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Abstract

This document describes the implementation of system control software for the COM-
PASS [1] experiment at CERN. This work concentrates on the GEM and silicon detectors,
but it also includes parts that are generally useful for all kinds of detectors. The only pre-
requisites were the PVSS II SCADA-system [87] and the JCOP [90] PVSS framework [91]
distributed by ITCO [89] at CERN. To achieve the given aims there was work to do
both on a C++ framework called SLiC [88] for hardware access and on top of the JCOP
framework to customise it for the special needs of the GEM and silicon detectors.



Foreword

Because this is a diploma work in physics and my actual work did not have any obvious
link to physics I decided to write an overview of the physics in the COMPASS experiment.
After this decision I had to decide about the level of detail of the overview. As I had in the
beginning some difficulties to find information of a student’s level about the experiment
and the involved theory I decided to do a student’s level introduction to the physics in
COMPASS. With this introduction to COMPASS I hope to help other students who will
work for COMPASS in the future to find a starting point for further readings.

My whole report tries to be fluently readable for a final year student who has already
some background in the area (either physics or computing), but who is not an expert.
Therefore, this report might seem a bit too wordy and a bit of too much unnecessary
detail for an expert. On the other hand the glossary tries to close the gap between my
level of introduction and a reader who has only a little background in the area.

The glossary is to retain the readability for a student’s level reader and therefore is a
reference for concepts that would lead the text too far off the subject. The index on the
other hand is a reference for concepts that were explained in text.

The schema behind where to put footnotes and where to do an in text explanation in
parenthesis might seem without concept. An explanation might be that as stressed above
I tried to do a fluently readable text (which is open to interpretation) and the concept I
took to decide where to put footnote information, either in the text or as a real footnote,
was my feeling about readability, which might not be the same for any other reader.

The final point I want to remark is that the amount of information given for some
subject is by no means a measure for the importance of that subject. The amount of
information I put into this work per subject is just a sign of how much information I had
available for that subject!
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1 Introduction

The COMPASS (Common Muon and Proton Apparatus for Structure and Spectrosco-
py [1]) experiment was founded, as two different physics groups, the CHEOPS (Charm
Experiment with Omni-Purpose Setup [2]) group and the HMC (Hadron Muon Collabo-
ration [3]) group, with different physical aims recognised that the experimental set up to
achieve these aims were very similar. Therefore, COMPASS is a successor of the exper-
iments SMC (Spin Muon Collaboration [4]), WA89 [5] and WA102 [6]. The COMPASS
experiment consists of two major physical programmes, the muon programme and the
hadronic programme. Both programmes have several aspects. One important part of the
muon programme is for example to analyse the “spin puzzle” and one important part of
the hadronic programme is for example the study of hadronic states with charm flavour
quantum number.

The COMPASS experiment is special, because no other fixed target experiment before
had to cope with as high event rates as COMPASS proposes to do. On the one hand,
these high event rates are necessary to achieve the set aims but on the other hand, these
high event rates are also a challenging task on their own for experimental physics. The
rates alone already impose some restrictions on the type of detectors, which can be used,
and on the electronics to gather and process the gained results.

Nowadays physics experiments are not only a challenge for the technical realisation
of the detectors, but also for the complexity management software like a DCS (Detector
Control System) system (see glossary: Detector Control System). There is the high voltage
system, the temperature measurement, the gas control and much more for every detector
and for every cell of the detector. Therefore an experiment needs a sophisticated system
for the detector control.

The subject of this work was to write software to integrate the GEM (Gas Electron
Multiplier) and silicon detectors into the common system control framework. As COM-
PASS is one of the first experiments at CERN (Organisation Européenne pour la Recherche
Nucléaire), which uses the PVSS II (Prozessvisualisierungs- und Steuerungssystem [87])
SCADA (Supervisory Control and Data Acquisition) system, it was not possible to use
existing software for some major parts of the job to be done. For the C++ framework
SLiC (SLiC stands for Slow Control) it was for example necessary to first produce a design
and then to implement it.

The SCADA system already provides

1. an abstraction from the network accesses,

2. an archiving database,

3. a scripting language,

4. a user interface builder,

5. scalability,

6. user rights and user management.

On top of this SCADA system, the JCOP (Joint Controls Project [90]) project has already
written a framework to support every detector team in building the control software for
their detector The framework includes

1. a design of how to model detectors and sub devices,

2. an alarm handling scheme,

3. a user interface for managing and configuring the models of the detectors and

4. run-time user interfaces for common hardware elements.

6



Furthermore, the framework provides a set of tools, which implement missing functionality
of the SCADA system, such as FSM (Finite State Machine) support. The framework uses
interfaces to facilitate the integration of the different layers of the control system and to
hide the underlying tools as much as possible from the users, thus reducing the amount
of training and support required. The frameworks therefore allow the development of a
coherent and homogeneous system by multiple and remote teams of developers.

The implementer of the control software of a certain detector now has to extend this
framework for his special needs, which often just means that he has to assemble the
different predefined parts of the framework to represent the detector in question.

Section two of this work describes the physical background of the experiment and the
principles of the detectors that are used. It gives the reader a consistent overview of the
experiment, the physics involved and the aims followed. It is therefore a collection of data
out of several information sources in the context of COMPASS. Section three will outline
the general principles of slow control. We follow the complete path from the hardware
to the system supervisor in front of the system control screen. After a description of all
requirements in section four, section five describes the readout process of the hardware
connected to field-buses (see glossary: Field-bus). Section six then shows how this infor-
mation is integrated in the common system control environment of COMPASS. Finally,
section seven and eight give an overview of the achieved results in terms of efficiency and
reliability and an outlook for future develpments.
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2 The COMPASS Experiment

This section aims to provide a consistent, easy to follow and complete introduction to the
physical background of the COMPASS experiment and its technical realisation.

2.1 Review of some theoretical aspects of deep-inelastic scattering

As this sub-section is a short version of section 2 (“Review of some theoretical aspects”)
in reference [9] the same equation numbers as in reference [9] are used. It describes the
basics of deep-inelastic scattering (DIS) and structure functions.

2.1.1 Kinematics

In a typical fixed-target DIS experiment a lepton of energy E scatters from a nucleon
or nuclear target at rest under an angle θ and with a final energy E ′. Three Lorentz
invariants can be constructed from these laboratory variables and the nucleon mass M .

S

Spin Plane

Scattering Plane

φψ

θLepton 

k'

Sl = h k̂�l

N

Figure 1: Kinematics of polarised deep-inelastic lepton-nucleon scattering.

q2 = (k − k′)2
lab
= −4EE′sin2 θ

2
, (2.1)

P · q lab
= Mν = M(E − E ′), (2.2)

P · k lab
= ME, (2.3)

where k, k′ and P = (M, 0, 0, 0) are the four-momenta of the incoming and scattered lepton
and of the target nucleon, respectively. In equation (2.1) the lepton mass was neglected
as it will be throughout this review. The cross-section can then be written as a function
of the dimensionless scaling variables 0 ≤ x, y ≤ 1

x =
−q2

2P · q
lab
=

Q2

2Mν
(2.4)

y =
P · q
P · k

lab
=

ν

E
. (2.5)

Other characteristic variables of the scattering process are the c.m. (centre-of-mass) en-
ergy,

√
s, and the c.m. energy of the hadronic final state, W ,

s = (k + P )2 =
Q2

xy
+ M2 (2.6)

W 2 = (q + P )2 =
1 − x

x
Q2 + M2 (2.7)
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2.1.2 The deep-inelastic cross-section

Here only photon exchange is considered, as the energy in the experiment will be well
below the W,Z masses. Then the Born cross-section for inclusive (see glossary: Inclusive
Measurement of Interactions) inelastic scattering of a charged lepton from a nucleon `N →
`′X, can be expressed as a product of a leptonic tensor, lµν , and a hadronic tensor, W µν ,

d3σ

dxdydφ
=

α2

Q4

y

2
lµνW µν , (2.8)

The tensors lµν and W µν involve the leptonic and hadronic electromagnetic currents,
respectively (see reference [9] equations (2.10) to (2.16)). The general form of the hadronic
tensor for a spin- 1

2 target is

1

2
W µν(S) = −

(

gµν − qµqν

q2

)

F1 +

(

P µ − P · q
q2

qµ

)(

P ν − P · q
q2

qν

)

F2

P · q
1

2
W µν(A) = −εµναβqα

(

MSβ

P · q (g1 + g2) −
M(S · q)Pβ

P · q g2

)

. (2.17)

Here the dimensionless structure functions F1, F2, g1 and g2 are in general functions of P ·q
and Q2. S is the nucleon’s polarisation vector.

2.1.3 Photoabsorption

As the scattering process of a lepton with the nucleon involves the radiation of a virtual
photon off the lepton, which in turn is absorbed by the nucleon, the differential cross-
section is related to the transverse and the scalar virtual-photon flux and the transverse
and scalar virtual photoabsorption cross-section. Therefore, also the lepton and virtual-
photon cross-section asymmetries are related (for a more detailed analysis see reference [9]).

2.1.4 Cross-section asymmetries

The observable spin-dependent effects in experiments are small and appear on top of the
unpolarised cross-section. They must be determined from the differences of cross-sections,
which are sensitive to small changes of the apparatus’ acceptance. These systematic
uncertainties largely cancel in the cross-section asymmetries.

A‖(x,Q2;E) =
∆‖σ

σ̄
=

σ
→

⇐ − σ
→

⇒

σ
→

⇐ + σ
→

⇒
, (2.38)

A⊥(x,Q2;E) =
∆⊥σ

σ̄
=

H`

cosφ
· σ(φ) − σ(π ± φ)

σ(φ) + σ(π ± φ)
(2.39)

where → and ⇒ indicate the beam and target polarisation, respectively and σ denotes
the differential cross-section.

The parallel and perpendicular lepton asymmetries, A‖ and A⊥, do not have a straight-
forward physics interpretation and in addition they strongly depend on E or y. Hence,
asymmetries obtained in experiments performed at different incident energies cannot be
compared directly. Therefore it is customary to express the lepton asymmetries in terms
of the virtual-photon asymmetries A1 and A2, which are functions of x and Q2 only. From
reference [14, 16] we see, that the SMC experiment measured Ap

2 and Ad
2 and they were

found to be consistent with zero in their range of Q2 and x.
Generally, one finds the relation between the asymmetries

(

A‖/D

A⊥/d

)

=

(

1 η
−ξ 1

)(

A1

A2

)

(2.45)
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where the depolarisation factor D and the three factors d, η and ξ are kinematic factors
(an explicit expression can be found in reference [9] equations (2.43) and (2.44)).

The reason why this formula is cited here without any further explanation is, because
it shows that the relation between the lepton asymmetries and the photon asymmetries is
a simple linear equation. Therefore the lepton asymmetries and photon asymmetries can
be used interchangeably. Furthermore we will use this equation later in sub-section 2.2.1
in equation 27, where we drop the A2 dependency as justified above.

2.1.5 The quark parton model

The (QCD1-improved) quark parton model allows us to understand structure functions in
terms of quarks and gluons. Due to the asymptotic freedom of QCD at high momentum
transfers, Q2, in DIS a hadron behaves like an incoherent superposition of free partons.
If the hit parton, q, carries the fraction ξ of the hadron’s 4-momentum, pq = ξP , then
the W µν tensor for a free massless spin- 1

2 parton inside the hadron can be calculated and
one finds the structure functions

F̂1 =
1

2
e2
P δ(ξ − x), F̂2 = e2

P ξδ(ξ − x), ĝ1 = λ
1

2
e2
P δ(ξ − x), ĝ2 = 0 (2.58)

where eP is the parton’s charge. The factor λ = ±1 accounts for the fact that g1 is defined
using the hadron’s spin orientation and therefore an additional minus sign is needed when
the parton’s spin is oriented opposite to the one of the hadron.

The probability to find inside a hadron a parton of a certain type carrying a momentum
fraction, ξ, is parameterised by the parton distribution functions, qλ

i (ξ). For the quarks we
use qi = u, d, s, . . . and for the gluon qi = g. For a longitudinally polarised hadron, parallel
and antiparallel orientation of the parton spin with respect to the hadron spin are denoted
by λ = ±1. For a transversely polarised hadron, parallel and antiparallel orientation of
the parton spin with respect to the hadron spin are denoted by λ = (↑, ↓). These functions
are number densities normalised to the total number of partons of the considered type in
the hadron. Usually the qi(x) are understood as the sum of the distribution functions
of quarks and antiquarks in both helicity states. For clarity we therefore introduce q̂ for
quarks and q̄ for antiquarks and denote the difference of the helicity states by ∆q,

q± = q̂± + q̄±, q = q+ + q−, ∆q = q+ − q− (2.59)

The hadron structure functions are then given by

F(x) =
∑

i,λ

∫ 1

0
dξqλ

i (ξ)F̂λ
i (x, ξ), (2.60)

where i runs over all quark flavours and F = F1, F2, g1 and g2, yielding

F1(x) =
1

2

∑

i

e2
i

{

q+
i (x) + q−i (x)

}

(2.61)

F2(x) = x
∑

i

e2
i

{

q+
i (x) + q−i (x)

}

(2.62)

g1(x) =
1

2

∑

i

e2
i

{

q+
i (x) − q−i (x)

}

(2.63)

g2(x) = 0 (2.65)

1Quantum Chromo Dynamic
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In the limit Q2 → ∞, where the quark parton model is applicable, the structure func-
tions do not depend on ν and Q2 separately, but become functions of x only. Another
consequence of the quark parton model is the Callan-Gross relation

F2(x) = 2xF1(x) (2.66)

2.1.6 Sum rules in the quark parton model

Before we start with the proper treatment of this subject, it is instructive to make a few
remarks about an intuitive but wrong picture of the nucleon spin (see reference [10]). In
the simple quark model the spin of the proton is carried by its three valence quarks, so
that ∆Σ = ∆u + ∆d = 1. In general terms one writes the spin equation for a nucleon as

1

2
=

1

2
∆Σ + ∆g + 〈Lz〉

where ∆Σ = ∆u + ∆d + ∆s is the contribution of the quarks, ∆g is the contribution
of the gluons, and 〈Lz〉 is a possible contribution from the gluons’ and quarks’ angular
momentum. In the simple quark model

u+ =
5

3
, u− =

1

3
, ∆u =

4

3
, u = 2

d+ =
1

3
, d− =

2

3
, ∆d = −1

3
, d = 1

the three valence quarks are in an S-state, so 〈Lz〉 = 0, and the spin sum rule is satisfied
by ∆Σ = 1. Since the EMC (European Muon Collaboration) discovery (see below), we
know that this picture does not correspond to reality, and that the contribution of the
quarks to the spin of the nucleons is much smaller.

The Ellis-Jaffe (reference [26]) and Bjorken sum rules are sum rules for the first
moment of g1,

Γ1 =

∫ 1

0
g1(x)dx.

They follow in the quark parton model immediately from equation (2.63). They are quoted
here without explanation only to give the reader an idea of their analytical formulation.

Γp
1 − Γn

1 =
1

6
ga (Bjorken sum rule). (2.82)

Γp,n
1 =

1

12
ga

{

±1 +
5

3

3F/D − 1

F/D + 1

}

(Ellis-Jaffe sum rule). (2.83)

For a further clarification of the meaning of the variables, see reference [9] equations (2.71)
to (2.81).

In the quark parton model the total contributions of the quarks to the nucleon’s spin
is given by

∆Σ = ∆u + ∆d + ∆s = a0 (2.84)

The value of a0 and a8 (used below) are linear combinations of the ∆qi. As explained
above, naively one expects ∆Σ=1. Ellis and Jaffe assumed that the strange quarks
are not polarised ∆s ≡ 0, leading to a0 =

√
3a8 and thus ∆Σ = 0.579 ± 0.026. The

value ∆Σ = 0.12 ± 0.16 found by the EMC ([23, 24]) experiment came as a big surprise.
The latest result obtained by the HERMES collaboration [25] is ∆Σ = 0.30± 0.04± 0.09.
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2.2 The muon programme

The muon programme is four-fold. After it is now firmly established that the spin content
of the nucleon is not entirely due to the valence quark spins, a decision between the
competing models is needed. In the gluon interpretation, it is the polarised glue ∆g (so-
called axial anomaly [20, 21, 22], see also reference [9] equation (2.122)), which lowers
the quark’s contribution to the nucleon spin, whereas in an alternative model negatively
polarised strange sea quarks are responsible (Skyrme model [15]). Therefore, the first two
points in the muon programme are to decide between the two models

1. by measuring ∆g/g via the photon-gluon fusion process (PGF)

and

2. measuring the polarisation of strange quarks and/or antiquarks by measuring the
longitudinal polarisation of Λ and Λ̄ in the target and current fragmentation regions
(see glossary: Fragmentation Region).

The other two points are

3. the measurement of the longitudinal spin distribution functions,

and

4. the measurement of the transverse spin distribution functions, which were up to now
never measured.

The observation of Λ(Λ̄) in the current fragmentation region also addresses the problem
of spin dependent fragmentation functions (see glossary: Fragmentation Function), which
are closely related to the spin structure functions (see structure functions in section 2.1.2
on page 9).

A total running of one and a half years with a 6LiD target with 50% polarisation and
of one year with a NH3 target of 85% polarisation are planned. The running time will be
split in 80% with longitudinal and 20% with transverse target polarisation.

2.2.1 ∆g/g via the photon-gluon fusion process

This section is a summary of reference [13] in the context of the preceding review of
theoretical aspects.

After the discovery of the EMC that the Ellis-Jaffe sum rule (see equation (2.83))
was not obeyed for the proton and the neutron a direct measurement of the gluon po-
larisation ∆g/g is mandatory for a further clarification of the internal spin structure
of the nucleon. The prediction of the Ellis-Jaffe sum rule (see equation (2.84)) are
for ∆Σ =

√
3a8 ≈ 0.6 and the measurements give us a value of ∆Σ ≈ 0.2. To repeat what

was said above: If the gluon polarisation is large one model expects the axial anomaly to
be responsible for the reduction of ∆Σ. In the Skyrme model negatively polarised strange
sea quarks are expected to produce the small values of ∆Σ.
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Figure 2: The PGF diagram.

Charm production in DIS is in leading order only
due to the photon-gluon fusion process (PGF).
Other processes only contribute in higher orders.
Furthermore, since there is no or only a small in-
trinsic charmed quark distribution in the nucleon,
diagrams with an incoming charmed quark do not
contribute. Therefore, the PGF process is one of the
cleanest processes that depend on the gluon distri-
bution.

For real photons the cross-section of the sub-
process γg → cc̄ can be written as

σγg→cc̄ = σ(ŝ) + λγλg∆σ(ŝ), (24)

where ŝ = (q + k)2 is the square of the energy and λγ, g are the helicities in the photon-
gluon c.m. system. The spin averaged part, σ(ŝ), and the spin dependent part, ∆σ(ŝ), are
given in leading order (LO) by equation (6.2) of reference [9]. Because of colour coherence
of gluon couplings [17] it is expected that for x → 0 the gluon polarisation behaves
like ∆g/g ∼ x. Most proposed polarised gluon distributions exhibit such behaviour.

To obtain the photon-nucleon cross-section asymmetry, Acc̄
γN , for the process γN → cc̄

we must integrate over the c.m. energy, ŝ, from the threshold to the maximum available
energy

Acc̄
γN (ν) =

∆σγN→cc̄X

σγN→cc̄X
=

∫ 2MN ν
4m2

c

dŝ∆σ(ŝ)∆g(η, ŝ)
∫ 2MN ν
4m2

c

dŝσ(ŝ)g(η, ŝ)
, (25)

where η is the momentum fraction of the nucleon carried by the gluon (η = ŝ/2MNν), MN

is the nucleon mass and ν is the photon energy. The experimentally observed asymmetry
is

Aexp =
N

→

⇐ − N
→

⇒

N
→

⇐ + N
→

⇒
= PµPtfAcc̄

µN , (26)

where N is the number of charm-production events with antiparallel and parallel longitu-
dinal polarisation of the muon and the target nucleon. The asymmetry is reduced by the
beam and target polarisations, Pµ and Pt, and the dilution factor f 2, which is the frac-
tion of polarisable nucleons in the target material. The muon-nucleon asymmetry Acc̄

µN is
related to the discussed above photon-nucleon asymmetry, Acc̄

µN , by

Acc̄
µN (E, y) = DAcc̄

γN ≈ 1 − (1 − y)2

1 + (1 − y)2
Acc̄

γN (E, y). (27)

The depolarisation factor, D, accounts for the lower polarisation of the virtual photon com-
pared to the parent muon. As discussed above the complete relation is like equation (2.45)
and here we dropped the A2 dependence as justified by references [14, 16].

