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Currently, the final LEP2 data analysis is in its beginning stages, and the desired

total precision tags on the important LEP2 physics processes e+e− → f f̄ , f 6= e, are

already called out in the LEP2 MC Workshop in Ref. [1]. It has been demonstrated in

Ref. [1] that the Monte Carlo (MC) event generator program KK [2], hereafter referred

to as KK MC, and the semi-analytical program ZFITTER [3] realize these precisions

(.2 − 1%) in most channels for inclusive cross sections and that for the fully differential

distributions, the KK MC again meets most of the requirements for the LEP2 final data

analysis. In this paper, we present exact results on the O(α) correction to the single

hard bremsstrahlung processes e+e− → f f̄ + γ, f 6= e. This correction is an important

contribution to the differential distributions as they are realized in the KK MC which

allows the very demanding precisions just cited to be achieved.

Specifically, the exact results for the O(α) corrections to s-channel annihilation hard

bremsstrahlung processes under study here were also considered in Refs. [4, 5]. We differ

from these results as follows. Concerning Ref. [4], the entire result was given only for

the case in which the photon angle variables are all integrated out; here, we give the

fully differential results. With regard to Ref. [5], the completely differential results were

given as well but the mass corrections were omitted. Thus, by comparing with these two

calculations as we do here, we get a measure of the size of the mass corrections as well as

cross checks on both our differential and our integrated results.

Our work is organized as follows. In Section 1, we set our notational conventions.

In Section 2, we present our exact amplitudes for the O(α) virtual corrections to initial-

state and final-state real radiation. In Section 3, we derive the differential cross-sections

corresponding to these amplitudes in a form useful for comparisons. In Section 4, we

compare these results with those in Refs. [4, 5] while illustrating our results as they are

used in the KK MC in Ref. [2]. Section 5 contains our summary remarks. The Appendix

contains technical details about the scalar integrals.

1 Preliminaries

In this section we set our notational conventions. We will use the conventions of Refs. [2,

6, 7] for our spinors. These conventions are based on the Kleiss-Stirling [8] Weyl spinors

augmented as described in Refs. [2,6,7] with the rules for controlling their complex phases,

or equivalently, the three axes of the fermion rest frame in which the spin of that fermion is

quantized. We sometimes refer to this fermion rest frame as the global positioning of spin

(GPS) frame and to the rule for determining it as the GPS rule. The resulting conventions

for the fermion spinors are then called the GPS spinor conventions. See Refs. [2, 6, 7] for
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more details. Let us now turn to the kinematics.
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Figure 1: Representative initial state radiation graphs for e+e− → ff with one virtual and
one real photon, for f 6= e.

The process under discussion here is shown in Fig. 1, the one-loop virtual correction to

the hard bremsstrahlung process e−e+ → f f̄ +γ, for f 6= e. We will treat both the initial

state radiation (ISR) case and the final state radiation (FSR) case. We denote the four

momenta and helicity of the e−, e+, f , and f̄ as pj and λj, j = 1, ..., 4, respectively. We

denote the charge of f by Qf in units of the positron charge e. The rest mass of fermion

f is denoted by mf . The photon momentum and helicity will be denoted by k and σ.

With our GPS conventions for spinors, we induce the following polarization vectors for

photons:

(εµ
σ(β))∗ =

ūσ(k)γµuσ(β)√
2 ū−σ(k)uσ(β)

, (εµ
σ(ζ))∗ =

ūσ(k)γµuσ(ζ)√
2 ū−σ(k)uσ(ζ)

, (1.1)

where the auxiliary 4-vector β is exploited here to simplify our expressions as needed.

It satisfies β2 = 0. The second choice with uσ(ζ), as defined in Ref. [2], is already an

example of this exploitation – it often leads to simplifications in the resulting photon

emission amplitudes.

The calculations which we present have been done using the program FORM of Ref. [9].

For the t-channel case, we presented similar results in Ref. [10] in connection with the

respective O(α2)L corrections needed for the 0.061% (0.054%) total precision tag achieved

in Ref. [11] for the LEP1/SLC luminosity process in the Monte Carlo event generator

BHLUMI4.04 in Ref. [12]. Just as in the latter case, here a considerable effort is needed

to simplify our initial raw FORM output in order to make a practical application of the

respective results in the context of a Monte Carlo environment such as the KK MC in

Ref. [2]. As in Ref. [10], we only present the final simplified expressions in this paper for

the sake of clarity.

Our metric is that of Bjorken and Drell in Ref. [13] and we effect our gauge invariant

calculation in the ’t Hooft-Feynman gauge. With these preliminary remarks, we turn now

in the next section to the calculation of our process of interest.
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2 Exact Results on the Virtual Correction to e+e− →
ff̄ + γ, f 6= e

In this section we calculate the exact virtual correction to e+e− → f f̄ + γ, f 6= e. We

proceed in analogy with our results on the virtual correction for the t-channel dominated

low angle Bhabha scattering process with a single hard bremsstrahlung in Ref. [10].

Specifically, we express the exact amplitude for one real and one virtual photon emitted

from the electron lines in the process e+e− → f f̄ + γ using the GPS conventions [6,7,2].

In Ref. [10], the corresponding t channel result was obtained for electron line emission.

Here, from the latter result, we first obtain the respective initial-state s channel result

by crossing the outgoing electron line with the incoming positron line, and replacing

the respective final state by f f̄ , while adding also Z boson exchange. The results are

translated into GPS conventions. Then, in subsection 2.2, we provide the detailed form

factors appearing in the initial state amplitudes. The corresponding final state amplitudes

are presented in subsections 2.3 and 2.4.

2.1 ISR s-Channel Exact Result

In this subsection, we define notation and set up the exact contribution for one real photon

and one virtual photon emitted from the electron lines in the process e+e− → f f̄ + γ. The

amplitude for real plus virtual photon emission from the initial state may be written

MISR(1)
1 =

Q2
ee

2

16π2
MISR(0)

1 (f0 + f1I1 + f2I2) , (2.1)

where the real photon emission amplitude is MISR(0)
1 , and the factors I0,1,2 contain spinor

dependence. They will be specified in the next section.

