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Abstract:
We have studied the effect of one-loop logarithmic electroweak radiative corrections

on WZ and Wγ production processes at the LHC. We present analytical results for the
leading-logarithmic electroweak corrections to the corresponding partonic processes d̄u→
WZ, Wγ. Using the leading-pole approximation we implement these corrections into
Monte Carlo programs for pp→ lνll

′ l̄′, lνlγ. We find that electroweak corrections lower the
predictions by 5–20% in the physically interesting region of large transverse momentum
and small rapidity separation of the gauge bosons.
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1 Introduction

Vector-boson pair production provides us with an important testing ground for the non-
abelian structure of the Standard Model (SM). While gauge-boson properties, such as
masses and couplings to fermions, have already been measured with great accuracy at
LEP and Tevatron, vector-boson self-interactions have not been tested with comparable
precision. New physics occurring at energy scales much larger than those probed directly
at forthcoming experiments could modify the structure of these interactions. These mod-
ifications are parametrized in terms of anomalous couplings in the Yang–Mills vertices.

In the last few years, the contribution of trilinear gauge-boson couplings was directly
measured via vector-boson pair production at LEP2 and Tevatron. While, in particular,
LEP2 has been able to produce W+W− pairs with high statistics, nevertheless all these
events were generated at rather modest centre-of-mass (CM) energies (ECM

<∼ 210 GeV).
The effect of anomalous couplings is, on the other hand, expected to be strongly enhanced
by increasing the invariant mass of the gauge-boson pair MV V ′ (V, V ′ = W, Z, γ), since
these couplings in general spoil the unitarity cancellations for longitudinal gauge bosons.
Hence, at future colliders it will be useful to analyse the di-boson production at the highest
possible CM energies.

Moreover, vector-boson pairs constitute a background to other kinds of new-physics
searches. One of the gold-plated signals for supersymmetry at hadron colliders is chargino–
neutralino pair production, which would give rise to final states with three charged leptons
and missing transverse momentum [1]; the primary background to this signature is given
by WZ or Wγ∗ production. Leptonic final states, coming from WZ or Wγ∗, could also
fake WZ vector-boson scattering signals, or W±W∓ and W±W± scattering signals if one
of the charged leptons is lost in the beam pipe, which are again expected to be enhanced
at high CM energies [2].

In the next years, hadron colliders will be the main source of vector-boson pairs with
large invariant masses MV V ′ . Tevatron Run II will collect from tens to hundreds of
events, depending on the particular process. The large Hadron Collider (LHC) will further
increase the event number by roughly two orders of magnitude [3]. Owing to the expected
increase in statistics, theoretical predictions must reach high accuracy to allow for a decent
analysis of the data.

Hadronic di-boson production has received a lot of attention (for a review on the sub-
ject see Ref. [3]). Originally computed by treating W and Z bosons as stable particles,
tree-level cross sections for W+W−, W±Z, ZZ, W±γ, and Zγ production and decay have
been updated by evaluating, in narrow-width approximation but retaining spin informa-
tion via decay-angle correlations, the doubly-resonant contribution to the four-fermion
final states (e.g. qq̄′ →W±Z→ 4f) [4] and the resonant contribution to two-fermion plus
photon final states (e.g. qq̄′ → W±γ → 2f + γ) [5]. As a further step, in the last few
years Monte Carlo programs [6] have included the full qq̄′ → 4f amplitude, by taking into
account finite-width effects and the irreducible background owing to non-doubly-resonant
diagrams.

The O(αs) QCD corrections to gauge-boson pair-production and decay have been ex-
tensively analysed by many authors. Gauge-boson pair-production cross sections have
been calculated at next-to-leading order (NLO) accuracy retaining the full spin corre-

1



lations of the leptonic decay products. Several NLO Monte Carlo programs have been
implemented and cross checked so that complete O(αs) corrections are now available [4–
6]. QCD corrections turn out to be quite significant at LHC energies. They can increase
the lowest-order cross section by a factor two if no cuts are applied and by one order of
magnitude for large transverse momentum or large invariant mass of the vector bosons
[7,8]. By including a jet veto, their effects can be drastically reduced to the order of tens
of per cent [9,4], but in any case they have to be considered to get realistic and reliable
estimates of total cross sections and distributions.

In view of the envisaged precision of a few per cent at the LHC, also a discussion
of electroweak corrections is in order. For single W- and Z-boson production, O(α)
corrections have been computed taking into account the full QED and weak contributions
[10]. For gauge-boson pair production at hadron colliders, the electroweak corrections
have been taken into account only via an effective mixing angle.

As well known, the impact of O(α) electroweak contributions grows with increasing
energy. Analyses of the high-energy behaviour of electroweak corrections in general and
for specific e+e− and γγ processes have already been performed revealing effects which
should be clearly visible at future linear colliders (see for instance Refs. [11,12]). At high
energies the electroweak corrections are dominated by double and single logarithms of
the ratio of the energy to the electroweak scale. In Refs. [13,14] it has been shown that
the leading-logarithmic one-loop corrections to arbitrary electroweak processes factorize
into the tree-level amplitudes times universal correction factors. These results represent
a process-independent recipe for the calculation of leading logarithmic corrections.

Using the method of Refs. [13,14], we investigate in this paper the effect of leading-
logarithmic electroweak corrections to the hadronic production of W±Z and W±γ pairs
in the large-invariant-mass region of the hard process at the LHC. Since the aim of this
paper is to describe the structure of the O(α) electroweak corrections and to give an
estimate of their size, we have not included QCD corrections. Also, QED corrections
are not fully considered as they strictly depend on the experimental setup. We omit all
infrared-singular terms originating from the massless photon, as explained in App. A.1
and focus on the contributions of the leading electroweak logarithms originating from
above the electroweak scale.

The simplest experimental analyses of gauge-boson pair production will rely on purely
leptonic final states. Semi-leptonic channels, where one of the vector bosons decays
hadronically, have been analysed at the Tevatron [15] showing that these events suffer
from the background due to the production of one vector boson plus jets via gluon ex-
change. For this reason, we choose to analyse only di-boson production where both gauge
bosons decay leptonically into e or µ.

The paper is organized as follows: in Sect. 2 we give some details on the general setup
of our calculation. In Sect. 3 and App. A the logarithmic electroweak one-loop corrections
are examined and presented in analytical form. Section 4 contains a numerical discussion
for WZ production and decay, while Sect. 5 covers Wγ production and decay. Our findings
are summarized in Sect. 6.
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2 Processes and their computation

We consider in detail two classes of processes,

(i) pp→ lνll
′l̄′, with l, l′ = e, µ, and

(ii) pp→ lνlγ, with l = e, µ.

The first class is characterized by three isolated charged leptons plus missing energy in
the final state. In our notation, lνl indicates both l−ν̄l and l+νl. This kind of processes
includes WZ production as intermediate state. The second class is instead related to Wγ
production. Both classes of processes are described by the formula

dσh1h2(P1, P2, pf) =
∑
i,j

∫
dx1dx2 fi,h1(x1, Q

2)fj,h2(x2, Q
2) dσ̂ij(x1P1, x2P2, pf), (2.1)

where pf summarizes the final-state momenta, fi,h1 and fj,h2 are the distribution functions
of the partons i and j in the incoming hadrons h1 and h2 with momenta P1 and P2,
respectively, Q is the factorization scale, and σ̂ij represent the cross sections for the
partonic processes. Since the two incoming hadrons are protons and we sum over final
states with opposite charges, we find

dσh1h2(P1, P2, pf) =
∫

dx1dx2

∑
U=u,c

∑
D=d,s

[
fD̄,p(x1, Q

2)fU,p(x2, Q
2) dσ̂D̄U(x1P1, x2P2, pf)

+ fŪ,p(x1, Q
2)fD,p(x2, Q

2) dσ̂ŪD(x1P1, x2P2, pf)

+ fD,p(x1, Q
2)fŪ,p(x2, Q

2) dσ̂DŪ(x1P1, x2P2, pf)

+ fU,p(x1, Q
2)fD̄,p(x2, Q

2) dσ̂UD̄(x1P1, x2P2, pf)
]

(2.2)

in leading order of QCD.
The tree-level amplitudes for the partonic processes have been generated by means of

PHACT [16], a set of routines based on the helicity-amplitude formalism of Ref. [17].
For the numerical results presented here, we have used the fixed-width scheme with
ΓZ = 2.512 GeV and ΓW = 2.105 GeV, and the input masses MZ = 91.187 GeV and
MW = 80.45 GeV. The weak mixing angle is fixed by s2

W
= 1 − M2

W/M2
Z. Moreover,

we adopted the so called Gµ-scheme, which effectively includes higher-order contributions
associated with the running of the electromagnetic coupling and the leading universal
two-loop mt-dependent corrections. This corresponds to parametrize the lowest-order
matrix element in terms of the effective coupling αGµ =

√
2GµM2

Ws2
W
/π. However, we

use α(0) = 1/137.036 for the coupling of the real photon in pp → lνlγ, i.e. we multi-
ply the corresponding cross sections in the Gµ-scheme by α(0)/αGµ. Additional input
parameters are the quark-mixing matrix elements whose values have been taken to be
|Vud| = |Vcs| = 0.975, |Vus| = |Vcd| = 0.222, and zero for all other relevant matrix ele-
ments.