Now to obtain ∆g/g we need two additional ingredients, the so-called Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution equations (DGLAP) (reference [18]) and
the elementary photon-gluon cross-sections (reference [9] equations (6.2)). The parton
distributions qi are determined from a global fit to a wide range of scattering data. The
basic procedure is to parameterise the qi(x,Q2) at a low value of Q2 = Q2

0 such that
the qi(q,Q

2) can be calculated at higher Q2 by using next to leading order (NLO) DGLAP.

2f(NH3) = 0.176, f(6LiD) = 0.5
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Now it is possible to get ∆g/g by comparing different parameterisations to the measured
data. COMPASS expects to measure ∆g/g to an accuracy (reference [1]) of:

δ

(

∆g

g

)

≈ 0.11 (28)

A short and comprehensive explanation (tagging and pt cut) on how to obtain this estimate
is given in reference [10] page 8.

2.2.2 Measurement of Λ and Λ̄ polarisation

Above it is shown that by measuring the asymmetry in the production of open charm
by PGF it is possible to distinguish between the polarised strange quark [15] and gluon
interpretation of the EMC spin effect. Complementary information on the polarisation
of strange quarks and/or antiquarks can be obtained by also measuring the longitudinal
polarisation of Λ and Λ̄ baryons.

Λ

N

x

z

u

u

γ∗µ+

µ+

s-

s

u
d

Figure 3: Λ polarisation according to the polarised ss̄ sea model.

The basic idea of the longitudinal polarisation transfer from the polarised lepton to the
unpolarised target fragments is that the polarised virtual boson will strike preferentially
one quark polarisation state inside the target nucleon, and that the fragment left behind
will contain some memory of the angular momentum removed. More specifically the
mean polarisation of the remnant s or s̄, and hence the Λ or Λ̄, produced in the target
fragmentation region , should be net negative, as diagrammatically shown in figure 3. This
is due to the preference of the negative polarised virtual photon to interact with a u quark
with positive helicity, which on average is aligned with the proton. The effect is large and
can be detected in the COMPASS experiment.

2.2.3 Longitudinal spin distribution functions

In the view of the different explanations for the violation of the Ellis-Jaffe sum rule
and the existence of various models for the spin structure of the nucleon it appears logical
and tempting to decompose the nucleon spin into the valence and the sea components and
to determine the spin distribution functions of the different flavours for the valence and
the sea quarks. This can be achieved by semi-inclusive measurements (see glossary: Semi-
Inclusive Measurement of Interactions) of deep inelastic scattering of polarised leptons on
polarised proton and deuteron targets.

The measurement and the identification of the final state hadrons in the full range
of momentum allows a detailed study of the fraction of the nucleon spin carried by the
valence and sea quarks, respectively. In the current fragmentation region , semi-inclusive
cross-sections factorise into the z independent quark spin distribution functions and the x
independent quark fragmentation functions . The asymmetries of the spin dependent
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virtual photon cross-sections for muoproduction of π+, π−, K+, K− and K◦ are given
by the ratios of the different linear combinations of quark distribution functions from
which then flavour separate distribution functions can be derived as a function of x (see
reference [1] appendix A).

2.2.4 Transverse spin distribution functions

As shown by Jaffe and Ji [19], the momentum distributions q(x), the helicity distribu-
tions ∆q(x), and the transverse spin distributions ∆T q(x) completely specify the quark
state inside the nucleon at the twist-two level. The functions ∆T q(x) have never been
measured up to now.

In all existing estimates ∆T q(x) is nonzero at least for u quarks and it is different
from ∆q(x).

COMPASS proposes to measure ∆T q(x) in semi-inclusive DIS at the leading twist, by
analysing the polarisation of the ‘struck’ quark.

2.3 The hadron programme

The hadron programme will address three main issues,

1. study of hadronic structure with virtual photons using Primakoff reactions,

2. study of gluonic systems and

3. study of charmed hadrons.

2.3.1 Hadronic structure with virtual photons

Because of the progress in the description of nucleon structure through non-perturbative
QCD there are now predictions for quantities like polarisabilities and cross-sections avail-
able, which need to be confirmed by experimental measurements. Currently such studies
are almost solely addressed at low-energy electron accelerators. COMPASS proposes to
use high-energy pion, kaon and hyperon beams to provide complementary measurements
using the Primakoff reaction mechanism (which is Compton scattering with virtual
photons in inverse kinematics).

Rigorous predictions were made using an effective field theory, with a QCD chiral
Lagrangian, which unambiguously follows from the assumption of spontaneously broken
chiral symmetry. A low-energy expansion of the effective Lagrangian establishes unam-
biguous relationships between different processes. Now we need experimental investiga-
tions to determine how well chiral perturbation theory (χPT) works. Thereby COMPASS
tests fundamental predictions of QCD like pion and kaon polarisabilities, and chiral axial
anomaly amplitudes.

The Primakoff reaction relates processes involving real photon interactions to pro-
duction cross-sections involving the exchange of virtual photons. Research on gamma-
hadron interactions now plays an important role in studies of hadron structure. First of
all, progress in experimental techniques now makes these experiments feasible and sec-
ondly, hadron-photon interactions supply information on the distribution of quark config-
urations in hadronic matter, via the photon interactions with the electric charges of quark
fields. In general, Primakoff experiments require high Z targets, low mass tracking
detectors, good charged-particle momentum resolution and high-resolution (spatial and
energy) electromagnetic calorimetry.
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In detail COMPASS will study hadron-photon interactions via the Primakoff reac-
tion in the areas of hadron polarisabilities, hybrid meson production and radiative transi-
tions of pion to a low mass two-pion system for a measure of the chiral anomaly. Therefore
the COMPASS experiment uses a 50 to 280GeV (µ,π,K,p)-beam and a virtual photon
target.

Pion Polarisabilities [30]: The electric (ᾱ) and magnetic (β̄) pion and kaon polaris-
abilities characterise the deformation of these particles in an electromagnetic field, as for
example during γπ or γ-kaon Compton-scattering. The polarisabilities depend on the
rigidity of the particles’ internal structures. Pion (kaon) polarisabilities can be studied via
pion and kaon Primakoff reactions such as π−γ∗ → π−′

γ. In pion-photon Primakoff

scattering, a high energy pion scatters from a virtual photon in the Coulomb field of the
target nucleus. The pion polarisabilities are determined by their effect on the shape of the
measured γπ Compton scattering angular distribution. The χPT (Chiral Perturbation
Theory) effective Lagrangian then predicts the pion electric and magnetic polarisabilities.
Because the available experimental data for pion polarisability has large uncertainties and
kaon polarisability measurements have not been carried out, new high precision pion and
kaon polarisability measurements are necessary to provide important new tests for QCD
chiral dynamics.

Hybrid meson production [30],[32]: To understand confinement, it is of major im-
portance to establish the existence of hybrid mesons and to study their structure. The
hybrid (qq̄g) mesons contain explicit glue as opposed to hidden glue in conventional
hadrons. Because of difficulties in the mathematical treatment (PWA3) of the scattering
results it is extremely important to have extra information from different hybrid produc-
tion mechanisms where the physics is different and the ambiguities may look different.
COMPASS may study Primakoff and diffractive production of non-strange light-quark
hybrid mesons in the 1.4 to 3.0GeV mass region.

Radiative transitions [32]: Radiative decay widths of mesons and baryons are pow-
erful tools for understanding the structure of elementary particles and for constructing
dynamical theories of hadronic systems. The small value of branching ratios of radiative
decays makes them difficult to measure directly, because of the large background from
strong decays. Studying the inverse reaction provides a relatively clean method for the
determination of the radiative widths. Very good tracking resolution is needed (and avail-
able in COMPASS) to measure initial and final state momenta, and to thus exhibit the
Primakoff signal at small four momentum transfer, where the electromagnetic processes
dominate over the strong interaction. COMPASS will study radiative transitions of inci-
dent mesons to higher excited states. This will lead to new data for radiative transitions
leading from the pion to the ρ, a1(1260), and a2(1320); and for the kaon to K∗ and higher
resonances.

Chiral Anomaly [33]: Another interesting radiative transition involves the chiral
anomaly term of the effective chiral Lagrangian. The chiral anomaly component of the
effective chiral Lagrangian predicts the F3π transition amplitude for the γ → 3π process.
This amplitude was already measured, but only with low statistics and the result was not
consistent with the O(p4) expectation. Therefore more precise measurements are needed,
which COMPASS can provide.

3Partial Wave Analysis
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JPC I = 1 I = 1 (nn̄) I = 1 (ss̄) Strange

L=0 S=0 0−+ π η η′ K
S=1 1−− ρ ω φ K*

L=1 S=0 1+− b1 h h′ K1

S=1 0++ a0 f0 f ′
0 K0

1++ a1 f1 f ′
1 K1

2++ a2 f2 f ′
2 K2*

L=2 S=0 2−+ π2 η2 η′2 K2

S=1 1−− ρ ω φ K1*
2−− ρ2 ω2 φ2 K2

3−− ρ3 ω3 φ3 K3*
...

...
...

...
...

...
...

Table 1: The quantum numbers and names of conventional qq̄ mesons [34].

2.3.2 Study of gluonic systems

The following section is mainly an excerpt of reference [34] put into the context of the
COMPASS experiment.

Because of its non-abelian character one fundamental prediction of QCD is the exis-
tence of states containing valence gluons. Due to confinement, only colour singlet objects
can exist as physical hadrons. Coloured quarks form the fundamental triplet 3 repre-
sentation of the SU(3) colour gauge group and antiquarks the conjugate anti-triplet 3̄
representation. In the constituent quark model, combining the spin and orbital angular
momentum wave functions with the quark flavour wave functions, results in the meson
states of table 1. States not fitting into this picture are considered “exotic”. Thus, a
meson with JPC = 1−+ would be forbidden in the constituent quark model as would be
a doubly charged meson. However colour singlets can also be constructed with gluons g.
Glueballs are hadrons with no valence quark content and hybrids are made up of valence
quarks, antiquarks, and an explicit gluon degree of freedom.

The lightest glueball is found to be a 0++ state with a mass around 1500MeV. Because
the lowest glueballs have conventional quantum numbers with masses situated in dense
background of conventional qq̄ states, it is difficult to distinguish them from conventional
mesons. The significant property of glueball decays is that one expects them to have
flavour-symmetric couplings to final state hadrons. Measurement of electromagnetic cou-
plings to glueball candidates would be extremely useful, because the radiative transition
rates of a relatively pure glueball would be anomalous relative to the expectations for a
conventional qq̄ state and similarly, a glueball should have suppressed couplings to γγ.

Additionally the simple picture above is complicated by mixing effects between the
pure glueball and qq̄ states with the same JPC quantum numbers. With this motivation
Lee and Weingarten [35, 36] approximated, that the f0(1710) glueball is ∼ 74% glueball
and the f0(1500) glueball is ∼ 98% quarkonium, mainly ss̄. Mixings can significantly alter
the properties of the underlying states, which makes the interpretation of observed states
difficult, and often controversial.

Given this discussion, the conventional wisdom is that it would be more fruitful to
search for low mass hybrid mesons with exotic quantum numbers than to search for glue-
balls. Hybrids have the additional attraction that, unlike glueballs, they span complete
flavour nonets and hence provide many possibilities for experimental detection. In addi-
tion, the lightest hybrid multiplet includes at least one J PC exotic.

In the search for hybrids, there are two ways of distinguishing them from conventional
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states. One approach is to look for an excess of observed states over the number pre-
dicted by the quark model. The drawback to this method is that it depends on a good
understanding of hadron spectroscopy in a mass region that resisted an unambiguous un-
derstanding. Especially here COMPASS tries to improve the experimental data by also
doing light meson spectroscopy to produce a proper classification of the scalar and pseudo
scalar mesons to aid theory in finding an applicable model. The situation is further compli-
cated by expected mixing between conventional qq̄ states and hybrids with the same J PC

quantum numbers. The other approach is to search for quantum numbers, which cannot
be accommodated in the quark model.

2.3.3 Studies of charmed hadrons
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Figure 4: SU(4) representation of the ground state baryons.

Because up to date not even all 1/2+ ground states of charmed baryons have been observed
and nothing is known about doubly charmed baryons, COMPASS tries to clarify the
situation in the charmed hadrons sector.

The semi-leptonic decay widths provide the best test for our understanding of charmed
baryon decays since precise theoretical predictions on rates and form factors are available.
In particular, it is of interest to compare the q2 dependence of form factors to calculations
in the HQET (Heavy Quark Effective Theory) framework [38]. Although the charm quark
mass is at the lower limit of applicability of the theory, corrections are believed to be of
the order of only 20%.

Besides that the theoretical semi-leptonic decay width Γth
sl of charmed baryons together

with the experimental ratio of semi-leptonic to hadronic branching fractions Bhad/Bsl

and the experimental measured lifetime τ allow a determination of hadronic partial
widths Γhad = Γth

sl Bhad/Bsl and absolute hadronic branching ratios Bhad = Γhadτ for
comparison with theory predictions. The absolute branching ratios are also needed in
order to interpret beauty hadron decays.

Charmed hadron lifetimes are ideal for testing the understanding of the effects of the
hadronic environment on the decay of the naked charm quark. These effects are about
a factor 10 larger for charmed hadrons than for beauty hadrons but significantly smaller
than in strange hadrons. To aid theory in its understanding of hadronic effects, precise
measurements of the lifetime of all charmed baryons to better than 5% are required. The
main difficulty lies in the short lifetimes of the charmed-strange baryons and their small
production rate.

The production of doubly charmed quarks has not yet been addressed by any running
experiment and it is, due to the very low cross-section and small branching ratios, an
experimental challenge. The structure of doubly charmed baryons probably resembles
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muon programme hadron programme

top beam momentum 190 GeV/c 280 GeV/c
particles/spill 2.0 · 108 108

beam polarisation PB 0.80 0
beam diameter σx, σy 0.8 cm 0.3 cm

Table 2: Properties of the beam in the muon and hadron programme (see references [1,
44, 45]).

a heavy meson (“similar” to the H+
2 molecule) where a light quark surrounds a heavy

cc-diquark. Besides the spectroscopical interest, their lifetime offers insights into decay
dynamics.

The process of hadroproduction of charmed particles can be subdivided into two differ-
ent sub processes, the production of charmed quarks and the process of their hadronisation
into charmed particles. The former defines the full cross-section of charm while the latter
is responsible for the relative production of different types of charmed particles and their
kinematic distributions. As the mass of the c-quark is not large enough we cannot limit
ourselves to low order diagrams in perturbative QCD to calculate the full cross-section of
charm. In addition, as the process of hadronisation is soft, the hadronisation is beyond
the scope of perturbative QCD. Due to the very high beam rate the experiment proposed
is capable of a systematic study of the charm production in a range of c.m. energies from
14 to 25GeV.

D and Ds-mesons can be used to study rare processes like leptonic decays (D → µν),
which are the key to the determination of the charmed meson decay constants. For D-
mesons the measurement of the leptonic decay is more difficult than for Ds-mesons, because
the leptonic decay of the D mesons is Cabibbo suppressed and only appears with a
branching ratio of about 10−4. Other studies with D mesons include semi-leptonic decays,
spectroscopy of orbitally and radially excited states and the search for rare or forbidden
D-decays.

There will also be some investigations on charm exotics like singly charmed pentaquark
and doubly charmed tetraquark systems.

2.4 The beam

The muon programme needs an incoming beam of 2 × 108 µ+ per spill (see glossary:
Spill) with an energy in the range of 90 to 200GeV and a high longitudinal polarisation.
The hadron programme uses unpolarised π, K, p and Σ beams with momenta of up
to 300GeV/c and preferably more. In table 2 you can find a summary of beam properties
for both programmes.

All beams are generated in the M2 beam line using the T6 production target (see
reference [46]). The target is made of beryllium. Typical target lengths are 200 to 500mm
(the interaction length (see glossary: Interaction Length) of beryllium is some 400mm).
A 400GeV/c primary proton beam is extracted from the SPS (Super Proton Synchrotron)
towards the north experimental area. A fraction of this beam, selected by two stages of
septum magnets, is directed towards the primary target T6. The proton intensity incident
on this target may be in the range between 2 · 1012 and 1.2 · 1013 protons per SPS cycle,
where the upper limit is given by radiation protection limits. From the T6 target a
secondary beam (positive or negative) at zero production angle is derived. Either this
beam is transported directly to the experiment (in the case of the hadron beam), or
tertiary muons or electrons are selected. A schematic layout of the M2 muon beam is
shown in figure 5. A more detailed description of the M2 beam layout is available in the
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form of a Beatch listing, indicating the exact positions of all magnets, collimators and
detectors at http://cern.ch/eagroup/beatch/m2yr2001.txt. The hadron beams are a
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absorber
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Figure 5: The M2 beam layout [12].

direct product of the incoming protons colliding with the beryllium atoms and producing
secondary particles (mainly protons, pions and kaons). After the production target there
is a Spectrometer Magnet, which selects particles with a defined momentum.

The following procedure depends on the type of particles needed for the experiment.

• Hadron beam: In this mode of operation the hadron absorbers are moved out of
the beam and the secondary hadrons are transported directly from the primary
target to the experiment. The maximum allowed fluxes are 108 hadrons per SPS
cycle, limited by radioprotection guidelines. Typical spot sizes are of the order of 3
to 5mm RMS (Root Mean Square). The beam composition as a function of beam
momentum can be calculated with the Atherton formula [48].

• Muon beam: The M2 has historically been designed and operated as a muon beam. A
large acceptance (see glossary: Acceptance), relatively wide-band (±10%∆p/p) pion
beam, as well as the muons originating from pion decay, are transported through
a 600m long decay channel (FODO (Focusing-Defocusing quadrupoles) lattice). At
the end of this channel, the muons are focused on a beryllium absorber (up to 9
units of 1.1 metres of beryllium each), which stops all the hadrons in the beam.
The muons are picked up and transported through a second FODO channel. The
muon momentum definition and cleaning is done in this section, too. At the end of
this FODO array the beam is shaped in terms of spot size and divergence for the
experiment. The maximum allowed flux is 2 · 108 muons per SPS cycle. Typical
spot sizes at the target are 8mm RMS, with a divergence of 0.5mrad RMS in the
horizontal plane and less than 1mrad RMS in the vertical plane.

The muons are generated through pion decay (see figure 6). As the muon programme
needs longitudinal polarised muons one uses the property of maximum parity violation [49]
of the pion decay π+ → µ+ + νµ to produce a mean muon polarisation of PB ∼ 0.8.
Because neutrinos are only realised in nature as left handed objects, and because for
massless objects left-handed chirality is directly coupled with negative helicity we know
that, in the c.m. system of the reaction, the neutrino spin is oriented opposite to its
velocity vector. And because of momentum and angular momentum conservation we also
know that we have, in the c.m. system of the reaction, the muon with its spin vector
oriented opposite to its velocity vector. Therefore now both particles have helicity − 1

2
(that is the spin vector of the spin 1/2-particle points opposite to the direction of motion,
see figure 6). If we start now with an incoming pion beam of known velocity we can at
some later point in the beamline (after the decay) determine the polarisation of the muons
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Figure 6: Pion decay [12].

by a second velocity measurement. The muons which decayed in the same direction as
the beamline will be faster than the original incoming pion beam and they will have their
spin opposite to the beamline and the muons which decayed in the opposite direction will
be slower than the original pion beam and have their spin in the same direction as the
beamline. All muons with a velocity vector not parallel to the beamline will be filtered
out. But as we always have some divergence in the beam, we also have some uncertainty in
the direction of polarisation of the pions even after the second measurement of velocities.
Quantum mechanically, the spin direction corresponds to a two state system where we
have to rotate the quantisation axis of the muons not pointing directly along the beamline
into the beamline and recalculate the probability amplitudes. Therefore we will get some
chance that the polarisation is along the beam line or opposite to it. Another point, which
disturbs our simple reasoning above is the magnetic fields of the spectrometers, in which
we get precession of the spin vector around the direction of the magnetic field lines.
For the hadron programme, we still need to identify the incoming particles. But as they
all have the same momentum as selected by the SM (Spectrometer Magnet) after the
production target it is sufficient to measure the velocity of the particles with a Čerenkov-
Detector, a so-called CEDAR4, to identify them. The CEDAR is a differential counter
Čerenkov-Detector (see Differential Čerenkov Counter in section 2.5.4 on page 30) tuned
to a certain Čerenkov angle. It can therefore identify exactly one type of particles. If you
have two such devices you can identify two sorts of particles. It should also be pointed out
that the CEDAR counters only work well up to hadron beam intensities of about 107. For
COMPASS the CEDARs may be used for K tagging or rejection, where the expected K
intensities are of the magnitude of 107.

