
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 4, 074001 (2001)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server
Linear beam optics in solenoidal channels

G. Franchetti
CERN, CH-1211, Geneva 23, Switzerland and GSI Darmstadt, D-64291 Darmstadt, Germany

(Received 7 March 2001; published 20 July 2001)

In this paper we study beam transport through a straight solenoidal channel using the single-particle and
linear optics approach. We derive the single-particle invariants and show their use in an extended Courant-
Snyder theory for a solenoidal coupled system. Matching between solenoidal channels and between
solenoidal and quadrupolar channels is discussed. We give envelope solutions and illustrate them with
some numerical examples.
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I. INTRODUCTION

For muon colliders [1,2] and neutrino sources [3], loss-
less beam transport through solenoidal channels is an im-
portant issue which requires a careful design. Technical
hardware limits and cost control impose further constraints
which make the design challenging. Typically, the muon
beam exhibits a very large emittance which puts part of the
beam in a nonparaxial beam optics regime. The problem
requires a full 6D description: however, as a first step, one
can consider the beam in a linear paraxial regime and use
an analytical solution of the single particle dynamics. This
method gives important guidelines for the initial design;
further optimization with numerical integration [4,5] is re-
quired for final performance evaluation. Here we present
the analytical solution of the single particle motion in a
straight solenoidal transport channel using the following
approximations: (i) the motion is paraxial and (ii) the equa-
tions of motion are linear.

II. SINGLE-PARTICLE SOLUTION AND
INVARIANTS

Let us consider the equations of motion for a particle in
a solenoidal channel in the linear approximation [6]

x00 2 Sy0 2
1
2 S0y � 0 ,

y00 1 Sx0 1
1
2 S0x � 0 ,

(1)

where S � q �C� Bs�s� �T��p �kg m�s�. Here, q is
charge of the particle, Bs is the longitudinal magnetic
field, and p is the longitudinal momentum. With 9 we
denote the space derivative d�ds. By using Eqs. (1), we
assume that Bs has no radial dependence on the transverse
(radial) position of the particle. General methods [7,8]
for linear coupled particle dynamics have been proposed.
Here we discuss a general method to solve Eqs. (1). Fol-
lowing [6,8] we define the complex variable z � x 1 iy
so that the pair of differential equations [Eqs. (1)] be-
comes the single complex differential equation
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z00 1 iSz0 1
i
2

S0z � 0 . (2)

The complex dynamic variables can be written as z �
�z, z0�. It is well known that in the Larmor frame the
equations of motion decouple into two Hill’s differential
equations. Following [6,8] the Larmor rotation is given
by the transformation w � zeif, where f is the Larmor
angle f�s� �

Rs
0 S�t��2 dt. Defining the Larmor complex

dynamic variables w � �w, w0�, the transformation from
w to z is given by

z � Lw , with L � e2if

µ
1 0

2if0 1

∂
. (3)

Since S is real and w � wr 1 iwi , the equations of mo-
tion on the Larmor frame can be decomposed into two
decoupled Hill’s differential equations,

w00
r 1 f02wr � 0, w00

i 1 f02wi � 0 . (4)

The coefficient f02 is the square of the solenoid strength
which always gives a focusing character to Eqs. (4). Each
of these equations can be solved with the method used in
the Courant-Snyder theory [9]. The dynamic variables of
Eqs. (4), �wr , w0

r� and �wi , w
0
i�, are transported by the same

map which has the standard form [10]

M � T1RT21
0 , (5)

where

R �

µ
c s

2s c

∂
, Tj �

0
@ p

bj 0

2
ajp
bj

1p
bj

1
A , (6)

with c � cosc , s � sinc . Here j � 0, 1, where the index
0 means particle at s � 0, and the index 1 means particle
at s. The Twiss parameters b, a, and c are given by

1
2

bb00 2
1
4

b02 1
S2

4
b2 � 1 ,

a � 2
b0

2
, c �

Z s

0

1
b�t�

dt ,

(7)
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with a0, b0 the arbitrary initial Twiss parameters. Re-
combining the two vectorial representations in a com-
plex vectorial form, the transfer map in �w, w0� becomes
w1 � Mw0. The explicit form of the transport matrix is

