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Current PC processors are equipped with vector processing units and have other advanced features that can be
used to accelerate lattice QCD programs. Clusters of PCs with a high-bandwidth network thus become powerful
and cost-effective machines for numerical simulations.

1. INTRODUCTION

Parallel computers built from PC components
are being increasingly used in many branches of
science. The obvious advantages of such machines
are that the hardware is relatively cheap and that
the software environment (linux operating sys-
tem, the gcc compiler suite and an implementa-
tion of the MPI communication library) complies
with the established standards.

Some doubts have however been raised that PC
clusters are good machines for numerical simu-
lations of lattice QCD. According to the bench-
mark results presented at last year’s lattice con-
ference [1], PC processors in fact appear to per-
form rather poorly in these calculations, parti-
cularly so when the lattices get reasonably big.
Moreover, it remains unclear how well such clus-
ters scale to large numbers of processors, where
heat dissipation, component reliability and the
network performance become limiting factors.

The main message of this talk is that lattice
QCD programs can be accelerated by a large fac-
tor if use is made of the vector arithmetic unit and
other enhancements of current PC processors. As
a consequence (and also for various other reasons)
the prospects for doing numerical simulations on
PC clusters are now much brighter than they were
only a year ago.
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2. PC PROCESSOR PERFORMANCE

2.1. Multimedia extensions
The vector processing capabilites mentioned

above have been added to the recent generations
of PC processors to speed up multimedia applica-
tions. Depending on the brand and type of pro-
cessor, the associated instruction sets go under
the name of MMX, 3DNow!, SSE and SSE2. In most
cases these instructions operate on short vectors
of data in parallel and require one or two machine
cycles to complete.

Evidently the number of arithmetic operations
per cycle that can be performed also depends on
the rate at which the data can be moved between
the memory and the arithmetic units. To reduce
the associated latencies, current processors sup-
port memory-to-cache prefetch instructions and
streaming memory access modes, and they in-
clude a second-level cache memory that is clocked
at the processor frequency.

2.2. Benchmark results
Most of the computer time in numerical sim-

ulations of lattice QCD is spent on the solution
of the Dirac equation in the presence of a given
background gauge field. There are different ways
to solve the equation, but in all cases the pro-
gram that applies the lattice Dirac operator to
a prescribed fermion field is the one that domi-
nates the execution time. The rest of the time is
used for linear combinations and scalar products
of Dirac fields.

In table 1 some benchmark results for these ba-
sic programs are reported, for the case of a PC
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Table 1
Benchmark results obtained with a 1.4 GHz Pentium 4 processor

(Dw +m0)ψ ψ1 + rψ2 ‖ψ‖2 CG

32-bit 0.93 [1503] 0.13 [363] 0.046 [1042] 2.34 [1292]

64-bit 1.71 [814] 0.26 [181] 0.097 [497] 4.40 [687]

(Execution times in µs per lattice point [speed in Mflop/s])

with 1.4 GHz Intel Pentium 4 processor and 256
MB of PC800 RDRAM. The two lines in this ta-
ble contain the processor times required for the
specified task using 32-bit or 64-bit arithmetic. In
the second column, for example, the times for the
application of the Wilson–Dirac operatorDw+m0

to a given field ψ are listed.
All figures quoted in the table are for a 164 lat-

tice, but on larger lattices they would be prac-
tically the same, because the memory latencies
in these programs are effectively masked by the
use of memory-to-cache prefetch instructions and
a cache-optimized data layout. To accelerate the
floating-point arithmetic, extensive use has been
made of the SSE2 vector instructions that are sup-
ported on the Pentium 4 processor.

Compared with the program for the Dirac op-
erator, the linear algebra routines (columns 3 and
4 in table 1) appear to be rather slow. This can
be explained by noting that these programs spend
most of the time to move data from the memory
to the processing units. In a typical QCD code
the linear algebra programs fortunately consume
only a fraction of the total time so that their in-
fluence on the overall performance of the code is
limited. This is illustrated by the figures for a
standard conjugate gradient iteration quoted in
the last column of table 1.

The bottom line then is that, with the current
generation of PC processors and if use is made of
their advanced features, it is possible to achieve
sustained computational speeds that are about 10
times higher than those quoted last year [1].