2.5 The experimental apparatus

Previously the physics motivation for the COMPASS experiment was explained. To per-
form these measurements COMPASS proposes a new spectrometer with excellent particle
identification and calorimetry, capable of standing beam intensities of up to 2·108 particles
per spill and energies from 90 to 200GeV.

Several parts of the physics programme need high intensities to produce the required
statistics.

• The muon programme needs high rates, because the measured asymmetries in the
polarised DIS are very small, and in addition the values of the asymmetries are
distributed over different Bjorken x and Q2.

4
Čerenkov Differential counter with Achromatic Ring focus (see page 30 and reference [50])
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• In the study of semi-leptonic charmed baryon decays the measurement of decay
asymmetries can be used to compare measurement with predictions of the baryon
form factor ratios from HQET. Up to now such comparisons of form factor ratios
were done as average over q2 because of small statistics.

• To measure the lifetimes of charmed-strange baryons to better than 5%, where the
main difficulty lies in their short lifetimes and in their small production rates.

• The production of doubly charmed quarks is due to the very low cross-section and
small branching ratios an experimental challenge.

• To be able to study the non-leptonic decays of Ds or even D mesons the high rates
are vital.

• Due to the very high beam rates, COMPASS is capable of systematic studies of the
charm production in a range of c.m. energies from 14 to 25GeV.

The COMPASS experiment comprises many measurements of rather different natures,
which require their own optimised set up. Nevertheless, the global structure of the different
experiments bears many similarities. They use in common a modern, high rate forward
spectrometer with two independent magnetic spectrometer stages, each equipped with
tracking, particle identification, calorimetry and muon detection. A large fraction of the
apparatus can be common to all experiments. This applies in particular for the section
downstream from the first spectrometer magnet (SM). Due to the very different target
set ups, the part upstream of the RICH (Ring Imaging Čerenkov Counter) has to be
designed individually. This includes the use of different large angle SMs. Figure 7 shows
the major experimental configuration as planned for the year 2002 run. For a more detailed
detector map please have a look at [70].

Micromegas

Spectrometer Magnet 1

HCAL1

ECAL1
Straws

GEMs

and silicons

MWPC

GEMs

and silicons

Rich

SMC Polarised
Target

HCAL2

ECAL2

AbsorberAbsorber

Drift Chambers (DCs)

MWPC

MW2

MWPC

Spectrometer Magnet 2

MW1

Figure 7: Schematic view of the COMPASS detector as foreseen for the year 2002 run.

The requirements for the various detectors are given by the maximum requirements for
the different measurements. The most stringent ones are coming from the intensity of the
muon beam (100MHz) and the large interaction rate in the hadron beam (1MHz). These
large rates require particular care in the choice of detector materials as radiation damage
in silicon detectors or calorimeter crystals can be severe. High demands on the speed of
the detectors and the readout exist in particular in the hadron beam programme due to
the requirements for a very fast and efficient trigger for charmed events. Therefore, fast
front-end electronics, multi-buffering, and a large and fast storage of events is essential.
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2.5.1 General set up

The detection of particles over a large acceptance range (see glossary: Acceptance) requires
the use of a two-stage spectrometer. For the next year (2002) run the set up seen in figure 7
is planned and comprises the following detector stages (please refer to [70] for more detailed
information):

• Polarised target,

• Micromesh Gaseous Chamber (Micromegas) and drift chambers,

• Spectrometer Magnet (SM) 1,

• Straws (small-diameter drift tubes), GEM, silicon micro-strips,

• RICH,

• Electromagnetic Calorimeter (ECAL) 1,

• Hadronic Calorimeter (HCAL) 1,

• Muon Wall (MW) 1,

• SM2,

• Multi-Wire Proportional Chamber (MWPC) with GEM and silicon detectors,

• ECAL2,

• HCAL2,

• Absorber and MWPC, MW2,

• Trigger hodoscope (see glossary: Hodoscope),

• Beam dump.

The first spectrometer part (LAS5) is responsible for large angles up to 200mrad vertically
and 250mrad horizontally while the second spectrometer part is concerned with the de-
tection of particles below 30mrad. The COMPASS experiment has a so-called staggered
tracking system, that is, for the different angles relative to the beam line, there are up to
three different detector systems. For example between SM1 and RICH there are straws,
GEM and silicon detectors (from large angles to small angles) with some overlap. With
this set up one tries to keep the number of events per readout channel approximately con-
stant. E.g. the silicon micro-strip detectors are directly in the beam and have a readout
pitch of approximately 50µm whereas the GEM detectors have a 400µm pitch and are
responsible for the area around the beam.

The next sections will describe the individual components of the COMPASS detector
and the physics behind them. Because my work for the DCS (see glossary: Detector
Control System) was concerned mainly with the GEM and silicon detectors the description
of these detectors will be more detailed as other parts. Where the description of the physics
would lead too far away from the description of the detectors you will find a reference to
the glossary, where more details can be found. Most information in the next sections
(and in the glossary, where the glossary explains physics) is derived out of references [1]
and [51] to [62]. Before we start to investigate the different detector types in detail a
general property of all COMPASS detectors should be mentioned. They all have a central
deactivated area, where the beam will pass through, to prevent detector damage by the
high beam rate. Only the silicon micro-strips don not have this feature, because they will
be placed directly in the beam.

5Large Angle Spectrometer
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2.5.2 Targets

Because COMPASS will start with the muon programme the muon target will be explained
in more detail.

For the muon programme, it was planned to use the existing polarised target from
the SMC collaboration [28], with a new and much larger super conducting solenoid/dipole
magnet to allow for a sufficiently large acceptance (see glossary: Acceptance) (180mrad in
contrast to 65mrad) of hadrons. But due to delivery problems of the magnet, COMPASS
will start to run with the old SMC magnet until the new one arrives. The polarisation is
done via DNP (Dynamic Nuclear Polarisation) in a homogeneous magnetic field of 2.5T
and at a temperature below 0.5K. In the target material are little quantities of para-
magnetic atoms, which react on irradiation of microwaves, slightly above or below the
Larmor frequency of the paramagnetic centres. As soon as the maximum polarisation is
reached, the microwaves are turned off and the material goes over into “frozen spin” mode
at a temperature below 50mK. In this mode, the nuclear spin-lattice relaxation time is
several hundred hours [1] if a holding field greater than 0.5T is present.

The SMC target is divided into two cylindrical cells, 60 cm in length and 3 cm in diam-
eter, which are polarised in opposite directions. This will help in eliminating systematic
errors. By frequent reversals of the spin orientations, the systematic error from acceptance
variations of the spectrometer with time can be greatly reduced. As target material, it

is foreseen to use 6LiD for measurements on deuteron and NH3 for measurements on pro-
tons. With these materials, it is possible to achieve a level of polarisation as high as 50%
for 6LiD and 85% for NH3.

For the hadron programme, there will be different targets for the different physics
parts:

• a lead target for the studies using the Primakoff reactions,

• a liquid hydrogen target for the light meson spectroscopy and

• a target made up of slices of copper and silicon detectors for the studies of charmed
hadrons.

The idea behind the sliced target is to be able to reconstruct the interaction point of the
particles and therefore also being able to identify kinks in the particles trajectories which
indicate a decay with an “invisible” neutrino.

2.5.3 Tracking detectors

Because the change of the direction of a particle in a magnetic field is a function of its
momentum the tracking devices in conjunction with a Spectrometer Magnet (SM) serve
for determining the particle momenta. Therefore one part of the tracking is clearly a SM
to produce the magnetic field. As the deflection angle in a magnetic field depends on
the ratio between the magnetic field strength and the particle’s momentum there are two
spectrometer magnets in COMPASS. The first magnet has a lower mangnetic field than
the second one and is used to split up the tracks of particles in the lower momentum range
of the experimental interest. High momentum particles pass the first spectrometer magnet
nearly undeflected and the second magnet with a higher magnetic field is used to split up
their tracks. In the following paragraphs we will have a closer look to the different tracking
detectors from Large Area Tracking (LAT) devices towards Small Area Tracking (SAT)
devices.
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The straw drift tubes: Drift tubes are built as a stand-alone coaxial cylindrical drift
chamber, made of a conducting-surface cylinder acting as cathode, and a sense wire
stretched in the axis of the cylinder. Often, tubes are made of thin metalised foils, and
arranged into densely packed layers or volumes. These can be used when short drift times
are at a premium, like in high-rate environments. For a tube diameter of 4mm, the max-
imum drift time (at the usual drift velocity) is 40 ns. Such small-diameter tubes are also
called straws, and a collection of them a straw chamber.

The Multi-Wire Proportional Chamber (MWPC) detectors: A multi-wire
chamber is a detector for charged particles, which essentially consists of thin parallel
and equally spaced anode wires, symmetrically sandwiched between two cathode planes.
The cathodes are at a negative voltage relative to the grounded anode wires. This creates
a homogeneous electric field in most regions, with all field lines leading from the cathode
to the anode wires. Around the anode wires, the field increases rapidly. If a particle passes
through the detector it ionises the gas in the chamber, and the liberated electrons follow
the electric field lines towards the anode wires. The strong field very close to the wire acts
as a multiplication region. The energy of the electrons increases, and in turn, they ionise
the gas, causing an avalanche of electrons to reach the anode wire.

The pulses are read from the anode wire. If the chamber is used in proportional mode
(see glossary: Operational Modes of Gaseous Detectors), the pulse height is a measure
of the energy loss of the particle in the gas. This can be used for particle or momentum
identification. Simple multi-wire chambers are used as tracking chambers, with the anode
wires only giving one bit of information for a passing particle. Multiple planes with
different angles of inclination for the wires will then allow reconstruction of trajectories in
space.

The Micromegas: The Micromesh Gaseous Chamber (Micromegas) is a parallel-plate
gas detector that exploits the charge multiplication in uniform fields. The detector con-
sists of a thin metal grid stretched at a very small distance, 50 to 100µm, above a readout
electrode. With a very high field applied across the gap, typically above 30 kV/ cm, elec-
trons created by ionising particles in the upper drift region are collected and multiplied.
Thanks to the small gap and high field, positive ions move very quickly, and most are
collected by the cathode mesh. This prevents space-charge (see glossary: Space Charge)
accumulation and induces very fast signals with only a small ion tail, 50 to 100 ns wide.
The Micromegas can operate at very high particle fluxes.

Experimental data and theoretical considerations indicate that the maximum propor-
tional gain in parallel-plate chambers is limited by the total amount of charge in the
avalanche, around 107 to 108. Above this value, called the Raether limit, transition to
a streamer occurs (see glossary: Operational Modes of Gaseous Detectors), followed by
breakdown.

The COMPASS Micromegas were optimised for time resolution and are therefore used
in front of the first spectrometer magnet, where the particle intensities are very high,
instead of GEM detectors. Because the GEMs are near to the beam, one of their major
design objectives for COMPASS was to use as little material as possible and to give rise
to as little interactions with the beam as possible.

The Gas Electron Multiplier (GEM) detectors: The Gas Electron Multiplier,
introduced by Sauli in 1996 [64], consists of one thin, metal-clad polymer foil (typi-
cal ∼ 50µm KaptonTM plus 5-15µm copper layers on both sides) chemically perforated
by a high density of holes, typically 100/mm2. If one applies a potential difference between
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the metal electrodes on both sides of the foil, it acts as an electron multiplier, which can
be placed between the anode and the cathode of a parallel plate gas detector. On its way

Figure 8: Set up of the GEM chamber on the left and the field line structure on the
right [54].

through the gas volume, an ionising particle releases primary electrons, which loose their
kinetic energy by liberating a number of secondary electrons within a very short range.
Diffusion causes the development of a Gaussian-shaped charge cloud that drifts in the
homogeneous electric field towards the GEM. About 100µm above the GEM, the parallel
electric field lines are bunched into the GEM-holes (see figure 8 on the right), where gas
amplification in the high electric field causes proportional charge multiplication. At a suit-
able choice of voltages the field lines below the GEM spread again and the charge cloud
drifts towards the readout electrode where it is collected. For a more detailed discussion
of the physical processes in the GEM detector, please refer to [54].

The GEM foil acts as a charge preamplifier, preserving the original ionisation pattern
to a large extent. The first applications of the technology have been accomplished by
combining the GEM amplifier with a standard MSGC (Micro-strip Gas Counter).

The gain of the GEM electrode depends on the thickness of the polymeric support, the
diameter of the holes, the gas mixture (see glossary: Gas Mixtures in Gaseous Detectors),
and the applied voltages. It is possible to achieve proportional gains up to 104, suitable
for direct detection of ionisation on simple charge-collecting strip PCB6s (see figure 8
on the left). In this mode of operation, the signal detection on the strips is entirely
due to the electrons collection, without a slow ion tail, and is typically a few tens of
nanoseconds wide for a 1mm wide conversion gap. With this simple readout structure
spatial resolutions better than 40µm can be reached. Important for its potential use as
a position sensitive detector in a modern HEP (High Energy Physics) experiment is its
efficiency. The efficiency in a gas detector is the ratio of the number of detected particles to
the total number of ionising particles traversing the gas volume. As soon as the efficiency
is ≈ 100% no more gain is needed. Generally it is better to operate at lower voltages as
this reduces the possibility of discharges and detector damages.

In the COMPASS experiment a modified version of the above described “simple”
GEM detector, optimised for discharge prevention, is used. COMPASS uses triple GEM
detectors with strip PCB readout (see figure 9). A triple GEM detector uses three GEM
foils instead of a single one. The gain is divided over all three GEM foils to reduce the

6Printed Circuit Board
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Figure 9: Cross section through a triple GEM detector [52].

field strengths between the two electrodes of each GEM foil. Furthermore the COMPASS
GEM detectors do not just equally distribute the gain over the three foils, but they operate
the “top” foil (the foil with the longest distance from the PCB readout) at about 10%
higher voltage than the central foil and the “bottom” foil (the one which is closest to
the readout) at about 10% lower voltage than the central foil. This technique is called
asymmetric sharing of gain. Another improvement over the original design is the use of
sectorised foils. By sectorising the foils one decreases the capacitatively stored energy in
a GEM foil and in case of a discharge the amount of charge released in the discharge
is smaller and the probability of propagating discharges is lower. Generally the triple
GEM design, the use of sectorised foils and the asymmetric sharing of gain serve for
the discharge prevention. A discharge in the gas volume between the bottom foil and the
PCB board could destroy the highly sensitive readout electronics and damage the detector
considerably.

The COMPASS GEM detectors use a two dimensional read out with 2 × 768 readout
strips and a 400µm pitch. By dividing the readout of the charge cloud between several
readout strips, it is possible to calculate the centre-of-charge and to gain a resolution
better than the width of a single readout strip. With this set up they can get up to a
resolution of 54µm.

The signals on both co-ordinates generated by a single physical event (Gaussian-
shaped charge cloud) are because of the nature of their generation correlated in time and
in signal amplitude. Therefore a GEM detector is able to give, besides the pure x and y
information, also a probability of which x belongs to which y in the case where there are
several events at the same time.

The GEM detectors for COMPASS use a Ar-CO2 mixture in a relation of 70 : 30. Even
if other gas mixtures (most notably organic mixtures) had a better behaviour in the sense
of charge movement speed and build up of space charge (see glossary: Space Charge), for
COMPASS it was decided to use Ar-CO2 to prevent ageing effects (see glossary: Ageing).

The GEM detectors are grouped into stations, where each station consists of two GEM
detectors. The two detectors are mounted back to back and rotated by an angle of 45◦.
One detector in a station measures the x/y co-ordinate and the other detector measures
the u/v co-ordinate. In total there are 10 such stations in COMPASS.

The silicon micro-strip detectors: Semiconductor detectors have been used in high-
energy physics applications in the form of pixel detectors, microstrip detectors and pads.
These detectors are mainly made out of silicon, but GaAs or diamond is perhaps a future
alternative to silicon. Recent progress in micro technology allows reliable large-scale pro-
duction of detectors of sophisticated designs, at acceptable cost. Besides that one has the
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advantage that one can build on a commercially available robust technology.
In the following explanation of the inner workings of a semiconductor detector, it is

assumed that the basics of p-n junctions (diodes) are known. When an ionising particle
penetrates the detector it produces electron-hole pairs along its track, where the number of
pairs is a measure of the energy loss. An externally applied electric field separates the pairs
before they recombine. Electrons drift towards the anode, holes to the cathode. The charge
is collected by the electrodes. The drifting7/collected charge produces a current pulse on
the electrode, whose integral equals the total charge generated by the incident particle,
i.e. is a measure of the deposited energy. Silicon detectors are asymmetric p-n junctions.
To work as a detector, the p+n diode is reverse-biased by applying a positive voltage on
the rear ohmic contact. At full depletion (the depletion zone spans the whole detector
thickness), the electric field is a maximum in the junction and decreases to zero at the
ohmic contact. In order to avoid losses in charge collection, the silicon detectors are over
biased (below break-down voltage). The important concept here is the charge collection
efficiency (see glossary: Charge Collection Efficiency).

Higher depletion voltages result in broader depletion zones and therefore lead to better
signal to noise ratios (because of the lack of charge-recombination or thermal excitation
in the depletion zone). As soon as full depletion is achieved a further increase of the
voltage does not improve the behaviour of the detector any more. It is important to have
a high ohmic resistivity to reduce the voltage of full depletion and to reduce the leakage
currents (see glossary: Leakage Current), because as the detector material deteriorates due
to radiation damage the material gets increasingly conductive and one has to increase the
bias voltage to guarantee 100% depletion and to ensure the detectors correct operation.

The intrinsic energy resolution is related to the low-energy threshold: only 3.6 eV
are necessary to produce an electron-hole pair, a low value compared to the ionisation
energy in a gas (30 eV) or the approximately 300 eV necessary to generate an electron
from a photocathode coupled to a plastic scintillator. The good spatial resolution comes
from the high density of Si, from the little thickness and from the fact that there is
no internal amplification like in gas detectors (no amplification effects corresponds to no
additional statistical effects). On the other hand, the average energy loss in Si is high,
about 390 eV/ µm, for a 〈111〉 oriented single crystal, and corresponds to about 110 e-h
pairs. To limit the multiple Coulomb scattering, the detector thickness must be kept
thin – the usual compromise thickness is 300µm for optimum detection.

The silicon micro-strip detectors in COMPASS (see figure 10) use the same silicon
design as the double sided micro-strip detectors for the high radiation environment in the
HERA-B8 experiment. The readout electronics was designed independently and is the
same as for the GEM detectors. The silicon micro-strip detectors in COMPASS have

• a spatial resolution of 14µm,

• a high ohmic resistivity to allow for bias voltages less than 100V, and

• a time resolution of the order of nano seconds.

The double-sided readout means, that the detectors collect electrons on one side and holes
on the other side and use two orthogonal readout structures to get two projections at
once. In HERA-B one requirement for the silicon detectors was stand-alone track finding.
Therefore, three or more independent projections were required. A stereo angle of 5◦ was
chosen to realise four independent projections. The strips on both sides of a counter are
orthogonal with respect to each other and tilted by 2.5◦ with respect to the detector edge.

7via influence
8An experiment to study CP violation in the B system using an internal target at the HERA proton

ring [8]
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Figure 10: Schematic view of the silicon design used in HERA-B [57] (the same as in
COMPASS).

By mounting two of these detectors back to back, one can obtain four views with 5◦ stereo
angle as shown in figure 11.

1st  detector

p-side readout

n-side readout

2nd  detector
52.5

p-side readout

n-side readout

Figure 11: Orientation of the readout strips on the double sided detector. The right picture
is a mirror image of the left one, representing the identical type of detector flipped around
its shorter edge. Overlaying the two counters (in the same way as they are mounted, back
to back) the 5◦ stereo angle is obtained [57].

One other important point for the COMPASS experiment is the radiation hardness
(see glossary: Radiation Damage and Radiation Hardness). As the silicon detectors will
be located in the direct beam region, the radiation damage can be severe. The main
macroscopic effects of changes in the detector performance consist of a flux proportional
increase in the leakage current, a dramatic change of the depletion voltage (needed to
maintain the full sensitivity of the whole detector thickness) and the damage-related de-
crease of the charge collection efficiency. The HERA-B design of the silicon has already
an elaborate multi guard-ring structure [57] to be able to operate the detector up to bias
voltages of 300V to 500V. The guard ring structure shields the sensitive area from surface
and edge leakage currents, but also provides a controlled, gradual drop of the potential
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from the detector rim towards the potential of the undepleted substrate.
In COMPASS it was decided to cool the detector to cryogenic temperature (130K)

and to use the Lazarus effect (see Lazarus effect on page 76) to handle the radiation
damage. The cooling has the disadvantage of introducing additional material in the beam
line which might interact with the beam or with particles one wants to observe.