In GPS conventions, the amplitude MISR(0)
1 for the initial state radiation of a single

photon is given by

MISR(0)
1

[p
λ

]
=

eQe

2kp1

v(p2, λ2)M1( 6p1 + m− 6 k) 6 ε?
σu(p1, λ1)

+
eQe

2kp2
v(p2, λ2) 6 ε?

σ(−6p2 + m + 6 k)M1u(p1, λ1) , (2.2)

where

M1 = ie2Qf

∑
B=γ,Z
λ,µ=±1

(
u(p3, λ3)γσg

f,B
λ ωλv(p4, λ4)

s′ −M2
B + iΓBs′/MB

)
γσge,B

µ ωµ (2.3)

is the annihilation scattering spinor matrix.
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The form factors may be obtained from the corresponding t-channel result in Ref. [10]

for electron line emission. Specifically, the s channel result can be obtained by crossing

the outgoing electron line with the incoming positron line, and replacing the final state

by f f̄ . We also include the effects of Z exchange in the s channel.

Our previous calculations of t-channel bremsstrahlung [10] used the Chinese Magic

conventions [14] for the photon polarizations. The GPS version of the magic photon

polarization vector is related to the Chinese Magic conventions [14] by

ε?GPS(k, β, σ) = σεChinese(k, β,−σ). (2.4)

The purpose of this change is to recover the more standard convention of defining photon

polarization in terms of incoming states. The choice of magic polarization vector affects

the amplitude (2.1) only through the definition of MISR(0)
1 . The remaining factors may

thus be obtained directly by crossing from our previous t-channel results.

The magic choice of auxiliary vector for initial state radiation is β = h
[

0
σ

p2

λ1

p1

λ2

]
, with

the definition

h

[
q0

µ0

q1

µ1

q2

µ2

]
=




q0

q1

q2


 if




µ1 = µ2

µ0 = µ1 = −µ2

µ0 = µ2 = −µ1

. (2.5)

Using the magic polarization vector in (2.1) and neglecting fermion masses gives

MISR(0)
1 = iQeσe3Gλ1,λ3(s

′)I0
2s−σ(p3, p4)

sσ(p1, k)sσ(p2, k)
, (2.6)

where the photon-Z propagator is

Gλ,µ(s
′) =

∑
B=γ,Z

ge,B
λ gf,B

µ

s′ −M2
B + iΓBs′/MB

, (2.7)

and

I0 = −
√

2λ1λ3s
2
σ

(
h

[
0

σ

p2

λ1

p1

λ2

]
, h

[
0

σ

p3

λ3

p4

λ4

])
. (2.8)

We now turn to calculating the form factors and spinor factors.

2.2 Initial State Form Factors

It remains to describe the form factors and spinor factors needed to compute MISR(1)
1 .

The spinor factors I1,2 are given by
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I1 =
√

2λ1s−λ1(p1, k)sλ1(p2, k)

×s−λ1(p4, p1)sλ1(p1, p3)− s−λ1(p4, p2)sλ1(p2, p3)

s−σ(p1, p2)s−σ(p3, p4)s−λ1(p4, p2)sλ1(p2, p3)I0
, (2.9)

I2 =

√
2σs−λ1(p1, k)sλ1(p2, k)s−λ3(p4, k)sλ3(p3, k)

s−σ(p1, p2)s−σ(p4, p3)I0

(2.10)

where the spinor product is sλ(p, q) = ū−λ(p)uλ(q). The factors I1,2 are crossed versions

of (I1 ± I2)/2I0 in Ref. [10].

We will begin by writing the dominant term f0. Expressions can be found in Ref. [5]

for all of the scalar integrals needed for the form factors, which were previously calculated

using the FF package [9], which implements the methods of Ref. [15]. The integrals in

Ref. [5] are not quite adequate, because of the possibility that ri < m2
e/s. However, it was

possible to analytically continue when necessary, and to reproduce the numerical results

of the FF package. Thus, an expression for the form factors in terms of logarithms and

dilogarithms is now available. Details on the s channel version of the scalar integrals used

in Ref. [10] may be found in the Appendix.

For σ = λ1, using ri = 2pi · k/s,

f0 = 4π BYFS(s, me) + 2 (L− 1− iπ) +
r2

1− r2

+
(r1 + r2)

(1− r2)r1

R(r1, r2) + R(r2, r1)

+

{
3 +

2r2

(1− r2)(r1 + r2)

}
ln (1− r1 − r2)

− r2(2 + r1)

(1− r1)(1− r2)

{
ln

(1− r1 − r2)

r2
− iπ

}
(2.11)

with L = ln(s/m2
e), the infrared YFS factor

4π BYFS(s, m) =
(
4 ln

m0

m2
+ 1
)

(ln
s

m2
−1−iπ)−ln2(

s

m2
)−1+

4π2

3
+iπ(2 ln

s

m
−1) (2.12)

and

R(x, y) = ln2(1− x) + 2 ln(1− x)

{
ln

(
y

1− x

)
+ iπ

}

+ 2 Sp(x + y)− 2 Sp

(
y

1− x

)
(2.13)

= ln2(1− x) + 2 ln(1− x)

{
ln

(
y

1− x− y

)
+ iπ

}

+ 2 ln

(
y

x + y

)
ln

(
1− x− y

1− x

)
− 2 Sp

(
x

x + y

)

+ 2 Sp(x) + 2 Sp

(
(1− x− y)x

(x + y)(1− x)

)
. (2.14)
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The second expression is preferred for calculating R(x, y)/x when x may be small. For

σ = −λ, r1 and r2 are interchanged in (2.11).

