well as the increased tune
spread of the incoherent spectrum. Both scale with 1/L2

x

as expected.

6 CONCLUSIONS.

We have implemented the HFMM technique to describe
the beam-beam collision of two beams in the strong-strong
regime. This allows us to study, by means of multi-particle
tracking and with no approximation in the evaluation of the
electromagnetic force, the coherent modes of oscillations
of two colliding beams. Future improvements shall extend
this work to several bunches per beam and, in particular,
will allow us for the first time to study details of the modes
excited by long-range interactions.

7 ACKNOWLEDGEMENTS

We should like to express our gratitude to M. Craddock
(TRIUMF) for supporting this study and to M. D’Yachkov
(TRIUMF) who has first suggested the use of the Fast Mul-
tipole Method for our problem.

8 REFERENCES

[*] Present Address: BULL, Paseo Doce Estrellas 2, 28042
Madrid, SPAIN

[1] K. Yokoya, H. Koiso, Tune shift of coherent beam-beam os-
cillations. Particle Accelerators, Vol. 27, 181 (1990).

[2] M.P. Zorzano, F. Zimmermann, Coherent beam-beam oscil-
lations at the LHC. CERN, LHC Project Report 314, (1999).

[3] K. Yokoya, Limitation of the Gaussian approximation in
beam-beam simulations. Phys.Rev.STAB, Vol. 3, 124401
(2000).

[4] Y.I. Alexahin, On the Landau damping and decoherence of
transverse dipole oscillations in colliding beams. Particle
Accelerators, Vol. 59, 43 (1999).

[5] Y.I. Alexahin, A study of the Coherent Beam-beam Effect in
the Framework of the Vlasov Perturbation Theory. CERN,
LHC Project Report 467, (2001).

[6] S. Krishnagopal and R. Siemann, Coherent beam-beam in-
teractions in electron-positron colliders. Phys.Rev.Lett., Vol.
67, 2461 (1991).

[7] L. Greengard, The rapid evaluation of potential field in par-
ticle systems. Thesis, Yale (1987),Cambridge, Mass. MIT
Press, 1988.

[8] L. Greengard and V. Rokhlin, A fast algorithm for particle
simulations. J.Comp.Phys. Vol. 73, (1987).

[9] F.W. Jones, A Hybrid Fast-Multipole Technique for Space-
Charge Tracking With Halos. In Proceedings of the work-
shop on Space Charge Physics in High Intensity Hadron
Rings, Shelter Island NY, May 1998, (AIP Conf. Proc. 1998)
448.

[10] F.W. Jones, Development of the ACCSIM tracking and sim-
ulation code. In Proceedings of the 1997 Part. Acc. Conf.
Vancouver, May, 1997.

[11] H. Grote, Self-consistent orbits with beam-beam effect in
the LHC. CERN, LHC Project Report 404, (2000).

[12] W. Herr, Coherent dipole oscillations and orbit effects in-
duced by long-range beam-beam interactions in the LHC.
CERN/SL/91-34 (AP) (1991).

[13] D. Brandt, W. Herr, M. Meddahi, A. Verdier. Is LEP beam-
beam limited at its highest energy?. In Proceedings of the
1999 Part. Acc. Conf., New York 1999, (1999).

[14] A. Hofmann, Beam-beam modes for two beams with un-
equal tunes. In Proceedings of the LHC-99 Beam-beam
workshop at CERN, 1999, edited by J. Poole and F. Zim-
mermann (CERN, Geneva, 1999).

[15] Y.I. Alexahin and M. P. Zorzano, Excitation of Coherent
Beam-Beam resonances for beams with unequal tunes in the
LHC. CERN LHC Project Note 226, 2000 (unpublished).

[16] M. Meddahi, Effets faisceau-faisceau dans le collisionneur
protons-antiprotons du SPS. PhD Thesis, Univ. Paris 7 and
CERN SL 91-30 (BI) (1991).

[17] L. Evans, J. Gareyte, M. Meddahi, R. Schmidt, Beam-beam
effects in the strong-strong regime at the CERN-SPS. In Pro-
ceedings of 1989 Part. Acc. Conf., Chicago 1989, (1989).

[18] S. Krishnagopal, Energy transparency and symmetries in
the beam-beam interaction. Phys.Rev.STAB, Vol. 3, 024401
(2000).

[19] W. Herr and J. Miles, A comparative study of beam-beam
tune footprints for colliding beams with a crossing angle and
offset vertex in LHC V4.1. CERN LHC Project Note 4, 1995
(unpublished).

[20] O. Meincke and H. Grote, Tune footprints for collision op-
tics 5.0, CERN LHC Project Note 161, 1998 (unpublished).

[21] W. Herr, M.P. Zorzano and F. Jones, Analysis of coher-
ent long-range interactions using a Hybrid Fast Multipole
Method. To be published.



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6 8

Figure 1: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.25σ grid (81x81) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 2: Beam-beam kick as calculated with HFMM (points) and from analytical expression (solid line) for round beams
with Gaussian distribution. Left figure with 0.10σ grid (201x201) and ’nearest-grid-point’ assignment. Right figure with
’cloud-in cell’ (CIC) assignment.
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Figure 3: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams.
The grid covers from −10σ to 10σ, the rest of the particles being treated as halo particles. The horizontal axis gives the
tune shift from the unperturbed tune Q in units of ξ, i.e. w = ν−Q

ξ . The vertical axis is the corresponding amplitude. The
π- and σ- oscillation modes are clearly visible.
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Figure 4: Frequency spectrum of the bunch centroid motion (over 2 17 turns, N = 104 macroparticles) for round beams
and intensity ratio RI = 0.65 (left) and 0.55 (right).
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Figure 5: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
different fractional tunes of the second beam: 0.312 (left) and 0.313 (right). The tune of the first beam is kept at 0.310.
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Figure 6: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) of 0.90 (left) and 0.70 (right).
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Figure 7: Frequency spectrum of the bunch centroid motion (for 2 17 turns, N = 104 macroparticles) for round beams and
size ratios σ(2)/σ(1) = 0.70 and intensity ratio RI = 0.5.
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Figure 8: Spectrum of the horizontal centroid motion for long-range collisions with horizontal separation L x = 10.0 (in
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separation Lx = 10.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
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Figure 10: Spectrum of the vertical (left) and horizontal (right) centroid motion for long-range collision with horizontal
separation Lx = 6.0 (in units of σx) and no head-on collision (215 turns, N = 104 macroparticles). The tune shifts due
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Weak–Strong Beam–Beam Tracking for LHC V6.0

Y. Luo and F. Schmidt, CERN, Geneva, Switzerland

Abstract

Simulations have been performed for the LHC for a com-
plete model of the LHC with the multipole errors of all
dipoles and quadrupoles and the triplet errors, at injection
and collision energy respectively. For the two energies the
weak–strong beam–beam forces are included in the sim-
ulations for both the head–on and the long–range colli-
sions by using a realistic beam separation scheme. The
transverse amplitudes have been densely varied and several
phase space angles have been treated. It has been found
that the typical tracking periods of105 turns are not suffi-
cient but that the tracking has to be extended to at least106

turns. We will demonstrate that early indicators can help to
find not too pessimistic bounds for long–term stability.

1 INTRODUCTION

The LHC model studied in this note is based on LHC
version 6.0, with ATLAS, CMS, LHCB head–on collisions
and ALICE halo collisions. The lattice is anti–symmetric
about all four IPs. At injection energy the errors of the
main dipole’s of error table 9901 (see for instance Ref. [1])
are considered together with the b3 and b5 spool piece
correction system. At top energy the errors of low–beta
triplet quadrupoles (details see below) are introduced coun-
teracted by two types of correction packages withb3, b6 and
b4, a3, a4 correctors respectively. The beam–beam interac-
tion was simulated in the weak–strong approximation. The
dynamic aperture (DA) is defined as the maximum radius
for which the particles are stable for105 or 106 turns. A
series of tracking studies are performed for five different
radial angles in the phase space. The phase space angle is
defined asφ = arctan

√
εy/εx, in this paper the angles

φ =15◦, 30◦, 45◦, 60◦ and 75◦ have been used. To deter-
mine the minimum dynamic aperture to a confidence level
of 95% the simulations have been performed for 60 differ-
ent representations of the random components of the mul-
tipole errors (seeds). All tracking runs has been performed
with the SixTrack code [2].