2.5.4 Particle identification

As described above the tracking detectors in conjunction with the spectrometer magnets
provide the information to calculate the momentum of a particle. To identify the particle
type one needs further information like the speed of the particle. Then it is possible to
calculate the particle’s mass and to identify the particle with the help of a mass table.

The RICH detector: Čerenkov counters are generally detectors for charged particles
using the light emitted by Čerenkov radiation (see glossary: Čerenkov Radiation) to
measure the particle’s velocity β = v/c. Combined with the knowledge of the particle’s
momentum, β determines its mass. The index of refraction n of the Čerenkov counters
is carefully optimised for the particle masses and momentum range of the experiment in
question.

Classification of Čerenkov counters:

• Threshold counters record all light produced, thus providing a signal whenever β
is above the threshold βt = 1/n, at which point Čerenkov radiation starts to be
produced.

• Differential counters (like the CEDAR) accept light only in a narrow range of angles
(δ ± ∆δ) i.e. in a narrow velocity interval. Resolutions of ∆β/β = 10−5 have
been reached. As chromatic dispersion (n = n(δ)) is the major source of error at
high momenta, special achromatic counters, called DISC (Directional Isochronous
Self Collimating) counters have been developed, which reach ∆β/β = 10−6 to 10−7.
Differential Čerenkov counters suffer from the low acceptance both in angle and β.

• Ring imaging Čerenkov counters (RICH): In the RICH particles pass through a
radiator. The radiated photons are focused by a mirror onto a position-sensitive
photon detector. The Čerenkov radiation emitted at angle δ is focused onto a ring
of radius r at the detector surface, and β can be determined by a measurement of r.
For photon detection one uses thin photosensitive proportional chambers or drift
chambers.

To achieve pions separation above three standard deviation level from kaons and protons
between 3 and 120GeV/c, COMPASS would like to uses two RICH detectors. Up to now
only RICH1 is available and RICH2 is only a plan for the future. A schematic view of the
available RICH detector can be seen in figure 12. The RICH is designed to cover the entire
acceptance of the first spectrometer, providing hadron identification in the momentum
range between 3 and 65GeV/c. It uses C4F10 as radiator gas and a MWPC with CsJ
photo cathode and a pad readout to detect the photons.

2.5.5 Calorimeters (ECAL, HCAL)

Up to now we saw how to get the momentum and particle type with the tracking and
particle identification detectors, but we still miss the energy of the particles. Therefore
the calorimeters are used.

A calorimeter is a composite detector using total absorption of particles to measure
the energy and position of incident particles or jets. In the process of absorption showers
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Figure 12: Schematic view of the RICH detector.

are generated by cascades of interactions, hence the name shower counter is occasionally
used to describe a calorimeter. Characteristic interactions with matter (e.g. atomic ex-
citation, ionisation) are used to generate a detectable effect, via particle charges. Each
calorimeter is made of multiple cells, over whose volume the absorbed energy is integrated.
Typically, incident electromagnetic particles, electrons and gammas, are fully absorbed in
the Electromagnetic Calorimeter (ECAL), which comes before the HCAL.

Incident hadrons, on the other hand, may start their showering in the ECAL, but
will nearly always be absorbed fully only in later layers, i.e. in the Hadronic Calorimeter
(HCAL), built precisely for their containment.

The shower development is a statistical process. This explains why the relative accu-
racy of energy measurements in calorimeters improves with increasing energy, according
to the empirical formula

σE/E ≈ a/
√

E + β

where E is the energy of the incident particle, σE is the standard deviation of energy
measurement, and a and β are constants depending on the detector type, e.g. the thickness
and characteristics of active and passive layers.

From the construction point of view, one can distinguish between:

• Homogeneous Shower Counters: In homogeneous calorimeters the functions of pas-
sive particle absorption and active signal generation and readout are combined in
a single material. Such materials are almost exclusively used for electromagnetic
calorimeters, e.g. crystals (Crystal Calorimeter), composite materials (like lead glass,
viz. PbO and SiO2) or, usually for low energy, liquid noble gases.

• Heterogeneous Shower Counters (= Sampling Calorimeters): In sampling calorime-
ters, the functions of particle absorption and active signal readout are separated.
This allows optimal choice of absorber materials and a certain freedom in signal
treatment. Heterogeneous calorimeters are mostly built as sandwich counters, sheets
of heavy-material absorber (e.g. lead, iron, uranium) alternating with layers of ac-
tive material (e.g. liquid or solid scintillators, or proportional counters). Only the
fraction of the shower energy absorbed in the active material is measured. Hadron
calorimeters, needing considerable depth and width to create and absorb the shower,
are necessarily of the sampling calorimeter type.

Good photon detection is mandatory to reconstruct final states, which include single
photons and photons from hadron decays. COMPASS therefore uses a cellular lead-
glass Electromagnetic Calorimeter with photo multiplier readout as ECAL1 – namely the
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GAMS-4000 [43] that was in use in the WA102 experiment, which fulfils the requirements.
Besides the GAMS calorimeter COMPASS also uses the WA89 lead glass calorimeter
consisting of 650 blocks and the OLGA calorimeter consisting of 300 blocks. For ECAL2
it was planned to cover the central zone with a novel fine granulated calorimeter made
of PbWO4 heavy scintillating crystals, to cope with the heavy radiation load in the central
zone of ECAL2. But because of funding problems COMPASS uses now a “pappardelle”
Pb-scintillator sandwich calorimeter structure as central zone instead. Otherwise ECAL2
is identical to ECAL1.

The main task of HCAL1 will be the detection of neutrons from the decays of charmed
baryons and triggering on them. It will be made of 25mm thick Fe and 5mm thick plastic
scintillator sandwich cells. The total calorimeter thickness is 5 nuclear absorption lengths
(see glossary: Absorption Length) for pions and 7 such lengths for protons. HCAL2 will
be a compensated calorimeter with fine granulation in a heavily loaded central zone. It
will be made of 16mm thick Pb and 4mm thick scintillator sandwich cells. Both, HCAL1
and HCAL2, will be used as part of the trigger for the PGF study. Because we expect
hadronic products (especially c-quark content hadrons) the calorimeters will trigger after
a certain threshold energy has been deposited in them.

2.5.6 Muon identification

COMPASS needs a large-area muon identifier for the muon programme and for the identi-
fication of muons from semi-leptonic decays in the hadron programme. This detector will
make use of the higher penetration abilities of muons compared to hadrons and will be
placed behind the Hadronic Calorimeters at each of the two stages of the spectrometer.
The muons will pass about 50 cm of iron before the first Muon Wall (MW) and about
two to three meters of concrete before MW2. In the case of MW1 Plastic Iarocci Tube
[29] (PIT) detectors are used to get a position resolution of ≈ 1mm. After the second
MW stainless steel drift tubes are used with a diameter of 3 cm each.

2.5.7 Trigger

The trigger (more precisely: the First Level Trigger (FLT)) is a combination of signals
from different detectors in the experiment. The trigger has to be adjusted to each physical
process under study. The trigger is used to throw as much of the background as possible
away and to only keep the interesting data. In the case of the photon-gluon fusion process
for example one uses scintillator hodoscopes (see glossary: Hodoscope) to trigger on muons
with a certain deflection angle off the beam line in conjunction (coincidence) with the above
described hadron calorimeter threshold trigger condition and the information from a veto
counter. A veto counter tells the system when a set of data should be thrown away. The
veto counter for the muon programme for example is a halo (see glossary: Halo) veto
counter in front of the target magnet to distinguish between muons interacting with the
target and then being deflected or just muons that arrived already at a certain distance
from the target and never interacted with it. The Primakoff reaction studies use a
veto counter in the direct neighbourhood of the Pb-target, which distinguishes between
Primakoff reactions and nuclear reactions.

Because the scintillator hodoscopes are at the end of the experimental set up and
because of the processing time for the trigger condition the trigger signal will only be
available after all the other detectors have read their values. To solve this problem one
needs a signal delay for all the other detectors to bring the trigger and the arriving data
from the other detectors into the right sequential time order. The general concept is that
signals/data have to be stored as close as possible to the front-end electronics until the
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trigger decision is made. Based on whether a good event was detected by the trigger
detectors or not, the data of the other detectors will then be read and written into the
data stream, or they will be dumped. For analog photomultiplier signals from calorimeters
COMPASS uses the analog delay line method, where several hundred meters of cable are
used for every readout channel to delay the signals. Other methods are electronic analog
or digital pipelines. The APV25 chip (used by the GEM and silicon readout), for example,
uses an 192 cell deep analog pipeline made up of an array of capacitors, where signals can
be stored for 4µs, before they are overwritten.
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3 Slow Control in COMPASS
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Figure 13: Technologies used in Slow Control.

In the previous section we saw the physics motivation of the COMPASS experiment. In
order to enable the operation of the COMPASS detectors by just a few people on shift, it
was decided to use a traditional two layer architecture for the Slow Control (see glossary:
Slow Control, and figure 13):

• a supervision layer, using the SCADA-system (see glossary: SCADA System)
PVSS II, and

• a front-end layer made up of VME (see glossary: VME), PLC (Programmable Logic
Control(ler)) and field-bus components (see glossary: Field-bus).

Now before going into the details of what has to be done to implement the control software,
a concepts overview is useful. Therefore, in this section, we will follow the complete path
from the hardware to the operator in front of the control screen.

3.1 Motivation

The hardware is what we are interested in. The operators in front of their control screens
want to control (switching devices on and off, changing voltage values, etc.) and to monitor
(making sure that the hardware operates well) their hardware from a centralised access
point (see glossary: Centralised Access Point). Therefore the operators are the top of
the DCS hierarchy (see glossary: Detector Control System). They are the final point of
decisions.

The whole slow control system is organised hierarchically (see figure 13), where the
lower layers (like the field-bus layer) process the incoming data and pass higher level
management information up to the next level in the slow control system. Only because
of this abstraction process, where the system sorts out the most relevant information and
passes it up one layer, the human operators are able to deal with the amount of data
collected at the bottom layers. If the higher level layers want to communicate with the
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lower ones they do this by sending control commands. This is also what an operator of
the DCS does when he switches devices.

Besides the just described data processing, every layer in the slow control system can
also be used for implementing procedures on how to act on certain exceptional circum-
stances, e.g. what to do when the gas sensor of a detector signals that the gas flow has
stopped. These procedures, summarised under the term loop back control, can be imple-
mented in every layer of the slow control system, depending on the degree of failure safety
and speed needed.

As you can see in figure 13 the just described layers of the slow control system often
correspond to specialised hardware, like PLCs or to dedicated computers running spe-
cialised software (in this report called “front-end application”). To enable the system
to pass information between the different layers these specialised components have to be
connected via a network. Therefore, the higher layers in the system “do not see” the
real hardware, but only their data representation as they get it over the network. The
point I want to clarify here is that most of the job of the slow control system is network
communication and data processing and that the higher layers in the system only see an
abstracted version of the real hardware.

Another important feature of the slow control system is the data archiving for later
retrieval of the gathered values, so that the physicists can include the data in their analysis
of the experiment. In the COMPASS set up the archiving is handled by the SCADA-
system.

The whole slow control system allows a couple of people on shift to take care of the
experimental set up without the help of detector experts.

3.2 Communication process

In figure 13 you can see the different hardware components involved in the communication
process. The following discussion will be based on this figure.

The hardware can be divided into two groups: sensors (like an ADC (Analogue to
Digital Converter)) and actuators (like a valve or a motor). The sensors convert the actual
physical quantities like temperature, pressure, gas flow, etc. into voltage values. These
voltage values in turn will be converted into digital values and either be transmitted over
a network to a processing unit or directly accessed via the local bus of a processing unit.
The processing unit is most likely a computer, which does time critical control jobs and
basic control jobs like periodically reading the slave devices (see below: bus slave mode).
One of its main purposes, from the SCADA-system perspective, is to publish the hardware
values over another network (like ethernet) to the SCADA-system. In the SCADA-system
these values are reported to the supervisor in front of the control screen. For the actuators
the path is exactly opposite, e.g. the operator may decide to increase the gas flow in a
detector and the SCADA-system sends the command all the way back to the valve, which
controls the gas flow.

There are several types of networks used for data transmission between hardware and
processing unit, which in general are called field-buses (see glossary: Field-bus). The type
of field-bus and the type of field-bus protocol used in a certain application depend on
several aspects like the speed, the real time behaviour, the configuration abilities and the
reliability of the network. There exist field-buses that can be used in bus master mode,
where the sensors in question report the change of values unsolicited to the processing
unit, and there are field-buses that are used in bus slave mode, where the sensors report
the change only when they are asked by the processing unit.
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3.3 Communication example

Imagine an operator in front of our control system who wants to set the voltage level of a
high voltage channel and who wants to watch how the actual voltage of the channel reaches
its set point. In figure 14 you can see a schematic picture of an example communication
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Figure 14: The jobs of the software in the system.

chain as it might also exist in the real slow control system. On the left you can see high
voltage hardware (see glossary: “High” Voltage Crate) that communicates via a field-
bus (CAENET field-bus) with the front-end application (in this example SLiC). On the
right you can see the SCADA-system PVSS II which has a DIM9-protocol driver10 and
communicates over the DIM protocol (see glossary: DIM concepts overview) with the
front-end application SLiC.

As soon as the operator triggers the change of the voltage level of the channel the
communication process towards the hardware starts. The SCADA-system, which is re-
sponsible for the user interface, reads the value that the operator entered in some text
field in the user interface and forwards it to a PVSS network driver. This network driver
knows how to communicate with our front-end application and it forwards the value. The
front-end application in turn knows about the field-buses it is responsible for and it for-
wards the value to the appropriate power supply. The power supply decodes the network
communication and initiates the wanted action. As a result the voltage level of the voltage
channel will start to change.

Because we use in our example a CAEN power supply, which is connected via a
CAENET field-bus and which only operates in bus slave mode (see bus slave mode in
section 3.2 on the preceding page) the change in the voltage level is not reported auto-
matically. In this case, it is the job of the front-end application to ask the power supply
periodically for the voltage levels of all the channels in the crate. After the front-end
application has read the voltage values it forwards them (for efficiency reasons only the
ones that have changed) to the appropriate SCADA-system network driver. The SCADA-
system can then display these values on the screen for our operator.

3.4 Possible points of failure in the chain

In the outlined communication process above there are several possible points of failure:

• controlled hardware damage

9Distributed Information Management System [75]
10Actually this is a DIM API-manager that behaves like a driver.
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• field-bus disconnect: The cable is accidentally unplugged or the cable has a problem.
• control unit:

– power failure: The system might be accidentally switched off or there is a
general power cut.

– host OS (Operating System) bug: The OS of the control unit might have a bug.

– control software bug: The control software, which is responsible for the readout
process, might have a bug.

– hardware failure: The CPU (Central Processing Unit) or some other IC (Inte-
grated Circuit) of the control unit is damaged.

• LAN (Local Area Network) disconnect
• SCADA-system

– power failure

– host OS bug

– SCADA-system bug

– hardware failure

These possible failure conditions have to be taken into account at design-time of the whole
system. The most critical hardware control jobs should be as close as possible to the
actual hardware. If for example major damage can be caused by not reacting fast enough
on failure conditions, then these control procedures should be implemented directly in
hardware (e.g. no program and no CPU is involved at all). It is also a good idea to either
publish a heart beat of all vital system components so that the higher layers can recognise
a problem of a lower layer by monitoring this heart beat or to implement a top down check
procedure where the higher layers ask the lower layers if they work correctly. In addition,
if there is redundancy in the system then that redundant part can take over the tasks of
the failing part.

3.5 Software in the system

Before we start to look at the different software pieces in the system it is instructive to
talk about the reasoning, why we need all these software layers. No matter, into which
engineer science we look, we find everywhere the concept of building blocks, like mass-
produced screws, mass-produced ICs or mass-produced car engines. The main reasons
for introducing building blocks are to hide the local complexity by defining an easier and
clean interface to the higher layers and to shield the higher layers from changes in the lower
layers. For example, to assemble a car we do not need to know how an engine works, we
just have to follow the interface given by the engine designers to connect the engine to the
rest of the car. On the other hand if the engine designers decide to improve the efficiency
of the engine they can do so without interfering with the car assembly process simply by
following the interface definition. So what we do in general is to introduce interfaces to
allow different groups of people to develop independently on both sides of the interface.

We will start our investigation with the topmost (nearest to the user) piece of software,
the SCADA-system itself. By using a SCADA-system we have an interface that shields
the developers on top of it from

• the different host operating systems,
• the different GUI (Graphical User Interface) implementations,
• the data storage or archiving process,
• the networking details,
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• the load balancing in distributed systems,
• the failure tolerance in redundant systems,
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Figure 15: PVSS layers:
UIM: User Interface Manager Ctrl: Control script language Manager
API : API Manager DM: Data Manager
EV : Event Manager D : Network Driver

In COMPASS we use the PVSS II SCADA-system. PVSS II is internally composed
of several different managers. These managers are pieces of software with predefined jobs
that communicate by messages. You can see the internal architecture of PVSS II in terms
of these managers in figure 15. The heart of the system is the event manager. Here all
messages from all other managers come together. At the bottom there are the drivers to
communicate with the outside world, over OPC (Object Linking and Embedding (OLE)
for Process Control) for example. The values gathered by the drivers arrive at the event
manager, which then forwards them to the data manger. The data manager will log them
in a database with a timestamp for further processing. On top of the event manager
there is the User Interface (UI) manager and the Control manager. The UI manager is
responsible for the display of UI elements like panels and it responds to user interactions
by executing scripts on behalf of the user. The scripting language supported by PVSS is
called Control (see PVSS Control scripting language in section 6.1.2 on page 55) and it is
a C like interpreted language. The Control manager interprets standalone scripts that are
not attached to user interface elements. All managers above the event manager only deal
with PVSS data points (see PVSS data point (DP) in section 6.1.1 on page 55), where
a data point is PVSS’ concept of a basic data entity. This also means, that the whole
job of a programmer on top of PVSS can be seen as only setting and getting PVSS data
points with some data processing. Besides that PVSS provides the possibility to extend
the overall system by writing API11-managers, which are basically DLL (Dynamic Linked
Library) plug-ins.

The layered structure you see in figure 15 is also the basis for PVSS’s distributed
nature. Every manager may run on a different machine to distribute the workload on
several computers. It is even possible to have a multi PVSS system interconnected together
to spread workload on different PVSS systems.

11Application Programmer Interface
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The only interface pointing downwards (towards the hardware) in the SCADA-system
is the network driver layer to access the LAN. The SCADA-system may already provide
some drivers for industry standard protocols for hardware access like OPC or such drivers
may be added by the user of the SCADA-system. These drivers shield the SCADA-system
from

• the way the data was retrieved and
• the networking details

and the driver layer

• provides the abstract concept of data points instead of network accesses12.

The PVSS II SCADA-system already has support for OPC built in (OPC is only available
on Windows platforms) and a driver for the DIM protocol was written to allow UNiX
systems to communicate with PVSS II.

In general it was decided to use commercial software like OPC servers wherever pos-
sible. But if we have to deal with custom hardware, or legacy devices or if we have to
implement loop back control in the front-end layer we have to implement the front-end
software ourselves.

It would be possible to write a PVSS driver for every field-bus type and every piece
of hardware connected to this field-bus type, but because there were more requirements
than just the communication and to keep the communication layer independent of the
SCADA-system another approach was chosen.

It was decided to build a framework called SLiC for custom front-end applications for
hardware access and loop back control. This software was written to be easily extendable,
easily configurable, reliable and efficient. There is also a front-end application that uses
the framework to translate between the slow and low-level field-buses and the higher level
DIM-protocol on top of a fast ethernet network, to allow PVSS II to access the hardware.
This application is somewhat inconsistently also called SLiC and can be seen as an example
for the capabilities of the SLiC framework. This SLiC application can be easily extended
to implement time critical control jobs that have to run reliable without the help of the
SCADA-system.
The SLiC application shields the SCADA-system from

• the field-bus type,
• the field-bus access mode (bus master or bus slave) and
• the differences in hardware of similar types.

To explain the last point let’s take the example of the different high voltage crates either
from the same company or from different companies. The different high voltage crates
offer different functionality to the user, but the SCADA-system is generally only interested
in a small subset of these features that are common to all the high voltage crate types.
Therefore the SLiC-software takes the responsibility of gathering the required information
from the crates and sending it in a uniform manner to the SCADA-system, which then
can handle the high voltage hardware in a common way.