M �

0
BB@

q
b1

b0
�c 1 a0s�

p
b1b0 s

�a02a1�c2�11a1a0�sp
b1b0

q
b0

b1
�c 2 a1s�

1
CCA . (8)

Now we can use the transformation Eq. (3) to rewrite the
map M in the frame �z, z0�. Multiplying w1 � Mw0 by L1

and substituting w0 � L
21
0 z0, we find that in �z, z0�, M

becomes L � L1ML
21
0 � T̂1RT̂21

0 where T̂ � LT. Ex-
plicitly,

T̂ � e2if

0
BB@

q
b̂ 0

2
âp
b̂

1p
b̂

1
CCA . (9)

The hat �ˆ� Twiss parameters are defined as b̂ � b, â �
a 1 ibf0, and ĝ � �1 1 â2��b̂. By using the formal
identity of Eq. (9) with Eq. (6) right, it is straightforward
to find

L � e2if1

0
BBB@

r
b̂1

b̂0
�c 1 â0s�

q
b̂1b̂0 s

�â02â1�c2�11â1â0�sp
b̂1b̂0

r
b̂0

b̂1
�c 2 â1s�

1
CCCA .

(10)

The solenoidal channel transport map in �z, z0� finally reads
z1 � Lz0. In order to transform the map L defined in
�z, z0� to the map S�L� defined in the laboratory frame
�x, x0, y, y0�, we need to use the definition z � x 1 iy
which leads to

S�L� �

µ
ReL 2ImL
ImL ReL

∂
. (11)

From Eq. (10) it is straightforward to find that ReL �
�1M 1 �1�Mi1 1 Mi2� 1 �1Mr, and 2ImL � �1M 2

�1�Mi1 1 Mi2� 1 �1Mr, with �1 � sinf1, �1 � cosf1,
M given by Eq. (8), and

Mi1 �

0
@ 0 0q

b0

b1
f

0
0�c 2 a1s� 2

q
b1

b0
f

0
1�c 1 a0s� 0

1
A ,

Mi2 �

µp
b1b0 f

0
0s 0

0 2
p

b1b0 f
0
1s

∂
, (12)

Mr �

µ
0 0

f
0
0f

0
1
p

b1b0 s 0

∂
.

Equation (11) is the transfer map which transports the
initial particle coordinate �x0, x0

0, y0, y0
0� at s � 0 to

�x, x0, y, y0� at the longitudinal position s.
In order to recover the usual invariants we consider the

motion in the frame �u1, u2� defined by the transformation
074001-2
u � T̂21z, with u � �u1, u2�. In the frame �u1, u2� the
motion becomes a pure rotation, i.e., u1 � Ru0. Decom-
posing it into the two complex components we find

u1r � Ru0r , u1i � Ru0i , (13)

where ujr � �ujr1, ujr2�, uji � �uji1, uji2�, with j � 0, 1.
Equations (13) show the existence of the two invariants
e1 � u2

1r1 1 u2
1r2 and e2 � u2

1i1 1 u2
1i2. With the proper

parametrization of u the two components of u1 become

u1 �
p

e1 sin�c 1 d1� 1 i
p

e2 sin�c 1 d2� ,

u2 �
p

e1 cos�c 1 d1� 1 i
p

e2 cos�c 1 d2� ,
(14)

where d1, d2, the initial phases of the particle, are the other
two invariants. By using u � T̂21z we can write the in-
variants in the �z, z0� frame and finally in the lab frame
�x, x0, y, y0�. Since the invariant e1, e2 exhibits a depen-
dence from cosc and sinc , we can try to use combinations
of e1, e2 in order to obtain another invariant of simpler
form. An appropriate choice is e1 1 e2, and we obtain

e1 1 e2 � ex 1 ey 1 bf02�x2 1 y2� 1 2bf0Lz ,
(15)

where ex � gx2 1 2axx0 1 bx02, ey � gy2 1

2ayy0 1 by02 are the usual horizontal and vertical
Courant-Snyder invariants, and Lz � xy0 2 yx0 is pro-
portional to the mechanical angular momentum. From
Eqs. (14) we find another invariant which is a combination
of e1, e2: in fact, calculating Reu1 Imu2 2 Imu1 Reu2 we
obtain

p
e1 e2 sin�d1 2 d2� � f0�x2 1 y2� 1 Lz . (16)