2 TRIPLET ERRORS AND THEIR
CORRECTION

At top energy the field errors in the low–beta triplets
play an important role in the reduction of the dynamic aper-
ture. The largest components of the latest triplet errors are
given in Table 1. The body and end effects have been com-
bined into one single number for the thin–lens approach

used here: each triplet quadrupole is split into four thin–
lens quadrupoles at each of IP1, IP2, IP5, IP8.

Component systematic uncertainty random
b3 0 0.72 0.36
b4 -0.175 0.83 0.36
b6 0.34 0.91 0.21
a3 0 0.69 0.34
a4 0 0.33 0.34

Component systematic uncertainty random
b3 0 0.63 0.34
b4 0 0.22 0.34
b6 0.21 0.41 0.18
a3 0 0.32 0.34
a4 0 0.26 0.34

Table 1:Low-beta quadrupole field errors for KEK version
4.x(upper) and FNAL version 3.1 (lower). Values are rela-
tive to the main field at x = 17mm in units of 10−4.

On either side of IP1, IP2, IP5, and IP8 two corrector
groups are placed as proposed by J. Strait at a CERN–
KEK–US meeting, April 2000. Each corrector group con-
tains several correction spools such that on either side
of each IP one corrector exists for b3, b4, b6, a3 and
a4. The correction formalism follows the one outlined by
A. Verdier and A. Faus–Golfe [3]. The principle is rather
simple: with one corrector for each multipole component
on either side of each IP, we compensate the total kick
for purely horizontal and purely vertical motion simulta-
neously.

3 BEAM SEPARATION SCHEME

There are 15 parasitic crossing points on either side
of each IP. The total crossing angle at collision is fixed
throughout to300µrad. The crossing is horizontal in IP5
and IP8, while at IP1 and IP2 it is vertical [4]. The bunch
sizes in the opposite beam appearing in the beam–beam
element were calculated under the assumption of full anti–
symmetry at all four IPs; the beam separation was taken as
the distance of the orbits in ring 1 and ring2. The beam–
beam separation in injection and collision mode are shown
in
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Figure 1, where the separations at injection and collision
are given in the units of beam size in the corresponding
crossing plane, the horizontal axis is the count number of
the beam–beam encounters, 124 in total, around the four
IPs. At collision energy the separation is about 9.5σ while
at injection energy it varies between 12 and 15σ.

4 DYNAMIC APERTURE IN COLLISION
WITHOUT BEAM–BEAM

First the correction scheme of the low–beta triplet errors
has been investigated with the LHC collision mode with-
out beam–beam interaction. Figure 2 shows the dynamic
apertures of105 turn tracking before and after triplet error
corrections.
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Figure 2: Dynamic aperture without and with low–beta
triplet field error correction. The beam–beam kicks are
not included and the tracking has been performed for 10 5

turns.

The triplet errors reduce the average and minimum dy-

namic aperture to about 13σ and 9σ respectively for10 5

turns. This is mainly due to the largeb6 component of the
quadrupoles. After correction, as described above, the av-
erage and minimum dynamic apertures increase to some
17σ and 13σ respectively, i.e. a gain of about 4σ. So we
conclude that the proposed triplet error correction scheme
is indeed very effective. It has to be mentioned that only
part of this improvement of the DA remains in the presence
of the parasitic beam–beam kicks (see Ref. [5]).

5 DYNAMIC APERTURE AT COLLISION
INCLUDING BEAM–BEAM
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Figure 3: Dynamic aperture at collision including beam–
beam kicks. Tracking is performed for 105 and 106 turns.

Figure 3 shows the results for105 and106 turns when the
beam–beam interaction is included. Tracking for10 5 turns
shows the average DA to go down to about 9σ, while the
minimum DA is 7.5σ. As found earlier [6, 7] this reduc-
tion is due to the many parasitic beam–beam crossings. We
know from numerous tests that the DA for plain nonlineari-
ties is not decreasing very much for tracking runs in excess
of 105 turns (see Ref. [8]). It was therefore surprising that
there is a dramatic decrease of the DA when the tracking
is extended to106 turns. The average and minimum DA
becomes about 7 and below 6σ respectively. Our conjec-
ture for this large reduction of the DA is the following: the
above mentioned parasitic crossings make the motion very
slightly chaotic at small amplitudes. As a result it takes
considerable time until a particle is driven to large enough
amplitudes such that the nonlinearities are strong enough
to cause the loss of the particle. In fact, the chaotic bound
(see below) goes down to about 4σ and it has to be feared
that particle loss may take place down to that level when
the tracking is extended beyond106 turns. Presently, our
computer power is insufficient to allow systematic studies
with those large turn numbers.



6 DYNAMIC APERTURE AT INJECTION
WITHOUT AND INCLUDING

BEAM–BEAM

Tracking including beam–beam over105 turns at injec-
tion energy (Figure 4) gives about 10σ for the minimum
DA which is more than 1σ smaller than without the beam–
beam kicks. Also in this case there is a sizable reduction of
the DA when the tracking is extended to106 turns, in par-
ticular at the phase space angle of 45◦. In fact, the DA at
that phase space angle agrees well with the chaotic bound
which is found to have its minimum at about 7σ.
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7 TUNE FOOTPRINTS FOR COLLISION
AND INJECTION
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Figure 5:Tune footprint at collision energy
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Figure 6:Tune footprint at injection energy

The tune footprints at collision and at injection are
shown in Figure 5 and Figure 6 respectively. At injection
energy one would naively expect that the beam–beam force
will not deteriorate the DA by much since the tune foot-
print is so much smaller at that energy (the beams do not
suffer from head–on collisions). Furthermore, this was to
be expected since the beam separation is so much larger at
injection. However, as we have seen in the last section, the
DA has been reduced by a considerable amount and at one
phase space angle by as much as 4σ. From this we have
to conclude that the parasitic beam–beam kicks are rele-
vant with respect to the DA even for separation in excess of
12σ.

8 EARLY INDICATOR OF PARTICLE
LOSS

Since many years the onset of chaos was used as an early
indicator of particle losses (for a more complete review
see Ref. [9]). However, due to the fact that the dynamic
aperture does not reduce much beyond10 5 turns, the indi-
cator rendered too pessimistic estimates of the DA. How-
ever, this is obviously no longer true when beam–beam
kicks have been introduced in the simulations. It seems
therefore worthwhile to reexamine this technique. The first
observation has been that the global onset of chaotic mo-
tion is too optimistic. Instead, one has to watch for nests
of chaotic motion, which we call “chaotic spikes”, inside
the mostly regular regime, i.e. at smaller amplitudes. Of
course, by definition, there always exist very thin chaotic
regimes deep in the regular domain which will not lead to
particle loss after finite times. Our pragmatic approach is
to choose a certain width of the chaotic spike as a criterion
for very long–term losses. For this report we have chosen
a spike width of some 0.3σ, but this has to be further opti-
mised to render reliable results.



1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 4 6 8 10 12

Initial Amplitude [ sigma ]

D
is

ta
n

ce
 in

 P
h

as
e 

S
p

ac
e 

o
f 

2 
in

it
ia

ly
 

cl
o

se
-b

y 
P

ar
ti

cl
es

Chaotic Spike

Figure 7: Example for a chaotic spike. A chaotic spike
we consider a limited range of amplitudes with chaotic be-
haviour. This has to be distinguished from the broad onset
of chaos where particle loss sets in rather quickly.

Chaos is typically being detected by following the evolu-
tion of the distance of phase space of two initially close–by
particles. Figure 7 shows an example of such a distance
after105 turns. Whenever this distance rises by many or-
ders of magnitude (the maximum is normalised to 1) the
motion exhibits chaotic behaviour. The (red) arrow in the
figure indicates what we call a chaotic spike and the prob-
able long–term DA.

In Figure 8 this techniques is shown in action for the
300 individual tracking runs that make a typical study
case (60 seeds and 5 phase space angles): the upper
curve, (red) squares, shows the105 turns DA, the medium
curves, (blue) triangles, depicts the106 turns DA and lastly
the lower curve, (magenta) diamonds, demonstrates that
chaotic spikes derived from105 turns can serve as a not
too pessimistic indicator of long–term losses.
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9 AMPLITUDE BLOW–UP

Another interesting indicator of particle loss is the onset
of the amplitude blow–up of a particle. In Figure 9 an ex-
ample is shown with the maximum and mean amplitudes
versus the initial amplitude. (The line “slope=1” represents
the condition of mean amplitude equal to the initial one.)
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Figure 9:Example for an amplitude spike.