On the other hand the SLiC-software can be customised to use the additional function-
ality of some crate types internally (e.g. in loop back control) without the SCADA-system
being aware of these features. In SLiC we reflect the difference in sensors and actuators
by publishing the actuator elements as WriteProperty C++ objects (see WriteProperty

12Data points may or may not be connected to network accesses. Data points can and are also used
solely for internal data storage.
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in section 5.4 on page 47) and the sensor elements as ReadProperty C++ objects (see
ReadProperty in section 5.4 on page 47).

In this report we do not investigate the details of what happens at the other end of
the field-buses. This is mainly the domain of electronics engineering.

3.6 Loop back control and SCADA rules

It was already mentioned that the decision, where to implement the loop back control is
a matter of the failure safety and speed needed. If your requirements are to react fast
and/or reliably then you need to implement the loop back control procedures in the front-
end or even better directly in the hardware. On the other hand if the speed and the
reliability do not matter too much then it is easier to implement the loop back control in
the higher levels of the control system, like in the SCADA-system. To implement the loop
back control in the SCADA-system has the advantage that you have a central point of
development (as opposed to many differently specialised front-end applications) and that
the SCADA-system shields you from differences in the host OSes and GUIs.

Loop back control in hardware or in the front-end application is up to the hardware
designer or the implementer of the software and therefore always a special case. If you use
for example the SLiC framework to implement loop back control you have to follow the
SLiC API and to write C++ code to implement the wanted behaviour.

The SCADA-system provides an API for creating rules and for creating GUI-panels.
These SCADA rules can be seen as functions that map certain preconditions to defined
post-conditions. Rules are set up by the control system designers or by detector experts
and they are implemented in PVSS by programmers as Control scripts. If a script does
not need to interact with the UI then the script execution can be done by a PVSS Control
script manager in a standalone thread of execution. This is ideal for loop back control as
the scripts can also run without the user interface. Otherwise, if a script is dependent on
the user interface, the scripts are executed by the PVSS UI manager on behalf of the user.
We can categorise the SCADA rules as automated rules and interactively executed rules.

We compared above a rule with a function. A function maps a set of input values
onto a set of result values. The automated rules take their input values solely from PVSS
data points13. As soon as a change occurs in the set of data points, for which the rule is
responsible for, the change will be processed and the result will be reflected by a change
of some other set of data point values and/or UI-elements. With this approach changes of
values of PVSS data points may be used for loop back control or they may be connected
to UI-elements. As an example for the connection to UI-elements imagine a high voltage
channel. Such a channel only allows a certain amount of current to flow. If the current is
too high an overcurrent alarm is signalled by the hardware and will be reflected as a change
in some data point in PVSS. This hardware alarm is now mapped in the SCADA-system
to an UI alarm signal. The state of the high voltage channel goes, visible for the user in
front of the operating screen, from good to bad (e.g. a colour field changes from green to
red). As a result the user might choose to switch off the channel, the high voltage crate
or the whole detector that the channel belongs to.

The interactively executed rules are simple Control procedures, which are attached to
UI gestures on UI elements – e.g. a button press event. Here the set of input values for the
rule is a user gesture like a button press. The results will again be reflected by a change
of some set of data point values and/or UI-elements.

13actually from DPEs (see PVSS data point element (DPE) in section 6.1.1 on page 55).
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3.7 User interaction

The user interaction with the system is normally bound to the SCADA-level in the control
system hierarchy. The SCADA API for GUI-panels allows the programmer to create UI
panels in an OS and GUI independent way. As described above the UI elements of the
panels then may be connected to rules to display the relevant information in a user friendly
way and to trigger control commands (see Control Command in section 3.1 on page 35)
in the SCADA-system. These panels are the interface between the PVSS data points and
the operators in front of the control screens.

3.8 Conclusion

We saw that there is a lot of communication involved in the overall control process which
ends in the PVSS data point concept. The loop back control can be put in any piece of
software involved in the communication process. The reasons why to put it close to the
hardware are the faster response time and the more fail-safe position. The reasons why
to put it in the SCADA-system are the centralised position and the OS independent im-
plementation. The archiving is solely done in PVSS by its internal archiving mechanisms.
The slow control system can already handle a lot of problems according to rules which
were set up by detector experts. But as software is always limited in its abilities the final
point of decisions is the operator in front of the control screen. He interacts with the
system with the UI provided by the SCADA system.
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4 The Requirements

This work is concerned with the development of the slow control software for the GEM and
silicon detectors of the COMPASS experiment and with the integration of this software
into the overall COMPASS control system.

4.1 First level requirements

Both, GEM and silicon detector, need

• voltage control (see Slow Control Term: Control in section 3.1 on page 34),
• temperature monitoring (see Slow Control Term: Monitor in section 3.1 on page 34)

and
• pressure monitoring.

Special for GEM is the

• gas monitoring

and special for silicon is the

• cryogenics control.

Both detector types use the CAEN SY527 (see glossary: “High” Voltage Crate) power
supply [71], as it is able to produce low and high voltage output. The temperature will be
measured with Pt100 sensors and the pressure will be measured with BaratronTM pressure
transducers.

All of these devices are connected to some sort of controller (e.g. a front-end application
like SLiC or a PLC, etc.), which has access to that device via a dedicated hardware, like
an ADC card or a network card. Most of the time the manufacturer of that dedicated
hardware also supplies a driver for that hardware for the operating system of the controller,
so that the programmer of the controller has access to it via the API that the operating
system provides. If this driver is not available it has to be written. As the programmer uses
the operating system API to interact with the real hardware he does not see any differences
in the interaction with a networked device or with a measurement device, which is directly
connected to the controller via an ADC. The procedure on how to get the data from the
device clearly differs from driver to driver and it may also depend on the type of hardware.
But the important point to note is that the driver layer adds another level of abstraction,
which is able to hide the hardware details from the programmer, so that at an end the
programmer only sees the API and not the hardware. From the viewpoint of a programmer
a device can be summarised as a procedure he has to follow to get or set the values of the
device and/or to initiate an action in the device.

As mentioned above this work is concerned with the development of the slow control
software for the GEM and silicon detectors. As an example consider the GEM detector.
Despite its complex internal structure and functionality a GEM detector is for the slow
control system nothing more than just six voltage values and a gas flow value (the temper-
ature and pressure will be taken globally for the whole experiment). The task of the slow
control system is now to gather these values, to forward them to the relevant level of the
slow control hierarchy and to process them according to predefined rules. Furthermore,
the slow control system has to provide the user a convenient way to interact with the
devices from a centralised access point.
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4.2 Prerequisites

It is not necessary to start from scratch in order to implement the first level requirements.
There is already a PVSS framework (the JCOP framework [91]) available which provides
generic libraries, predefined PVSS data point types and data points, UI panels as well
as guidelines for further development to aid the developers in the implementation of de-
tector specific functionality. Therefore it is a quite straightforward job to link additional
developments into the overall structure.

4.3 Derived requirements

Out of the first level requirements other requirements arise. As there was, at the begin-
ning, nothing like the SLiC software available, SLiC had to be first designed and then
implemented. Another obstacle inside PVSS was the lack of exception handling facilities
in PVSS’ scripting language Control. A convention had to be set up on how to handle
exception conditions. There is also no documentation system or version control system
integrated in PVSS, so we had to find out, which systems would be appropriate for the non
standard Control script language. The creation or manipulation of lots of data points at
once was another problem to be solved. As a first solution an experimental data point ma-
nipulation language was introduced to allow the DCS maintainer to easily perform update
and maintenance tasks. Because the JCOP framework is a base for all the LHC (Large
Hadron Collider) experiments it is too general to propose a top down system configuration
procedure. The configuration procedure for the COMPASS experiment is in the moment
experimental, as the COMPASS collaboration has not yet decided on a final solution.
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5 The SLiC software

It was already mentioned in section three that SLiC is a framework for custom front-end
applications for hardware access and loop back control. Based on this framework there
is also the front-end application, which is somewhat inconsistently also called SLiC and
which can be seen as an example on how to use the framework.

The SLiC framework was designed to support the bus master (see bus master mode
in section 3.2 on page 35) and bus slave (see bus slave mode in section 3.2 on page 35)
operation of devices. Furthermore, it is independent of the network-publishing method
(like DIM) and it is independent of the configuration technology, like a database or an
XML (eXtensible Markup Language) file. As a consequence every front-end application
based on the SLiC framework can easily be extended to support several configuration
methods and publishing schemes.

The front-end application uses the framework to translate between the slow and low-
level field-buses and the higher level DIM-protocol (see glossary: DIM concepts overview)
on top of a fast ethernet network, to allow PVSS II to access the hardware. It is also a
place where to implement time critical control jobs that have to run reliably without the
help of the SCADA-system. The reason why we use XML for configuration of the front-
end application is because there is still no consensus on which configuration procedure to
use for the slow control configuration and XML seemed neutral.

At the beginning of the software development two prototypes were implemented and
later the ideas out of both branches were merged into the final SLiC product (both the
framework and the application). This section will give you an insight in the challenges
that had to be solved in the SLiC development and why certain decisions were taken over
others, but it will not go into the very specific implementation details. For these details
and for a user manual, please refer to the SLiC online documentation [88]. For C++
documentation please have a look at references [67] and [68].

In the following text of this section the descriptions are generally applicable to SLiC
as framework and SLiC as front-end application. Therefore no differentiation between the
two is made. The framework and the application were developed in parallel and share the
same infrastructure and design principles.

5.1 Project infrastructure

When you get the source code distribution of SLiC all files belonging to the project are
located below the folder named ./SLiC. In this folder, there is a bash shell script called
./SLiC/env.sh, which will set up environment variables. Before using this script it has
to be adapted to the local situation, like where the required libraries are installed, where
the C-compiler is located (if not in a standard position) and so on. After the command

source env.sh

inside of the ./SLiC directory the make targets should work.

Below the top-level folder, there is the configuration file folder, ./SLiC/xml, which contains
example configuration files and the XML DTD (Design Type Definition).

There is the ./SLiC/perl folder, which contains supporting perl scripts for the con-
figuration process, for intelligent log file handling and for make file support.

There is the ./SLiC/src folder, which contains all the make file files and source files.
There is the ./SLiC/doc folder, which will contain the HTML14 documentation after

building the documentation with the doxygen tool [83].

14Hyper Text Markup Language
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There is the ./SLiC/obj folder, which will contain all the object, library and exe-
cutable files after a build of the software. This folder will have a subfolder for each build
configuration, e.g. build with debugging information (-g compiler option), build with
insure++ [80] source instrumentation or fully optimised build (-O2 compiler flag). The
advantage of this structure might be clarified by an example. Imagine you compiled the
application with debugging information. After the application is fully debugged you might
choose to fully optimise the code and turn off debugging information. After the delivery
of the software a bugreport arrives and you have to go back to debug-mode of your ap-
plication, repair the problems in a few files and compile the whole project again in full
optimisation mode. As you can see, with this structure of object files you do not have to
compile the whole project after switching between build configurations. It is only neces-
sary to compile altered files. Therefore this approach has the clear advantage of saving a
lot of compilation time, especially in the insure++ build configuration.

And finally there is the ./SLiC/product folder, which must be set up to hold symbolic
links to all pieces of software needed for the deployment of SLiC. This includes (besides
other things) the DNS (DIM Name Server) (see glossary: DIM concepts overview), the
DIM browser xdid and a perl script for intelligent logging.

The make files work recursively on the file system hierarchy and they support the
following make targets:

• make will build all the files in a certain directory, e.g. the object files, the library
files if any and the executable if any.

• make all will build all the files in the folder and all its sub folders as described
under the make option.

• make static and make staticall will do the same as the make and the make all

targets except that all final executables will be completely statically linked.
• make debug builds everything necessary and then starts the ddd [82] graphical de-

bugger.
• make deliver builds everything necessary and then bundles the SLiC executable

with all the files in the ./SLiC/product folder as a tar.gz file.
• make documentation does what its name suggests. This target depends on the open

source doxygen documentation tool [83].

For the doxygen tool to work properly some special comment blocks have to be added to
the source files. After this preparation, doxygen is able to produce several output formats
like HTML, PDF, PS, RTF...

Depending on the name of the main target of a make file the make file decides if to
use or not to use the libtool [72] tool to simultaneously build static and shared libraries
in a portable way. The main disadvantage of libtool is that it needs more time to produce
both versions of a library. Its main advantage is that it is a simple to use “do the right
thing” tool in a portable way.

All source files (please notice that this term is not limited to only C or C++ source
files) are held in a CVS (Concurrent Version System [81]) repository to allow several
programmers to work on the same files simultaneously, to keep track of different versions
of the software and to allow for an easy comparison of old to new files.

After several tries with the open source tools libcwd [77] and libnjamd [78] we finally
decided to use the commercial insure++ product [80] to check our software for memory
leaks and memory corruption problems. This tool does source level instrumentation to
detect all sorts of problems. Please refer to the manual for a complete description.

To easily navigate in and to analyse the source code we use the open source tool Source
Navigator [86]. This tool has several browse modes which allow the developer to easily
find his way through the numerous lines of code in the project.
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5.2 Libraries used

In SLiC we build upon the functionality of the three libraries:

• libACE [73] is a portable general utility library with heavy multithread support,
• libxerces-c [74] is used to parse the XML configuration file and
• libdim [75] provides the DIM communication functionality.

Especially libACE is very useful because of its portable thread abstractions like the C++
class Task and the locking facilities. The Task class builds on top of the host OS’ multi
threading capabilities and makes spawning threads and communicating between threads
easy. The locking facilities help the programmer to use inter thread locks, inter process
locks and file locks in a uniform, exception safe and portable way.

5.3 Basic design decisions

Two basic design principles in computer programming, as defined in [65], are to introduce
abstraction barriers (see glossary: Abstraction Barrier) and to use data-directed program-
ming (see glossary: Data-Directed Programming) to achieve additivity (see additivity of
generic interfaces on page 70). In OO (Object Oriented) programming this boils down
to “programming towards interfaces” (see glossary: Programming Towards Interfaces).
By programming towards interfaces we introduce “horizontal lines”, which represent ab-
straction barriers that isolate different “levels” of the system. At the same time we also
introduce “vertical lines” that isolate modules in each level of the system. The horizontal
lines mean that different pieces of our software just use the interfaces of other objects
to talk to them and therefore any dependencies on the implementation of these objects
are avoided. The additivity in each level is achieved by implementing the interfaces and
overwriting the virtual base class methods in the interfaces. In this way we can add more
classes that adhere to a certain interface without interfering with other classes that im-
plement the same interface. Because interfaces cannot be instantiated, we need so called
factories (see glossary: Creational Patterns: Factory) to bring implementations of inter-
faces into life. In reference [66] one can find several “cook book recipes” on how to solve
general problems in writing modular and extendable OO software. Personally, I think,
one of the most important principles in software design is to avoid redundancy on all
abstraction levels. I noticed that by doing so all other principles of good software design
follow automagically. Up to now, to see the redundant parts of the code, is a matter of
experience. But in the future there might be a theory, like the database normalisation
theory, which gives an algorithm on how to remove the redundancy in code. Up to now,
we can only rely on “cook book recipes” like design patterns, where people with a lot of
experience collect there insights and write them down.

SLiC introduces a general base class Object from which nearly all other classes inherit.
It then uses a global factory singleton (see [66]) to instantiate all classes that derive from
Object and stores them in a global list. To advertise the creator objects to the global
factory it seems at first sight a good idea to use static initialiser objects (see glossary:
Static Initialiser Object). The advantage of this approach would be that all code that
belongs to an implementation of an interface is separated from all other code and therefore
the code dependencies are easy to figure out. But because such static initialisers are not
referenced by any other piece of code in the system the linker does not link the code for the
static initialiser into the final executable without some extra linker arguments. Because
of this additional complexity, which might not be obvious for a developer, it was decided
to use normal initialiser functions where each developer of an extension has to add a line
of code in a well known file, which adds the creator objects to the global creator list.
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5.4 Data publication strategies

At the moment SLiC publishes every logical entity as a separate DIM service or command
(see glossary: DIM concepts overview), even if the actual hardware treats several such
entities as groups. Figure 16 provides an example of the internal handling of read-back
value groups from a high voltage crate. Please keep this picture in mind for the following
discussion. There you can see how the “ReadStatus” operation, which is defined in the

...

read−back voltage
read−back current
read−back isOn
read−back isOverCurrent

...

read−back voltage
read−back current
read−back isOn
read−back isOverCurrent

individual DIM services
Voltage
Current
Channel Status
...

CAENCrateSY527BoardChannelReadStatus SLiC ReadProperty instances

SLiC Core functionality SLiC date−publishing layer

Figure 16: The logical entity publication strategy.

SY527 manual [71], causes a data packet to be sent from the SY527 crate to our software
and how the packet is unpacked into SLiC-internal ReadProperty C++ class instances
(see below for an explanation of the ReadProperty C++ class). Another example of such
groupings for the SY527 high voltage crate are the bit states, like the on-off state, the
over current state, the under current state, and other states, which are transmitted as
a single 16 bit word. The decision on what data to package into groups is up to the
hardware producers and the groupings are different even for hardware of similar type from
the same producer. As you can see in figure 16 the elements of the groups are separated
and published by SLiC as independent properties (the arrows from the left box to the
right box).

Just to avoid any confusion it should be mentioned that this separation does not
necessarily imply any inefficiencies in the read out process. Internally to SLiC we take
care of property groups in an efficient way.

The reasoning behind the separation approach is to keep the client independent of
the hardware. The splitting of the values that were read from the hardware into inde-
pendent pieces of information introduces a new layer of abstraction on which the clients
can build. Another advantage is that clients can decide which properties they are inter-
ested in so they can ignore the additional unwanted information. Internally to SLiC this
separation into virtually independent values is always done (as you can see in the SLiC
“Core functionality” box in both figures 16 and 17) and SLiC uses a ReadProperty and a
WriteProperty C++ class to implement this separation. But one could also imagine, that
instead of publishing these Property objects independently, one could put all these values
on a queue (as indicated by the arrows out of the “Core functionality” box in figure 17)
and a separate thread would unqueue the values, tag them and transmit them over a single
transmission channel (indicated by the “channel” at the bottom of figure 17) to the client
on a regularly timed bases (e.g. every 1 s). With this approach the network traffic could
be reduced by sending compressed data packets instead of uncompressed ones. Because
the single channel publication strategy approach produces bigger byte bundles compres-
sion would really help. The client would then either simply get all information that SLiC
gathers from the hardware, independent of the fact if the client needs this information or
not, or the client would have to follow some sort of initialisation protocol, to subscribe to
the wanted values.

In my opinion both approaches, the logical entity publication strategy and the single
channel publication strategy, are valid, because they do not brake with the idea of an
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...read−back isOverCurrentread−back isOnread−back currentread−back voltage...

Voltage
Current
Channel Status
...

CAENCrateSY527BoardChannelReadStatus SLiC ReadProperty instances

SLiC Core functionality

...

read−back voltage
read−back current
read−back isOn
read−back isOverCurrent

Figure 17: The single channel publication strategy.

additional abstraction layer between the hardware and the client of the SLiC software.
Any approach in between, where for example the transmitted data packets are tailored to
the hardware readout structures (which might be the most efficient approach) should not
be taken into consideration, because this would introduce a lot of additional special cases,
where, from a logical point of view, there are none. As an example consider again high
voltage equipment. The CAEN SY127, SY403 and SY527 series of high voltage crates
deliver the read-back values in different read-groups. Not to introduce this additional
layer of abstraction would mean these crates would have to be implemented differently
on the client side of the SLiC software (which might be the PVSS driver layer or the
PVSS script layer), whereas with the current model the client side of SLiC is not aware of
any differences in the internal workings of high voltage hardware. Additional code means
additional maintenance efforts. Especially any change in the use of data structures in
SLiC would imply the necessity of changing the code in the client side also.

5.5 Intelligent logging

It is important to follow the execution of the program in the production environment to
guarantee the correct behaviour and to easily track down sources of problems. The general
rule is, the more log output, the easier the analysis of problems. But because a verbose log
file would just fill up the hard disk in a few days a more sophisticated logging mechanism is
needed. In SLiC every class deriving from Object and every instance of a class derived from

with class A
LogObject associated

with class B
LogObject associated

Application Log Sink

Instance Log Objects

Class Log Objects

Figure 18: LogObject logging hierarchy.

Object has a LogObject associated with it. The result is a three level hierarchy of log objects
(see figure 18), where every level forwards log messages to one level higher in the log object
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tree. Every object that wants to print log messages attaches a log priority15 to the message
and calls one of the log methods on its LogObject instance. This per instance LogObject
forwards the request to the per class unique ClassLogger instance, which in turn forwards
the message to the final, per application, log sink. The final log sink might be stderr, a
file or a network connection or any combination of them. Each level of logging has the
possibility to reject log messages depending on its log priority. Therefore the log verbosity
can be controlled on a per object basis, on a per class basis and on a per application basis.
By implementing some IPC (Inter Process Communication) mechanisms into SLiC it will
be possible to control the log verbosity at runtime. Internally the LogObject uses a log
message queue. A separate thread then dequeues the messages and writes them to the
final sink. This approach ensures that the application is not slowed down by slow system
IO.