From Eqs. (15) and (16), given the particle coordinates
x, x0, y, y0 and d1, d2, we can compute e1, e2 less an
inversion e1 $ e2. The physical interpretation of Eq. (16)
is the following: since in Eqs. (1) the magnetic field is
assumed independent of the particle’s transverse position,
f0r2 � �qC�2p��p, where C is the magnetic flux
through the circular orbit of radius r . The sum of Lz

and f0r2 is proportional to the canonical angular momen-
tum pu , i.e., f0r2 1 Lz � pu�p. Since p is constant,
Eq. (16) is just a reformulation of the well-known Busch’s
theorem, i.e., of the conservation of pu for the dynamical
systems with cylindrical symmetry [11].

Since the components of u1 give the particle coordi-
nates in a generic longitudinal position during the motion,
Eqs. (14) can be used to find the particle coordinates in
the frame �z, z0�. By using z1 � T̂1u1, remembering the
definition z � x 1 iy and dropping the index 1 (� final
position), the solution of Eqs. (1) is
074001-2
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x �
p

be1 s1� 1
p

be2 s2� , y �
p

be2 s2� 2
p

be1 s1� ,

x0 �
r

e1

b
�c1� 2 as1� 2 bf0s1�� 1

r
e2

b
�c2� 2 as2� 1 bf0s2�� , (17)

y0 �
r

e1

b
�2c1� 1 as1� 2 bf0s1�� 1

r
e2

b
�c2� 2 as2� 2 bf0s2�� ,
where s1 � sin�c 1 d1�, c1 � cos�c 1 d1�, s2 �
sin�c 1 d2�, c2 � cos�c 1 d2�, � � sinf, and � �
cosf. Since f�0� � 0, the relations between the ini-
tial particle coordinates x0, x0

0, y0, y0
0 and the invariants

e1, e2, d1, d2 are

x0 �
p

be1 sind1 ,

y0 �
p

be2 sind2 ,

x0
0 �

r
e1

b
�cosd1 2 a sind1� 1

p
be2 f0 sind2 ,

(18)

y0
0 � 2

p
be1 f0 sind1 1

r
e2

b
�cosd2 2 a sind2� .

From these equations we can derive the value of the two
invariants e1, e2. We find

e1 � ex0 1 f02by2
0 2 2af0x0y0 2 2bf0y0x0

0 ,

e2 � ey0 1 f02bx2
0 1 2af0x0y0 1 2bf0x0y0

0 .
(19)

Note that the values of the invariants differ from the usual
Courant-Snyder form by the presence of terms which are
multiplied by f0. Therefore, if at injection there is no
magnetic field (i.e., f0 � 0), the invariants coincide with
the standard single particle emittances.

III. BEAM TRANSPORT

We now apply this theory to the beam transport; similar
studies in presence of linear coupling are reported in
[12,13]. We first consider a beam of nominal-momentum
particles. Lossless beam transport requires that all
along the transport line r , R, where r �

p
x2 1 y2 �q

b�e1 sin2�c 1 d1� 1 e2 sin2�c 1 d2��, and R is the
radius of the beam pipe. Since the sinusoidal terms
are always #1, one can estimate r2 , b�e1 1 e2� and
therefore one obtains a necessary (but not sufficient)
condition for lossless transport which is much simpler:

e1 1 e2 #
R2

bmax
, (20)
with bmax being the maximum b over the channel length.
Equation (20), together with Eq. (15), defines the volume
occupied by the transported particles in the 4D laboratory
phase space. All particles outside this volume might be
lost. Another interesting application is the matching of
two solenoidal channels: in order not to modify the two
beta functions b1, b2 of the two channels, one needs to
match the two optical functions. In this way, the beam
will be transported from the end of the first channel to
the beginning of the second channel without changing the
single-particle invariants, and the condition for lossless
transport (satisfied for each channel separately) will be
maintained when they are joined together.