The coefficients of the spinor terms in (2.1) are, for σ = λ,

f1 =
(r1 − r2)

2(1− r1)(1− r2)
+

r2(1− r1 − r2)

r1(1− r2)(r1 + r2)
ln(1− r1 − r2)

+
r1 + r2

2r1

{
1− r1 − r2

r1(1− r2)
+

1

2
δσ,1

}
R(r1, r2) +

r1 + r2

4r2

δσ,−1R(r2, r1)

+
1− r1 − r2

(1− r1)(1− r2)

{
r1 + r2

2(1− r1)
− 1

1− r1
− r2

r1

}

×
(

ln
1− r1 − r2

r2
− iπ

)
(2.15)

and

f2 = 2− 2− r1 − r2

2(1− r1)(1− r2)

+
1− r1 − r2

r1(r1 + r2)

(
2− r2

1− r2

)
ln(1− r1 − r2)

+
2(1− r1 − r2)

r1 + r2

{
1 +

1

r1 + r2
ln(1− r1 − r2)

}

+
(1− r1 − r2)(2 + r1 − r2)

2r2
1(1− r2)

R(r1, r2)

+
1

4

(
1− r2

r1

)
δσ,1R(r1, r2)− 1

4

(
1− r1

r2

)
δσ,−1R(r2, r1)

− 1− r1 − r2

(1− r1)(1− r2)

(
2− r2

r1
+

r2 − r1

2(1− r1)

)

×
(

ln
1− r1 − r2

r2

− iπ

)
. (2.16)

The coefficients f1,2 are s-channel versions of (F1 ± F2)/2 in Ref. [10]. For σ = −λ, r1

and r2 are interchanged in (2.15) and (2.16).

The leading log limit is obtained by finding which terms give rise to the leading powers

of the ‘big logarithm’ L when the above expressions are integrated over r1 and r2. These

come from collinear terms where r1 or r2 go to zero. In the collinear limits, when averaged

over the azimuthal angle, only the f0 terms remain to order L2 and L, i.e., to order NLL.

Using the identities

R(0, y) = 0,

1

x
R(x, y) = 2

(
1− 1

y

)
ln(1− y)− 2 ln y − 2πi for x → 0,

R(x, y) = 2 ln(1− x) (ln y + iπ)− ln2(1− x) + 2Sp(x) for y → 0, (2.17)
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the NLL limit of the form factor f0 is found to be

fNLL
0 = 2(L− 1− iπ) + 2 ln(1− r1)(ln r2 + iπ) + 2 ln(1− r2)(ln r1 + iπ)

− ln2(1− r1)− ln2(1− r2) + 3 ln(1− r1) + 3 ln(1− r2)

+ 2 Sp(r1) + 2 Sp(r2) +
r1

1− r1
δσ,−λ1 +

r2

1− r2
δσ,λ1 (2.18)

without mass corrections.

Mass corrections we have calculated primarily without any approximations, however,

in the following we shall present them in the approximation me <<
√

s. In particular, in

this approximation, we checked by explicit calculation that the result which we obtain for

the mass corrections in fact agrees with that implied by the prescription in Ref. [16]. This

prescription is valid for the spin-averaged differential distribution in the limit me <<
√

s,

but since mass terms are located in the separate (helicity conservation violating) spin

amplitudes, it is not difficult to “undo” the spin summation. The technique of Ref. [16]

was originally applied to tree level photon emissions. Following the Appendix B of Ref. [10]

we can apply it also to our case of emission of one virtual and one real photon.

Taking advantage of the freedom, which we have for presenting mass terms in the

me <<
√

s approximation, the introduction of the mass correction leads to a replacement

of f0 by f0 + fme
0 , where

f
(me)
0 =

2me
2

s

(
r1

r2

+
r2

r1

)
(1− r1)(1− r2)

1 + (1− r1 − r2)2

× {f0 − 4π BYFS(s
′, me)− 2[L + ln(1− r1 − r2)− 1− iπ]} (2.19)

with YFS infrared factor

4π BYFS(s
′, me) = 4π BYFS(s, me) + ln(1− r1 − r2) (4 ln

m0

me

− 2L + 1 + 2πi)− ln2(1− r1 − r2) . (2.20)

Mass corrections first appear at order NLL, and to this order,

f
(me) NLL
0 =

2me
2

s

(
r1

r2
+

r2

r1

)
(1− r1)(1− r2)

1 + (1− r1 − r2)2

×
{

ln(1− r1 − r2)

(
2L− 1− 2πi− 4 ln

m0

me

)
+ ln2(1− r1 − r2)

+ 2 ln(1− r1)(ln r2 + iπ) + 2 ln(1− r2)(ln r1 + iπ)
}
. (2.21)

Only the LL part of f0 contributes to the mass correction, to order NLL. The result (2.19)

gives the complete effect of the mass corrections for the ISR neglecting the terms that are

suppressed by higher powers of m2
e/s as usual.

8



2.3 Final State Radiation

The amplitudes for final state radiation can be obtained by crossing the incoming electron

with the outgoing f̄ , and the incoming positron with the outgoing f . Thus, p1 ↔ −p4,

p2 ↔ −p3, λ1 ↔ −λ4, and λ2 ↔ −λ3 in the results of the previous sections.

The final state radiation (FSR) amplitude can be written in analogy with the ISR

result (2.1),

MFSR(1)
1 =

Q2
fe

2

16π2
MFSR(0)

1 (f 0 + f1I1 + f 2I2) (2.22)

The form factors f0,1,2 and the spinor factors I1,2 are final-state analogs of those in the

previous section, and will be defined in the next subsection.

The amplitude MFSR(0)
1 for the final state radiation of a single photon can be obtained

from the initial state amplitude MISR(0)
1 by crossing. Crossing leads to spinors with

negative energy. A consistent choice of branches gives

u(−p,−λ) = iv(p, λ), v(−p,−λ) = iu(p, λ). (2.23)

Then we obtain

MFSR(0)
1

[p
λ

]
=

eQf

2kp4
u(p3, λ3)M1( 6p4 −m + 6 k) 6 ε?