As for the case of the global onset of chaos the global
amplitude blow–up is too optimistic to predict the long–
term DA. As a criterion we define here the “amplitude
spike” as that initial amplitude at which the maximum am-
plitude exceeds by 10% what is expected from previous
maximum amplitudes.
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Figure 10: DA for 105 turns (upper curve (red) squares)
and 106 turns (medium curve (blue) triangles) in compari-
son with the amplitude spikes (lower curve (magenta) dia-
monds); compare with Figure 8.

Figure 10 shows the same105 and106 turn DA curves
as in Figure 8 but this time together with the amplitude
spikes. This type of indicator also seems to have some
predictive power but it is probable less reliable than the
“chaotic spike” approach.



10 CONCLUSIONS

The DA of the LHC including beam–beam kicks has
been studied for both injection and collision energy. In both
cases the parasitic beam–beam kicks lead to sizable reduc-
tions of the DA. In particular, we observe that there are very
slow but considerable losses at small amplitudes, such that
our usual105 turn tracking is by far to optimistic. By the
same token early indicator become again important, since
they allow to find only slightly pessimistic predictions of
the DA for106 turns and more.

11 ACKNOWLEDGEMENT

We would like to thank Hans Grote for providing us with
the triplet correction settings and the beam separation at the
locations of the beam encounters.

12 REFERENCES

[1] L. Jin and F. Schmidt, “Tune Scan Studies for the
LHC at Injection Energy”, LHC Project Report 377,
http://wwwslap.cern.ch/frs/report/tunescan99v6.ps.gz.

[2] F. Schmidt, “SixTrack, Version 1, Single particle track-
ing code treating transverse motion with synchrotron os-
cillations in a symplectic manner”, CERN/SL/90–11(AP)
(1990).

[3] A. Verdier and A. Faus–Golfe,Multipole Compensation in
the LHC low–β Insertions, PAC97 Vancouver, Conference
Proceedings, and LHC Project Report 116.

[4] H. Grote,Self-consistent Orbits for Beam-beam Interactions
in the LHC, LHC Project Note 216.

[5] L.H.A. Leunissen, H. Grote, F. Schmidt, “LHC
Dynamic Aperture including the Beam-Beam
Force”, CERN–LHC–Project–Report–405, paper pre-
sented at the EPAC Conference in Vienna 2000,
http://wwwslap.cern.ch/frs/report/TUP6B12.ps.gz.

[6] Y. Papaphilippou and F. Zimmermann, “Weak–strong
beam–beam simulations for the LHC”, Proceedings of the
workshop on: “Beam–Beam Effects in Large Hadron Col-
liders –LHC99–”, pp. 76–80, CERN–SL–99–039 AP,
http://wwwslap.cern.ch/frs/report/workshop2new.ps.gz.

[7] H. Grote, L.H.A. Leunissen and F. Schmidt, “LHC Dy-
namic Aperture at Collision”, LHC Project Note 197,
http://wwwslap.cern.ch/frs/report/lhcnotexx.ps.gz.
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Weak-Strong Simulation Studies for the LHC Long-Range Beam-Beam
Compensation

F. Zimmermann, CERN, Geneva, Switzerland

Abstract

Using weak-strong computer simulations, we study the
improvement of LHC tune footprints and dynamic aper-
ture by electromagnetic lenses,i.e., pulsed wires, which
compensate for the long-range beam-beam interaction. In
particular, we explore the robustness of this compensation
scheme to linear optics imperfections as well as to errors in
wire strength and position.

1 INTRODUCTION

The long-range or parasitic collisions are expected to
limit the dynamic aperture of the LHC [1, 2, 3]. A com-
pensation scheme for the effect of the long-range collisions,
proposed by J.-P. Koutchouk, is presently under investiga-
tion at CERN [4, 5, 6]. The compensation employs an elec-
tric wire on each side of each interaction point (IP). The
wire carries an integrated current of about 80 Ampere me-
ter, and it is placed at a horizontal or vertical distance from
the beam that equals the effective beam-beam separation at
the long-range encounters, about9.5σ at top energy. If the
current is pulsed or ramped at the start of each bunch train
the correction can work even for the so-called PACMAN
bunches [7],i.e., for bunches which do not experience the
full set of long-range encounters, due to gaps in the oppos-
ing beam.

In this report, we report weak-strong simulation results
for the wire compensation scheme. The simulation pro-
gram is the same as described in Ref. [2], except that two
electric wires have been added. Considering two head-on
collisions with alternating crossing and the parasitic colli-
sions around each head-on IP, the simulation yields the tune
footprints and the action diffusion rate at various betatron
amplitudes. Using this simulation, we study the sensitivity
of the wire compensation to various errors, such as to er-
rors in the wire position, the wire strength, or the betatron
phase advance between the wire and the collision point.

Section 2 describes the simulation model in more detail.
Results are presented in Section 3. Conclusions are drawn
in Section 4.

2 MODEL

The simulation study follows John Irwin’s approach for
the SSC [2, 8]. It is a 4-dimensional code, without syn-
chrotron oscillations. However, tune modulation can be in-
cluded as an option.

We consider two IPs, one with horizontal crossing, the
other with vertical. This models the two main IPs in the

Table 1: Parameters.
parameter symbol value
number of particles per bunch Nb 1.1 × 1011

beam energy Eb 7 TeV
rms beam size at IP σ∗

x,y 16µm
rms divergence at IP θ∗

x,y 31.7µrad
IP beta function β∗

x,y 50 cm
full crossing angle θc 300µrad
number of main collision points nIP 2
parasitic collisions per side npar 16
bunch spacing Lsep 7.48 m
beam-beam parameter ξ 0.00342
revolution frequency frev 11.25 kHz

LHC. Simulation parameters are summarized in Table 1.
At the parasitic collision points the beams are separated by
θc/θ∗x,y ≈ 9.5 rms beam sizes. The fractional tunes are
set to the LHC design values of 0.31 and 0.32. The phase
advance between IPs is taken to be exactly half the total
phase advance per turn.

At each IP we apply a series of 3 kicks representing, re-
spectively,

• the lumped effect of long-range collisions and wire
compensation on the incoming side,

• a head-on collision,

• the lumped effect of long-range collisions and wire
compensation on the outgoing side.

2.1 Head-On Collision

The head-on collision with a round Gaussian beam is
parametrized as

∆x′ =
2rpNb

γ

x

r2

(
1 − e−

r2

2σ∗ 2

)
(1)

∆y′ =
2rpNb

γ

y

r2

(
1 − e−

r2

2σ∗ 2

)
(2)

whereσ∗ ≡ σx = σy; r =
√

x2 + y2 is the radial distance
to the origin,rp the classical proton radius,γ the Lorentz
factor, andNb the bunch population. The phase-space co-
ordinatesx, x′, y, andy′ refer to the IP.

2.2 Long-Range Interactions

All parasitic collisions (npar) on one side of the IP are
lumped into a single deflection. Assuming a perfectπ/2



distance in phase advance between head-on and parasitic
collision points, the kick is approximately expressed as a
change in the IP coordinate (while the IP angle stays un-
changed). For the IP with horizontal crossing, the IP coor-
dinates and slopes are changed according to

∆x = npar
2rpNb

γ

[
x′ + θc

θ2
t
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t

2θ∗2
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− 1
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(
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(3)

∆y = npar
2rpNb

γ
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θ2
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)
(4)

where
θt ≡

(
(x′ + θc)2 + y′2)1/2

(5)

andθ∗ ≡ θ∗x = θ∗y is the rms IP beam divergence. At the
LHC, the effective number of parasitic crossings per side
is npar ≈ 16. The expression for the kick is the same on
both sides of the IP. The second IP, with vertical crossing,
is treated analogously.

2.3 Wire Compensation

The new feature of the code is the electric wire. For a
horizontal crossing, the effect of a thin wire is represented
as:

∆x =
µ0Iwlw
2π(Bρ)

[
x′ + θc,w ± φxx/β∗

x

θ2
tw

− 1
θc,w

]
(6)

∆x′ = −(±1)φx ∆x/β∗
x

∆y =
µ0Iwlw
2π(Bρ)

y′ ± φyy/β∗
y

θ2
tw

∆y′ = −(±1)φy ∆y/β∗
y

where

θtw ≡ (
(x′ + θc,w ± φxx/β∗

x)2 + (y ± φyy/β∗
y)2

)1/2
,
(7)

andlw is the length of the wire,θc,w is the angle at the IP
representing the transverse distance between the beam and
the wire,Iw the wire current, and(Bρ) the magnetic rigid-
ity of the beam. The± signs refer to the two sides of the IP.
Again the vertical crossing is treated in analogy. The errors
φx andφy represent the deviation in phase advance from
the IP with respect to the ideal valueπ/2. Simultanously
they also give the differences in phase advance from the
location of the long-range collisions. At the wire location
presently contemplated, the phase errors are about 2–3◦ in
the design optics [4]. For perfect compensation, the wire
current must be chosen as

Iw = −4π(Bρ)Nbrpnpar/(µ0γlw). (8)

The ideal distance between wire and beam isdw ≈
(θc/θ∗x,y)σ, whereσ denotes the rms beam size at the wire.
This corresponds toθc,w = θc.