A. Beam envelopes

It is important to know the beam envelope. Unfortu-
nately, it is not possible to predict analytically the envelope
for any initial distribution. We first consider a distribution
where all the particles have the same invariants e1, e2. We
do not specify in which way particles should be distributed
in d1,d2, but it is enough that the invariant surface is filled
without holes. By direct integration we find that the vol-
ume of the invariant surface is p2e1e2. We call this dis-
tribution matched invariants distribution. For this kind of
distribution, by using Eqs. (17) we find the envelopes

X �
p

be1 j�j 1
p

be2 j�j ,

Y �
p

be2 j�j 1
p

be1 j�j ,

X 0 �
q

e1A�b 1

q
e2B�b ,

(21)

Y 0 �
q

e2A�b 1

q
e1B�b ,

where A � �2 1 �a� 1 f0b��2 and B � �2 1 �a� 2

f0b��2. For this distribution the maximum radius of the
beam is given by rmax �

p
b�e1 1 e2�. The transverse

kinetic energy for which x02 1 y02 is a measure is also
an important quantity in designing an ionization cooling
channel [14]. From Eqs. (17) we find that
x02 1 y02 � ��as1 2 c1�2 1 �f0bs1�2� e1�b 1 ��as2 2 c2�2 1 �f0bs2�2� e2�b 1 2f0 pe1e2 sin�d2 2 d1� . (22)

Unfortunately, the expression for Ek � �x02 1 y02�max obtained from Eq. (22) is not simple. A practical formula is

Ek �
1
2

�g 1 f02b 1

q
g2 1 V � �e1 1 e2� 1 j , (23)
074001-3
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where V � �f02b�2 1 2�a2 2 1� f02, and j is a suitable
number such that 0 , j , 2jf0j

p
e1e2. Note that this ex-

pression becomes the usual g�e1 1 e2� in absence of the
solenoidal magnetic field. We compared Eqs. (21) with the
numerical solution of the equations of motion in the CERN
Neutrino Factory cooling channel [5]. One section is com-
posed of four identical solenoids (radius 0.3 m, length
0.76 m, and B0 � 2 T), spaced by 0.14 m. The solenoid
field Bs�s� is represented by the field on axis; see [15]. The
next section here is taken 0.48 m downstream. We show
in Fig. 1 the trajectory of 30 particles injected at 0.62 m
from the beginning of the first section, with invariants e1 �

FIG. 1. (Color) (a) rmax (solid line), theoretical envelope X
(dashed line), and 30 particle trajectories (dotted lines). (b) x0

vs s (dotted lines), X 0 (dashed line), and
p

Ek maximum (solid
line) obtained for j maximum.
074001-4
1 cm rad, e2 � 2 cm rad. The results are in complete
agreement with the theoretical prediction: all the trajec-
tories fit within the theoretical envelope. This method was
used to find the matched condition for a lossless channel
containing 44 MHz cavities with a bore radius of 30 cm.

Following [11] a more general matched invariants
particle distribution can be written as f�t2� where
t2 � e1�e10 1 e2�e20 and f�t2� is a function defined
in 0 , t2 , 1. This distribution satisfies the time-
independent Vlasov equation and it is therefore self-
consistent. The particle distribution is defined by e10, e20,
and f�t2�. Applying Eqs. (17) to this distribution we find
the envelopes

X �
q

b�e10�2 1 e20�2� ,

Y �
q

b�e20�2 1 e10�2� ,

X 0 �
q

�e10A 1 e20B��b ,
(24)

Y 0 �
q

�e20A 1 e10B��b .

The maximum radius is rmax �
p

b max�e10, e20�, and we
can express Ek � �x02 1 y02�max as

Ek �
1
2

�g 1 f02b 1

q
g2 1 V � max�e10, e20� 1 j ,

(25)

where j is a suitable number such that 0 , j ,

jf0j
p

e10e20.

B. Chromatic effects

Calling d � �p 2 p0��p0, for an off-momentum par-
ticle in a solenoidal channel, the Hamiltonian expanded up
to the third order [8] leads to the equations of motion

x00 2 S�1 2 d�y0 2
S0

2
�1 2 d�y 2

S2

4
d2x � 0 ,

y00 1 S�1 2 d�x0 1
S0

2
�1 2 d�x 2

S2

4
d2y � 0 .