As to parton distributions, we have used CTEQ(5M1) [18] at the factorization scales

Q2 =
1

2

(
M2

W + M2
Z + P 2

T(lνl) + P 2
T(l′l̄′)

)
(2.3)
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and

Q2 =
1

2

(
M2

W + P 2
T(lνl) + P 2

T(γ)
)

(2.4)

for WZ and Wγ production processes, respectively, where PT denotes the transverse
momentum. This scale choice appears to be appropriate for the calculation of differential
cross sections, in particular for vector-boson transverse-momentum distributions [8,4].

We have, moreover, implemented a general set of cuts, proper for LHC analyses,
defined as follows:

• lepton transverse momentum PT(l) > 20 GeV,

• missing transverse momentum Pmiss
T > 20 (50) GeV for WZ (Wγ),

• lepton pseudo-rapidity |ηl| < 3 (2.5) for WZ (Wγ), where ηi = − log (tan θi/2), θi is
the polar angle of particle i with respect to the beam, and i = l, γ,

• rapidity–azimuthal-angle separation ∆Rlγ =
√

(ηl − ηγ)2 + (φl − φγ)2 > 0.7 be-
tween charged lepton and photon for Wγ.

For the different processes considered, we have also used further cuts which are described
in due time. In the following sections, we present results for the LHC at CM energy√

s = 14 TeV and an integrated luminosity L = 100 fb−1.

3 Electroweak O(α) corrections

We are interested in the electroweak O(α) corrections to the processes pp → lνll
′ l̄′ and

pp → lνlγ in the region of phase space where these are dominated by the gauge-boson
pair-production subprocesses pp → WZ and pp → Wγ, respectively. In this region, the
dominant contributions are those that are enhanced by the resonant propagators of the W
boson and in the first process also of the Z boson. These can be most effectively calculated
in the so-called leading-pole approximation (LPA), which is a double-pole approximation
(DPA) for pp → WZ → lνll

′ l̄′ and a single-pole approximation (SPA) for pp → Wγ →
lνlγ. The LPA has been successfully applied for the calculation of electroweak corrections
to W-pair production [19–21].

At tree level, the DPA for the partonic process qq′ →WZ→ lνll
′l̄′ reads

Mqq′→WZ→lνll
′ l̄′

Born,DPA =
i

p2
W −M2

W + iMWΓW

i

p2
Z −M2

Z + iMZΓZ

×∑
λ,λ′
Mqq′→WλZλ′

Born MWλ→lνl
Born MZλ′→l′ l̄′

Born , (3.1)

where the gauge-dependent doubly-resonant contribution is replaced by the well-defined

gauge-independent residue, and Mqq′→WλZλ′
Born , MWλ→lνl

Born , and MZλ′→l′ l̄′
Born denote the on-shell

Born matrix elements for the boson production and decay processes. The sum runs over
the physical helicities λ, λ′ = 0,±1 of the on-shell projected W and Z bosons (see App. A
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of Ref. [20] for details), while the momenta of the virtual W and Z bosons are denoted by
pW and pZ, respectively. For the process qq′ →Wγ → lνlγ, the SPA is given by

Mqq′→Wγλ′→lνlγλ′
Born,SPA =

i

p2
W −M2

W + iMWΓW

∑
λ

Mqq′→Wλγλ′
Born MWλ→lνl

Born . (3.2)

In LPA, the O(α) electroweak corrections to boson-production processes can be di-
vided into two classes, factorizable and non-factorizable corrections. The non-factorizable
corrections, i.e. those contributions that cannot be associated with either boson produc-
tion or decay, have been evaluated for boson-pair production in e+e− annihilation in
Refs. [22,23]. There, these corrections turned out to be small. We assume that this holds
as well for the similar processes considered here and do not consider non-factorizable
corrections any further.

Moreover, we do not include real corrections and restrict our discussion to the infrared-
finite part of the virtual factorizable corrections, as defined in App. A.1. These contri-
butions can be expressed in terms of the corrections to the on-shell boson production
and decay subprocesses. The matrix element for the virtual corrections to the process
qq′ →WZ→ lνll

′ l̄′ can be written as

δMqq′→WZ→lνll
′ l̄′

virt,DPA =
i

p2
W −M2

W + iMWΓW

i

p2
Z −M2

Z + iMZΓZ∑
λ,λ′

{
δMqq′→WλZλ′

virt MWλ→lνl
Born MZλ′→l′ l̄′

Born

+Mqq′→WλZλ′
Born δMWλ→lνl

virt MZλ′→l′ l̄′
Born

+Mqq′→WλZλ′
Born MWλ→lνl

Born δMZλ′→l′ l̄′
virt

}
, (3.3)

where δMqq′→WλZλ′
virt , δMWλ→lνl

virt , and δMZλ′→l′ l̄′
virt denote the virtual corrections to the on-

shell matrix elements for the boson production and decay processes. A similar expression
holds for the process qq′ →Wγ → lνlγ.

We focus in particular on the corrections involving single and double enhanced
electroweak logarithms at high energies, i.e. on O(α) contributions proportional to
α log2(ŝ/M2

W) or α log(ŝ/M2
W), where

√
ŝ is the CM energy of the partonic subprocess.

The logarithmic approximation yields the dominant corrections at CM energies large com-
pared to the gauge-boson masses, ŝ�M2

W. In the high-energy limit, however, there might
be also enhanced non-logarithmic contributions that are a priori relevant. In general they
contain constant terms proportional to M2

H/M2
W and m2

t/M
2
W. While for transverse gauge

bosons, these Higgs- and top-mass-dependent corrections are entirely due to renormaliza-
tion effects and can be effectively accounted for by using the Gµ-scheme, for longitudinal
gauge bosons additional contributions of this kind exist. These non-logarithmic O(α) con-
tributions are process-dependent. For e+e− →W+W−, where complete O(α) corrections
and their high-energy limit are available [11], the above terms turn out to be of order of
a few per cent. We can then qualitatively assume that this holds as well for similar pro-
cesses like hadronic di-boson production, even if only an exact computation could really
furnish a precise statement on this point. Neglecting non-logarithmic terms can therefore
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be considered a reasonable approximation at the LHC, where the experimental accuracy
in the high-energy regime is at the few-per-cent level.