Figure 1: Tune footprints for various cases, for initial hori-
zontal and vertical amplitudes extending to 7σx,y. Top left:
head-on collisions only; top right: head-on plus long-range
collisions; bottom left: head-on plus long-range collisions
and a perfect wire; bottom right: head-on plus long-range
collisions and a wire with 20% strength error.

2.4 Compensation Errors

We consider five types of errors, namely,

• a simultaneous symmetric betatron phase error φx,y

on both sides of each IP,

• a static wire strength error,

• a random wire strength error,

• a wire position error,

• a betatron phase error φx,y with only one wire per IP.

Simulation results for each case are discussed next.

3 RESULTS

Figure 1 shows tune footprints computed for initial am-
plitudes extending to 7σx,y. The tunes were calculated by
applying a fast Fourier transform to particle positions sam-
pled over 4096 turns. The top left picture shows the tune
footprint for the two head-on collisions alone, the top right
the enhancement of the footprint by the long-range colli-
sions. The bottom left picture demonstrates that an ideal
wire reduces the footprint to a size equal to or even smaller
than that for head-on collisions only. The compensation
still works even with a significant static strength error, as
illustrated in the last picture.

Diffusion rates are calculated by launching groups of
100 particles at identical start amplitudes in the horizon-
tal and vertical plane, but with random initial betatron
phase. The spread in linear action values is averaged over
1000 consecutive turns to reduce fluctuations due to regular



Figure 2: The diffusion per turn as a function of the start
amplitude. Different cases are compared.

phase deformations, and to more clearly pronounce chaotic
behavior. The mean increase per turn in the action variance
measures the strength of the diffusion.

Figure 2 shows the simulated diffusion rates as a func-
tion of start amplitude. The vertical axis is on a logarith-
mic scale. It represents the increase in the action variance
per turn, in units of the rms design emittance. Any value
larger than 10−8 could indicate a significant diffusion over
108 turns. It is most noteworthy, that at an amplitude of
about 6σ the diffusion rate increases by 7–9 orders of mag-
nitude, if long-range collisions are present (the red curve,
squares). The strong diffusion is absent when only head-on
collisions are accounted for (the blue curve, circles). This
is consistent with the results of Ref. [2]. When the elec-
tric compensating wire is added (green curve, upright trian-
gles), the amplitude of the steep increase moves outwards
by 1.5–2σ, to about 7.5–8σ. This remarkable improvement
confirms the efficiency of the wire. Even with an imperfect
wire (2◦ phase error - the pink curve, inverse triangles), the
diffusion rates in the intermediate amplitude range 6–8σ
is still several orders of magnitude lower than without the
wire. Note that a 2σ improvement of the dynamic aperture,
in both planes, might greatly improve the operating margin
of the LHC.

That the wire compensation fails for amplitudes larger
than 8σ is understandable. At amplitudes above 8σ the par-
ticles start passing through the core of the opposing beam,
where the beam force strongly deviates from the 1/r force
of the wire.

Figure 3 shows a more systematic study of the effect of
a phase error. The same phase error with respect to the
head-on collision point was assumed for the wires on either
side of the IP and in both planes. Results are compared for
three different amplitudes. Since, for phase errors of about
±10◦, the diffusion rate at 7.5σ increases to the uncompen-
sated level, we may consider this value as the phase toler-
ance. In practice, the phase errors are confined to less than
2 ± 1◦ [4], i.e., phase errors due to optical imperfections
will have a negligible effect on the beam-beam compensa-

Figure 3: Variation of diffusion rate with symmetric beta-
tron phase error at various amplitudes. The phase errors
for the wires on either side and for the two planes are all
assumed to be equal.

Figure 4: Variation of diffusion rate with betatron phase
error at various amplitudes, if there is a compensating wire
only on one side of each IP.

tion.
Alternatively, we consider the case that there is only one

wire per IP and study the sensitivity to betatron phase errors
in this configuration. The results are shown in Fig. 4. They
are similar to, or even lower than, those in Fig. 3, despite
of the reduced symmetry. Since it is not possible to choose
a location with a phase error less than 1◦ also here we take
±10◦ as the tolerance. The differences in the diffusion rates
for one and two wires depend on the working point.

If the wire current is not perfect, the compensation de-
grades. This is studied in Fig. 5 (again for two wires per
IP), depicting diffusion rates at 6.5, 7 and 7.5 σ as a func-
tion of the wire strength error in percent. Especially at the
largest amplitude, the dependence is rather erratic, presum-
ably indicating the existence of resonance islands. Static
strength errors in the range between 0 and −10% appear
acceptable.

The effect of a random change in the wire strength from
turn to turn is illustrated in Figs. 6 and 7. The strength of



Figure 5: Variation of diffusion rate with static wire
strength error (in units of percent) at various amplitudes.

each wire is assumed to fluctuate from turn to turn. Plot-
ted along the horizontal axis is the normalized peak value
∆Iw/Iw of the random fluctuation in wire current. The lat-
ter is uniformly distributed between −∆Iw and ∆Iw. Then
the diffusion rates should be symmetric around zero, and
deviations from the mirror symmetry reflect the uncertainty
of the simulation result, due to the choice of random seed.

In the simulation of Fig. 6, we have assumed that the
fluctuation in wire strength does not give rise to dipolar
deflections. This means, that in Eq. (6) all three terms con-
taining the factor θc,w were varied simultaneously. For the
corresponding results in Fig. 7, only the average dipole de-
flection, i.e., not including the fluctuating part, was sub-
tracted from the wire force. In this case, the beam expe-
riences random dipole kicks in addition to fluctuating fo-
cusing forces, and higher order terms. Since no fast orbit
feedback is foreseen for the LHC at top energy the second
simulation is more realistic. The difference in the com-
puted diffusion rates is small, however, which suggests that
the random quadrupolar excitation is more harmful than the
dipolar one. Both figures indicate that the tolerance on the
turn-to-turn stability of the wire is less than 0.1%.

Finally, Fig. 8 shows simulated diffusion rates as a func-
tion of an error in the transverse distance between beam
and wire. We observe that errors in the wire position to-
wards larger amplitudes are preferred, presumably because
the 1/r field increases strongly in the vicinity of the thin
wire. Note that the sharp increase in the diffusion rates for
smaller distances is consistent with the steep rise at an am-
plitude of 7.5σ, in Fig. 2, and that the preservation of a low
diffusion rate for distances 10–20% larger than nominal is
compatible with the dependence on the static strength error
in Fig. 5. We deduce from Fig. 8 that the tolerable range of
distances extends approximately between 0 and 20% of the
optimum distance.

In LHC operation, the relative distance of beam and wire
can be determined with sufficient precision by detecting the
effect of the wire current on the closed orbit.

Figure 6: Variation of diffusion rate with peak value of
turn-to-turn random wire strength error at various ampli-
tudes. The dipolar deflection by the wire is subtracted in-
cluding its fluctuation.
.

Figure 7: Variation of diffusion rate with random wire
strength error at various amplitudes. The average dipole
deflection is subtracted.
.

Figure 8: Variation of diffusion rate with wire position er-
ror at various amplitudes. Zero on the horizontal axis refers
to a beam-wire distance of (θc/θ∗x,y)σ ≈ 9.5σ.



4 CONCLUSIONS

Weak-strong simulation studies show that at amplitudes
between 6 and 8σ the wire compensation reduces the dif-
fusion rate by many orders of magnitude. The tolerance to
betatron phase errors is about 10◦. The tolerable range of
static strength errors extends between 0 and −10%. Trans-
verse distance errors between 0 and 20% are acceptable.
The most critical tolerance appears to be that to turn-to-
turn fluctuation of the wire strength. Here a stability better
than 0.1% must be achieved.
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Beam Sizes in Collision and Flip-Flop States at KEKB

F. Zimmermann, CERN, Geneva, Switzerland

Abstract

Evaluating a simplified linear model of the beam-beam
interaction, self-consistent horizontal beta functions, emit-
tances and beam sizes are computed for the two unequal
colliding beams in KEKB. For head-on collisions only one
equilibrium solution exists at the nominal tunes. However,
if for off-center collisions the quadrupolar component of
the beam-beam force becomes defocusing, we obtain two
solutions, one of which describes a flip-flop state with in-
creased size of the positron beam. This result may explain
observations of sudden luminosity drops.