This behaviour is already quite flexible but improvements are still possible, e.g. it
would be nice to get no log messages at all as long as the system is running fine. But
in case of an error the last 100 lines of log messages preceding the error should also be
printed to the log. To implement this idea a perl script is used. The perl script forks off
another process, which starts SLiC with maximum verbosity and a Linux FIFO (First In
First Out – also called named pipe) as log sink. On the other end of the FIFO the initial
process of the perl script reads the log messages and stores them in a circular buffer. As
soon as a log message with log priority LM ERROR occurs the error message together
with the circular buffer is printed to a log file and we get the error together with the
preceding lines of normal debug output. Besides that it is possible to send the perl script
a signal to force it to immediately switch into verbose mode so that the user can see the
current activities of SLiC in full detail.

5.6 Multithreaded nature

As mentioned above one of the reasons why to produce SLiC was to translate from the
slow field-buses to the DIM protocol on top of a fast ethernet connection. If we just read
out all field-bus elements one after the other we would gain no speed improvements at
all, because the system is only as fast as the slowest piece in the chain (the field-bus).
Therefore we need to parallelise the accesses to field-bus interfaces16 in order to report the
hardware values as efficient as possible. To parallelise in SLiC means to use a different
thread per hardware interface (ISA, PCI or VME card).

One of the first difficulties we were faced with was that because the GNU standard
C++ library distributed with gcc [79] up to version 2.92.3 is not multithread safe we had
to renounce on it. It was decided to use libACE instead. libACE is not quite a replacement
for a standard C++ library, but it implements some containers which were sufficient for
our purposes. Furthermore libACE provides some multi thread convenience classes like
the already mentioned Task class, which makes working with different threads very easy.

Another difficulty was that libdim keeps mutexes locked in both situations, while a
DIM command call-back (see DIM Command on page 71) is issued and while a DIM service
(see DIM Service on page 71) is processed. But on the other hand we also need to keep
locks to ensure that only one thread accesses a given hardware interface at a time. This
situation lead to problems where in the case of a DIM service SLiC locks on a hardware
interface first and then DIM locks inside its service handling code and in the case of a
DIM command first libdim locks and then SLiC needs to lock. These two situations are
schematically shown in figure 19. The time flow is from left to right. A dot indicates the
process of acquiring a mutex, either in the DIM library (the upper line) or in the SLiC

15like LM DEBUG, LM INFO, LM ERROR.
16Here the term interface means the hardware interface like a ISA, PCI or VME card.
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SLiC Mutex

DIM Mutex
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Figure 19: The deadlock condition.

code (the lower line). The crossing arrows show the deadlock condition. We solved the
problem by enqueuing DIM command requests and processing them in a separate thread,
so that we can keep the same locking order in both situations.

5.7 Common-devices

Although SLiC was designed as a framework it has been specialised to a fully functional ap-
plication. For this application the CAEN line of high voltage power supplies, the SY127,
the SY403 and the SY527 (see glossary: “High” Voltage Crate) and the access to the
CAENET field-bus (see glossary: Field-bus) over a PC ISA card or a VME card have been
implemented. These objects all build on top of a specialised framework class called Struc-
turedDevice. This class’ main objectives are to implement a field-bus request hierarchy
and to implement a common user-friendly error-handling scheme. As the communication
with the hardware is often done via a field-bus the request chain and the error handling
scheme have to work hand in hand. The implementation of the StructuredDevice on top
of the framework can be used as one example of how to specialise the framework to actual
hardware requirements.

root : StructuredDeviceRoot

a303interface : CAENNetworkInterface

hvchannel : CAENCrateSY527BoardChannel

hvboard : CAENCrateSY527Board

hvcrate : CAENCrateSY527

readstatus : CAENCrateSY527BoardChannelReadStatusOperation

canvmeinterface : CANVMEInterface

Figure 20: The StructuredDevice hierarchy.

The StructuredDevice instances are organised as a tree, which is rooted at the single
StructuredDeviceRoot instance (see figure 20). Below the root element there are the field-
bus hardware interface instances. These elements only know how to talk to the field-bus
– how to send the request network frames (simple byte arrays) and how to receive the
answer network frames. All leaves in this tree are of type StructuredDeviceOperation. An
operation in the high voltage control part is for example to set the output voltage of a
channel or as in figure 20 to read the status information (the status information for a
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SY527 channel is composed of the voltage value, the current value, the on/off state and
much more) of a channel.

As an example of a possible StructuredDevice hierarchy we consider the case of the
CAEN SY527 power supply implementation (see also glossary: “High” Voltage Crate).
In the implementation of the SY527 crate the leaf operations (like switching a channel
on or off, etc.) would be located below a high voltage channel instance, which would
be located below a high voltage board instance, which would be located below a high
voltage crate instance which finally would be located below the field-bus interface. As
you can see, the StructuredDevice hierarchy simply follows the physical layout of a SY527
crate. This structured implementation is not necessary for just communicating with the
device and in fact the data representation as used to communicate with the crate over the
network would at first sight suggest to implement one class with one method per operation.
The real advantage of this structured approach lies in the possible error-handling scheme
described below.

All requests to a device to set/get a value or to perform some action start at leaf
elements and make their way up until they reach the field-bus interface, which does the
request and returns the answer back to the leaf element.

The interesting case however is when problems appear. If the communication of a leaf
element fails then the leaf element starts a check procedure, which works recursively on the
StructuredDevice hierarchy. Every element in the StructuredDevice hierarchy implements
a method that allows to determine if that element works fine or not. To clarify what was
just said, consider the boards in the SY527 crate or the crate itself. The check procedure
in the board element of the StructuredDevice hierarchy for the SY527 crate for example
reads the high voltage boards characteristics, which only depend on the board and not
on a specific channel17 and we can say if the board is responding well or not. The check
procedure in the crate element reads only the name of the crate. This operation is possible
even if there is no single board in the crate and therefore we can decide if the crate is well
connected and works fine or not.

The recursive check procedure starts at the leaf element where the problems appear
initially. The leaf element asks its parent to check its state. If the parent element works
fine it is obvious that the problem lies in the child and the software can tell the user the
exact point of failure (or most often the point of misconfiguration). On the other hand,
if the parent also detects a problem the check request is forwarded to the next parent,
and the same procedure is repeated until a “good” element is found. The root element
in the hierarchy is always in a good state, so that at an end the problem might be the
network interface. If the problem is detected in the network interface the reason for the
communication failure might be a missing driver on the front-end computer or a defective
cable or a misconfigured device.

As we saw just in the last paragraph, the check procedure cannot decide if a problem
is due to a defective cable or due to a misconfigured networking device, but nevertheless
the check procedure is able to guide the user to the source of the problem. The check
procedure can safe a lot of time in tracking down hardware problems or configuration
mistakes and is therefore a valuable part of our software.

This description is only an outline of the rough structure. The details about the request
mechanism and the error-handling scheme can be found in the SLiC documentation [88].

17I admit that this example is a bit artificial, because the board and the channels are not really separable
as they share the same hardware, but it shows the idea behind the check procedure.
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5.8 Surveys

If a field-bus supports several bus-masters then a device may work in bus-master mode and
tell the SLiC software about read-back value changes by triggering a call-back function
in SLiC. On the other hand, if a device only works in bus-slave mode then SLiC has to
care for the periodic updates of the read-back values. These periodic updates are done by
Survey instances.

A Survey has two signals as input, one that tells the Survey to start and one that tells
it to stop. These signals might be periodically produced by a timer in the software or there
might be any other trigger source like the start of spill (see glossary: Spill) and the end
of spill signals in the COMPASS experiment. When a Survey starts its job it asks every
element that the survey is responsible for, to update the read-back values. This request
then triggers the field-bus request in the StructuredDevice instance, as described above. If
everything goes well the next element in the chain is asked to update its values. If there
was a problem detected by the StructuredDevice error-handling scheme the survey triggers
a second request. If this request fails again the StructuredDevice element18 is taken off
the list of elements of the survey and it is put onto another list – the list of bad elements.
After a survey finishes its job it checks if the end of survey signal has already arrived or
not. If it did not arrive yet then the elements on the bad element list are treated one by
one. If an element now responds correctly to the request, it is put on the good element
list again, otherwise it is left on the bad list.

With this behaviour we ensure that the good elements keep their timing requirements
as good as possible while the bad elements are treated at the end after all the good ones.
The implemented strategy is to first ensure good communication (by checking a bad answer
a second time) and only then ensure the timing requirements. So if the configured time
interval for a survey is close to the required time to read every element under normal
conditions, it may well happen, that in the case of problems the survey is stopped before
all elements were handled. But at the next survey cycle the elements not handled will be
treated first, so that all elements on the survey will be updated even if the timing is not
kept.

Elements that are taken off the good element list will be automatically restored after
they become available again. Even if the survey cycle stops before all the good elements
were handled the Survey logic will check at least one bad element.

Consider an example: After a power cut the computer that runs SLiC starts automat-
ically without any user interaction. SLiC then starts also and reads its configuration file.
But the high voltage crates for example might need user interaction to be switched on
again. As soon as a user switches the crates on again they are automatically reintroduced
in the good element list in the surveys and the software takes care of them. The user in
front of the DCS will be notified that a piece of hardware is not available by a colour code
indicating the state of the piece of hardware.

5.9 The final product

The final product will run day and night for the whole duration of the experiment and
only be stopped for configuration updates. Therefore it has to work as automated as
possible and with as little user interaction as possible. After rebooting a processing unit
the software should start automatically and should handle the internal configuration on
its own. With all the above described software infrastructure we are able to run SLiC

18It is not a StructuredDevice element on the list of the survey, but some other element, which then
refers to a StructuredDevice element. But as this other element type is not introduced in this document I
also do not mention it here.
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unattended as long as we do not change configuration files. Another important feature,
especially in the long run, is the intelligent log handling, which ensures small log files, but
also allows us to have full debug output and insight into the software’s job in case of a
problem.
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6 PVSS and the JCOP framework in COMPASS

COMPASS decided to use the PVSS II SCADA-system. To reduce the amount of develop-
ment work to implement the tailored control system for COMPASS in PVSS it was decided
to use the JCOP (Joint Controls Project [90]) framework [91] with some modifications.
The JCOP framework is developed by ITCO (IT - Information Technology - COntrols
Group [89]) together with the LHC experiments at CERN as a common base for all the
LHC experiments. Therefore it is the smallest common denominator which is useful for
all the LHC experiments. For COMPASS it was necessary to extend the base to get a
fully working control system. These extensions are bundled in the COMPASS framework,
which was recently renamed into “Additional JCOP Framework Components” [92]. The
frameworks add to the PVSS II base system new data point types, data points, panels
and scripts as well as guidelines for further development (like a style-guide). Figure 21
visualises the relations between core PVSS functionality, the frameworks and the final
DCS part on top of PVSS.

experiment or detector control system (DCS)

additional JCOP framework components

JCOP framework

PVSS panels, libs

PVSS core

DIM, FSM
Web,
Ext Al, etc.

Figure 21: Layers of software on top of PVSS.

The functionality of the frameworks can be divided into a configuration part and a
runtime part. The configuration part is used by the detector experts and DCS designers
to modify the data representation of the experiment. The runtime part is used by the
operators of the detectors during the run. Besides these frameworks a common and cen-
tral system configuration mechanism is needed to configure the SCADA system and all
other pieces of software that need configuration information. But up to now no common
decision was met. Therefore we implemented a preliminary approach with a Filemaker
data store and some Perl scripts to convert between different configuration file formats
(see reference [93]).

6.1 Working with PVSS

Generally before starting with a software project one should have a clear idea of what the
software is supposed to do. Therefore it is essential to talk with the later users of the
software, the physicists and detector experts, to gather requirements. After this first step
an experienced IT (Information Technology) professional should convert these ideas into
strategies and rule sets that the software should implement.

The work with PVSS can be divided into three parts. The starting point is the design
of a data representation of the detector and all the elements in it, no matter if the elements
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are real hardware elements or just logical entities, which are used to facilitate the work with
the detector, like groupings, trees, etc. The following section “The data point concept” will
explain the technical details of the design step. After the design phase the next two steps
are to implement all your strategies and rules that work on the data representation in the
PVSS scripting language Control (see PVSS Control scripting language in section 6.1.2)
and to create a user interface as interaction point between the user and your scripts.

6.1.1 The data point concept

A PVSS data point (DP) is a tree structure of PVSS data point element (DPE) objects.
DPEs in turn are a collection of so called configs. These configs are a predefined and fixed
set of interfaces that the DPE should support. The relation between the DPEs and the
configs can be compared with multiple inheritance in an OO language like C++. The
configs can be seen as a predefined set of classes, which you use to inherit from. A DPE
is then the sum of all the capabilities implemented in the set of configs it “inherits” from.
The grouping of DPEs into a hierarchy, which is then, called a data point is just used to
keep things together that logically belong together (which is open to interpretation). All
the DPs with the same hierarchy of DPEs are said to be of the same PVSS data point
type (DPT). Before you can instantiate a certain DP of a certain DPT you have to define
its DPT first. In the current version of PVSS II it is possible to define DPTs dynamically
at runtime by script.

Amongst the group of configs that are available there are

• the value config, which stores the value the DPE should represent,
• the archiving config, which controls archiving details and
• the address config, which enables the transparent network connection of the DPE19.

PVSS stores all DP information with a timestamp inside its own database, which is
optimised for data archiving. This also means that the later retrieval of values out of the
database might be a slow process.

6.1.2 The Control scripting language

PVSS comes with an integrated C-like scripting language called Control. The user does not
have to care about memory management as Control uses garbage collection. It supports
basic data types like integers, floats and strings and dynamic-length arrays of these types.
Control does not support any kind of structured data, even not multi dimensional (greater
than two-dimensional) arrays. For these purposes you always have to introduce a new DPT
that has the wanted structure. Control is a pure imperative language that builds on the
use of functions like C does. It has no built in concept of exception handling, so that
you have to revert to the same error handling techniques you also use in C. The language
is either executed in the context of the PVSS UI manager or in a standalone thread of
execution in the PVSS Control manager. PVSS already provides a set of built in functions
in the areas:

• ActiveX functions,
• User administration,
• File functions,
• Database functions,
• DP functions,
• Dynamic arrays,

19Not every DPE is connected to a remote data entity over the network.
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• Error functions,
• Functions for bit32 variables,
• Mathematical functions,
• Multilingual functionality,
• Message handling,
• GUI manipulation,
• Strings,
• Threads,
• Administration of managers, modules and panels,
• Time functions and
• Miscellaneous functions.

Not all of the provided functions are applicable in the UI manager and in the Control
manager. For example ActiveX handling or GUI manipulation is obviously not possible
in the Control manager, as there is no user interface attached to it.

As a positive side effect of the similarity between Control and C it is possible to use
documentation systems like doc++ [84] that were intended for use with C or C++.

Control scripts can be either associated with a UI panel or they can be put into Control
libraries. The functions in a Control library are accessible from all panels, whereas the
functions in a panel are only accessible inside the user gesture handling code, which defines
the function. Control enables the user to register global variables in the system with the
Control script function addGlobal(), which then are accessible from every script.

All in all for a C programmer it should be straightforward to jump into PVSS script
development.

6.1.3 The UI builder

If you have used one UI builder you know all UI builders (with some positive exceptions
like the Visual Age series of IBM). Here PVSS is no exception and it allows the user
to create panels with common UI elements like combo boxes, tables, buttons, text label
etc. Besides that you can also do some drawings on the panel and illustrate its intended
functionality in a graphical way. All these UI elements can be altered at runtime by script,
but it is not possible to create UI elements dynamically at runtime. The most dynamic
behaviour you can get is by defining some set of reference panels and then add them at
runtime to a parent panel by script. A reference panel is a panel that may have unresolved
parameters in it and serves as a pattern, which you can use as a building block to create
more complex panels. These parameters must be resolved when the panel is inserted into
another panel. You also have to use the UI builder to create user gesture handling scripts
like button clicks. The disadvantage here is that you cannot use standard tools like a
versioning system or the documentation tools mentioned above, because the script code
will be stored in a PVSS internal format along with the graphics information for the panel.
Therefore my personal approach is to just use the UI scripts for calling a library function
and then doing all other coding inside of libraries. The disadvantage is that all libraries are
held in memory and therefore more memory is permanently used. Also execution speed
decreases a bit.

6.2 Below the User Interface

In this section we will have a look at the general functionality inside the frameworks below
the user interface.

56



6.2.1 Internal data representation

How is a detector organised in terms of the PVSS DPs? The whole experiment is repre-
sented as a tree with cross-references (see figure 22). The actual data is kept in a strict
tree, called the hardware tree. But to allow for different views of the same data there are
also logical trees. These logical trees end at their leaf elements in pointers to real data
elements inside the hardware tree.
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Figure 22: Data point hierarchy in the JCOP framework.

Why is this useful? In a experiment several detectors may share the same high voltage
crate. Now to allow for the detector people to find their channels easily without browsing
the whole hardware structure and selecting their channels out of the hundreds of channels
in one crate it is easier to group these channels in a logical group, which is located in
the detector tree. Besides that inside only one detector there is the need for grouping to
allow all channels of a certain type of functionality to be switched on or off or to be set
to a certain voltage level simultaneously. Another grouping might consist of all channels
in one building block of a detector like a GEM cell out of the overall GEM detector.
These logical trees can somehow be compared with views in databases. As in databases
these views are generally useful, because people are interested in different details of the
available information. Like in databases views might also be used for the access control
of the hardware elements.

6.2.2 Creating elements

Creating elements, like a detector, a high voltage crate, a temperature sensor or any other
detector component, means instantiating a DP of a certain DPT and initialising the DP to
meaningful values. This initialisation process includes also the interconnection of parent
and child elements in the data point hierarchies. To make this process more convenient
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for the DCS designers there are the configuration panels to facilitate this job. With these
panels and the underlying scripts it is possible to create the elements and initialise them
to the wanted values. Furthermore in one of the future releases of the JCOP frameworks
it will be possible to use such elements as patterns to create similar instances of the same
DPT.

6.2.3 Network connections

As mentioned in section 3 (see PVSS internal architecture in section 3.5 on page 38) the
network connections are handled transparently for the user through the PVSS driver layer.
Each DPE that corresponds to some hardware value20 has an address config (see PVSS
address config in section 6.1.1 on page 55) associated with it that stores the information
about which network interface to use. In the DIM protocol a unique name and the address
of a DIM Name Server (DNS) identify for example every element.

6.2.4 Data archiving

The data archiving of values of DPEs in PVSS is configured by the archiving config. The
archiving is independent of the fact if the DPE is connected to a real hardware element
over an address config or not. Therefore all computed values can be put into an archive
also. In the current version of PVSS II, which is in the moment 2.11.1, DPEs are associated
to archiving groups. Then “a rectangle” of disk space is allocated where the values will be
stored. Rectangle means that you have n ·m “memory places” allocated at once, where n
is the number of DPE values in the archiving group and m is the number of data elements
that can be inserted until a new archiving rectangle is allocated. This procedure ensures a
fast archiving behaviour but it also means that there might be a lot of disk space wasted in
an archiving rectangle. If for example one of the values in the archiving group is updated
every second and the others are only updated every minute then a new archive rectangle
will already be instantiated as soon as the element that changes at a high frequency has
changed m times and (n − 1) · m · (1 − 1/60) memory places are wasted. The configurer
of the archiving has to take care of this by putting only elements into an archiving group
that change at a similar frequency.

6.2.5 Alarm handling concept

As the different LHC experiments use different alarm handling schemes there is no com-
mon alarm handling functionality in the JCOP framework. The alarm handling scheme
described here is an extension to the JCOP framework and can be found in the additional
JCOP framework components (see glossary: Additional JCOP Framework Components:
Alarm). The alarm handling is based on the data point hierarchy described above in
section 6.2.1. There are two types of alarms – there are alarms on DPEs and there are
summary alarms.

Initially you define the cases in which an alarm should be raised on a leaf data point’s
DPE. The DPE of leaf DPs can either be in one of 5 levels of alarm state or they can be
invalid or they can be in good state (which means no alarm).

Now, for a fast diagnostic, it might be interesting to know in which branch of a tree
an alarm was raised. Therefore, the additional component implementation of the JCOP
framework allows the alarms to flow up to the top of the hierarchy by using the PVSS
summary alarm mechanism. A node of a tree can have a summary alarm of all or of a
part of its children. By configuring the summary alarm of all the nodes of a tree to be

20Please not that there are also DPEs that do not represent a hardware value!
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the summary of their children alarms, any alarms will be propagated up to the top of the
hierarchy.