Since the decay processes involve no large-energy variable, the corresponding virtual
corrections vanish in the logarithmic approximation. As a consequence, we do not consider
in the following the last two contributions on the right-hand side of (3.3). Moreover, for
the boson production processes qq′ → WZ, Wγ we take into account only the correction
to the dominating channels involving two transverse (TT) or two longitudinal (LL) gauge
bosons. The contributions of the mixed (LT, TL) channels are suppressed relatively
to the others by factors of MW/

√
ŝ in the high-energy limit (see Fig. 2), and thus the

corresponding corrections are unimportant.
The logarithmic virtual electroweak corrections to the dominating channels are cal-

culated using the general method given in Refs. [13,14]. The corresponding analytical
expressions for the processes d̄u → W+

λ Nλ, N = Z, γ, are given in App. A. Those for
dū → W−

λ Nλ are derived via CP symmetry [see (A.2)]. Our predictions are obtained by
considering the matrix element squared

|M|2 = |MBorn|2 + 2 Re
[
MBorn,LPAδM†

virt,LPA

]
, (3.4)

where MBorn is the exact Born amplitude, while the O(α) contribution is computed in
LPA based on (3.1)–(3.3), and the formulas given in App. A. In the high-energy limit, a
reasonable approach is to neglect fermion and boson masses, as compared with

√
ŝ, wher-

ever possible. The expressions given in App. A are based on this approximation. However,
we take into account the exact kinematics by evaluating the complete four-fermion or two-
fermion-plus-photon phase space and use the exact values of the kinematical invariants
in all formulas. Moreover, we do not use the high-energy approximations (A.7) and (A.8)
in the correction factors but we implement the O(α) contributions according to the full
expressions given in (A.12), (A.13), (A.18), and (A.21)–(A.23) with the exact (SU(2)-
transformed) Born matrix elements. Owing to our choice of the input-parameter scheme,
the terms proportional to ∆α(M2

W) in (A.22) and (A.23) are omitted, since these are
already taken into account by using αGµ instead of α(0) as input.

In the universal logarithmic corrections given in App. A, the pure angular-dependent
logarithms, such as α log2(|r̂|/ŝ) and α log(|r̂|/ŝ) with r̂ equal to the Mandelstam variables
t̂ and û of the partonic subprocess, are not included. The validity of this approximation
relies therefore on the assumption that all the variables ŝ, |t̂|, and |û| are large compared
with M2

W and approximately of the same size,

ŝ ∼ |t̂| ∼ |û| �M2
W. (3.5)

This implies that the produced gauge bosons have to be emitted at sufficiently large an-
gles with respect to the beam. Hence, the validity range of the high-energy logarithmic
approximation for the radiative corrections corresponds to the central region of the boson
scattering angle in the di-boson rest-frame. For s-channel processes, integrating over the
full angular domain does not affect the reliability of the result at logarithmic level, since
the neglected pure angular-dependent logarithms would give rise only to subleading con-
stant terms, if included. For t-channel dominated scatterings like WZ or Wγ production,
the situation is instead more delicate. The t-channel pole in the Born matrix element
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gives rise to additional enhanced logarithms when integrated over the full kinematical
range. Since these terms are not included in our O(α) analysis, we have to take care
that we do not get sizeable contributions from small scattering angles with respect to the
beam. On the other hand, our formulas do not fake spurious contributions as long as
ŝ, |t̂|, |û| 6� M2

W, since the large logarithms become small for ŝ, |t̂|, |û| ∼M2
W.

4 W±Z production

In this section, we present some cross sections and distributions for the leptonic processes
pp → lνll

′l̄′ with l, l′ = e, µ. These final states allow to analyse WZ production and thus
in particular to test trilinear gauge-boson couplings. Systematic studies of the effect of
anomalous couplings on the hadronic production of gauge-boson pairs have shown that
deviations from the SM cross sections should be particularly enhanced when gauge bosons
are produced at high CM energies and at large scattering angles in the di-boson rest-frame.
The same kinematical region is also proper to search for scatterings of strongly interacting
vector bosons.

It is therefore particularly interesting to study the electroweak corrections in these
kinematical configurations, where their effect is also expected to be more sizeable. As
an illustration of the behaviour and the size of the O(α) contributions, we have chosen
to analyse the distribution of the reconstructed Z-boson transverse momentum PT(l′ l̄′).
The PT variable is commonly used at hadron colliders because large PT requires high
CM energies and large angles. We study also pure angular observables of interest in the
high-energy regime of the hard scattering.

4.1 Born level

We start recalling basic properties of the Born amplitude, which are useful later in dis-
cussing radiative-correction effects. In Fig. 1, just for explicative purposes, we have plot-
ted the on-shell Born cross section for the partonic process d̄u → W+Z as a function of
the angle θ̂ between the d̄ quark and the Z boson in the d̄u CM frame, at fixed energy
ECM = 500 GeV and before any convolution with quark distribution functions. We have
reported the different helicity contributions separately. As can be seen, the transverse
component σTT shows the well-known radiation zero for cos θ̂ = (gu,L+gd,L)/(gu,L−gd,L) =
−s2

W/(3c2
W) ≈ −0.1 [9], where gu,L and gd,L represent the Z-boson couplings to left-handed

up and down quarks, respectively, and is strongly peaked in the forward and backward
directions. The longitudinal contribution σLL is instead concentrated in the central re-
gion, at large angle of the Z-boson with respect to the incoming quarks. Integrating over
the angle from 0◦ to 180◦, one obtains the total cross sections shown in Fig. 2 (see the
three curves on the left side) as a function of the energy. As expected, the dominant con-
tribution is given by σTT, and above 300 GeV all polarized cross sections decrease with
energy.

The behaviour of the polarized cross sections depends, however, on the selected kine-
matical region. If we consider the region of phase space characterized by a large transverse
momentum of the Z boson, the relative size of the different helicity components and the
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TL+LT
LL
TT

d�
d cos �̂
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cos �̂
0.80.60.40.20-0.2-0.4-0.6-0.8

0:2

0:15

0:1

0:05

0

Figure 1: Lowest-order angular distributions for the process d̄u → W+
λ Zλ′ at ECM =

500 GeV. Here λ, λ′ denote the transverse (T) or longitudinal (L) helicities.

TL+LT (TL+LT)� 50, PT(Z) > 300 GeV
LL LL� 50, PT(Z) > 300 GeV
TT TT� 50, PT(Z) > 300 GeV

� [pb]

ECM [GeV]
1000900800700600500400300200

3

2:5

2

1:5

1

0:5

0

Figure 2: Born cross sections for the process d̄u→W+
λ Zλ′ as a function of ECM with λ, λ′

as in Fig. 1. From left to right, the three legends refer to the left-side curves and to the
right-side ones respectively, as explained in the text.
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Figure 3: Lowest-order distributions in the invariants
√

ŝ and
√
|r̂| as defined in the text

for the full process pp → lνll
′ l̄′ at

√
s = 14 TeV. Standard cuts and PT(l′l̄′) > 300 GeV

are applied.

shape of the curves change sensibly. As before, we plot the cross sections versus the CM
energy but now for PT(Z) > 300 GeV (see the three curves starting at around 600 GeV in
Fig. 2). In this case the LL contribution dominates at smaller energies, while the TT com-
ponent increases with energy and takes over at high CM energies. This is due to the fact
that the above-mentioned PT cut translates into a minimum CM energy, ECM ' 624 GeV,
and limits the allowed range of the scattering angle of the Z boson. Hence, at low energies,
the allowed angular region is strictly central and the LL component dominates. At larger
energies, the allowed kinematical range increases by including smaller angles, and the TT
contribution rapidly grows, soon overwhelming the LL part.

Of course, one has to consider the additional effect due to the partonic distribution
functions, which in turn decrease with increasing momentum fractions xi and therefore
with increasing CM energy

√
ŝ =

√
x1x2s. The net result is shown in Fig. 3, where the

distribution in the hard-scattering energy
√

ŝ is plotted. Here and in the following we con-

sider the full process pp→ 4f , summed over all electron and muon final states, e±
(−)

νee
+e−,

e±
(−)

νeµ
+µ−, µ±

(−)

νµe
+e−, and µ±

(−)

νµµ
+µ−. We have moreover applied our standard cuts as

defined in Sect. 2 and the additional cut PT(l′l̄′) > 300 GeV on the reconstructed Z boson.
As can be seen, despite the suppression resulting from the decrease of the parton distribu-
tions with energy, roughly 50% of the contribution to the total cross section comes from
the high-energy region

√
ŝ > 1 TeV. We come back to this point later when discussing

radiative corrections.
As explained in Sect. 3, the DPA has proven to be a powerful tool for the computation

of radiative corrections. In order to analyse, for the process considered here, the appli-
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Full with MT(l�) cuts
DPA
Full
DR

� [pb]

Pcut
T (l0 l̄0) [GeV]

800700600500400300200100

10�1

10�2

10�3

10�4

10�5

Figure 4: Born cross section for the full process pp→ lνll
′l̄′ at

√
s = 14 TeV as a function

of the cut on the transverse momentum of the reconstructed Z boson. Standard cuts are
applied.

cability of this approximation in a wide range of energies, we have plotted in Fig. 4 the
tree-level cross section as a function of the PT(l′ l̄′) cut. The first three curves represent,
from top to bottom, the contribution of the pure doubly-resonant (DR) diagrams, the
full result including all Feynman diagrams which contribute to the same final state (the
number of diagrams is 10 in absence of identical particles in the final state, otherwise it
doubles), and finally the DPA as defined in (3.1).