1 INTRODUCTION

During KEKB operation drops in the luminosity are ob-
served, which are associated with step changes in the hor-
izontal and/or vertical beam sizes at the interaction point
(IP) [1]. Often the LER horizontal beam size increases.
Changes in the beam size appear to be correlated with small
orbit variations. In particular, a hysteresis is observed when
the beam-beam separation at the collision point is varied.
In this report, we study a simple linear model of the self-
consistent horizontal optics and emittances for the two un-
equal colliding beams, evaluate their dependence on the be-
tatron tune and the beam-beam tune shift, and demonstrate
the existence of flip-flop solutions for off-center collisions.

2 SELF-CONSISTENT OPTICS AND
BEAM SIZES

In collision, the beam emittance and beta functions are
changed by the focusing force of the opposing beam. Ne-
glecting the change in the other beam (weak-strong approx-
imation), the horizontal dynamic beta function, βx,1(2), at
the collision point is usually obtained as [2]

bx,1(2) ≡
βx0,1(2)

βx,1(2)
=

sin 2π(Q1(2) + ∆Q1(2))
sin 2πQ1(2)

(1)

where

Q1(2) + ∆Q1(2) =
1
2π

arcos
(
cos 2πQ1(2)

−2πξ0,1(2) sin 2πQ1(2)

)
(2)

and Q1(2) denotes the unperturbed horizontal betatron tune
of beam 1 (or beam 2). The subindices 1 and 2 refer to the
electron (HER) and positron beam (LER), respectively; the
subindex ‘0’ signifies the values of beta function and emit-
tance without the focusing effect of the opposing beam.

Table 1: Parameters relevant to the flip-flop analysis.

variable HER LER
hor. beam-beam tune shift ξx 0.049 0.055
vert. beam-beam tune shift ξy 0.025 0.037
hor. tune 44.520 45.505
vert. tune 41.587 43.575
hor. beta function βx0 63 cm 59 cm
vert. beta function βy0 0.7 cm 0.7 cm
vert. beam-beam tune shift ξy 0.025 0.037
single-bunch current 0.48 mA 0.63 mA

The parameter ξ0,1(2) is the horizontal beam-beam tune
shift, calculated from the unperturbed beta functions and
emittances,

ξ0,1(2) ≡
N2(1)r0

2πγεx0,2(1)

βx0,1(2)

βx0,2(1)
, (3)

where r0 denotes the classical electron radius. For the
parameter values of KEKB, summarized in Table 1, the
(inverse) normalized dynamic beta functions evaluate to
bx,1 = 2.40 and bx,2 = 4.78.

Since the actual beam-beam tune shift, ξ1,2, depends on
the dynamic beta function, Eq. (1) does not describe a self-
consistent solution of the problem. Neither can it account
for flip-flop phenomena or for the simultaneous existence
of more than one equilibrium state. The flip-flop effect
with linearized beam-beam force for round beams was re-
cently analyzed by A. Otboyev and E. Perevedentsev [3],
who computed self-consistent beta functions and equilib-
rium emittances. We here follow and extend their formal-
ism, and then apply it to the KEKB case of flat beams with
unequal parameters. For simplicity, we limit the discus-
sion to the horizontal plane, in which flip-flop effects are
frequently observed.

The basic equations governing the evolution of the beta
functions are [3]

b2
1 = 1 + 2c1x1

b2

e2
− x2

1

b2
2

e2
2

(4)

b2
2 = 1 + 2c2x2

b1

e1
− x2

2

b2
1

e2
1

(5)

were c1(2) ≡ cot(2πQ1(2)), b1(2) ≡ βx0,1(2)/βx,1(2),
x1(2) ≡ 2πξ0,1(2), and e1(2) ≡ εx,1(2)/εx0,1(2).

Figure 1 displays the graphical method [4] of solving
Eqs. (4) and (5). Plotting the two curves b1(b2) and b2(b1),



solutions to (4) and (5) are given by their intersections. As
can be seen, for the parameters considered and for constant
emittances, e1 = e2 = 1, there is only one intersection and,
hence, no flip flop is expected. Figure 2 shows an equiva-
lent picture obtained by neglecting the quadratic terms in
(4) and (5). The difference to Fig. 1 is insignificant.

Figure 1: Graphical solution of the complete Eqs. (4)–(5)
for constant emittances, e1(2) ≡ εx,1(2)/εx0,1(2) = 1. Plot-
ted is the variation of the inverse electron beta function,
b1 = βx0,1/βx,1, as a function of the inverse positron beta
function, b2 = βx0,2/βx,2, for the parameters of Table 1.

Figure 2: Graphical solution of Eqs. (4)–(5), considering
only the terms proportional to c1(2)x1(2), for constant emit-
tances, e1,2 ≡ εx,1(2)/εx0,1(2) = 1. Plotted is the varia-
tion of the inverse electron beta function, b1 = βx0,1/βx,1,
as a function of the inverse positron beta function, b 2 =
βx0,2/βx,2, for the parameters of Table 1.

If the beams collide with a horizontal offset, the
quadrupolar component of the beam-beam force may
change sign. Figure 3 shows the graphical solution for an
unperturbed beam-beam tune shift parameter ξ0 equal to
−1/4 times the nominal value. Still there is only one inter-
section.

Next we include the variation in emittance. Following
Ref. [5], or ignoring the oscillatory term in the solution

Figure 3: Graphical solution of Eqs. (4)–(5) for constant
emittances, e1,2 ≡ εx,1(2)/εx0,1(2) = 1, assuming a neg-
ative beam-beam tune shift ξ0,1(2) = −0.25ξnom

0,1(2), where
ξnom
0,1(2) represents the nominal value listed in Table 1. Plot-

ted is the variation of the inverse electron beta function,
b1 = βx0,1/βx,1, as a function of the inverse positron beta
function, b2 = βx0,2/βx,2.

of Ref. [3], the emittance changes with the strength of the
beam-beam focusing according to

e1(2) =
1 + p1(2) cot 2πQx,1(2)√

1 + 2p1(2) cot 2πQx,1(2) − p2
1(2)

, (6)

where e1(2) ≡ εx, 1(2)/εx0,1(2) and p1,2 ≡
x1,2b2,1/e2,1/b1,2. This equation is illustrated in Fig. 4.

Figures 5 and 6 shows a more precise SAD computation
of the dynamic emittances and beta functions as a function
of the beam-beam tune shift, provided by H. Koiso, which
accounts for the exact ring optics. The emittance variation
in Fig. 5 agrees within 10% with the simplified estimate of
Eq. (6) and Fig. 4.

Figure 4: Horizontal emittance e1,2 in the high energy and
low energy ring as a function of beam-beam parameter ξ 1,2,
for constant values of b2,1 = e2,1 = 1, according to Eq. (6).

From Figs. 4 and 5, we approximate the dependence of
the horizontal emittances on the beam-beam lens by the



Figure 5: Dynamic emittance in units of the unperturbed
emittance, e1,2, as a function of beam-beam tune shift for
the low and high-energy rings of KEKB, computed by
SAD. (Courtesy H. Koiso)

Figure 6: Horizontal beta functions β1,2/β0,1,2 ≡ 1/b1,2

as a function of beam-beam tune shift for the low and
high-energy rings of KEKB, computed by SAD. (Courtesy
H. Koiso)

linear relations

e1 ≈ 1 + k1x1
b2

b1e2
, (7)

e2 ≈ 1 + k2x2
b1

b2e1
, (8)

where, for the nominal tunes (subindex 0), k1 = k0,1 ≈
1.3, and k2 = k0,2 ≈ 4.6. The reason why the values
of k0,1 and k0,2 are so different is that in the LER the hori-
zontal tune is much closer to the half integer resonance (see
Eq. (6) and Table 1). Note that the equation for e 1(2) also
contains the beta function b1(2), which is an extension of
the formulae in Ref. [3] that naturally follows from Eq. (6)
inserting the definitions of p1,2 and x1,2. Equations (7) and
(8) are approximations, which could be refined in future
studies.