The alarm state of an element, which is either a leaf DP or a summary alarm element, is
visualised by colours. Under normal conditions the operator surveys just the root element
of the hierarchy and as soon as this element indicates a problem the operator can locate
the source of the problem in one of the sub-trees by following the “colour trace” of the
problem. From there on he can either repair the problem himself or call a detector expert.

Besides the alarms described above there are two other flags,

• the masked flag (see glossary: Additional JCOP Framework Components: Mask an
Alarm) and

• the disabled flag.

If an element is masked it still receives data from the hardware and does archiving but it
does not propagate the alarms to the top anymore. This behaviour is useful for example, if
you have a high voltage channel for which you have defined a set point and some tolerance
band above and below this set point. If you now want to ramp up the voltage to a new
value outside of this tolerance band then the voltage will leave the tolerance band and an
alarm will be triggered. To avoid this “false alarm” the element is first masked before the
ramping action takes place and then it is unmasked again after the ramping process has
finished and the tolerance band has been recalculated. The disabled flag can be used to
disable an element’s network connection, so that its value is not updated anymore.

6.2.6 Access control

The procedure for access control (see glossary: Access Control) has still not been decided.
But the direction seems to be a two level access control per detector. Either a user
is supposed to be an expert of the detector, in which case he has full control over all
settings. Or the user is in the normal user group, in which case he can just watch the read
back values and is not allowed to change anything.

6.3 The User Interface

In the JCOP framework and in the additional framework components there are already
a lot of panels defined that can be used either directly or they can be easily adapted to
the special needs of a detector. As already mentioned above the panels are divided into
configuration panels and runtime panels. The organisation of the panels for runtime and
configuration panels follows the data point structure as outlined by the frameworks (a tree
with cross references). The central access point in both cases is a panel called the detector
explorer.

I should also mention for completeness that even if one decides to renounce on the use
of the framework panels, like the detector explorer that the JCOP frameworks are still a
rich source of reusable software components. The JCOP frameworks are so modular that
even if you decide to not use their main user interface structure they still provide a set of
components (reference panels, scripts, etc.) which can be generally useful and which can
safe a lot of development time.

6.3.1 The detector explorer

The detector explorer panel is similar to the windows explorer, where we have on the left
hand side a graphical representation of the hierarchy and on the right hand side the special
panel to interact with the element we just investigate.
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The detector explorer is the same for runtime and configuration panels. At runtime
you explore the data gathered by the experiment and you can navigate around the whole
experiment. At configuration time you explore the configuration for the experimental
set up and you can create, modify, copy or delete elements from the detector’s data
representation. In the future it is foreseen to allow the user to duplicate elements to easily
recreate similar data elements.

The approach of having just one interaction panel, the detector explorer, instead of
having numerous independent panels that pop up new panels on demand is favourable,
because it prevents the user interface from being cluttered with amounts of panels where
the user has to find his way through. Besides that this approach imposes already a lot of
design guidelines on the detector groups that develop their own panels in a natural way, so
that a common style for the panels is kept, automatically. This common style is essential
for the user to keep the overview in the DCS, which will be developed by a number of
different people with different ideas about the look and feel of their panels.

6.3.2 Plugging new elements into the detector explorer

There is a general interface on how to plug in custom panels into the detector explorer.
The exact procedure on how to do this is described in “Adding a device in the framework”
[98], but to give you an impression on the complexity of this process I enumerate here the
steps needed to do this. The process of adding a new device to the framework is based
on panel templates and a Control script template. After receiving these templates and
unpacking them the framework extender has to

• create a new data point type to represent the new device,
• allocate a new view21 to store the new devices in,
• replace certain strings in the template files to give the elements meaningful names

and avoid name clashes with other framework elements,
• modify the template panels to have the exact configuration and operation behaviour

which is required, and
• extend certain switch(){...} statements in framework scripts to reflect the be-

haviour of the new data point type.

All in all it is a straightforward process where you also can build upon the many examples
of elements provided by the frameworks.

21A view is a framework term, which is explained in the framework documentation [96].
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7 The system in action

The development time for the frameworks is now nearly one year and for the SLiC software
nearly half a year. During the development there was a permanent test set up in a lab
to develop under lab conditions. Besides that there were several possibilities to try the
software under real world conditions, too.

At the end of April there was a test beam for the GEM and silicons detectors. At
this test beam the complete DCS chain was installed to get some user feedback and test
results.

Since April the HARP22 experiment has several tests with a number of high voltage
channels running. They use five SY403 crates with a total of 275 channels and four SY527
crates with a total of 584 channels. The final number of channels will be slightly higher,
as the system will be extended in the future. HARP uses an older version of the JCOP
framework running on PVSS II version 2.10. But this set up gives already a first impression
of the attended efficiency and reliability and it is a very good test ground.

Because COMPASS has not started yet there are no results about the behaviour of
the software in the complete COMPASS set up.

As the results in the above test scenarios showed the performance bottle neck are the
CAEN high voltage crates, where the response time over the CAENET network lies in the
order of several milli seconds, whereas an estimation of the maximum transmission time
of a 30 word network data packet (all transmissions are below 30 words) over the 1MHz
network would give a time value in the order of 0.5ms. Therefore the runtime performance
is as good as the crates can get.

There is still a problem with the start up time, which lies in the order of 20 minutes
for 500 high voltage channels. This start up time is due to the registration of all the
published DIM services and DIM commands at the DIM Name Server. If we start the
software and do not publish the data over the network the software does still the same
job, but the start up time is reduced to below one minute. Several solutions are under
study today and it is not clear yet, which one is the preferred one.

The software uses roughly 50MB per 600 high voltage channels. This is mainly due to
the heavy use of hash maps even where simple linked list would be sufficient also. This
is the traditional memory to speed trade off. But because there is no need for so much
speed (because the software is as fast as the hardware can get) there are possibilities to
reduce the memory consumption.

Due to HARP’s 24h test we can also expect a stable and reliable behaviour in the long
run.

8 Conclusion

The development of the frameworks clearly facilitates the implementation of system con-
trol software for COMPASS and the frameworks provide a common structure that allows
the development of a coherent and homogeneous system by multiple and remote teams.
The frameworks try to hide the underlying tools as much as possible from the user, thus
reducing the amount of training and support required. They are a source of as far as
possible configured components (e.g. templates, standard elements and standard func-
tionality), which are required for an experiment control system. Besides the benefits for
COMPASS the frameworks also help other experiments (like HARP) to reduce the amount
of development work for their control system.

22Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux [7]
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Besides all the positive effects of the frameworks it is also important to remember that
the frameworks are no answer to all problems. For example a solution for the access control
mechanism has not yet been addressed at all and because the participating experiments in
the JCOP project could not agree on a common configuration scheme there is no common
top down configuration scheme integrated in the frameworks. Besides these two general
problems there is still a lot of work for the specialisation of the framework components for
all of the detector types in the COMPASS experiment.
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Appendix A Own contributions

Members of the JCOP working group and members of the ITCO group at CERN originated
the initial ideas of the JCOP frameworks and the SLiC framework. The ideas on how to
implement the specialised slow control software for the GEM and silicon detectors grew in
an iterative process of implementing software and getting the feed back from the involved
physics groups. Therefore, the requirements for my work were set from outside and I
concentrated on the research on implementation strategies and the actual implementation
work.

As I arrived at CERN it was assumed that my work would only take place on top of the
PVSS II SCADA-system. Therefore, I started my development work on top of the by then
available PVSS framework for COMPASS. I noticed that there was no means to handle
large amounts of configuration data in that framework. There was only the inflexible
PVSSascii manager (part of the PVSS distribution), which could dump PVSS databases
and import dumped version of databases. I started to implement an experimental data
point manipulation language, which could be used to configure the PVSS system database
in a flexible way. It was designed to be extendable to cope with new requirements as they
arise.

After some weeks it was recognised that a framework for device control on front-end
computers was also needed I stopped my PVSS work and joined the SLiC development
team (two people). The only remaining parts of my initial PVSS work in the actual JCOP
frameworks are the exception handling scheme and the documentation system doc++ [84]
for the Control script libraries. There is nothing comparable to this data point manipu-
lation language in the latest release of the frameworks, but nevertheless my initial work
on this subject showes that the approach to implement this language on top of the PVSS
scripting language Control would be too slow to be usable. Therefore, if in the future one
tries to build a configuration language the better approach would be to implement it as
an extension to PVSS in C or C++.

The SLiC development started with a design and prototyping phase, where I imple-
mented one prototype myself. Then the ideas from the prototypes were merged and the
final SLiC design was produced. In the actual SLiC project I took the responsibility
(initial implementation or set up and maintenance) for the CVS repository, for the build
process structure, for the deployment of the improving versions of the front-end software,
the make file implementation, the doxygen documentation tool and all the perl scripts
used for make file support, intelligent logging and automated conversion of configuration
data. Furthermore I did the evaluation for a thread safe replacement for libstdc++ and
did the code change to exchange all the vulnerable containers with the new ACE (Adaptive
Communication Environment [73]) containers. I also implemented a C++ template for a
double linked list (DLList) from scratch. From the beginning of the project I promoted
the use of debugging libraries to detect memory leaks and do intelligent debug output.
After we found out that libcwd was not thread safe and libnjamd was using by far too
much memory I did the evaluation of insure++ and the later integration of that tool into
our project. For the intelligent debug output I implemented the quite powerful LogObject
(see LogObject in section 5.5 on page 48) C++ class on top of basic ACE functionality
and added the overall logging scheme to our project. With the help of insure++ I tracked
down several memory leak problems (sometimes even not in our code, but in some external
libraries) and an especially tricky problem, where our code used by far too much memory.
I did the HARP bug report support and later bug fixing. Besides the just described work
for the basic infrastructure of our project I also contributed to the actual functionality of
SLiC. There, I did the implementations of the StructuredDevice (see StructuredDevice in
section 5.7 on page 50) and all its general use subclasses plus the implementation of the
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A303 ISA card CAENET access, the MOD V. 288 VME card CAENET access and the
SY527 high voltage crate, board and channels implementations on top of these general use
StructuredDevice subclasses. After we got our first external developer I did the necessary
support to get him started with his development work on top of the SLiC framework and
I wrote some code to make the integration of his work into the SLiC front-end application
easier. Besides the pure development work, there were many hours of test runs with differ-
ent hardware set ups to improve the SLiC front-end application to the level of a software
that can be used in the final production environment (HARP, COMPASS, etc.).

After these tests were finished and SLiC entered into its stable state (as it is now) I
again started development on top of PVSS and on top of the now available JCOP frame-
works. This work is still going on and it consists mainly of writing specialisations to the
JCOP framework components for the GEM and silicon detectors. After the specialisations
will be finished they have to be integrate into the overall COMPASS DCS set up. One
part of the specialisation work, which is a main change to the framework implementations,
is to integrate user access control into the GEM and silicon components.
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Glossary

Absorption Length The mean free path (see Mean Free Path) of a particle before
undergoing a non-elastic interaction in a given medium. The relevant cross-section
is σtot − σel. (see also Collision Length and Interaction Length)

Abstraction Barrier In general, the underlying idea of data abstraction is to identify for
each type of data object a basic set of operations in terms of which all manipulations
of data objects of that type will be expressed, and then to use only those operations
in manipulating the data.

One can imagine abstraction barriers as “horizontal lines” in a program that isolate
different “levels” of the system. At each level, the barrier separates the programs
(above) that use the data abstraction from the programs (below) that implement
the data abstraction.

Acceptance We define the acceptance a of an experiment as the average detection effi-
ciency. Frequently, the word is also used in the more restricted sense of geometric
acceptance defined below.

Let N be the total number of events that occurred, out of which n are observed.
Then the expectation values of N and n are related by

E(n) = aE(N)

One may consider the acceptance as a function of one or more variables, or in a
small region of phase space.

By this general definition, the acceptance includes all effects that cause losses of
events: the finite size of detectors, the inefficiencies of detectors and of off-line event
reconstruction, dead times, effects of veto counters, etc.

Let x = (x1, .., xD) be the physical variables that describe an event, such as the
momenta of the particles, positions of interaction vertices, and possibly also discrete
variables like the number of particles, spin components, etc. These are random
variables following a probability distribution

f(x)dDx =
F (x)dDx

∫

Ω F (x)dDx

Ω is the allowed region for x, and the integral includes a sum over discrete variables.
The non-normalised density F (x) is given by the experimental conditions, i.e. beam,
target, etc., and is proportional to the differential cross-section. For a sufficiently
small phase space region the differential cross-section is nearly constant and hence
drops out from the normalised probability density f(x).

Let ε(x) be the total detection efficiency for an event given its physical variables x.
The acceptance is then the expectation value of ε(x),

a =

∫

Ω
ε(x)f(x)dDx.

If, to a sufficiently good approximation,

ε(x) = εg(x)εd
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where εg(x) is the purely geometric efficiency(εg(x) = 1 if the particles hit the
detectors, εg(x) = 0 otherwise) and εd is a constant detection efficiency, then

a = agεd

ag =

∫

Ω
εg(x)f(x)dDx.

ag is the pure geometric acceptance.

Access Control In this report access control means limiting access to DCS resources
only to authorised users, programs, processes, or other systems. Access control
could be done on a per user basis, where you explicitly grant or restrict the rights of
every individual user. But because such a system is a maintenance nightmare it is
common practice to use user groups where rights are granted or restricted on a per
group basis and subsequently the users are put into these groups.

Because access control is not implemented yet in the frameworks and up to now there
is no decision about an access control strategy in COMPASS the initial step towards
strong access control is just an additional layer on top of the SCADA-system which
prevents accidental user mistakes.

Additional JCOP Framework Components: Alarm An alarm is a message which
is generated by the control system when a piece of equipment deviates from the
desired operation. Several levels and categories of alarm are possible. The PVSS
term for alarm is alert.

Additional JCOP Framework Components: Acknowledge an Alarm This is an
action issued from the user indicating to the control software that the user took in
account the alarm, this does not always mean that he fixed the problem related to
the alarm.

Additional JCOP Framework Components: Mask an Alarm To mask an alarm
of a device is an action which stops the alarm evaluation for this device. The word
“masked” applied to an alarm means the alarm is not evaluated. This does not
prevent the data of the device to be refreshed. The PVSS masking action is the
de-activation of the PVSS alert hdl config.

Additional JCOP Framework Components: Un-Mask an Alarm To un-mask an
alarm of a device is an action which starts the alarm evaluation for this device. The
word “un-masked” applied to an alarm means the alarm is continuously evaluated.
The PVSS un-masking action is the activation of the PVSS alert hdl config

Additional JCOP Framework Components: Device A device is a piece of hard-
ware or software equipment, e.g.: a SY127 CAEN crate is a device, a node of a
hierarchy is a device, etc.

Ageing Ageing is generally a deterioration of detector properties like a deterioration of
gain or a loss of resolution. Ageing in particular in gas detectors is often due to the
use of organic gas mixtures. The organic gas mixtures tend to dissociate because of
the incoming radiation. The remaining parts then either change the gas properties
in the gas volume or they stick on conducting surfaces and change the electric fields.
It is possible to improve the situation by using a gas current through the detector,
so that the gas does not remain too long in the gas volume and has less chance to
dissociate.
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Annealing Annealing can be shortly summarised as the movement of defects in a crystal
lattice. The mechanisms leading to annealing of defects can roughly be divided into
migration, complex formation and dissociation processes. At a certain temperature
the defects become mobile and migrate through the silicon lattice until they are
stopped or a complex defect, composed of more than one constituent, dissociates
into its components if the lattice vibrational energy is sufficient to overcome the
binding energy. At least one of the constituents then migrates through the lattice.

BNC Components A family of components that include the BNC cable connector, BNC
T connector, BNC barrel connector, and the BNC terminator. The origin of the
acronym BNC is unclear. Names ascribed to these letters range from “British Naval
Connector” to “Bayonet Neill-Councelman”.

Centralised Access Point Centralised access point might be misunderstood by having
only a single access point, a single computer. But what is meant here is that there is
a software, that can run on as many computers as wanted and that can be used by as
many operators (independently of each other: virtual single user mode) as wanted,
which provides a logically centralised view of the system and hides the distributed
nature of the DCS from the user. In database terms this might be summarised by
the acronym ACID (Atomicity Concurrency Isolation and Durability).

Charge Collection Efficiency Is the ratio between the measured amount of charges
and the deposited amount of charges (which is the result of a given deposited energy
in the detector) in the detector. The charge collection efficiency is a combined effect
of the semiconductor properties and the quality of the readout electronics.

Čerenkov Radiation Čerenkov radiation is emitted whenever charged particles pass
through matter with a velocity v exceeding the velocity of light in the medium,

v > vt = c/n

with
n = refractive index of the medium,
c = velocity of light in vacuum,
vt = threshold velocity.

The charged particles polarise the molecules, which then turn back rapidly to their
ground state, emitting prompt radiation. The emitted light forms a coherent wave-
front if v > vt. Čerenkov light is emitted under a constant Čerenkov angle δ
with the particle trajectory, given by

cos δ = vt/v = c/(vn) = 1/(βn) =
βt

β
.

and for the threshold
βt = vt/c = 1/n,

γt = n/
√

n2 − 1.

The maximum emission angle is given by

cos δmax = 1/n = βt (for v = c).

The major problem of Čerenkov radiation is the modest light output. The energy
loss due to ionisation or excitation is two to three orders of magnitude higher than
the energy lost in radiating Čerenkov light in the energy range where photo mul-
tipliers can be used (a few eV, or about 400 nm wavelength). By its directionality,
Čerenkov light can, however, be separated from the background.

68



Collision Length The mean free path (see Mean Free Path) of a particle before un-
dergoing a nuclear reaction, for a given particle in a given medium. The collision
length (also known as the nuclear collision length) follows from the total nuclear
cross-section σT by

λT = A/(σT NAρ)

(see Mean Free Path for an explanation of variables). The probability density
function for distances between successive collisions is given by

Φ(x)dx =
1

λT
e−x/λT dx.

If one subtracts from the total cross-section the sum of elastic and quasi-elastic
(diffractive) cross-sections, one obtains by the same formula the (nuclear) interaction
length λ1.

Some numerical values for λT and λ1 are given in the following table.

Medium λT [cm] ρλT [g/ cm2] ρλ1 [g/ cm2]

Fe 10.6 83.3 131.9
Al 26.1 70.6 106.4
Cu 9.6 85.6 134.9
Pb 10.2 116.2 193.7
Concrete 27.0 67.4 99.9

The numbers are from reference [51]. (see also Absorption Length and Interac-
tion Length)

Creational Patterns: Factory Even if it does not match any definition of a creational
pattern in [66] directly, I call our approach for creating objects in SLiC simply a
factory. The purpose of a factory is to instantiate objects of a concrete sub class of an
abstract type. The reasoning behind this approach is to keep the rest of the program
unaware of the implementation details of concrete implementations of abstract types
and therefore to reduces implementation dependencies between subsystems of the
program. The core of our factory is a map of string representations of concrete object
classes to a creator object that knows how to instantiate objects of that type. The
factory object then is able to create objects by looking up the string representation
of the object’s class in the map and then forwarding the creation request to the
creator object. The input to the factory object (the string representation of the
object’s type) is taken from a configuration source like a database or an XML file.
The creator map is filled with content at program start-up by predefined initialiser
functions (see initialiser function in section 5.3 on page 46). Every developer who
implements another concrete sub class of an abstract type has to add a line to the
initialiser function, which adds an appropriate creator object to the creator map.

Data-Directed Programming The general strategy of checking the type of a datum
and calling an appropriate procedure is called dispatching on type. This is a powerful
strategy for obtaining modularity in system design. Implementing the dispatch as
switch(){} statements in dedicated procedures (generic interface procedure) has
two significant weaknesses. One weakness is that the generic interface procedures
must know about all the different representations. For instance, suppose we wanted
to incorporate a new representation for complex numbers into a complex-number
system. We would need to identify this new representation with a type, and then
add a clause to each of the generic interface procedures to check for the new type
and apply the appropriate data-access functions for that representation.
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Another weakness of the switch(){} technique is that even though the individual
representations can be designed separately, we must guarantee that no two data-
access functions in the entire system have the same name.

The issue underlying both of these weaknesses is that the technique for implementing
generic interfaces is not additive. The person implementing the generic selector
procedures must modify those procedures each time a new representation is installed,
and the people interfacing the individual representations must modify their code to
avoid name conflicts. In each of these cases, the changes that must be made to the
code are straightforward, but they must be made nonetheless, and this is a source
of inconvenience and error.