If one looks at the difference between the complete result and the DPA, one can see
that the discrepancy is rather remarkable. It amounts in fact to roughly 15% for PT(l′l̄′)
cuts above 100 GeV. Let us note that, for this process, the commonly adopted narrow-
width approximation, which corresponds to production × decay, differs from the DPA
by less than 2% for the considered range of P cut

T (l′l̄′). So, depending on applied cuts
and selected energy range, the narrow-width approximation can underestimate the exact
result by roughly 13%. This points out the need of using the exact matrix element at
lowest order, as specified in (3.4).

The second information one can extract from Fig. 4 is related to the contribution of
non-DR diagrams. As shown by the dashed-line, the DR contribution (pp→WZ→ 4f),
which is lower than the exact result by about 1% around threshold, increases with energy
relatively to the full result. For P cut

T (l′ l̄′) = 300 GeV, the difference between the two
cross sections is already of order 20%, and at very large energies the DR diagrams can
even overestimate the result by a factor 2 or more. This effect is due to delicate gauge
cancellations between DR and non-DR diagrams, which characterize the behaviour of off-
shell cross sections in the high-energy regime. DR and non-DR diagrams do not constitute
two separately gauge-independent subsets. Hence, the pure DR contribution cannot be

10



DPA with Minv cuts
Full with Minv cuts
DR with Minv cuts
DR with MT(l�) cuts

� [pb]

Mcut [GeV]
8007006005004003002001000

3� 10�5

2:5 � 10�5

2� 10�5

1:5 � 10�5

1� 10�5

5� 10�6

Figure 5: Born cross section for the process pp → lνll
′ l̄′ at

√
s = 14 TeV as a function

of the upper cut M cut on the two invariant masses, M(ij), of the leptonic pairs which
could reconstruct W and Z bosons, as explained in the text. Standard cuts and PT(l′ l̄′) >
800 GeV are applied.

considered as a physical observable and the signal definition based on the diagrammatic
approach and commonly adopted for example at LEP2 for WW and ZZ physics is not
anymore adequate to describe di-boson production at the LHC in the high-PT region.
The only sensible observable is the total contribution or the DPA which is a well-defined
gauge-independent quantity.

In order to investigate whether the difference between DR and full result is essentially
due to the off-shellness of the gauge bosons as expected, we have then studied the effects
of possible kinematical cuts. In Fig. 5, we have plotted the cross section for the extreme
case PT(l′ l̄′) = 800 GeV as a function of an upper cut M cut applied on the two invariant
masses M(ij) of the leptonic pairs which could reconstruct the Z and W bosons, M(ij) <
MV + M cut. We assume a lower cut M(ij) > MV − 20 GeV, which is kept fixed in order
to suppress the contribution from the virtual photon. As can be seen, for M cut = 20 GeV
the difference between DR and the exact result reduces to the per-cent level. Also, both
converge towards the DPA value, represented by the nearly flat dot-dashed line. It is
quite obvious that cross sections computed in DPA are not sensible to this kind of cuts,
as the gauge bosons are always considered on-shell except for the weakly cut-dependent
factor [(p2

W −M2
W)2 + Γ2

WM2
W]

−1
[(p2

Z −M2
Z)2 + Γ2

ZM2
Z]
−1

, which reproduces the resonant
peaking structure.

Of course, a cut on the invariant mass of the lν pair is not physical since the longitudi-
nal momentum of the neutrino is not directly measurable. We have therefore imposed the

same kind of cuts, but using the transverse mass MT(lν) =
√

E2
T(lν)− P 2

T(lν) as physi-
cal quantity instead of the M(lν) invariant mass and releasing the lower cut on MT(lν).

11



The conclusion is similar. The DR contribution differs at the order of ten per cent from
the previous case, as shown by the dotted curve in Fig. 5. The full calculation, which
represents the true observable, and the DPA are instead rather insensitive to this change.

In the following, we assume the additional kinematical cuts

MT(lν) < MW + 20 GeV, |M(l′l̄′)−MZ| < 20 GeV (4.1)

under which exact result and DPA coincide at per-cent level, with a modest loss of signal,
as shown in Fig. 4 where the lower solid line represents the full result after imposing the
above-mentioned cuts. Since the exact cross section for the process pp → 4f is rather
well approximated by the DPA if proper cuts are applied, we can safely adopt the DPA
for computing electroweak radiative corrections. Let us notice, however, that electroweak
radiative contributions are not much larger than 20% in the region of experimental sen-
sitivity, as shown in the next section, and the DPA differs from the exact result by less
than 15%. Therefore, without imposing the additional cuts (4.1), the error induced by
use of the DPA in computing O(α) contributions would give rise to an uncertainty of less
than 3% on the total cross section, so well below the statistical accuracy.

4.2 Effects of O(α) corrections

In this subsection, we discuss the effect of leading-logarithmic electroweak virtual correc-
tions to WZ production in DPA. First of all, one can see in Fig. 3, where the distributions

in the reconstructed invariants
√

ŝ and
√
|r̂| are plotted, that the previously discussed

conditions, under which the logarithmic high-energy approximation is valid, are well ful-
filled for WZ production at high transverse momentum PT(ll̄). Both the hard-scattering

invariant mass
√

ŝ and
√
|r̂| =

√
|xiPi − p(ll̄)|2, where xiPi is the momentum of the parton

from one of the protons (r̂ corresponds to t̂ or û depending on the partonic process), are
in fact much larger than the boson masses. We have checked in addition that most part
of the contribution to the cross section comes from the region where the scattering angle
of the reconstructed Z boson in the WZ rest-frame is in the central range with respect to
the beam. Finally, as to the ratios between the different invariants which appear in the
logarithms, we have verified that the pure angular-dependent ones are mostly in the range
1 < ŝ/|r̂| < 6, while ŝ/M2

W > 50 thus allowing to omit log2 (|r̂|/ŝ) type of logarithms up
to an accuracy of a few per cent.

As already mentioned in Sect. 3, we perform the computation of radiative corrections
to the full process pp→ 4f in DPA, using the complete expressions given in App. A, i.e.
implementing the full (SU(2)-transformed) Born matrix elements as in (A.12), (A.13),
(A.18), and (A.21)–(A.23). We have verified that the results obtained by making use
of the high-energy approximation for the Born amplitudes given in (A.7) and (A.8) are
in very good agreement. For all results given in the following, the difference between
the two methods is in fact at per-mille level. This comparison shows the reliability of
the high-energy approximation for the Born matrix elements, under which the correction
factor can be factorized and expressed in a very compact and simple form, leading to
considerable decrease of CPU time.

In order to discuss the basic structure of radiative corrections, we first consider the
O(α) contributions to the partonic subprocess d̄u → W+Z. In Fig. 6a we plot the
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Figure 6: (a) Relative corrections ∆LL to the angular distributions for the process
d̄u → W+

L ZL. For each CM energy, the upper curves include the complete logarith-
mic corrections, the lower curves only the angular-independent logarithms. (b) The same
for the process d̄u→W+

TZT.

relative correction to the angular distribution of the longitudinal component ∆LL =
(dσLL/d cos θ̂ − dσLL

Born/d cos θ̂)/(dσLL
Born/d cos θ̂) with σ = σ(d̄u → W+Z) as a function of

the angle θ̂ between the Z boson and the d̄ quark in the d̄u CM frame for the two energies
ECM = 0.5 TeV and 1.5 TeV. As can be seen, the LL part receives sizeable corrections, in
particular in the central region θ̂ ' 90◦ where σLL is more enhanced. In order to pinpoint
the effect of the angular-dependent contributions to the radiative corrections, in the same
figure we have also plotted the two flat curves which include only angular-independent
logarithms of ŝ/M2

W. The difference between the two results for each CM energy shows
the importance of taking into account leading and full subleading terms. There are in
fact partial cancellations occurring between angular-dependent and angular-independent
parts, which sizeably lower the overall corrections (see also Ref. [24]).