σv(p4, λ4)

− eQf

2kp3

u(p3, λ3) 6 ε?
σ( 6p3 + m + 6 k)M1v(p4, λ4), (2.24)

where

M1 = ie2Qe

∑
B=γ,Z
λ,µ=±1

(
v(p2, λ2)γσg

e,B
λ ωλu(p1, λ1)

s−M2
B + iΓBs/MB

)
γσgf,B

µ ωµ. (2.25)

The magic polarization vector for final state radiation is h
[

0
σ

p3

λ3

p4

λ4

]
. Using this in

(2.24) gives, in the massless limit,

MFSR(0)
1 = iQfσe3G−λ4,−λ2(s)I0

2s−σ(p3, p4)

sσ(p1, k)sσ(p2, k)
, (2.26)

with propagator (2.7) and I0 given again by (2.8).

2.4 Final State Form Factors

The spinor factors I1,2 appearing in MFSR(1)
1 are given by

I1 =
√

2λ4sλ4(p4, k)s−λ4(p3, k)

×sλ4(p1, p4)s−λ4(p2, p4) + sλ4(p1, p3)s−λ4(p3, p2)

s−σ(p4, p3)s−σ(p2, p1)sλ4(p1, p3)s−λ4(p3, p2)I0

, (2.27)

I2 =

√
2σsλ4(p4, k)s−λ4(p3, k)sλ2(p1, k)s−λ2(p2, k)

s−σ(p4, p3)s−σ(p1, p2)I0
. (2.28)
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As before, let ri = 2pi · k/s. We can obtain the form factor f 0 for σ = −λ3 by substi-

tuting

r1 → −r3/(1− r3 − r4), r2 → −r4/(1− r3 − r4) (2.29)

in (2.11), and for σ = +λ3 by interchanging r3 and r4 in (2.29). (Since k2 = 0, we have

r1 + r2 = r3 + r4.) Then, for σ = λ3,

f 0 = 4π BYFS(s
′, mf) + 2

(
L− 2 ln

mf

me
− 1− iπ

)
− r3

1− r4

+
(r3 + r4)(1− r3 − r4)

r4(1− r4)
R(r3, r4) + R(r4, r3)

−
{

1 +
2r3(1− r3 − r4)

(1− r4)(r3 + r4)

}
ln (1− r3 − r4)

+
r3

1− r4

{
3r4

1− r3
− 2

}
ln r3 (2.30)

with

R(x, y) = R

( −y

1− x− y
,

−x

1− x− y

)

= 2 ln x ln

(
1− x

1− x− y

)
+ 2 Sp(x)− 2 Sp(x + y). (2.31)

The expression (2.31) is obtained from (2.13) using the dilogarithm identity

Sp

( −x

1− x

)
= −Sp(x)− 1

2
ln2(1− x). (2.32)

The imaginary parts in (2.30) were obtained by assuming the iπ terms in (2.11) came

from a small positive imaginary part on s or s′. For σ = −λ3, f0 = f0(r4, r3) instead: r3

and r4 are interchanged.

The coefficients of the spinor terms in (2.22) are, for σ = λ3,

f1 =
(r3 − r4)(1− r3 − r4)

2(1− r3)(1− r4)
+

r3(1− r3 − r4)

r4(1− r4)(r3 + r4)
ln(1− r3 − r4)

− r3 + r4

2r4

{
1− r3 − r4

r4(1− r4)
− 1

2
δσ,−1

}
R(r3, r4) +

r3 + r4

4r3
δσ,1R(r4, r3)

+
(1− r3 − r4)

(1− r3)(1− r4)

{
1 +

r3

r4
+

r3 − r4

2(1− r3)

}
ln r3, (2.33)

f 2 = 2− (1− r3 − r4)(2− r3 − r4)

2(1− r3)(1− r4)
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− 1− r3 − r4

r4(r3 + r4)

(
2− r3

1− r4

)
ln(1− r3 − r4)

− 2

r3 + r4

{
1 +

1− r3 − r4

r3 + r4
ln(1− r3 − r4)

}

+
(1− r3 − r4)(2− r3 − 3r4)

2r2
4(1− r4)

R(r3, r4)

+
1

4

(
1− r3

r4

)
δσ,−1R(r3, r4)− 1

4

(
1− r4

r3

)
δσ,1R(r4, r3)

− 1− r3 − r4

(1− r3)(1− r4)

{
2− r3

r4
+

r4 − r3

2(1− r3)
− 2

}
ln r3. (2.34)

For σ = −λ3, r3 and r4 are interchanged in (2.33) and (2.34).

The NLL limit is obtained as in the initial state radiation case, except that now the

collinear limits are when r3 or r4 become small. Only the form factor f0 survives to order

NLL, and using the identities

R(x, 0) = 0,
1

y
R(x, y) =

2

1− x
ln x +

2

x
ln(1− x) for y → 0,

R(x, y) = −2 ln x ln(1− y)− 2 Sp(y) for x → 0, (2.35)

we find

f
NLL

0 = 4π BYFS(s
′, mf ) + 2(L− 1− iπ)

− 2 ln r3 ln(1− r4)− 2 ln r4 ln(1− r3)

− ln(1− r3)− ln(1− r4)− 2 Sp(r3)− 2 Sp(r4)

− δσ,λ3r3 − δσ,−λ3r4 (2.36)

without mass corrections.

Spin-averaged mass corrections can be obtained from the initial state case (2.19) by

crossing. The result is that f0 → f0 + f
mf

0 , where

f
(mf )

0 =
2m2

f

s

(
r3

r4

+
r4

r3

)
(1− r3)(1− r4)

1 + (1− r3 − r4)2

×
{

f0 − 4π BYFSf(s)− 2(L− 2 ln
mf

me
− 1− iπ)

}
(2.37)

where

4π BYFSf (s) = 4π BYFS(s
′, mf)− ln(1− r3 − r4)(4 ln

m0

me

− 2L + 1 + 2πi) + ln2(1− r3 − r4) . (2.38)
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Again, mass corrections first appear at order NLL, and to this order,

f
(mf ) NLL

0 = −2m2
f

s

(
r3

r4
+

r4

r3

)
(1− r3)(1− r4)

1 + (1− r3 − r4)2

×
{

ln(1− r3 − r4)

(
4 ln

m0

mf
− 2L + 4 ln

mf

me
+ 1 + 2πi

)

− ln2(1− r3 − r4) + 2 ln(1− r3) ln r4 + 2 ln(1− r4) ln r3

}
. (2.39)

The result (2.37) gives the complete effect of FSR mass corrections neglecting terms

suppressed by higher powers of
m2

f

s
as usual.