We can solve the two equations (7) and (8) for e1,2:

e1 =
1
2

(
1 + k1x1

b2

b1
− k2x2

b1

b2

)

+

√
1
4

(
1 + k1x1

b2

b1
− k2x2

b1

b2

)2

+ k2x2
b1

b2
,

e2 =
1
2

(
1 + k2x2

b1

b2
− k1x1

b2

b1

)

+

√
1
4

(
1 + k2x2

b1

b2
− k1x1

b2

b1

)2

+ k1x1
b2

b1
.

Inserting these expressions into Eqs. (4) and (5), we may
once again use the graphical method to determine the re-
maining two unknowns b1 and b2.

Figure 7 shows the solution for the nominal parameters
of Table 1. There is only one intersection, which indicates
a unique equilibrium. The curves look similar to those in
Fig. 1, which were computed for constant emittances.

Figure 7: Graphical solution of Eqs. (4)–(5) for emittances
that vary linearly with the strength of the beam-beam force
as in Eqs. (7) and (8). Plotted is the electron beta function,
b1 = βx0,e/βx,e, as a function of the positron beta function,
b2 = βx0,p/βx,p, for the nominal parameters of Table 1.

The situation changes dramatically, if we invert the sign
of the beam-beam tune shift, in order to model a situation
with off-center collisions. Figure 8 illustrates a typical ex-
ample, where we consider an unperturbed tune shift equal
to −0.25 ξnom

0,1(2). In this case there are two intersections,
i.e., two solutions. This is quite different from the result for
constant emittances in Fig. 3. One of the two solutions rep-
resents a large increase of the positron beta function (small
value of b2), possibly consistent with the observed flip-flop
state.

The self-consistent beta functions and emittances de-
pend on the tunes of both beams. Figures 9 and 10
illustrate the dependence of the normalized beam sizes
σx,1(2)/σx0,1(2) =

√
e1(2)/b1(2) on the tunes in either ring,

respectively, for the nominal beam-beam tune shift. In this
calculation, we have approximated the variation of the co-
efficients k1 and k2 in Eqs. (7) and (8) with the tunes Q1,2



Figure 8: Graphical solution of Eqs. (4)–(5) assuming a
negative beam-beam tune shift ξ0,1(2) = −0.25ξnom

0,1(2), for
emittances that vary linearly with the strength of the beam-
beam force as in Eqs. (7) and (8). Plotted is the electron
beta function, b1 = βx0,e/βx,e, as a function of the positron
beta function, b2 = βx0,p/βx,p.

as

k1(2) ≈ k0,1(2) cot(2πQ1(2))/ cot(2πQ0,1(2)). (9)

Figure 9: Self-consistent horizontal beam sizes σx/σx0 as
a function of the positron tune (right). The positron tune is
set to 0.505.

An offset between the two beams at the collision point
distorts the closed orbit, introduces a change in the linear
focusing, and excites additional higher-order resonances.
As indicated earlier in this paper, we only consider the
variation in the quadrupolar focusing force, and approxi-
mate the change in the focusing due to a varying beam-
beam separation by a common multiplication factor M ξ for
the two beam-beam tune shift parameters. This is based
on the assumption that a small beam-beam offset reduces
the strength of linear focusing experienced at the collision
point by a similar factor for either beam, provided the sizes
of the two beams are equal (note that they will not remain
equal once a flip-flop state is established). For larger off-

Figure 10: Self-consistent horizontal beam sizes σx/σx0 as
a function of the positron tune. The electron tune is set to
0.520.

sets, the beam-beam focusing force changes sign, which
we model by a negative value for Mξ.

Figures 11–13 illustrate the dynamic variation of beta
function, emittances and beam sizes as a function of a pos-
itive multiplication factor Mξ. The beta functions decrease
more strongly than the emittances increase as a function
of the beam-beam tune shift, such that the IP beam sizes
shrink for higher current. Equivalent results for a negative
multiplication factor Mξ are shown in Figs. 14–16. Consis-
tent with Fig. 3, in the latter case two solutions coexist. The
additional solution appears to be of the flip-flop type. It is
characterized by a large increase in the LER IP beta func-
tion (Fig. 14), a decrease in the emittance (Fig. 15) and a
resulting net growth of the IP beam size (Fig. 16).

A tentative explanation of the observed hysteresis may
then be the following. For a sufficiently large beam-beam
offset of about 2σx, the ‘quadrupolar’ component of the
horizontal beam-beam force changes sign, i.e., the force be-
comes defocusing instead of focusing, and there emerges a
new equilibrium, which represents a flip-flop state. There-
fore, repeated changes in the sign of ξ — due to vary-
ing beam-beam separation —, might induce transitions be-
tween the different solutions that exist for ξ < 0.

3 CONCLUSIONS

Calculations of horizontal equilibrium sizes for head-on
colliding beams at KEKB suggest the existence of a unique
equilibrium solution. If the beams are horizontally sepa-
rated sufficiently far that the ‘quadrupolar’ component of
the beam-beam force is defocusing, two self-consistent so-
lutions coexist, one of which describes a flip-flop state, in
which the positron beam is blown up. This appears consis-
tent with some of the observations.

Our analysis was based on a simplified model, which
considers only the horizontal plane, a linearized beam-
beam force, a linear dependence of the emittance on the
beam-beam tune shift, and a common scale factor for both
beam-beam parameters representing the effect of a trans-



Figure 11: Self-consistent dynamic beta functions
β1,2/β0,1,2 ≡ 1/b1,2, as a function of a common posi-
tive multiplication factor Mξ for both tune shift parameters.
This multiplication factor is intended to model a change in
linear focusing arising from a beam-beam offset. The tunes
are set to 0.520 (HER, e−) and 0.505 (LER, e+), respec-
tively.

Figure 12: Self-consistent dynamic emittances e1,2 ≡
ε1,2/ε0,1,2, as a function of a common positive multipli-
cation factor Mξ for both tune shift parameters. This mul-
tiplication factor is intended to model a change in linear
focusing arising from a beam-beam offset. The tunes are
set to 0.520 (HER, e−) and 0.505 (LER, e+), respectively.

verse offset. All of these approximations could be im-
proved. Future extensions might also include the vertical
plane, bunch length and crossing angle, as well as the non-
linear components of the force including an arbitrary beam-
beam separation.
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Figure 13: Self-consistent dynamic beam sizes
σ1,2/σ0,1,2 ≡ √

e1,2/b1,2, as a function of a com-
mon positive multiplication factor Mξ for both tune shift
parameters. This multiplication factor is intended to model
a change in linear focusing arising from a beam-beam
offset. The tunes are set to 0.520 (HER, e−) and 0.505
(LER, e+), respectively.

Figure 14: Self-consistent dynamic beta functions
β1,2/β0,1,2 ≡ 1/b1,2, as a function of a common nega-
tive multiplication factor Mξ for both tune shift parameters.
This multiplication factor is intended to model a change in
linear focusing arising from a beam-beam offset. The tunes
are set to 0.520 (HER, e−) and 0.505 (LER, e+), respec-
tively.

this work.
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Summary of session on beam-beam compensation schemes

W. Herr CERN, SL Division

Abstract

This paper summarizes the presentations and discussions
in the session on beam-beam compensation held during the
workshop on beam-beam effects at Fermilab on 25 to 27
June 2001. The presentations and discussion were focused
on two main topics: linear and non-linear compensation
with electron lenses in the Tevatron and a compensation
scheme for long-range effects in the LHC using a pulsed
wire.

1 INTRODUCTION

In high luminosity hadron colliders the beam-beam ef-
fect eventually limits the bunch intensities. Recently
schemes have been proposed to compensate part of the
detrimental effects. During this session three presentation
were made:

• Correction of the long-range beam-beam effect in
LHC using electromagnetic lenses; by J.P. Koutchouk,
CERN

• Simulation of the LHC long-range compensation; by
F. Zimmermann, CERN

• Study of the Tevatron compensation; by D. Shatilov,
BINP

The presentations were discussed and some issues of gen-
eral interest for beam-beam compensation that were raised
during this session are presented here.

2 COMPENSATION OF LONG-RANGE
EFFECTS

Recently the long-range beam-beam effects have been
more and more recognized as important factors for the sta-
bility of the beams in lepton and hadron colliders. Both,
active or passive compensation of at least part of these ef-
fects may be essential for machines with many bunches.