For the transverse part σTT the corresponding relative corrections ∆TT are shown in
Fig. 6b for two values of ECM as in the previous figure. Here, radiative-correction effects
are less pronounced compared to the LL case, especially at extreme angles where σTT

receives its maximal contribution. The spikes in Fig. 6b originate from the radiation zero
of the lowest-order cross section (see Fig. 1), the absolute corrections behave smoothly
everywhere. The angular behaviour of ∆TT is more complex, compared with the longitu-
dinal one. The dependence on the angle has in fact a two-fold origin. In addition to the
angular-dependent logarithms [see (A.18) and (A.19)], there are angular-independent dou-
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Figure 7: Relative correction to the total cross section for the full process pp→ lνll
′l̄′ at√

s = 14 TeV as a function of the cut on the reconstructed Z-boson transverse momentum.
Standard cuts are applied.

ble logarithms log2(ŝ/M2
W) with angular-dependent coefficients [see (A.13) and (A.15)],

which originate from the mixing of the final Z boson with the photon, induced by virtual
soft–collinear W bosons. In Fig. 6b we have reported the total deviation ∆TT, represented
for each CM energy by the upper curves, and the partial contribution coming from the
angular-independent logarithms of ŝ/M2

W , given by the lower lines. As can be seen, also
in this case, the correction factors proportional to the angular-dependent and angular-
independent logarithms have opposite sign, leading as before to a reduction of the total
correction.

In order to show the effect of the electroweak radiative corrections on the complete
process pp→ 4f , in Fig. 7 we have plotted the O(α) correction relative to the total Born
cross section, ∆ = (σ−σBorn)/σBorn, as a function of the cut on the transverse momentum
of the reconstructed Z boson, P cut

T (ll̄). Our standard cuts are applied. As can be seen,
the O(α) contributions are negative and get larger with increasing P cut

T , roughly going
from −5% to −25% in the considered momentum range. The relatively large size of the
radiative corrections, especially at energies which are at first sight rather modest (e.g.
P cut

T > 250 GeV implies
√

ŝ > 500 GeV), is mainly due to two combined effects. On one
side, the longitudinal component of the cross section, σLL, which dominates at low values
of the allowed energy range, as shown in Fig. 2 (right side), where the scattering angles
are dominantly central, generates sizeable corrections. On the other hand, as can be seen
in Fig. 3, the total cross section even for modest values of P cut

T receives a substantial
contribution from the very-high-energy region, where σTT dominates. So, the generally
smaller O(α) contributions from the TT configuration, as compared with the LL ones,
get enhanced by the higher values of the CM energy, and give globally additional sizeable
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Figure 8: Rapidity distribution for the full process pp → lνll
′ l̄′ at

√
s = 14 TeV. Standard

cuts and PT(l′l̄′) > 300 GeV are applied. The inset plot shows the difference between O(α)
and Born results normalized to the Born distribution.

effects. As a consequence, the corrections to the total cross section are large because the
PT cut selects high-energy domains (since the only way to obtain a large PT(ll̄) is to have a
large WZ invariant mass) and enhances the contributions coming from the central angular
region. This shows that the size of the radiative contributions is strictly dependent on
the applied cuts and the selected kinematical configurations.

This is even more clearly visible in Fig. 8, where we have plotted the distribution
in the difference between the rapidity of the reconstructed Z boson and of the charged
lepton coming from the decay of the W, ∆yZl = y(l′l̄′) − y(l), at Born level (solid line)
and including radiative corrections (dashed line). The rapidity is defined from the energy
E and the longitudinal momentum PL by y = 0.5 log((E + PL)/(E − PL)). This variable,
studied in Ref. [4] and defined in terms of direct observables, is symmetric around zero and
shows a residual dip reflecting the approximate radiation zero of the angular distribution
of the Born WZ production. The quantity ∆yZl is in fact similar to the rapidity difference
∆yZW = yW−yZ considered in Ref. [8], which is strictly related to the scattering angle, θ̂,
of the Z boson in the WZ rest-frame. The definition of ∆yZW and cos θ̂ requires, however,
the reconstruction of the unknown longitudinal momentum of the neutrino. Even if this
can be derived by assuming the W boson to be on-shell [25], the two-fold ambiguity given
by the two possible solutions for the neutrino longitudinal momentum spoils the radiation
zero. Therefore, in order to extract informations about the angular dependence of the
WZ process, it is preferable to use ∆yZl [26].

The first information one can get from Fig. 8 is that the main contribution to the
cross section originates from small values of ∆yZl corresponding to central scattering
angles. At the LHC, for the first time the statistics will be sufficient to experimentally
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pp→ lνll
′l̄′

P cut
T (l′l̄′) [GeV] σBorn [fb] σ [fb] ∆ [%] 1/

√
2LσBorn [%]

250 1.716 1.595 −7.1 5.4

300 0.899 0.811 −9.8 7.5

350 0.503 0.441 −12.4 10

400 0.296 0.252 −14.9 13

450 0.181 0.150 −17.1 16.6

500 0.114 0.092 −19.3 20.9

Table 1: Cross section for pp→ lνll
′l̄′ for various values of P cut

T (l′ l̄′)

test the behaviour due to the approximate radiation zero, which might be distorted by
new-physics contributions. Figure 8 indicates that radiative effects are maximal at small
rapidity separation, which is the region of stronger sensitivity to new physics. Moreover,
owing to the applied cuts, these relatively large radiative contributions are not due to the
suppression of the tree-level cross section and, being negative, they even slightly enhance
the residual dip.

The above-discussed effects should of course be compared with the expected experi-
mental accuracy. In Table 1 we have listed the relative deviation ∆ and the statistical
error, estimated by assuming a luminosity L = 100 fb−1 for two experiments, for some
P cut

T values. This comparison indicates that at high transverse momentum of the gauge
bosons the virtual electroweak corrections are non-negligible and can be comparable with
the experimental accuracy up to about 500 GeV. In this region the corrections range be-
tween −5 and −20%. Whether or not they should be taken into account when performing
analyses in this kinematical region depends of course on the available luminosity. Only
in a high-luminosity run their effect will be relevant.

5 W±γ production

In this section, we extend our analysis to the process pp→ lνlγ (l = e, µ). This channel,
proper for the measurement of the trilinear gauge-boson coupling WWγ, can furnish
complementary informations on the vertex structure of the SM when combined with the
analysis of WZ production. As before, we consider the region of high CM energies of
the hard scattering, where the sensitivity to new-physics effects is expected to be more
enhanced, and the precise knowledge of the SM background can be then particularly
useful. In the following we analyse the same set of variables used to discuss the WZ
production process and the effect of the O(α) electroweak corrections on them.
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Figure 9: (a) Born cross section for the full process pp → lνlγ at
√

s = 14 TeV as a
function of the cut on the photon transverse momentum. Standard cuts are applied. (b)
Relative corrections to the angular distribution for the subprocess d̄u → W+

Tγ. The two
upper and lower curves for each energy are as in Fig. 6b.

5.1 Born level

The partonic subprocess d̄u → W+γ is dominated by the production of two transverse
gauge bosons, whereas the remaining (LT) helicity configuration is suppressed by a factor
MW/ECM in the high-energy limit. All features discussed in Sect. 4.1 for the subprocess
d̄u→W+

TZT with transversally polarized gauge bosons qualitatively apply as well to Wγ
production. The corresponding cross section is in fact strongly peaked in the forward and
backward directions and presents a radiation zero for cos θ̂ = (Qu +Qd)/(Qu−Qd) = 1/3
where θ̂ is the angle between the d̄ quark and the photon. As to the general behaviour of
the d̄u→W+γ process, we refer back to Figs. 1 and 2 and details given in the text.