3 Differential Cross Section

This section translates our amplitudes into differential cross sections, and sets up com-

parisons with other related results. The initial state differential cross section for emitting

one real photon may be written

dσ
ISR(0)
1

d2Ωdr1dr2
=

1

2(4π)4s′
∑
λi,σ

∣∣∣MISR(0)
1

∣∣∣2 , (3.1)

where the summed, squared real photon amplitude leads to∣∣∣MISR(0)
1

∣∣∣2 =
Q4

ee
6

s2r1r2

[
(t21 + t22)(F0 − F1) + (u2

1 + u2
2)(F0 + F1)

]
, (3.2)

where the invariants ui, ti may be written in YFS3-style [17, 2] effective angle notation:

ti = (pi − pi+2)
2 = −1

4
βfβis(1− ri)[2− cos(θ1i)− cos(θ2i)]

ui = (pi − pj+2)
2 = −1

4
βfβis(1− ri)[2 + cos(θ1i) + cos(θ2i)] (3.3)

with (i, j) = (1, 2) or (2, 1), and

βf =

√
1− 4m2

f

s′
, βi =

√
1− 4m2

es
′

s2(1− ri)2
. (3.4)

We will be setting these mass factors to unity in the following, and adding mass corrections

at the end via (2.19) or (2.37).

The coefficients Fi are defined in terms of the standard vector and axial vector fermion

couplings V and A, and X = V 2 + A2, Y = 2V A by

F0 = XeXfχ2 + 2QeQfVeVfχ1 + Q2
eQ

2
f ,

F1 = YeYfχ2 + 2QeQfAeAfχ1, (3.5)
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where

χ1 = s′(s′ −M2
Z)[(s′ −M2

Z)2 + (s′ΓZ/MZ)2]−1,

χ2 = s′2[(s′ −M2
Z)2 + (s′ΓZ/MZ)2]−1. (3.6)

The initial state differential cross section for real plus virtual photon emission may be

expressed as

dσ
ISR(1)
1

d2Ωdr1dr2
=

1

(4π)4s′
∑
λi,σ

Re
[
(MISR(0)

1 )∗MISR(1)
1

]
. (3.7)

If is convenient to rewrite (2.1) as

MISR(1)
1 =

Q2
ee

2

16π2
v MISR(0)

1 (3.8)

in terms of a virtual correction factor

v = f0 + f1I1 + f2I2. (3.9)

The differential cross section (3.7) can then be written in terms of a spin-averaged virtual

correction factor 〈v〉 times the cross section for pure real initial state radiation:

dσ
ISR(1)
1 = 〈v〉 dσ

ISR(0)
1 , (3.10)

where

〈v〉 =

∑
σ,λ1,λ3

v |MISR(0)
1 |2∑

σ,λ1,λ3
|MISR(0)

1 |2

=

∑
λ1

{
vλ1
+ [F0 + F1 + λ1(F2 + F3)] + vλ1− [F0 − F1 + λ1(F2 − F3)]

}
(F0 + F1)(u2

1 + u2
2) + (F0 − F1)(t21 + t22)

(3.11)

with

vλ
+ = u2

1vλ,λ,−λ + u2
2vλ,λ,λ,

vλ
− = t21vλ,−λ,−λ + t22vλ,−λ,λ, (3.12)

and

F2 = YeXfχ2 + 2QeQfAeVfχ1, (3.13)

F3 = XeYfχ2 + 2QeQfVeAfχ1.
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In the NLL approximation, where the f1 and f2 terms in (2.1) may be neglected, we

may use the relation 〈v〉 = 〈f0〉. Then (3.11) simplifies to

〈f0〉 = 2
(f0(r1,r2)u2

2+f0(r2,r1)u2
1)(F0+F1)+(f0(r1,r2)t22+f0(r2,r1)t21)(F0−F1)

(u2
1+u2

2)(F0+F1)+(t21+t22)(F0−F1)

=
F0[f̂ 0(r1,r2)(1+cos2 θ11)+f̂ 0(r2,r1)(1+cos2 θ22)]+2F1[f̂ 0(r1,r2) cos θ11+f̂ 0(r2,r1) cos θ22]

F0[(1−r1)2(1+cos2 θ11)+(1−r2)2(1+cos2 θ22)]+2F1[(1−r1)2 cos θ11+(1−r2)2 cos θ22]
(3.14)

with

f̂0(ri, rj) = 2(1− rj)
2f0(ri, rj). (3.15)

If we further drop the dependence on θij in (3.3), letting θij → θ for fixed θ, then we get

a simpler approximation. The angle dependence can be factored out of the cross-section

(3.7), leading to

dσ
ISR(1)
1

dr1dr2
=

1

2

(
Qee

2

2π2

)2

σ0〈f0〉H0(r1, r2). (3.16)

with the definition

H0(r1, r2) =
1

2r1r2

[
(1− r1)

2 + (1− r2)
2
]
, (3.17)

the total Born cross section

σ0 =
Q2

eQ
2
fe

4

2(4π)2s′

∫
d2Ω

(
1

2
F0(1 + cos2 θ) + F1 cos θ

)
, (3.18)

and approximate spin-averaged form factor

〈f0〉 =
(1− r2)

2f0(r1, r2) + (1− r1)
2f0(r2, r1)

(1− r1)2 + (1− r2)2
. (3.19)

It can be shown that this approximation is valid to order NLL.