In the remainder of this section, the vector unit
of the Pentium 4 processor and its usage are dis-
cussed in some detail. Another issue that will be
addressed is the cache management. To a large
extent the impressive performance of current PC

processors is in fact due to improvements of the
memory system.

2.3. Streaming SIMD extension (SSE)
The vector unit on the recent Intel processors

(Pentium III, Pentium 4, Itanium) has 8 regis-
ters that are denoted by xmm0,...,xmm7. They
are 128 bits wide and can accommodate 2 double-
precision or 4 single-precision floating-point num-
bers. The associated machine instructions oper-
ate on these numbers in parallel, i.e. the vector
unit is a Single Instruction Multiple Data (SIMD)
machine (see fig. 1).

+ + + +

xmm0 1.0 -0.3 0.7 2.1

7.5 0.1 -1.3 0.8

8.5 -0.2 -0.6 2.9

xmm1

xmm1

Figure 1. The SSE instruction addps xmm0,xmm1
adds the single-precision numbers in register xmm0
to those in xmm1.

All basic arithmetic operations (parallel addi-
tion, subtraction, multiplication and division) are
supported and there are further instructions for
data moving and shuffling. On the Pentium III
only single-precision numbers can be manipulated
in this way, but the Pentium 4 supports an ex-
tended instruction set, denoted by SSE2, that al-
lows parallel double-precision and integer arith-
metic to be performed in the SSE registers. In all
cases the IEEE-754 standard is respected, which
guarantees proper rounding and exception hand-
ling.
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2.4. Programming example
When an ISO C compliant program is compiled

with the gcc compiler, the generated object code
will contain general purpose and x87 FPU instruc-
tions only. The SSE unit is thus not used. There
is, however, a simple way to access the SSE reg-
isters from a C program and to operate on them.
Let us consider the loop

for (i=0;i<100;i++)
a[i]=b[i]+c[i];

where a, b, c are assumed to be arrays of single-
precision floating-point numbers. Since there are
no data dependences in this loop, we may use
the addps instruction described above to do four
additions at once. The code then becomes

for (i=0;i<100;i+=4)
asm volatile (
"movaps %1, %%xmm0 \n\t"
"movaps %2, %%xmm1 \n\t"
"addps %%xmm0, %%xmm1 \n\t"
"movaps %%xmm1, %0"
:
"=m" (a[i])
:
"m" (b[i]),
"m" (c[i]));

The gcc compiler understands these lines, and if
they are substituted in any C program, the exe-
cutable will perform all 100 additions correctly.

The syntax of the inline assembly statement
asm volatile (..) is documented in the

manual pages of the gcc compiler. It has three
arguments in the present case, a[i], b[i] and
c[i], which are labelled from 0 to 2. The first line
"movaps ..." moves four consecutive floating-
point numbers from the address of argument 1 to
the SSE register xmm0. The register then contains
the array elements b[i],...,b[i+3]. Similarly
the second line moves c[i],...,c[i+3] to xmm1.
The parallel addition is then performed and the
result is finally moved from xmm1 to the array ele-
ments a[i],...,a[i+3].

This example is rather trivial, but more com-
plicated code sequences can be rewritten in essen-

tially the same way, with perhaps several inline
assembly statements in a row. Apart from those
mentioned above, many more vector instructions
are supported by the Pentium 4 processor that
make it possible to perform almost any calcula-
tion in the SSE registers. The complete list of
SSE2 instructions, together with detailed expla-
nations of what precisely they do, can be down-
loaded from the Intel web pages [2].

In lattice QCD the SU(3) matrix times vec-
tor multiplication is one of the basic operations
that is worth being coded for the SSE unit. On
the Pentium 4 processor an average throughput of
1.8 single-precision floating-point operations per
cycle can been achieved in this case. The perfor-
mance of the double-precision code is equally im-
pressive and reaches 0.9 operations per cycle.

2.5. Cache management
A common limitation of current computer ar-

chitectures is that the memory system is often
unable to deliver the data to the processor at a
sufficiently high rate to keep the arithmetic units
busy. The cache memory (which is significantly
faster than the main memory) serves to enhance
the data availability in those cases where the same
data are used more than once.

In the program that applies the Wilson–Dirac
operator to a given fermion field, for example,
each spinor of the input field is processed 9 times
when the program runs through the lattice. So if
the spinor components that are needed at the cur-
rent lattice point are already in the cache memory
(because they have previously been used), it takes
much less time to forward them to the arithmetic
units than would otherwise be required.