In spite of these similarities, Wγ production presents, however, some different char-
acteristics with respect to the WZ case. First of all, owing to the absence of any pure
non-suppressed longitudinal components, there are no sizeable gauge cancellations in the
total cross section of the full process pp → lνlγ at high energy. The resonant contri-
bution (pp → Wγ → lνlγ) is always lower than the full result, also for high values of
the cut on the photon transverse momentum PT(γ), and the difference between the two
cross sections is below 3%. Therefore, one can still consider the pure resonant part as a
useful definition of the Wγ signal. Also, the single-pole approximation (SPA) defined in
(3.2) differs negligibly from the exact result, as shown in Fig. 9a, where we have plotted
the total cross section versus the cut applied on the photon transverse momentum. One
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could directly use the SPA to compute radiative corrections at the per-cent level without
imposing any additional cuts. However, for sake of uniformity, in the following we apply
the same kind of cut MT(lν) < MW + 20 GeV as used for the WZ process, under which
resonant, full, and SPA cross sections converge to the same value within one per cent and
with a negligible loss of signal.

5.2 Effect of O(α) corrections

In this subsection, we study the effect of virtual electroweak radiative corrections on Wγ
production in SPA. We consider first the partonic subprocess d̄u → W+γ. In Fig. 9b
we have plotted ∆TT = (dσTT/d cos θ̂ − dσTT

Born/d cos θ̂)/(dσTT
Born/d cos θ̂) as a function of

the angle θ̂ between the d̄ quark and the photon. As can be seen, the behaviour of the
O(α) contributions is quite similar to the WTZT case. Only the spikes, again due to
the radiation zero, are correspondingly shifted, and reverse the shape of the curves with
respect to the angle, compared with Fig. 6b.

As in the previous case, the validity conditions of the high-energy logarithmic approx-
imation for the radiative corrections are well satisfied by the complete process pp→ lνlγ.
The kinematical behaviour of Wγ at high transverse momentum of the photon repro-
duces in fact the same shape of the distributions as in Fig. 3. All invariants are then
much larger than the boson masses, and at fixed P cut

T (γ) the process receives considerable
contributions from very high CM energies. We have moreover verified that, despite the
radiation zero and the absence of any non-mass-suppressed longitudinal components, for
large P cut

T (γ) values (P cut
T (γ) >∼ 250 GeV) most part of the contribution to the total cross

section comes from the region of phase space where the photon is emitted at large angle
with respect to the beam (see also Fig. 11).

In order to show the effect of radiative corrections on the full process pp → lνlγ, we
have plotted as before the O(α) corrections relative to the Born cross section as a function
of the cut on the transverse momentum of the photon in Fig. 10. The overall behaviour
is quite similar to the WZ case; the size of the radiative effects is, however, lower.

This affects in the same way also the distribution in the difference between the rapidity
of the photon and the charged lepton coming from W-boson decay [26], ∆ylγ = yl − yγ,
plotted in Fig. 11. Here, unlike in the previous case, the dip reflecting the radiation zero
is much more pronounced, but the radiative corrections slightly decrease going towards
∆ylγ = 0. Owing to the different location of the radiation zero, the radiative contribution
for very small rapidity separation is still sizeable, but it does not get enhanced as for the
WZ process, where in the same region the longitudinal component gives the dominant
contribution. Hence for Wγ, despite the complex behaviour shown in Fig. 9b, which is
merely due to the fictitious spikes, the radiative-correction effect is rather uniform in
the angular range we consider, and leads to an overall rescaling of the ∆ylγ distribution
by roughly a factor 0.9. These effects could still mimic the behaviour of new-physics
contributions. Their smaller size, compared with the WZ case, is compensated by the
larger value of the overall cross section. Therefore, even if not extremely enhanced in the
central rapidity range, radiative effects can become comparable with the statistical error.

In Tab. 2 we compare the O(α) relative correction ∆ to the Born cross section with the
expected experimental accuracy, assuming L = 100 fb−1 for two experiments, for different
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Figure 10: Relative corrections to the cross section for the full process pp → lνlγ at√
s = 14 TeV as a function of the cut on the photon transverse momentum. Standard

cuts are applied.
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Figure 11: Rapidity distribution for the full process pp → lνlγ at
√

s = 14 TeV. Standard
cuts and PT(γ) > 300 GeV are applied. The inset plot shows the difference between O(α)
and Born results normalized to the Born distribution.

19



values of P cut
T (γ). As one can see, radiative effects are very sensitive to P cut

T (γ) and, despite

pp→ lνlγ

P cut
T (γ) [GeV] σBorn [fb] σ [fb] ∆ [%] 1/

√
2LσBorn [%]

250 5.810 5.519 −5.0 2.9

300 3.180 2.940 −7.6 4.0

350 1.832 1.650 −10.0 5.2

400 1.100 0.966 −12.2 6.7

450 0.684 0.587 −14.2 8.6

500 0.437 0.366 −16.2 10.7

550 0.285 0.234 −18.0 13.2

600 0.190 0.152 −19.8 16.2

650 0.129 0.101 −21.4 19.6

700 0.089 0.068 −23.3 23.7

Table 2: Cross section for pp→ lνlγ for various values of P cut
T (γ).

of the decrease of the cross section with increasing P cut
T (γ), are larger than the statistical

error for P cut
T (γ) below 700 GeV, where they range from −5 to −23%. Moreover, they

could be of some relevance also in a low-luminosity run (L = 30 fb−1) of the LHC, as they
might become comparable with the experimental precision for P cut

T (γ) < 400 GeV.

6 Conclusion

By means of a complete four-fermion calculation, we have examined WZ production in
the purely leptonic channel at the LHC. An analogous computation has been performed
for the Wγ process followed by the leptonic W decay. We have given some examples of
phenomenological analyses relevant to hadronic di-boson production in the high di-boson
invariant-mass region.

At tree level, we have found that, for processes involving WZ production, the dia-
grammatic approach usually adopted to isolate the signal is not viable anymore at large
transverse momentum of the reconstructed Z boson, owing to gauge cancellations. The
doubly-resonant approximation can differ from the full result by tens of per cent in ex-
perimentally relevant regions. The only sensible observable is the total contribution.
Moreover the two commonly used approximations, narrow-width (i.e. production ×decay)
and leading pole approximation, can underestimate the exact result by about 10–15% at
relatively modest energies, if no cuts are applied.
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The primary aim of our analysis was to investigate the structure of virtual electroweak
corrections and their effect on di-boson production processes at the LHC. The one-loop
leading-logarithmic corrections to the full four-fermion or two-fermion-plus-photon pro-
cess have been calculated in leading-pole approximation, neglecting non-factorizable cor-
rections, and restricting oneself to the gauge-invariant leading-logarithmic corrections,
which only contribute to the gauge-boson pair-production subprocess. We found that
this approach constitutes a reliable approximation in the high-PT region at the LHC.

In order to illustrate the behaviour and the size of O(α) contributions, we have pre-
sented different cross sections and distributions. In this study, we have not included the
full QED radiative contributions, which involve also the emission of real photons and
therefore depend on the detector resolution. We focused instead on the contributions of
the leading electroweak logarithms resulting from above the electroweak scale.