The NLL expression (2.18) then leads to the spin-averaged form factor

〈fNLL
0 〉 = 2(L− 1− iπ) + 2 ln(1− r1)(ln r2 + iπ) + 2 ln(1− r2)(ln r1 + iπ)

− ln2(1− r1)− ln2(1− r2) + 3 ln(1− r1) + 3 ln(1− r2)

+ 2Sp(r1) + 2Sp(r2) +
r1(1− r1)

1 + (1− r1)2
+

r2(1− r2)

1 + (1− r2)2
(3.20)

with mass corrections given by (2.19). This form is useful for comparison with other

results on the differential cross section, as we will see in the next section.

An analogous expression can be found for the final state emission cross section. The

spin-averaged version of the final state form factor (2.36) is

f
NLL

0 = 4π BYFS(s
′, mf) + 2(L− 1− iπ)− 2 ln r3 ln(1− r4)

− 2 ln r4 ln(1− r3)− ln(1− r3)− ln(1− r4)− 2Sp(r3)− 2Sp(r4)

− r3

1 + (1− r3)2
− r4

1 + (1− r4)2
(3.21)

with mass corrections given by (2.37).
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4 Partly Differential Cross Section and Comparisons

We may compare our spin-averaged initial state radiation form factor with one published

in Ref. [5]. In our notation, this result may be written as

fIN =
f̃ IN(r1, r2) + f̃ IN(r2, r1)

(1− r1)2 + (1− r2)2
(4.1)

with

f̃ IN(r1, r2) = (1− r1 − r2 + r2
2) [4πRe BYFS(s, me) + 2(L− 1)]

+ [1 + (1− r2)
2]

{
ln2(r1) + ln2 1− r1 − r2

1− r2
− ln2 r1

1− r1 − r2

+ 2 Sp

(
1− r1 − r2

1− r2

)
+ 2 Sp(r1 + r2)− π2

3

}

+
r1r2(1− r1 − r2)

1− r2

(
1

1− r2

+ 1− 3r2

r1

)
ln

r1

1− r1 − r2

− 2r1r2(1− r1 − r2)

r1 + r2

(
(1− r1 − r2)

r1 + r2
− 3

r1

)
ln(1− r1 − r2)

+ r2(3r2 + 2r1) ln(r1)− 2r1r2

r1 + r2
+

r1r2

1− r2
+ r2(1− r2). (4.2)

The NLL limit of this expression may be obtained by summing the two collinear limits

where ri → 0 separately. Carrying this out leads precisely to our spin-averaged NLL

expression (3.20). Thus, we agree with Ref. [5] to NLL order. Note that the expression

fIN does not include mass corrections, which were not calculated in Ref. [5].

By integrating out the separate dependence on ri in favor of the variable z = s′/s
= 1− r1 − r2, we may obtain a result which can be compared to Ref. [4]. To begin, we

consider the pure real photon ISR cross section, and work in the approximation where

the effective angles θij in (3.3) are replaced by a common angle θ. Then

dσ
ISR(0)
1

dr1dr2
=

Q2
ee

2

4π2
σ0H0(r1, r2) (4.3)

in terms of H0 defined by (3.17). Integrating r1 and r2 with the constraint z = 1− r1− r2

gives

dσ
ISR(0)
1

dz
=

Q2
ee

2

4π2
σ0

∫ 1−z−r0

r0

dr1dr2δ(1− z − r1 − r2)H0(r1, r2), (4.4)

where r0 = m2
e(1− z)/s is the kinematic minimum value of r1 or r2. The result of the

integral is, exactly,

dσ
ISR(0)
1

dz
=

Q2
ee

2

4π2
σ0

(
1 + z2

1− z

)[
L− (1− z)2

1 + z2

]
. (4.5)

15



Mass corrections, obtained by the prescription of Ref. [16], have the effect of replacing

H0 by H0 + Hm in (4.3), where

Hm(r1, r2) = −2m2
e

s

(
r1

r2
+

r2

r1

)
z

1 + z2
H0(r1, r2). (4.6)

Integrating the mass term gives∫ 1−z−r0

r0

dr1dr2Hm(r1, r2) = − 2z

1− z
+O(

m2
e

s
). (4.7)

The total mass-corrected real photon emission cross section is then

dσ
ISR(0)
1

dz
=

Q2
ee

2

4π2
σ0

(
1 + z2

1− z

)
(L− 1) = δH1

1 (z)σ0. (4.8)

in the notation of Ref. [4], where this result matches the real part of (2.11).

The real plus virtual ISR cross section is

dσ
ISR(1)
1

dz
=

1

2

(
Qee

2

4π2

)2

σ0

∫ 1−z−r0

r0

dr1dr2δ(1− z − r1 − r2)〈f0〉H0(r1, r2), (4.9)

where we use the NLL expression (3.20) for the virtual form factor, and will add mass

corrections later. Doing the integral and keeping all infrared terms and terms of order L2

and L gives

dσ
ISR(1)
1

dz
=

Q2
ee

2

4π2
σ0δ

V1
1 (s)

(
1 + z2

1− z

)[
L− (1− z)2

1 + z2

]

+
1

2

(
Q2

ee
2

4π2

)2

σ0L

(
1 + z2

1− z

){
− L ln z + 2 ln z ln(1− z)

+ 2 Sp(1− z) + 3 ln z − ln2 z +
z(1− z)

1 + z2

}
, (4.10)

where we use the notation of Ref. [4] for

δV1
1 (s) =

Q2
ee

2

4π2
{2πBYFS(s, me) + L− 1} . (4.11)

The mass correction is obtained by multiplying the pure real mass correction by the

single virtual photon form factor evaluated in terms of s′ rather than s. Thus, we add to

the differential cross section a mass term

dσm

dr1dr2

=
Q2

ee
2

4π2
δV1
1 (s′)Hm(r1, r2) σ0, (4.12)
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where

δV1
1 (s′) =

Q2
ee

2

4π2
{2πBYFS(s

′, me) + L + ln z − 1}

= δV1
1 (s) +

(
Qee

2

4π2

)
ln z

(
2 ln

m0

me
− L +

3

2
− ln2 z

)
. (4.13)