2.1 Pulsed wire for compensation of long range
effects

The proposal to compensate the long-range beam-beam
effects (LRE) was made after initial tracking studies have
shown the importance of long-range effects on the dynamic
aperture. It was realized that for large enough beam sepa-
ration the long range forces decrease with 1

r , where r is
the distance between the beams. Such a field can also be

produced by a thin wire. For the bulk of the long-range
encounters this assumption is valid and the separation is
typically between 7 and 10 σ. Furthermore, most of these
encounters happen where the beams are still approximately
round and at a phase advance of π

2 from the collision point.
It can therefore be justified to lump all interactions into
a single one. The linear part of the long range forces
is largely compensated by the alternating crossings in the
LHC interaction points. The size of the beam-beam tune-
spread (footprint) can be strongly decreased [1] by a wire
running along the beam. The current times length of such
a wire requires approximately 80A · 1m. The size of the
footprint can be decreased by a factor 10. Effects on the
closed orbit are corrected simultaneously.

The bunch filling scheme of the LHC causes a difficulty,
producing so-called PACMAN bunches which experience
only part of the beam-beam effect and therefore need only
part of the correction. To account for this it is proposed to
pulse the current in the wire at the beginning and end of
a batch, i.e. produce smaller compensating fields for the
PACMAN bunches.

Preliminary considerations have shown that such a
scheme is technically possible, using commercially avail-
able equipment.

The wire is operated in the vacuum of the machine and
therefore needs a cooling system. Such a cooling is techni-
cally difficult for a wire of 1 mm diameter and alternatives
have been proposed where a much thicker wire with cool-
ing inside is used and the surface of the wire is shaped to
obtain the correct 1

r dependence.

2.2 Simulation of long range compensation
with pulsed wire

To evaluate the above compensation scheme, a study was
launched to simulate the effect on the beam. A second
aim was to work out the tolerances and the sensitivity of
the proposed setup to imperfections. For that purpose a
weak-strong simulation was developed, assuming a linear
transport in the arcs and at the interaction point a head-on
collision and on both sides long-range collisions together
with a wire. The wire was assumed at a distance of 9.5 σ
and producing a 1

r force. The tests were made on possi-
ble betatron phase errors, as well as on wire positioning
and strength errors. For the evaluation the footprints and
the diffusion rate was used. Without errors the footprints
were reduced almost to the size of the head-on footprints
alone since the compensation in the program is almost per-
fect. Already in earlier studies it was shown that the dif-



fusion rate increases steeply for particle amplitudes above
6σ (witout wire). With a wire the increase of the diffu-
sion sets in about 1.5 to 2 σ later, i.e. a significant increase
of the available stable region. With phase errors of 2o to
the wire, the improvement is still 1 to 1.5 σ. Only for er-
rors larger that 10o the original steep increased is observed
again. However such phase errors are not expected for a
reasonably well behaved insertion optics. Studying the ef-
fect of static wire strength errors it was found that errors in
the range [-40%, +20%] still give a good correction.

The positioning of the wire with respect to the beam is
an important issue that may need some further thoughts, a
consensus reached during the discussion. The simulation
of positioning errors in the range [-40%, +60%] showed a
dependence with acceptable compensation in the interval
[-5%, +40%]. I.e. in case of positioning errors, an er-
ror away from the beam is preferable. While studying a
scheme with a single wire compensating the long-range ef-
fects from both sides of the interaction point, it was shown
that a scheme with two separate wires has advantages.

During the discussion it was agreed that no obstacle was
identified up to now and the participants of the workshop
strongly recommend to continue with this scheme.

3 STUDY OF TEVATRON
COMPENSATION

Another simulation study aimed to evaluate the linear
and non-linear compensation with electron lenses in the
Tevatron, and possibly to define some strategies for the op-
eration. For that purpose a weak-strong beam-beam code
was developed (LIFETRAC) for the Tevatron that is fully
symplectic in 6D and can use various noise sources, such as
tune modulation or beam separation at the collision point.

The main purpose of the linear beam-beam compensa-
tion is to suppress the bunch-to-bunch tune spread in the
Tevatron. In a first step, good and bad working points
are determined with the program. In the second step all
bunches at bad working points are moved to the good work-
ing points with linear electron lenses. varying the parame-
ters of the lenses and including perturbations this strategy
can be tested. After the application of the linear lenses,
the distributions of antiprotons at originally bad working
points are practically the same as on good working points.
Different electron lens profiles were investigated, studying
the antiproton tune-shift and the luminosity. The difference
was found to be rather small. Injecting noise on the elec-
tron beam led to exponential emittance growth.

The purpose of the non-linear compensation is to re-
duce the intrabunch tune spread, i.e. the tune footprint.
The footprint of long range beam-beam interactions show
a characteristic ’folding’ for particles at amplitudes close
to the beam separation. If this appears close to low order
resonances it is considered dangerous since there we have
dQ
dA ≈ 0. Bad lifetime of tails must be expected. The
effect of the non-linear lens is to scale down the footprint,
thus moving the folding over area to smaller particle am-

plitudes. This may now lead to a blowing up of the core of
the bunches that must be avoided. The recommended pro-
cedure now used in the simulation is to reduce the footprint
moderately, i.e. by a factor of two in the first step. A linear
lens should then be used to shift the bunch to a better work-
ing point where the reduced footprint is in an area free of
dangerous resonances. Therefore the non-linear and linear
compensation must be applied simultaneously.

In the discussion it was achnowledged that the study
helped to understand better the requirements and to define
the parameters for the compensation. However more exper-
imental data is desirable. While the linear compensation
looks very promising, it is recommended to further study
the non-linear compensation. A consensus was reached
that a small tune footprint (i.e. tune spread) alone does not
guarantee a safe running. It must be considered a necessity
but it is not sufficient.

4 CONCLUSIONS

Compensation schemes for head-on as well as for long
range beam-beam effects have been discussed. Both ap-
proaches were found promising and well under way and
the workshop strongly recommends to continue.
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Summary of the Session on Weak-Strong Phenomena

J.P. Koutchouk, CERN, Geneva, Switzerland

Abstract

This session took place June 26th in the afternoon, with
the participation of (by memory) Y. Alexahin, M. Bos-
colo, A. Burov, N. Gelfand, J.P. Koutchouk, F. Schmidt,
Y. Shatunov, V. Shiltsev, M. Syphers, T. Sen, M. Xiao, F.
Zimmermann. The charge to this session as foreseen by the
organizers was

� to review the present understanding of the weak-
strong phenomena in general

� and more specifically the performance limitations of
the Run II of the Tevatron,

� to review, propose and prioritize experiments crucial
to Run II, LHC, CESR and VLHC.

1 INTRODUCTION

This summary is organized as follows:

� The talks given in the session are briefly summarized
together with the discussions which arose,

� An attempt is made at comparing the evolution of the
understanding and of the outstanding questions over
the last few beam-beam workshops,

� A list of proposed actions is submitted.

2 SUMMARY OF THE TALKS AND
DISCUSSIONS

2.1 VLHC Proposal, by M. Syphers/FNAL

This proposal is now an official Fermilab document Fermi-
lab TM2149, June 4th 2001 and can be consulted on the
Web. The main feature of this proposal is a big tunnel to
house initially a 40 TeV machine and later a 200 TeV ma-
chine. Two experimental points are foreseen. A selection
of parameters relevant to the beam-beam effect is given in
Table 1. The beam aspect ratio at the IP’s (round or flat) is

Energy TeV 40 200
Luminosity

� � � � � � � � �
� �

m .3 .71
� � m .03 .08

�
/IP � .003 .008

# LR interactions comparable to Run II and LHC
LR separation � 10
Rad damping hour many 1

Table 1: A selection of VLHC Parameters

not yet decided. As commented by the author, the param-
eters of the beam-beam interactions in the VLHC proposal
are comparable to those of Run II and LHC and actually
less demanding.

The recent findings on Run II and LHC show however
that a long-range beam-beam separation of 10 � is insuffi-
cient. These machines will have to live with this limitation.
It is recommended to increase this separation in a new de-
sign. The target value is presently not clear, perhaps as
large as 15 � .