What we need is a means for modularising the system design even further. This is
provided by the programming technique known as data-directed programming. To
understand how data-directed programming works, begin with the observation that
whenever we deal with a set of generic operations that are common to a set of
different types we are, in effect, dealing with a two-dimensional table that contains
the possible operations on one axis and the possible types on the other axis. The
entries in the table are the procedures that implement each operation for each type
of argument presented.

Data-directed programming is the technique of designing programs to work with
such a table directly. Previously, we would have implemented the mechanism as a
set of procedures that each perform an explicit dispatch on type. Now we implement
the interface as a single procedure that looks up the combination of the operation
name and argument type in the table to find the correct procedure to apply, and
then applies it to the contents of the argument. If we do this, then to add a new
representation package to the system we need not change any existing procedures;
we need only add new entries to the table (additivity).

If we use virtual methods, the just described technique of data-directed programming
is done in C++ automatically by the compiler. The dispatch is done upon the data
type of the object we call the method on. Therefore the technique in the above
described way is no extraordinary gain. But if we have a closer look to creational
design patterns in reference [66] then we find the same technique again. If, for
example like in SLiC, we create all elements in the system from an xml file we have
again the case of a two dimensional table, where we have on the one axis the string
representation of the data type and on the other axis the create function/method.
The implementation of the creation operation of all objects in our system as a table
driven process ensures the additivity of development done by different groups.

But what we should still keep in mind from the above paragraphs is that switch(){}
statements or extensive if(){}else{} chains always indicate a design weakness of
our code, because they break additivity. Unless we are really sure that these state-
ments just treat a fixed set of possibilities we should always use tables instead.

Detector Control System The Detector Control System is the slow control system of
the whole experiment. With this term one refers to the whole system consisting of
the supervision layer, the process management layer and the field management layer
(see also figure 13 and SCADA System, Slow Control).

DIM concepts overview The basic concept in the DIM approach [75] is the concept of
“service”. Servers provide services to clients. A service is normally a set of data (of
any type or size) and it is recognised by a name - “named services”. The name space
for services is free.
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Services are normally requested by the client only once (at start-up) and they are
subsequently automatically updated by the server either at regular time intervals
or whenever the conditions change (according to the type of service requested by
the client). The just described situation is implemented in the server (like SLiC is)
as a DIM Service. Here the server code calls DIM library code to trigger the data
transmission. On the other hand a client also has the possibility to pass information
to the server by using a DIM Command. In this case the library code calls the server
code to handle the command.

In order to allow for transparency (i.e, a client does not need to know where a server
is running) as well as to allow for easy recovery from crashes and migration of servers,
a name server was introduced. Servers “publish” their services and commands by
registering them with the name server (normally once, at start-up). Clients “sub-
scribe” to services/commands by asking the name server which server provides the
service/command and then contacting the server directly.

Exclusive Measurement of Interactions A measurement of particle interactions in
which all participating particles are identified and measured. Exclusive measure-
ments including all particles of an interaction are usually possible only at relatively
low laboratory energies and for simple interaction types like two- and three-body
final states.

Field-bus A field-bus is simply a network. The only thing that distinguishes a field-bus
from other networks is its use as a network in process control. E.g. in the future it is
planed to use ethernet for process control and therefore it is possible to call ethernet
a field-bus. Common field-buses are CAENET, CANbus or Profibus.

Fragmentation Function The probability density function of a characteristic variable
describing the hadronisation of jets, e.g. longitudinal momenta of hadrons inside a
quark or gluon jet. Typically, the variables used are xP = phad/pjet or z = pL/pjet

with pL being the hadron momentum along the jet axis. The extreme values for
both variables are zero and one. The fragmentation functions measured in e+e−

or p̄p interactions are characterised by a peak at zero and a fast experimental falloff
towards higher values. The measured fragmentation functions show clear differences
between quark and gluon jets: gluon jets have higher particle multiplicities, but their
energy and energy fraction is lower: the fragmentation is softer.

Fragmentation Region The small-angle (c.m.) region of an interaction. Particles in
the fragmentation region have momenta similar to the incident or target particle.
Consequently one speaks about the beam fragmentation region, sometimes defined
over a given range of rapidity (see glossary: Rapidity) like ymax − ∆ < y ≤ ymax

where ymax = log
√

s/m and ∆ ≈ 2, or about the target fragmentation region
(defined similarly for negative y).

Gas Mixtures in Gaseous Detectors Avalanche multiplication is essential in all gase-
ous detectors, in order to produce an electrical signal of sufficient amplitude. In
principle, all gases can be used for generating electron avalanches, if the electric
field near the (sense) wire is strong enough. However, depending on the mode of
operation (see glossary: Operational Modes of Gaseous Detectors) and the intended
use of the chambers, specific requirements towards, e.g. signal proportionality, high
gain, good drift properties, or short recovery times, limit the choice of gases or
gas mixtures. Multiplication occurs in noble gases at lower fields than in gases with
complex molecules; the addition of other components increases the threshold voltage.
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This suggests a noble gas as the main component of a chamber gas. Noble gases
do not, however, allow operation at high enough gas gain without entering into a
permanent discharge operation. The atoms excited during the avalanche process
return to the ground state emitting photons at high enough energies to initiate a
new avalanche in the gas or around the cathode. The latter may also be induced
by the neutralisation of ions that travel to the cathode. This problem is solved
by the addition of a quenching gas which absorbs energetic photons. Most organic
compounds in the hydrocarbon and alcohol families are efficient in absorbing photons
in the relevant energy ranges. The molecules dissipate the excess energy either by
elastic collisions, or by dissociation into simpler radicals. Even a small amount of
a polyatomic quencher added to a noble gas changes completely the operational
characteristics of a chamber, and may allow gains in excess of 106 to be obtained
before discharge.

A typical gas mixtures for proportional counters is P10 (90%Ar + 10%CH4) and for
MWPCs the “magic gas” mixture: 75%Ar + 24.5% isobutane + 0.5% freon.

Halo There is no consensus at present on a precise definition of the beam halo. Generally,
the term halo describes the outer low-density edge of the beam in phase space that
surrounds a dense central core.

Hodoscope The literal translation from the Greek is “pathviewer”.

“High” Voltage Crate To give the reader an idea of what a power supply (“high”
voltage crate) looks like and what its functionality is the CAEN SY527 power supply
will be explained in more detail here.

The SY527 itself is a crate with ten empty slots for power supply boards. Before
you can get voltage output from the crate you have to plug in a high voltage board,
which provides several (in the order of ten) high voltage channels. To connect to
such a channel you use typically a BNC connector (see BNC Components). The
different types of boards have different characteristics concerning for example the
allowed maximum voltage output or the allowed maximum current flow per channel.
On the front of the crate there is a user interface for manual operation. Besides
the manual operation the crate can either be operated via a text terminal or via a
connection to the CAENET field-bus.

A typical field-bus action for the power supply might look like the following. A
command, like “switch on channel one of board two”, arrives at the crate over the
CAENET. The crate processes the command and forwards it to the relevant board
in the crate. The board finally does the wanted operation on the channel.

Inclusive Measurement of Interactions An inclusive measurement of a particle inter-
action is a partial measurement. Only a few produced particles, sometimes only one,
are singled out for identification and measurement, ignoring the details of all other
interaction products. Inclusive measurements dominate at high energies, where the
separation of tracks and particle identification become difficult, even when using the
most advanced detectors. Triggers in complex interactions are necessarily inclusive:
the signature of interesting physics will be defined in terms of few phenomena, like
high- leptons or jets, disregarding the rest of the interaction.

Interaction Length The mean free path (see Mean Free Path) of a particle before
undergoing an interaction that is neither elastic nor quasi-elastic (diffractive), in a
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given medium (designated as λ1 in the glossary entry for Collision Length). The rel-
evant cross-section is σtot−σel−σdiff . (see also Absorption Length and Collision
Length).

Leakage Current The current of a reverse biased diode is called leakage current or
reverse current. While the reverse current of an ideal diode consists only of a diffusion
current in reality impurities, contaminations and process induced defects in the semi-
conductor contribute to the current.

Mean Free Path The mean free path of a particle in a medium is a measure of its
probability of undergoing interactions of a given kind. It is related to the cross-
section corresponding to this type of interaction by the formula

σλ = Ω/N = A/(NAρ),

with

σ = cross-section [ cm2],
λ = mean free path [ cm],
Ω = volume of interaction,
N = number of target particles in Ω,
A = atomic weight [g/mole],

NA = Avogadro constant (6.022 · 1023/mole),
ρ = density [g/ cm3].

The mean free path is the average of a distribution of distances following an expo-
nential law:

P (x)dx =
1

λ
e−x/λdx.

Tables often give the quantity λρ = A/(σNA) (in g/ cm2) instead of λ (in cm). For
numbers see Collision Length.

Operational Modes of Gaseous Detectors The charge collected by the anode of a
chamber depends on the intensity of the electric field applied to the chamber. At
some low voltage, the recombination of electrons and ions is overcome, but no gas
multiplication occurs; a detector in this mode is insensitive to the voltage, and is
called an ionisation chamber; the output signal is weak, and corresponds to the
number of primary electrons.

As the voltage is increased, which happens in the fields of wire chambers, the pri-
mary ionisation electrons cause electron avalanches to form: the accelerating electric
field is high enough to impart to the electrons, generated by the primary ionisation
in the gas, an energy higher than the first ionisation potential of the gas. These
electrons then produce ion-electron pairs while continuing along their path; the sec-
ondary electrons may, in turn, form further pairs, and the phenomenon is called gas
multiplication. Eventually, the freed electrons drift towards the anode and produce
an analogue signal that can be used for position and energy loss measurement. Most
wire chambers work in this proportional mode, therefore the signals recorded by
the detector are much higher and still proportional to the energy loss dE/dx of the
traversing particle. In most practical chambers, the electric field close to the thin
(20 to 30µm) anode wire has a high gradient, so that a multiplication factor of 105
to 106 is reached, with multiplication occurring mostly very close to the wire, where
the field is strongest.

Strict proportionality assumes that space charge (due to the longer-lived positive
ions) and induced effects remain negligible, compared to the external field. At higher
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electric fields, or in a high flux of charged particles, the space charge (see Space
Charge) effects alter the effective electric field, the chamber works in the mode of
limited proportionality: the signal is no longer strictly proportional to the energy
loss of the particle; the relation between collected charge and dE/dx can still be put
to use, though.

Further increase of the electric field eventually leads to electric breakdown of the
gas. This takes place when the space charge inside the avalanche is strong enough
to shield the external field. A recombination of ions then occurs, resulting in photon
emission and in secondary ionisation with new avalanches beyond the initial one.
If the process propagates (backwards, from the avalanche tail) until an ion column
links anode and cathode, a spark discharge will eventually occur, and a chamber or
counter is said to operate in the Geiger-Müller mode.

In the limited Geiger mode, this discharge is not allowed to happen, which can be
achieved by adding quenching agents to the gas; output pulses at the anode are
much higher in this mode than in the proportional mode. The process of spark
discharge can also be stopped by manipulating the electric field: if only short (a few
ns) pulses of high voltage are applied, short discharges develop from the ion trail of
a crossing particle (streamers), and a track image can be obtained by photography
(streamer chamber).

A similar effect as for the limited Geiger mode can be obtained using thick (50 to
100µm, as opposed to the usual 20 to 30µm) anode wires without using quenchers.
This mode of operation, attractive because of its high mechanical reliability due to
the thick wires, is called the limited streamer mode.

Programming Towards Interfaces It is important to understand the difference be-
tween an object’s class and its type. An object’s class defines how the object is
implemented. The class defines the object’s internal state and the implementation
of its operations. In contrast, an object’s type only refers to its interface – the set
of requests to which it can respond. An object can have many types, and objects of
different classes can have the same type.

C++ uses classes to specify both and object’s type and its implementation. It’s
important to understand the difference between class inheritance and interface in-
heritance (or subtyping). Class inheritance defines an object’s implementation in
terms of another object’s implementation. It’s a mechanism for code and represen-
tation sharing. Interface inheritance describes when an object can be used in place
of another.

The idea now is to program to an interface, not to an implementation. All subclasses
can then respond to the requests in the interface of this abstract class, making them
all subtypes of the abstract class. There are two benefits to manipulating objects
solely in terms of the interface defined by abstract classes:

• Clients remain unaware of the specific types of objects they use, as long as the
objects adhere to the interface that clients expect.

• Clients remain unaware of the classes that implement these objects. Clients
only know about the abstract class(es) defining the interface.

This so greatly reduces implementation dependencies between subsystems that it
leads to the following principle of reusable object-oriented design:

Program to an interface, not an implementation.
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Don not declare variables to be instances of particular concrete classes. Instead,
commit only on an interface defined by an abstract class. You have to instantiate
classes somewhere in your system, of course, but therefore use the creational patterns
described in reference [66].

Rapidity The rapidity is a variable frequently used to describe the behaviour of particles
in inclusively measured reactions. It is defined by

y =
1

2
log

E + pL

E − pL

which corresponds to

tanh(y) = pL/E

y is the rapidity, pL is the longitudinal momentum along the direction of the incident
particle, E is the energy, both defined for a given particle. The accessible range
of rapidities for a given interaction is determined by the available centre-of-mass
energy and all participating particles’ rest masses. One usually gives the limit for
the incident particle, elastically scattered at zero angle:

|ymax| = log[(E + p)/m] = log(γ + γβ)

with all variables referring to the through-going particle given in the desired frame
of reference (e.g. in the centre-of-mass).

Note that ∂y/∂pL = 1/E. A Lorentz boost along the direction of the incident
particle adds a constant, log(γ+γβ), to the rapidity. Rapidity differences, therefore,
are invariant to a Lorentz boost.

Radiation Damage and Radiation Hardness The main macroscopic effects of chan-
ges in the detector performance consist of a flux proportional increase in the leakage
current, a dramatic change of the depletion voltage (needed to maintain the full
sensitivity of the whole detector thickness) and the damage-related decrease of the
charge collection efficiency (see Charge Collection Efficiency).

The bulk damage produced in silicon particle detectors by hadrons or higher ener-
getic leptons is caused primarily by displacing a Primary Knock on Atom (PKA) out
of its lattice site resulting in a silicon interstitial and a left over vacancy (Frenkel

defect). Both can migrate through the silicon mono-crystalline lattice and may fi-
nally form complex point defects together with impurity atoms being resident in the
silicon. However, the original PKA can only be displaced if its energy is higher than
the binding energy of ≈ 25 eV. The energy of a recoil silicon PKA or any other
residual atom resulting from a nuclear reaction can of course be much higher. The
further energy loss of these recoils consists of energy loss in ionisation and further
displacements of other bulk atoms. At the end of any heavy recoil range the nonion-
ising interactions are prevailing and a dense agglomeration of defects is formed. Only
ionisation losses will not lead to any relevant changes in the silicon lattice. Hence the
bulk damage depends exclusively on the Non Ionising Energy Loss (NIEL) and it has
widely been verified that it is strictly proportional to this value (NIEL scaling hypoth-
esis). It was found that there is a temperature and time dependence of the radiation
damage effects like with the variation of the effective doping concentration Neff . At
room temperature an effect called annealing (see Annealing) takes place, where we
divide between beneficial annealing, which “heals” partly the damage done by the
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Figure 23: An example for the annealing behaviour of the radiation-induced change in the
effective doping concentration ∆Neff [61].

radiation, and reverse annealing, which increases the bad effects even after irradiat-
ing the material. The time dependence of the irradiation effect in Neff is not only
subject to beneficial annealing but also to the adverse effect, reverse annealing. An
example of the whole complex behaviour is given in figure 23. Reverse annealing
had only been observed after hadron irradiation. While in gamma-induced damage
predominantly only point defects are being formed, hadronic interactions lead to
cluster formation at the end of each high energetic PKA range. An obvious attempt
for explaining the reverse annealing behaviour is therefore the assumption that these
clusters will dissolve on a large time scale and the evading interstitials and/or vacan-
cies would then migrate through the silicon lattice and form point defects responsible
for the observed increase in the space charge (see Space Charge). But up to now
no direct proof of such a correlation has been found.

Some possible improvements for radiation tolerance can be found in modifications
of

• Process technology. The use of a quite elaborate guard ring structure had been
shown to result in quite appreciable improvements. The guard ring structure
shields the sensitive area from surface and edge leakage currents, but also pro-
vides a controlled, gradual drop of the potential from the detector rim towards
the potential of the undepleted substrate. With this approach voltages of sev-
eral hundred volts can safely be applied to achieve full depletion even in a
radiation damaged detector.

• Operational conditions. Cooling of the detectors is essential to keep the reverse
current at a tolerable level. For the ATLAS-SCT detectors an operating tem-
perature of −7◦C is foreseen. This cooling has the additional beneficial effect,
as the reverse annealing remains largely frozen. It was found that by cooling a
detector even further to cryogenic temperature (e.g. 77K) the radiation effects
are frozen out. This effect has most recently been named Lazarus effect [58].
With decreasing temperature more and more defects are not able to re-emit the
captured carriers back into the bands. The carriers are frozen in the defects
and compensate the shallow doping. The free carrier concentration decreases
and, if a voltage is applied, the observed absolute space charge density (∝ de-
pletion voltage) is smaller than at higher temperatures. Cooled to a cryogenic
temperature the concentration of electron and hole traps is always high enough
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to capture all free carriers. Consequently there is also no undepleted bulk and
applying a voltage results in an electric field reaching through the whole de-
tector. Thus the charge collection efficiency is increased compared to the high
temperature operation of a not fully depleted detector.

• Choice of starting material. Several possibilities for increasing the radiation
tolerance of silicon detectors have been proposed by using a specific type as
starting material. These include the proper choice of resistivity (doping con-
centration), a modification of the carbon and oxygen concentration as being the
main responsible impurities in damage kinetics or even to enrich silicon with
Sn, which has been shown to act as vacancy trap. From all the experimental
evidence [59] obtained so far as well as by theoretical considerations the oxygen
content seems to be a key factor for an improved radiation hardness.

Besides improving the properties of silicon there is also research activity in finding
other semi-conductor materials with initially better radiation hardness. The pos-
sible replacement candidates under investigation are germanium, gallium arsenide
and diamond, where diamond has the most potential in replacing silicon. With a
band gap of 5.5 eV diamond is an insulator with only a very small carrier concentra-
tion. Consequently diamond has not to be depleted and there is no need for a diode
structure to build a detector. Furthermore it shows an excellent radiation hardness.
However, the high energy needed to produce an e-h pair (13 eV) and the polycrys-
talline structure results in a relatively small signal compared to silicon. Furthermore
the inhomogeneity of the material leads to non-uniformity of charge collection effi-
ciency over the detector area which might limit the achievable resolution of position
sensitive devices.

SCADA System SCADA stands for Supervisory Control And Data Acquisition. As the
name indicates, it is not a full control system, but rather focuses on the supervisory
level. As such, it is a pure software package that is positioned on top of hardware
to which it is interfaced via PLCs for example.

Semi-Inclusive Measurement of Interactions A measurement of the scattered beam
particle in coincidence with a secondary particle (see also Inclusive Measurement
of Interactions and Exclusive Measurement of Interactions).

Slow Control The term refers to all the measurements and control actions that have to
take place on a time scale of seconds to tens of seconds. If there exists the term
Slow Control one also expects a “Fast Control”. The fast control is the actual data
taking of the experiment which happens on a time scale ofµs.

Space Charge In a proportional or drift chamber, positive ions are released during the
amplification process. While the negative charges (electrons) are collected on the
anode wire, the ions drift slowly towards the cathode. In normal operational con-
ditions, the charge density in the electron-ion avalanche is small compared to the
charge density on the wire, and only small signal distortions occur. For chambers ex-
posed to high-intensity beams, they may accumulate, and then produce space charge
effects, in particular distortions of the effective electric field, causing inefficiencies
of the chamber and thus influencing acceptance and calibration parameters of the
chamber (e.g. causing a non-linear relation between the collected charge and dE/dx)

Spill The SPS does not produce a continuous beam, but packets. One such packet is
called spill.

77



Static Initialiser Object A static initialiser object is a class declaration and an object
instantiation of that type inside an anonymous namespace (to avoid name clashes
with other code pieces). The sole purpose of this object is its constructor call at
program start up (before the main(){} function is called). Inside this constructor
it would be possible to add creator objects for certain implementations of interfaces
into the creator list of the factory (see Creational Patterns: Factory) objects
one uses.

VME VMEbus is a computer architecture. The term VME stands for VERSAmodule
Eurocard and was first coined in 1980 by the group of manufacturers who defined
it. The term bus is a generic term describing a computer data path, hence the name
VMEbus.
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