For WZ and Wγ production processes, electroweak corrections turn out to be non-
negligible in the high-energy region of the hard process, in particular for large transverse
momentum and small rapidity separation of the reconstructed vector bosons, which is
the kinematical range of maximal sensitivity to new-physics phenomena. Electroweak
radiative effects lower the Born results by 5–20% in the region of experimental sensitivity.
We have moreover shown that their size depends sensibly not only on the CM energy but
also on the applied cuts and varies according to the selected observables and kinematical
regions. Despite of the strong decrease of the cross section with increasing di-boson
invariant mass, radiative effects can still be appreciable if compared with the expected
experimental precision. This depends of course on the available luminosity. For WZ
production, these effects are relevant for the high-luminosity run of the LHC. Owing to
their larger overall cross section, Wγ production processes can instead show a sensitivity
to radiative effects also at low luminosity.
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A Logarithmic electroweak corrections

In this section, we present the analytical formulas for the logarithmic electroweak correc-
tions to the polarized partonic subprocesses

d̄L(pd̄) uL(pu)→W+
λW

(pW) NλN
(pN), N = A, Z, (A.1)

which can be derived from the general results given in Ref. [13]. The label L indicates the
left-handed chirality of the initial-state quarks (right-handed quarks are not considered
since they cannot produce W bosons), and λW,N = 0,±1 represent the gauge-boson
helicities. The photon field is denoted by A in this appendix. The Mandelstam variables
read ŝ = (pd̄ + pu)

2, t̂ = (pd̄ − pW+)2, and û = (pd̄ − pN )2, where the momenta of the
initial and final states are incoming and outgoing, respectively. In the high-energy limit,

21



we have t̂ ∼ −ŝ(1 + cos θ̂)/2 and û ∼ −ŝ(1 − cos θ̂)/2, where θ̂ is the angle between ~pd̄

and ~pN , in the CM frame of the scattering quarks.
For the calculation of the cross section (2.2) we need besides the process d̄u→W+N

also its charge conjugate and the cross sections for exchanged initial quarks. These latter
can be obtained from one another just by exchanging the invariants t̂ ↔ û. Owing to
CP invariance, the charge-conjugate processes can be instead obtained from the initial
processes by applying a parity transformation,

M
[
d(pd)ū(pū)→W−(pW)N(pN )

]
=M

[
d̄(p̃d̄)u(p̃ū)→W+(p̃W)N(p̃N )

]
(A.2)

with p̃ = (E,−~p) for p = (E, ~p). So, also in this case, the correction factors can be
obtained from the same initial process (A.1). The formulas we give in the following for
the process (A.1) can therefore cover all contributions we need for the complete WZ and
Wγ production processes.

The one-loop corrections are evaluated in the limit

ŝ ∼ t̂ ∼ û�M2
W, (A.3)

and we restrict ourselves to the combinations of gauge-boson helicities that are not mass-
suppressed compared with

√
ŝ in this limit. These correspond to the purely transverse and

opposite final state (λW, λN) = (±,∓), which we denote by (λW, λN) = (T, T), and, in
the case of W±Z production, also to the purely longitudinal final state (λW, λZ) = (0, 0),
which we denote by (λW, λZ) = (L, L).

A.1 One-loop corrections

In the following, we present the results as relative corrections

δd̄LuL→W+
λ

Nλ
=

δMd̄LuL→W+
λ

Nλ

virt (pd̄, pu, pW, pN)

Md̄LuL→W+
λ

Nλ

Born (pd̄, pu, pW, pN)
(A.4)

to the Born matrix elements. A more detailed derivation can be found in Ref. [27].
As shown in Ref. [13], in the high-energy logarithmic approximation the longitudinal

gauge bosons can be replaced by the corresponding would-be Goldstone bosons. There-
fore, in our results for longitudinal final states (λ = L), the substitutions W±

L → φ± and
ZL → χ have to be performed.

The corrections (A.4) are split as

δ = δLSC + δSSC + δC + δPR (A.5)

into leading (δLSC) and subleading (δSSC) contributions originating from soft–collinear
gauge bosons, contributions δC that originate from collinear (or soft) gauge bosons and
from wave-function renormalization, and contributions δPR that originate from parameter
renormalization. All these corrections are evaluated in logarithmic approximation, i.e.
including all terms that involve logarithms of the form log(ŝ/M2

W) in the high-energy
limit. More precisely, we restrict ourselves to
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a)

uL

d̄L

χ

φ+

W+

b)

uL

d̄L

uL

NT

W+
T

uL

d̄L

dL

NT

W+
T

Figure 12: Dominant lowest-order diagrams for d̄LuL → φ+χ and d̄LuL →W+
TNT

• the angular-independent double- and single-logarithmic corrections of the type
α log2 (ŝ/M2

W) and α log (ŝ/M2
W), which involve only the ratio of the CM energy

to the W-boson mass,

• the double logarithms of the form α log (ŝ/M2
W) log(M2

Z/M2
W), and

• the angular-dependent double logarithms of the type α log (ŝ/M2
W) log (|r̂|/ŝ), with

r̂ = t̂, û.

For completeness we give also the analytic expressions of the double- and single-
logarithmic corrections that contain logarithms log (M2

W/λ2) and log(M2
W/m2

f ), which
involve the photon mass λ or masses of light charged fermions.1 These contributions,
denoted by Lem and lem in the following, are of pure electromagnetic origin and are not
included into the numerical studies.

The coefficients of the various logarithmic terms are expressed in terms of the eigen-
values IV a

ϕ , or of the matrix components IV a

ϕϕ′ , of the generators2

IA = −Q = −Y

2
− T 3, IZ = − sW

2cW

Y +
cW

sW

T 3, I± =
T 1 ± iT 2

√
2sW

, (A.6)

where c2
W

= 1− s2
W

= M2
W/M2

Z.

A.2 Born matrix elements in the high-energy limit

As input for the evaluation of the relative corrections (A.4) we need the Born matrix
elements for the processes (A.1) and the SU(2)-transformed Born amplitudes that we list
in the following, restricting ourselves to the non-suppressed helicities. The corresponding
amplitudes, are given in (A.7) and (A.8) in high-energy approximation, i.e. omitting mass-
suppressed terms. As we will see, this leads to very compact analytical expressions for
the relative corrections (A.4). However, we recall that in the numerics instead of the
high-energy approximations (A.7) and (A.8) the corresponding exact expressions have
been used. As noted in Sect. 4.2, the difference is at the per-mille level.

1This kind of contributions includes also energy-dependent double logarithms of the type
α log (ŝ/M2

W) log (M2
W/λ2).

2A detailed list of the gauge-group generators and of related quantities that are used in the following
can be found in App. B of Ref. [13].
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For longitudinally polarized gauge bosons, we consider the Born matrix elements in-
volving the corresponding would-be Goldstone bosons. These are dominated by the s-
channel exchange of gauge bosons (see Fig. 12a), and read

Md̄LuL→φ+χ
Born =

−ie2

2
√

2s2
W

As

ŝ
, Mq̄LqL→Hχ

Born = e2IZ
qL

IZ
χH

As

ŝ
, Mq̄LqL→χχ

Born = 0,

Mq̄LqL→φ+φ−
Born = −e2

(
T 3

qL

2s2
W

+
YqL

4c2
W

)
As

ŝ
, qL = uL, dL. (A.7)

The production of transverse gauge bosons is dominated by the t- and u-channel contri-
butions (see Fig. 12b) and gives

Md̄LuL→W+
T

NT

Born =
e2

√
2sW

(
IN
uL

1

t̂
+ IN

dL

1

û

)
At,

Mq̄LqL→N ′
TNT

Born = e2IN ′
qL

IN
qL

(
1

t̂
+

1

û

)
At, Mq̄LqL→W+

T
W−

T
Born =

e2

2s2
W

At

r̂
, (A.8)

where r̂ = t̂, û for q = d, u, respectively. In order to determine the relative corrections, the
explicit dependence of the amplitudes As and At, in (A.7) and (A.8), on the kinematics
and on the helicities need not to be specified.