Integrating over r1 and r2 with z = 1− r1− r2 and keeping only infrared terms and terms

of order L, we obtain

dσm

dz
= −Q2

ee
2

4π2

2z

1− z
σ0

{
δV1
1 (s)− Q2

ee
2

4π2
L ln z

}
. (4.14)

Adding the mass corrections and using the notation of (4.8) gives the complete real plus

virtual cross section at order NLL,

dσ
ISR(1)
1

dz
= σ0δ

V1
1 (s)δH1

1 + 1
2

(
Q2

ee2

4π2

)2

σ0L
{(

4z
1−z

)
ln z + z

+
(

1+z2

1−z

)
[− L ln z + 2 ln z ln(1− z) + 3 ln z − ln2 z + 2 Sp(1− z)]

}
. (4.15)

This result agrees precisely with the terms in (2.26) of Ref. [4] through order α2L.

We illustrate the agreement we have found above in Figs. 2-5, for the case f f̄ = µ−µ+.

In Fig. 2, we show the complete β
(2)
1 distribution for our exact result, our NLL and LL

approximate results, the result of Igarashi and Nakazawa et al. [5], and the result of

Berends et al. [4]. What we see is that there is a very good general agreement between all of

these results. To better assess the difference between them, we plot in Fig. 3 the difference

between the respective O(α2) andO(α1) results. Again we see very good agreement except

for the hardest possible photons, where then the LL result differs significantly from the

others.

To isolate the respective predictions for the NLL effect, we plot in Fig. 4 the respective

differences between our LL O(α2) result and the other four results. We see that there is

again very good agreement but, at the level of 0.5 ·10−4, the result of Ref. [4] is somewhat

smaller in magnitude than the other three NLL results in the Z radiative return regime

above a cut of 0.75.

Finally, in the Fig. 5 we isolate the size of the three NNLL results by plotting the

difference between our NLL result and our exact result, the result from Ref. [5] and the

result from Ref. [4]. We again see that the most pronounced difference in the results

occurs for the regime above vmax = 0.75 where the result of Ref. [4] differs by 0.5 · 10−4

from the other two for vmax < 0.975 and differs from the exact result by 1.5 · 10−4 for

vmax > 0.975. The result from Ref. [5] differs from the exact result by 0.2 · 10−4 for

vmax > 0.975 but is essentially indistinguishable from it for smaller values of vmax. We
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Figure 2: This is the β
(2)
1 distribution for the YFS3ff MC (YFS3ff is the EEX3 matrix element

option of the KK MC in Ref. [2]), as a function of energy cut vmax. It is divided by the Born
cross-section. The IN result is from Ref. [5], and the BVNB result is from Ref. [4].
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conclude that our exact result for the O(α2) correction β̄
(2)
1 has a total precision tag of

1.5 · 10−4. Its NLL effect has already been implemented in the KK MC in Ref. [2].

We have also made the analogous study to Figs. 2-5 for 500 GeV. We find very similar

results, with the total precision tag of 2 · 10−4.

5 Conclusions

In this paper, we have presented exact results for the virtual correction to the process

e+e− → f f̄ + γ for the ISR ⊕ FSR. The results are already in use in the KK MC in

Ref. [2] in connection with the final LEP2 data analysis.

We have compared our results with those in Refs. [5, 4] and in general we find very

good agreement, both at 200 GeV and at 500 GeV. For example, the size of the NNLL

correction is shown to be at or below the level of 2 · 10−4 for all values of the energy cut

parameter. Our results are fully differential and are therefore ideally suited for MC event

generator implementation. This has been done in the KK MC in Ref. [2]. To compare our

results with the results in Refs. [4], we have partially integrated them accordingly. While

the results in Ref. [5] are also fully differential, they lack the complete mass corrections

that our results do have. In this way, one sees that our results are in fact unique. They

are an important part of the complete O(α2) corrections to the 2f production process

needed for precision studies of such processes in the final LEP2 data analysis and in the

future TESLA/LC physics.
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Note Added

After we had submitted this paper, we became aware of related work by G. Rodrigo, A.

Gehrmann-De Ridder, M. Guilleaume and J. H. Kuhn, hep-ph/0106132. These authors

also agree with the analogous results of Ref. [4], when the photon azimuthal angle is

integrated and the photon polarization is summed for the ISR process.
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A Scalar Integrals

Previously, in Ref. [10], the analogous exact virtually corrected photon cross sections

were expressed in the t channel using scalar integral functions which were calculated by

a numerical package FF described in Ref. [15]. In the present paper, we have expressed

these functions directly in terms of logarithms and dilogarithms. This appendix will give

the expressions for the individual scalar integrals in the s channel.

The notation for the scalar integrals will match Ref. [10], with kinematic notation

defined in Sections 1 and 2 of this paper. The scalar integrals with two denominators are

denoted B, and the ones appearing in the form factors are

B12 = B(m2
e; mγ , me),

Bri
13 = B(m2

e − sri; mγ, me),

B23 = B(m2
γ ; me, me),

B24 = B(s; me, me),

B34 = B(s′; me, me), (A.1)

where the first argument is the square of the momentum through the diagram, and the

remaining arguments are the masses of the two lines. These functions are UV divergent,

but only the following finite combinations are needed:

Bri
13 − B34 = ln

s′

sri
+

m2
e

m2
e − sri

ln
sri

m2
e

− iπ, (A.2)

B24 − B34 = ln
s′

s
, (A.3)

B12 − B34 = ln
s′

m2
e

− iπ. (A.4)

The mass term in (A.2) has been dropped when applying this expression, since the mass

corrections are added explicitly to the massless limit of the calculation using the prescrip-

tion of Ref. [16].