Cache memories are expensive and usually too
small to contain a complete lattice Dirac field.
The spinors thus tend to be overwritten before
they are reused. It is possible, however, to in-
crease the cache-hit probability by dividing the
lattice into small blocks that are visited one af-
ter another. This technique (which is referred to
as strip-mining) is easy to implement and often
results in significant speed-up factors.

In many cases the cache-hit rate can also be
enhanced by explicitly moving the data to the
cache memory slightly before they are going to be
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Table 2
Cache line sizes [byte] and memory-to-processor bandwidths [Gbyte/s]

Cache Theoretical Measured
Processor Memory type line size bandwidth bandwidth

Pentium III (0.6 GHz) SDRAM PC133 32 1.1 0.8

Athlon (1.2 GHz) DDRAM PC266 64 2.1 1.3

Pentium 4 (1.4 GHz) RDRAM PC800 128 3.2 2.1

used. This can be achieved by inserting prefetch
instructions such as

asm volatile (
"prefetcht0 %0" :: "m" (*(address)));

at the appropriate places in the program. The
important point to note is that these are executed
“out of order”, i.e. while the arithmetic unit is
busy on other data. In ideal cases the memory
latencies can thus be masked almost completely.

Data are moved from the main memory to the
cache memory in blocks that are referred to as
cache lines. The cache line sizes and transfer rates
for some of the recent PC processors and mem-
ory types are listed in table 2. When a prefetch
instruction is issued, a cache line containing the
byte at the specified address is moved to the cache
memory. Dirac spinors occupy one or more cache
lines, depending on the line size and the data
alignment, and the programmer needs to take this
into account to make sure that all components are
prefetched.

2.6. Program portability
Inline assembly and the SSE2 instructions are

system-specific and thus not as portable as an ISO
C compliant code. It is conceivable that the C
language will be extended to include short vector
data types once the vector units become an in-
dustry standard, and it would then be left to the
compiler to produce assembler code that makes
use of any advanced features of the processor.

For the time being, program portability can
be preserved by first writing an ISO C program
for the specified task. Where this appears worth
while, inline assembly code may then be added
that is conditionally compiled, i.e. only when the

macro SSE2 for example is defined. In this way it
can be decided at compilation time whether some
parts of the ISO C program are to be replaced by
system-specific code or not.

2.7. FermiQCD
Programs that make use of the SSE unit along

the lines described above are now part of the Fer-
miQCD package [3]. Many macros for SU(3) vec-
tor and matrix operations in the SSE registers
can be found there, and the programs may also
serve to illustrate the use of prefetch instructions.
The package is freely accessible and can be down-
loaded from a webpage at Fermilab [4].

3. NETWORK ISSUES

3.1. Commercial PC clusters
In the course of the last two years or so, fully

configured rack-mounted clusters of PCs have be-
come a commodity. These machines usually have
a switched network where any node can exchange
data with any other node at full speed (see fig. 2).

As will become clear below, the bandwidth of
the network is a critical parameter for clusters
that are intended for numerical simulations of lat-
tice QCD. The currently preferred network for
such machines is MyrinetTM [5], which provides
a one-way bandwidth per channel of up to 250
Mbyte/s. Switches for 8 to 128 nodes are avail-
able, and these can, in principle, be connected to
build clusters of any size.

3.2. How much bandwidth is needed?
Instead of developing a general formula for the

required bandwidth, it may be more instructive
to consider a realistic study case. So let us sup-
pose that we have a machine with 32 nodes, each
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Figure 2. The nodes of a commercial PC cluster
are essentially complete PCs with one or two pro-
cessors. They are connected to a switch that for-
wards data packages between them as requested
by the user programs.

equipped with 512 MB of memory and a proces-
sor that delivers a sustained computational power
of 1 Gflop/s in 32-bit arithmetic. As for the net-
work, we assume that it provides a simultaneous
bandwidth of 200 Mbyte/s per channel (the as-
sociated latencies are unimportant in the present
context since the data can be transferred in large
packages).

Such a machine is sufficiently big for quenched
QCD simulations with Wilson fermions on a 96×
483 lattice. We may, for example, distribute the
lattice to the nodes in such a way that each node
is associated with a sublattice of size 12×12×482

(see fig. 3). The question is then how much time
is required by the communication overhead in the
program that applies the Wilson–Dirac operator
to a given fermion field.