A.3 Leading soft–collinear corrections

The angular-independent leading soft–collinear (LSC) corrections, which are given in
Eqs. (3.6) and (3.7) of Ref. [13], depend on the eigenvalues

Cew
Φ =

1 + 2c2
W

4s2
W
c2

W

, Cew
uL

= Cew
dL

= Cew
qL

=
s2

W
+ 27c2

W

36s2
W
c2

W

, Cew
W =

2

s2
W

(A.9)

of the electroweak Casimir operator Cew, on its components

Cew
AA = 2, Cew

AZ = Cew
ZA = −2

cW

sW

, Cew
ZZ = 2

c2
W

s2
W

(A.10)

in the neutral gauge-boson sector, as well as on the squared Z-boson couplings

(IZ
d̄L

)2 =
(3c2

W
+ s2

W
)2

36s2
Wc2

W

, (IZ
uL

)2 =
(3c2

W
− s2

W
)2

36s2
Wc2

W

,

(IZ
W−)2 =

c2
W

s2
W

, (IZ
φ−)2 =

(c2
W − s2

W)2

4s2
W
c2

W

, (IZ
χ )2 =

1

4s2
W
c2

W

. (A.11)

For longitudinal and transverse gauge bosons we have

δLSC
d̄LuL→W+

L
ZL

=
α

4π

{
−
[
Cew

qL
+ Cew

Φ

]
log2

(
ŝ

M2
W

)

+
∑

ϕ=d̄L,uL,φ−,χ

(IZ
ϕ )2 log

(
ŝ

M2
W

)
log

(
M2

Z

M2
W

)}

− 1

2

∑
ϕ=d̄L,uL,φ−

Q2
ϕLem(ŝ, λ2, m2

ϕ), (A.12)
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and

δLSC
d̄LuL→W+

T
NT

=
α

4π


−1

2


 ∑

ϕ=d̄L,uL,W−
Cew

ϕ +
∑
N ′

Cew
N ′N

Md̄LuL→W+
T

N ′
T

Born

Md̄LuL→W+
TNT

Born


 log2

(
ŝ

M2
W

)

+
∑

ϕ=d̄L,uL,W−
(IZ

ϕ )2 log

(
ŝ

M2
W

)
log

(
M2

Z

M2
W

)


− 1

2

∑
ϕ=d̄L,uL,W−

Q2
ϕLem(ŝ, λ2, m2

ϕ), (A.13)

respectively, where the electromagnetic logarithms Lem(ŝ, λ2, M2
ϕ) are given by

Lem(ŝ, λ2, m2
ϕ) =

α

4π

{
2 log

(
ŝ

M2
W

)
log

(
M2

W

λ2

)
+ log2

(
M2

W

λ2

)
− log2

(
m2

ϕ

λ2

)}
. (A.14)

For transverse final states, the non-diagonal components Cew
AZ and Cew

ZA of the electroweak
Casimir operator require the evaluation of the transformed matrix elements with N ′ 6= N .
Using the high-energy approximation of the Born matrix elements (A.8), (A.13) can be
written as

δLSC
d̄LuL→W+

TNT
=

α

4π

{
−
[
Cew

qL
+

1

2
Cew

W

(
1 + GN

−
)]

log2

(
ŝ

M2
W

)

+
∑

ϕ=d̄L,uL,W−
(IZ

ϕ )2 log

(
ŝ

M2
W

)
log

(
M2

Z

M2
W

)


− 1

2

∑
ϕ=d̄L,uL,W−

Q2
ϕLem(ŝ, λ2, m2

ϕ), (A.15)

with the angular-dependent functions

GA
± =

F±
F− + YqL

F+
, GZ

± =
c2

WF±
c2

W
F− − s2

W
YqL

F+
, (A.16)

and

F± =
(

1

t̂
± 1

û

)
. (A.17)

A.4 Subleading soft–collinear corrections

The angular-dependent subleading soft–collinear (SSC) corrections are obtained
by applying the formula (3.12) of Ref. [13], to the crossing symmetric process
d̄L(pd̄) uL(pu) W−

λW
(−pW) NλN

(−pN ) → 0, with r12 = ŝ, r13 = t̂, and r14 = û. This
yields

δSSC
d̄LuL→W+

λ
Nλ

=
α

4π

∑
V a=A,Z

2

[
log

(
ŝ

M2
W

)
+ log

(
M2

W

M2
V a

)]
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×IV a

W−
λ

[
IV a

d̄L
log

( |t̂|
ŝ

)
+ IV a

uL
log

( |û|
ŝ

)]

+
α

4π


2 log

(
ŝ

M2
W

)∑
N ′

λ

IZ
N ′

λ
Nλ
Md̄LuL→W+

λ
N ′

λ
Born

[
IZ
d̄L

log

( |û|
ŝ

)
+ IZ

uL
log

( |t̂|
ŝ

)]

− 2√
2sW

log

(
ŝ

M2
W

)

∑

N ′
λ

I+
N ′

λ
MūLuL→N ′

λ
Nλ

Born + I+
Nλ
Md̄LdL→W+

λ
W−

λ
Born


 log

( |t̂|
ŝ

)

−

∑

N ′
λ

I+
N ′

λ
Md̄LdL→N ′

λNλ

Born + I+
Nλ
MūLuL→W+

λ
W−

λ
Born


 log

( |û|
ŝ

)


(
Md̄LuL→W+

λ
Nλ

Born

)−1

.

(A.18)

In the cases λ = L and λ = T, the sums run over N ′
L = χ, H and N ′

T = A, Z, respectively,
and I+

Nλ
are defined in (B.23) and (B.27) of Ref. [22]. Using the SU(2)-transformed Born

matrix elements given in (A.7) and (A.8), we obtain

δSSC
d̄LuL→W+

L
ZL

= − α

2π

1

s2
W

log

(
ŝ

M2
W

) [
log

( |û|
ŝ

)
+ log

( |t̂|
ŝ

)
− s2

W

c2
W

YqL
log

( |t̂|
|û|
)]

+ 2lem(M2
W)

[
Qd log

( |t̂|
ŝ

)
−Qu log

( |û|
ŝ

)]
,

δSSC
d̄LuL→W+

T
NT

= − α

2π

1

s2
W

log

(
ŝ

M2
W

) [
log

( |t̂|
ŝ

)
+ log

( |û|
ŝ

)
+ GN

+ log

( |t̂|
|û|
)]

+ 2lem(M2
W)

[
Qd log

( |t̂|
ŝ

)
−Qu log

( |û|
ŝ

)]
, (A.19)

where

lem(M2) =
α

4π

[
1

2
log

(
M2

W

M2

)
+ log

(
M2

W

λ2

)]
, (A.20)

and GN
+ is given in (A.16).

A.5 Single-logarithmic corrections

The single-logarithmic corrections consist of the contributions δC and δPR described in
Sect. A.1. For longitudinally polarized final states, according to Eqs. (4.6) and (4.33) in
Ref. [13], the corrections δC read

δC
d̄LuL→W+

L ZL
=

α

4π

[(
3Cew

qL
+ 4Cew

Φ

)
log

(
ŝ

M2
W

)
− 3

2s2
W

m2
t

M2
W

log

(
ŝ

m2
t

)]

+
∑

ϕ=d̄L,uL,W−
Q2

ϕlem(m2
ϕ),

(A.21)

and the parameter renormalization yields

δPR
d̄LuL→W+

L ZL
= − α

4π
bew
W log

(
ŝ

M2
W

)
+ ∆α(M2

W), (A.22)
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where bew
W = 19/(6s2

W) is the one-loop coefficient of the SU(2) β-function, and ∆α(M2
W)

represents the running of the electromagnetic coupling constant from the scale 0 to MW.
If the final-state gauge bosons are transversely polarized then the log (ŝ/M2

W) con-
tributions in δC which are associated to the final gauge bosons cancel the log (ŝ/M2

W)
contributions originating from parameter renormalization, and according to Eqs. (4.6)
and an analogue of (A.11) in Ref. [13] one obtains

δC
d̄LuL→W+

T
NT

+ δPR
d̄LuL→W+

T
NT

=

=
3α

4π
Cew

qL
log

(
ŝ

M2
W

)
+

∑
ϕ=d̄L,uL,W−

Q2
ϕlem(m2

ϕ) +
1

2
(1 + δNZ)∆α(M2

W), (A.23)

where δNZ represents the Kronecker symbol.
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2000-004, Genève, 2000) p. 117.

[4] L. Dixon, Z. Kunszt and A. Signer, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305].

[5] D. De Florian and A. Signer, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138].

[6] J. M. Campbell and R. K. Ellis, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386].

[7] J. Ohnemus, Phys. Rev. D 44 (1991) 3477.

[8] S. Frixione, P. Nason and G. Ridolfi, Nucl. Phys. B 383 (1992) 3.

[9] U. Baur, T. Han and J. Ohnemus, Phys. Rev. D 51 (1995) 3381 [hep-ph/9410266].

[10] U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 (1999) 013002 [hep-
ph/9807417]; U. Baur and D. Wackeroth, hep-ph/0011080; U. Baur, O. Brein,
W. Hollik, C. Schappacher and D. Wackeroth, KA-TP-26-2001, hep-ph/0108274;
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