The integrals for three and four denominators are obtained from the appendix of

Ref. [5]. For three denominators, we need the expressions

Cri
123 = C(m2

e, m
2
γ, m

2
e − sri; mγ , me, me),

Cri
134 = C(m2

e − sri, s
′, m2

e; mγ, me, me),

C234 = C(m2
γ , s

′, s; me, me, me),

C124 = C(m2
e, s, m

2
e; mγ, me, me),
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where the first three arguments are the squares of the external momenta, and the next

three are the masses of the three lines, in cyclic order. The results are

sriC
ri
123 = −1

2
ln2 m2

e

sri
− Sp

(
1− m2

e

sri

)
− π2

6
, (A.5)

(1− rj)s Cri
134 =

1

2
ln2 s′

sm2
e

− 1

2
ln2 (1− rj)s

m2
e

− 1

2
ln2 1− rj

ri

+ 2 ln
s′

m2
e

ln

(
1− rj

ri

)
+ ln

m2
e

sri
ln

(
1− rj

ri

)
− Sp

(
m2

e

sri

)

− Sp

(
s′

s(1− rj)

)
− 5π2

6
− πi ln

s′

m2
e

− 2πi ln

(
1− rj

ri

)
, (A.6)

(r1 + r2)s C234 =
1

2
ln2 s

m2
e

− 1

2
ln2 s′

m2
e

+ πi ln
s′

s
, (A.7)

sC124 =
1

2
ln2 s

m2
e

− ln
s

m2
e

ln
m2

γ

m2
e

− 2π2

3
+ πi ln

m2
γ

s
. (A.8)

The expression (A.5) is an analytic continuation of the one in Ref. [5], as required since

ri < m2
e is possible, and the expression (A.6) drops mass terms. In particular, the photon

mass regulator mγ is dropped whenever possible.

The expression with four denominators is

s2riD
ri
1234 = ln2 s′

m2
e

− 2 ln
s

m2
e

ln
sri

m2
e

+ ln
m2

γ

m2
e

(
ln

s

m2
e

− iπ

)

+ 2 Sp(r1 + r2)− 5π2

6
− 2πi ln

s′

sri
. (A.9)

All of these expressions have been checked for agreement with the FF package. The

function R defined in equations (2.13) and (2.14) and appearing in the virtual photon

factors is the IR-finite combination

R(ri, rj) = s (C124 + srjD
rj

1234)− srjC
rj

123 − (1− ri)s C
rj

134 + (r1 + r2)s C234. (A.10)

This completes the appendix.

References

[1] M. Kobel et al., hep-ph/0007180, in Reports of the working groups on precision cal-

culations for LEP2 physics, CERN-2000-09, eds. S. Jadach, G. Passarino and R.

Pittau, (CERN, Geneva, 2000) p. 269.

[2] S. Jadach, B.F.L. Ward and Z. Wa̧s, Phys. Rev. D63 (2001) 113009; Comput. Phys.

Commun. 130 (2000) 260; and references therein.

24



[3] D. Bardin et al., Comput. Phys. Commun. 133 (2001) 229.

[4] F.A. Berends, W.L. Van Neerven and G.J.H. Burgers, Nucl. Phys. B297 (1988) 429

and references therein.

[5] M. Igarashi and N. Nakazawa, Nucl. Phys. B288 (1987) 301.

[6] S. Jadach, B.F.L. Ward, and Z. Wa̧s, “Global positioning of spin GPS scheme for half-

spin massive spinors”, 1998, preprint hep-ph/9905452, CERN-TH/98-235, submitted

to Eur. J. Phys. C.

[7] S. Jadach, B.F.L. Ward and Z. Wa̧s, Phys. Lett B449 (1999) 97.

[8] R. Kleiss and W.J. Stirling, Nucl.Phys. B262 (1985) 235; Phys. Lett. B179 (1986)

159.

[9] J.A.M. Vermaseren, The symbolic manipulation program FORM, versions 1-3, avail-

able via anonymous FTP from nikhefh.nikhef.nl.

[10] S. Jadach, M. Melles, B.F.L. Ward and S.A. Yost, Phys. Lett. B377 (1996) 168.

[11] A. Arbuzov et al., Phys. Lett. B383 (1996) 238; S. Jadach, M. Melles, B.F.L. Ward

and S.A. Yost, Phys. Lett. B450 (1999) 262.

[12] S. Jadach, W. Placzek, E. Richter-Wa̧s, B.F.L. Ward and Z. Wa̧s, Comput. Phys.

Commun. 102 (1997) 229.

[13] J.D. Bjorken and S.D. Drell, Relativistic Quantum Fields, ( McGraw-Hill, Menlo

Park, 1965).

[14] Z. Xu, D.-H. Zhang and L. Chang, Nucl. Phys. B291 (1987), 392.

[15] G.J. van Oldenborgh and J.A.M. Vermaseren, Zeit. Phys. C46 (1990), 425.

[16] F.A. Berends, P. De Causmaecker, R. Gastmans, R. Kleiss, W. Troost and T.T. Wu,

Nucl. Phys. B264 (1986) 243, 265.

[17] S. Jadach and B.F.L. Ward, Phys. Lett. B274 (1992) 470. The YFS3 matrix element

is the EEX3 calculation in Ref. [2].

25



Figure Captions

Fig. 1. Initial state radiation graphs for e+e− → ff with one virtual and one real photon,

for f 6= e.

Fig. 2. This is the β
(2)
1 distribution for the YFS3ff MC (YFS3ff is the EEX3 matrix

element option of the KK MC in Ref. [2]), as a function of energy cut vmax. It is divided

by the Born cross-section.

Fig. 3. Difference β
(2)
1 − β

(1)
1 for the YFS3ff MC (the EEX3 option in the KK MC), as a

function of the cut vmax. It is divided by the Born cross-section.

Fig. 4. Next-to-leading-log contribution β
(2)
1 −β

(2)
1LL for the YFS3ff MC (the EEX3 option

of the KK MC), as a function of the cut vmax. It is divided by the Born cross-section.

Fig. 5. Sub-NLL contribution β
(2)
1 − β

(2)
1NLL for the YFS3ff MC (the EEX3 option of the

KK MC), as a function of the cut vmax. It is divided by the Born cross-section.
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