2.2 Tracking for LHC, by F. Schmidt/CERN

The issues in tracking with the beam-beam effect is an ac-
curate model of the physical phenomena and tracking over
long times. For LHC, the tracking is carried out in 6D ex-
cept for the b-b lens which is 4D. The tracking time has
been increased from

� � �
to

� � �
turns (89 s in accelerator

time). The average beam separation at the LR interaction
points is 14 � at injection and 9.5 � in collision. The main
results are summarized in table 2. The conclusions that can

Injection Collision
no beam-beam � 12 � 12
with beam-beam,

� � �
turns � 9 � 6

with beam-beam,
� � �

turns � 7 � 5
onset of chaos 7 4.5

Table 2: Dynamic aperture in LHC in �

be drawn from this study are:

� As already observed in former studies, the long range
beam-beam effect is indeed the limiting phenomenon.
It is significantly stronger than the machine non-
linearities.

� The few places where the beam separation is only 7 �

in collision do play a significant role.

� The phenomenology resembles that of a tune modu-
lation. Particles may be lost after

� � �
turns, i.e. on a

long time scale. What happens after
� � �

turns?

� With the nominal machine parameters, the LHC dy-
namic aperture in presence of the beam-beam interac-
tion might be too small.

� The tune spread at 12 � at injection due to the LR
interactions is only 0.001. It is clearly uncorrelated
with the dynamic aperture. The onset of chaos, though
not always easy to identify, seems well correlated.



2.3 Tracking for Run IIa, by M. Xiao/FNAL

In Run
�

IIa, the numbers of bunches is significantly in-
creased to increase the luminosity while reducing the num-
ber of events per collision. Each beam is made of 3 trains
of 12 bunches, i.e. 36 bunches instead of 6 in Run I. The
tracking scenario includes two head-on collision and 70
long-range interactions. The beam separation is 10 � ex-
cept at 4 places where it is only 6 � .

After discussion it appears that the tracking is 4D only.
This is OK for the footprints. For the dynamic aperture
however, without the synchrotron modulation, its results
should be interpreted as optimistic. Yet, the tracking results
show a drastic effect of the long-range interactions:

� The footprint of the PACMAN bunches is shifted by
0.01.

� The LR interactions increase the footprint by 60%
(comparable to LHC).

� The dynamic aperture decreases from 12 to 6 � at
� � �

turns (again comparable to LHC).

� A tune diffusion is noticeable for amplitude from 2 �

onwards.

A crossing angle (4D, with beam slicing) improves the
dynamic aperture by 1 to 2 � , with some reduction of the
luminosity.

Altogether, although the physics is not exactly the same
(the long-range interactions are spread in betatron phase all
around the Tevatron), the LHC and Run IIa tracking results
show significant similarities. In both cases, the beam sep-
aration of 10 � appears too small. The footprint criterion
which revealed to be the significant non-linear parameter
for the head-on collisions does not hold in presence of long-
range interactions. The 4D on-momentum tracking does
not incorporate dispersion-related phenomena analysed in
the next talk.

2.4 Synchro-betatron Coupling, by Y. Alex-
ahin/FNAL

This study is analytic and the quantitative results based on
perturbation theory. Three families of phenomena are stud-
ied:

� The beam-beam chromaticity: due to the non-
vanishing dispersion at the long-range interaction
points, the chromaticity is perturbed by the residual
sextupolar field of the exciting beam. The chromatic-
ity spread due to the amplitude spread is as large as 14
units. This seems to be probably just acceptable at the
Tevatron.

� Odd-order resonances close to the nominal working
point are excited. Calculations show that the 5th order
family together with its synchrotron satellites overlap,
creating the condition of a diffusion of the particles
from the core of the beam.

� A shorter bunch length causes synchrotron satellites
of even order resonances (12th order) to be broadened.
The resonance lines remain separated with the Cu RF
system. The stronger Sc RF system causes the high
Qs resonances to overlap.

Yuri advocates to change the nominal working point to
.685/.675 to minimize the excitation of the 5th order res-
onances. The other effects seem rather drastic and likely to
limit the performance in Run II. Tracking and experimental
data will be very useful.

2.5 Beam Rounder, by A. Burov/FNAL

This theoretical study provides a convenient formalism us-
ing circular modes to describe the beam motion. It can be
used to express and enforce the conservation of the angu-
lar momentum. In this way, round beams may be provided
at an interaction point from any emittance ratio. With this
new invariant, the motion is essentially 2D where the dif-
fusion in amplitude is minimized.

To support this approach, Y. Shatunov/Novossibirsk
showed tracking results for the future VEPP 2000 in the
case of beams rounded by betatron coupling. The blow-
up of the core occurs at a significantly larger beam-beam
parameter.

3 EVOLUTION OF THE
UNDERSTANDING

3.1 Issues in Novossibirsk/1989

At this time, only the head-on beam-beam effect was an
issue.

� Is
� � � � � �

possible in only one IP?: Not an issue
anymore. The ultimate limit seems on the side of the
coherent effects (see J. Shi in the session on coherent
effects).

� The diffusion in the tails need to be studied and mea-
sured: still true.

� The correction of the leading beam-beam effect (de-
tuning) by octupoles should be studied. S. Tem-
nykh/CESR mentions that this was done with some
success in electron machines. For protons, the new
ideas of an electron lens or a wire compensator are
clearly superior.

3.2 Issues in Montreux/1995
� Matching the beam sizes is more important than a

residual beam separation.

� Strong diffusion observed in HERA for amplitudes
above 2 � : That was not beam-beam.

� Long-range at LHC: the linear tune shift was an issue.
The residual transverse separation, estimated to be up



to 1 � , was not considered serious, based on experi-
ence in SPS, HERA and Tevatron: this does not seem
consistent with reports in Geneva/1999.

3.3 Issues in Geneva/1999
� The non-linearity of the LR interactions is identified

to be the major performance limit.

� A small transverse beam separation of 0.1 to 0.2 � is
reported to cause problems in several colliders (back-
ground, lifetime).

� Standardization of the simulation codes: It is noted
that it is impossible to compare tracking results with
many codes and as many input conventions. It is still
the case. There is apparently no serious incentive (and
framework) to make this effort.

3.4 Issues for this Workshop

It is quite clear that the hadron colliders entered the long-
range interaction era which appears much more significant
than anticipated. In electron machines, the main issue is the
trade-off between flat and round beams. A side issue is the
lack of consistence in the observations or interpretations
of the effect of a residual beam separation at the IP’s in
Montreux/1995 and Geneva/1999. Experiments are needed
to clarify this issue which is operationally important.

4 PROPOSED ACTIONS

We propose here a list of actions related to the main issues
of this workshop.

� Measurement of the footprint due to the long-range in-
teractions: a simple start to compare calculations and
measurements and gain confidence.

� Phenomenology associated with the long-range inter-
actions: Measurement of (lifetime, background, diffu-
sion) versus (LR separation, number of LR’s, tunes).

� Pacman Effect: bunch-by-bunch measurements of or-
bits, tunes, coupling, chromaticity, luminosity: is the
effect as expected? how to handle all these data? use-
fulness.

� measurement of synchro-betatron coupling versus
Xing angle with and without LR’s.

This series of experiments would be best carried out on the
Tevatron.

� Effect of a residual separation at the IP: what is tol-
erable? This experiment could be best carried out at
RHIC.

� Compensation of the LR effect. The progress at Fer-
milab with the electron lens is significant and further
experiments are of large interest for the community.

The ‘pulsed wire’ method is under study at Cern. V.
Shiltsev/FNAL proposes to test the idea (as much as
possible) at the Tevatron. This is very much encour-
aged.

� Flat versus round beams (for electrons but as well
hadrons): The studies on the Moebius machine are
planned to be resumed. S. Temnykh challenges the
community to help in finding a chromaticity correc-
tion scheme which works in this machine. When
VEPP2000 will be ready, it will be an excellent place
to study this issue.

� The report on the progress in understanding Daphne
was very interesting and the community is looking for-
ward to hear about the developments.

� Beam rounder: the concept is very interesting. Track-
ing and resonance calculations are necessary to eval-
uate the robustness of the scheme versus the imper-
fections which cannot be avoided in a real machine.
These numerical studies are encouraged.

5 CONCLUSION

The performance of the new colliders are limited by new
beam-beam issues (hadrons or electrons) with hardware
consequences (Xing angle, corrections schemes, focusing
doublets versus triplets). Theory and tracking provide a
clue at the parameter dependence but cannot replace ex-
periments, given the complexity of the problem. It be-
comes therefore necessary to launch a significant experi-
mental study programme to improve the understanding and
exploit the new ideas which are emerging.

6 ACKNOWLEDGEMENTS

Thanks to the organisers and the participants for a very in-
teresting session. This report is based on on-the-fly work-
shop notes. Please be indulgent in case of minor mistakes.
Otherwise, let me know.