When the program runs through the lattice, it
reads the components of the input fermion field
on the points of the local lattice and on all its
boundary points. The Dirac spinors residing on
the latter are stored in the memory of the log-
ical neighbours of the current node and need to
be communicated through the network before the
calculation starts.

If 32-bit arithmetic is used, each Dirac spinor
occupies 96 bytes of storage, and the total amount
of data that must be moved to every node is thus
about 11 MB. On our machine the time required
for this is

tcom = 2× 96 byte
200 Mbyte/s

× 1
3V = 0.32µs× V,

Figure 3. Cross-section of the local 12× 12× 482

lattice in the (x0, x1) plane (full circles). The Di-
rac spinors on the 4× 12 × 482 boundary points
(open circles) need to be fetched from the neigh-
bouring nodes.

where V denotes the volume of the local lattice.
Once all the data are available, the application of
the Wilson–Dirac operator takes about 1.4µs per
lattice point, and the communication overhead is
thus estimated to be 19% of the total time.

The result of this theoretical exercise shows
that current network bandwidths and processing
speeds are not out of balance. It should be noted,
however, that the ratio of the boundary to the
bulk volume of the local lattice, and hence the
communication time, tends to increase propor-
tionally to the number of nodes that are used for
a given lattice. In many cases it may, therefore,
be more efficient to simulate several independent
lattices in parallel.

3.3. Possible improvements
PC processors are rapidly becoming faster, and

it is clear that the network performance will have
to be improved if the communication overhead is
to remain small. Increasing the one-way band-
width or having simultaneous bi-directional data
transfers is certainly an option. With the current
specification of the PCI bus (64 bit @ 66 MHz),
transfer rates of up to 500 Mbyte/s can perhaps
be reached.

An important reduction of the communication
overhead might also be achieved if computation
and communication can be made to overlap in
time. The obvious difficulty here is that the PCI
bus and the processor may be unable to access the
memory concurrently with sufficient bandwidth,
particularly so if the program is highly optimized.
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Table 3
PC clusters dedicated for lattice QCD simulations (incomplete)

Institution # nodes Processor(s) Status

Fermilab 80 dual Pentium III (0.7 GHz) running

TC Dublin 32 dual Pentium III (1.0 GHz) running

MPI Munich 8 dual Pentium III (1.0 GHz) installation

DESY (Zeuthen) 16 dual Pentium 4 (1.7 GHz) ordered

DESY (Hamburg) 32 Pentium 4 (1.7 GHz) approved

Fermilab ∼ 150 dual Pentium 4 approved

Jlab & MIT 128 dual Pentium 4 approved

4. PC CLUSTERS FOR LATTICE QCD

4.1. Recent installations
This year several dedicated machines have been

installed or will shortly be delivered (see table 3).
All these machines are commercial products that
are equipped with MyrinetTM and come with the
standard software environment.

The clusters listed in the last two lines of table 3
are being funded through the Scientific Discovery
through Advanced Computing (SciDAC) initiative
of the US government [6]. This programme is
intended to help closing the gap between nomi-
nal and actual performance of massively parallel
computers and supports “research and develop-
ment on scientific modeling codes, as well as on
the mathematical and computing systems soft-
ware that underlie these codes”.

4.2. Do PC clusters scale to Tflop/s?
Clusters with (say) 128 nodes currently reach

sustained computational speeds of about 100–200
Gflop/s in lattice QCD programs. A small farm
of such machines thus delivers an integrated com-
putational power in the Tflop/s range. Having a
farm of clusters is in fact not such an odd idea,
since the total memory of each cluster will in
many cases be sufficiently big to accommodate
the lattice fields. Statistics can then be accumu-
lated by running the same program (with differ-
ent sequences of random numbers) on several ma-
chines.

Whether much larger numbers of processors
can be integrated in a single cluster in a useful
way is not obvious, however, and detailed studies
will be needed before a solid answer to this ques-
tion can be given. It seems likely, though, that
the network switch will turn out to be a bottle-
neck when the cluster exceeds a certain critical
size.