(26)

As a first step toward the inclusion of the chromatic effects
in the optics one can neglect the terms in d2 so that the
equations of motion are identical to Eqs. (1) but with a
solenoidal strength S � S0��1 1 d�, where S0 belongs to
the reference particle. The equation of b then becomes

1
2

bb00 2
1
4

b02 1
S2

0

4�1 1 d�2 b2 � 1 . (27)

Given one particle at the entrance of the solenoidal chan-
nel, from b0, a0 in that position and d we can find e1, e2 by
using Eqs. (19). By using Eqs. (27) we can find bmax �
bmax�d� over the channel length. Finally, from e1, e2,
and bmax we find rmax. If rmax . R the particle is lost.
In this way an algorithm is obtained which in the 5D
074001-4
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space �x, x0, y, y0, d� defines the volume of initial condi-
tions which is accepted by the solenoidal channel.

C. Matching

We can also apply this theory to match quadrupolar and
solenoidal channels. Here the beginning and the end of the
solenoidal channel satisfy the condition f0 � 0. Consider
a general matched invariants distribution in a quadrupo-
lar transport channel [11]. This distribution is self-
consistent and, consequently, for each ex0, ey0 the plane
�d1, d2� is uniformly filled. The quadrupolar channel
is merged to the solenoidal channel by means of a
matching section which transforms the optic functions
bx , by , ax , ay from the end of the quadrupolar channel to
bx,1, by,1, ax,1, ay,1 at the entrance of the solenoidal one.
Matching is obtained when bx,1 � by,1 � b, ax,1 �
ay,1 � a. If these conditions are satisfied, the in-
variants of each particle are preserved, Eqs. (19) give
e1 � ex0, e2 � ey0, and the initial distribution becomes a
matched invariants distribution for the solenoidal channel
[as confirmed by Eqs. (17)]. In the same way, one can
match the solenoidal channel to a downstream quadrupolar
channel. The transported particle distribution at the exit
of the solenoidal channel is again the same self-consistent
invariant matched distribution that was injected only when
f � pn with n [ �. In fact, from Eqs. (17) for fixed
e1, e2 a uniform distribution in �d1, d2� (self-consistent)
is invariant if f � pn with n [ �. This condition
holds for each couple of e1, e2 of the matched invariants
distribution at the end of the solenoidal channel and, con-
sequently, the distribution injected into the downstream
quadrupolar channel will be the same used at injection.

D. rms invariants

For ionization cooling it is important to measure the rms
invariants and the effective volume in the 4D phase space
from the particle distribution. However, in a solenoidal
channel the two transverse planes are coupled and usual
rms invariants are not preserved. The solenoidal chan-
nel rms invariants e1,2 rms can be computed in the Larmor
frame as

e2
1 rms � w2

r w02
r 2 wrw0

r
2
,

e2
2 rms � w2

i w02
i 2 wiw

0
i

2
.

(28)

By means of Eq. (3) these definitions can be easily im-
plemented in a computer code where the beam track-
ing is performed in terms of the laboratory coordinates.
For a matched invariants particle distribution f�t2� where
t2 � e1�e10 1 e2�e20, the relation between e10,20 and
e1,2 rms depends on f. Since the transformation Eq. (3)
is volume preserving, the form of this distribution in the
Larmor frame will not change and can be written again
as f�t2� where now e1 � gw2

r 1 2awrw0
r 1 bw02

r , and
e2 � gw2

i 1 2awiw
0
i 1 bw02

i . This form has the same
074001-5
feature of the particle distributions used for rings [11] and
allows a natural extension of usual particle distribution
definitions at the solenoidal channel. In general, for a
matched invariants particle distribution,

e1,2 rms � Ce10,20 where C �
1
4

R`
0 t5f�t2� dtR`

0 t3f�t2� dt
.

(29)

If f�t2� ~ d�t2 2 1�, we recover a KV-like distribution
and C � 1�4. If f�t2� � const in 0 , t2 , 1 and
f�t2� � 0 in t2 . 1, we describe a waterbag-like distri-
bution and C � 1�6. For all the distributions such that
f�t2� � 0 in t2 . 1, the 4D volume which contains the
distribution is �p2�2�e10e20.

IV. CONCLUSION

We presented the solution of the single-particle linear
optics in a solenoidal channel. We showed how to compute
the single-particle invariants and found matched invariants
distributions used to predict the beam envelopes. An
algorithm to analyze the effect of off-momentum particles
on lossless transport was proposed, and we gave a general
rule to match solenoidal and quadrupolar channels. An
rms invariants definition was presented, and we discussed
the relation between rms invariants and the 4D phase
space volume occupied by a matched invariants particle
distribution.
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