A development project, recently initiated at
the University of Rome II and now supported
by INFN, tries to overcome this difficulty by ar-
ranging the nodes in a logical n× n matrix. The
nodes in each row and in each column are then
connected to one another through 2n indepen-
dent switches. This network geometry naturally
maps to the block divisions of the physical lattice
that are usually adopted. The routing of the data
packages is thus simplified, and switching laten-
cies are expected to grow only relatively slowly
with the number of nodes.

4.3. Uses of small machines
When discussing computer performance and

the need for ever more powerful machines, an im-
portant fact is sometimes forgotten that Giorgio
Parisi pointedly described by [7]:

“In general a brute force approach to numerical
simulations is not paying and a lot of ingenuity
is needed in order to obtain the wanted results.”

Innovation in computational strategies and algo-
rithms is not only essential for progress in lattice
QCD, but it also represents an intellectual chal-
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Figure 4. Polyakov loop correlation function at
β = 5.7 and distance r = 6a ' 1.0 fm, on a lattice
of spatial size L = 12a and variable time extent
T . Statistical errors are not visible on this scale.

lenge and is certainly one of the driving forces
in this field. PC clusters are well suited to try
out new physical and algorithmic ideas, because
they are relatively easy to use and are in many
cases sufficiently powerful for significant tests to
be performed in a reasonable time. Even small
machines can be very useful for this kind of work
on which the large-scale projects eventually de-
pend.

For illustration, let us consider the Polyakov
loop two-point correlation function in the SU(3)
gauge theory. When the time extent T of the lat-
tice is larger than (say) 1 fm, the theory is in the
confinement phase and the correlation function at
distance r decays exponentially, roughly like

〈P (r)∗P (0)〉 ∝ e−σA, A = rT,

where σ ' 1 GeV/fm denotes the string tension.
Now if the established simulation algorithms are
used, the correlation function is obtained with
statistical errors that tend to be essentially in-
dependent of A. As a consequence the amount of
computer time needed for a specified relative pre-

cision is exponentially rising and areas A ≥ 1 fm2

or so are practically unreachable.
It is clear that significant progress in this field

can only be made if better simulation algorithms
are found that lead to an exponential reduction
of the statistical errors. The recently proposed
multilevel algorithm [8] is of this type and works
exceedingly well, at least in the case of the Wilson
plaquette action.

An impressive demonstration of this is given by
the data plotted in fig. 4. At the chosen coupling,
the lattice spacing a is about 0.17 fm, and the
values of A covered in the plot thus reach nearly
3.5 fm2. In spite of the fact that the signal decays
over many orders of magnitude in this range, the
equivalent of no more than about 1000 hours of
processor time on a PC with 1.4 GHz Pentium 4
processor was required to keep the statistical er-
rors below 2% at all values of T .

5. CONCLUSIONS

At this point it is quite clear that PC clusters
are going to be widely used for lattice QCD simu-
lations. While smaller machines are ideal for de-
velopment work and physics projects at an early
stage, large clusters or farms of clusters are cer-
tainly an option for big installations, where the
aim is to maximize the total computational power
for a given budget.

The cost per (32-bit sustained) Mflop/s of a
commercial PC cluster with MyrinetTM network
is currently $3–4. In terms of cost-effectiveness,
these machines are hence very competitive. How
well PC clusters scale to large numbers of nodes,
or whether it will be more useful to have a farm of
smaller machines, remains to be seen. Further ex-
perience with both the hardware and the software
will be needed, before it can be decided which is
the best way to go.

Computers become more powerful at a breath-
taking rate, but it seems unlikely that the hard
problems in lattice QCD will gradually go away as
a result of this alone. Improved numerical meth-
ods (such as those reviewed by Mike Peardon [9])
are in fact often crucial for the success of a nu-
merical simulation project.
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To explore a new approach can be fairly pain-
ful, however, if there is no reasonably fast com-
puter around that can be freely used. PC clusters
provide a good solution to this problem, and the
fact that even small groups of lattice physicists
may be able to afford them opens the way for
more people to contribute to the development of
lattice QCD.

I am indebted to Roberto Petronzio and Jarda
Pech for many informative discussions on current
network technologies. Thanks also go to Filippo
Palombi for communicating his benchmark re-
sults for the Athlon processors and to Robert Ed-
wards, Karl Jansen, Paul Mackenzie, Mike Pear-
don, Massimo Di Pierro and Peter Wegner for
helpful correspondence.
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