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Abstract

A recently derived basic theorem on the decomposition of SO(2N) vertices is used
to obtain a complete analytic determination of all SO(10) invariant cubic super-
potential couplings involving 164 semispinors of SO(10) chirality £+ and tensor
representations. In addition to the superpotential couplings computed previously
using the basic theorem involving the 10, 120 and 126 tensor representations we
compute here couplings involving the 1, 45 and 210 dimensional tensor representa-
tions, i.e., we compute the 16:16,1, 16:16445 and 16164210 Higgs couplings in
the superpotential. A complete determination of dimension five operators in the
superpotential arising from the mediation of the 1, 45 and 210 dimensional repre-
sentations is also given. The vector couplings 16416.1, 16.+16.45 and 16416210
are also analyzed. The role of large tensor representations and the possible appli-

cation of results derived here in model building are discussed.
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1 Introduction

The group SO(10) is an interesting possible candidate for unification of interactions|1]
and there has been considerable interest recently in investigating specific grand
unified models based on this group. Thus SO(10) models have many desirable
features allowing for all the quarks and leptons of one generation to reside in the
irreducible 16 plet spinor representation of SO(10) and allowing for a natural split-
ting of Higgs doublets and Higgs triplets. Progress on the explicit computation of
SO(10) couplings has been less dramatic. Thus while good initial progress occured
in the early nineteen eightees in the introduction of oscillator techniques|2, 3, 4],
there was little further progress on this front till recently when a technique was
developed using the oscillator method which allows for the explicit computation of
SO(2N) invariant couplings[5]. It was also shown in Ref.[5] that the new technique
is specially useful in the analysis of couplings involving large tensor representa-
tions. Large tensor representations have already surfaced in several unified models
based on SO(10)[6] and one needs to address the question of fully evaluating cou-
plings involving the 16 plet of matter and Higgs with these tensors. In Ref.[5] a
complete evaluation of the cubic superpotential involving the 16 plet of matter was
given. Since 16 x 16 = 10 4+ 120, + 126, the evaluations given in Ref.[5] involved
16 — 16 — 10, 16 — 16 — 120 and 16 — 16 — 126 couplings.

In this paper we carry the analysis a step further and give a complete evaluation
of the 16 — 16 couplings which involve the SO(10) tensors 1, 45 and 210. Further,
technically the couplings of 16_16, are not necessarily the same as of 16,16_.
Thus we give a full evaluation of the 1651611, 16:16.45 and the 16:16.120
couplings. An analysis of 164161 vector couplings is also given. The analysis
given here will have direct application in the further development of SO(10) unified
models and in a fuller understanding of their detailed structure. We wish to
point out that one may also use purely group theoretic methods to compute the
Clebsch-Gordon co-efficients in the expansion of SO(10) invariant couplings. Such
an approach was used in Ref.[7] to compute the Fg couplings. Our approach is
field theoretic and is specially suited for the computation of SO(2N) couplings.
The outline of the rest of the paper is as follows: In Sec.2 we give a brief review
of the basic theorem derived in Ref.[5] which is central to the computation of
SO(2N) invariant couplings. In Sec.3 we use the basic theorem to compute the
superpotential couplings cubic in fields involving 16164 and the 1 and 45 tensor

fields. In Sec.4 a similar analysis is carried out using the 210 multiplet. In Sec.5



an analysis is given of the quartic couplings in the superpotential obtained from
the elimination of the singlet, the 45 plet and the 210 plet of heavy Higgs fields
from the cubic superpotential. Vector couplings are investigated in Sec.6. In Sec.7
the possible role of large tensor representations in model building is discussed.
Conclusions are given in Sec.8. Some of the mathematical details are discussed in
Appendices A and B.

2 Review of basic theorem for analysis of SO(2N)
couplings

In this section we give a discussion of the oscillator method[2, 3, 4] together with
a brief discussion of the basic theorem derived in Ref.[5] which is especially useful
in evaluating SO(2N) gauge and Yukawa couplings involving large tensor repre-
sentations of SO(2N). We begin by defining a set of five fermionic creation and

annihilation operators b; and bzT (1 =1,...,5) obeying the anti-commutation rules

{b:, b1y =07 {bib;}=0; {ol,bl} =0 (1)
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and represent the set of ten Hermitian operators I', (1 =1,2,..,10) by
Ty = (b +0); Toy = —i(b; — b]) (2)
where I, define a rank-10 Clifford algebra,
{T, T} =26, (3)

and ¥, = 5[[',,T,] are the 45 generators of SO(10) in the spinor representation.
%(1 + Ty) where 'y = #°T1T5...T'¢ are the SO(10) chirality operators which split

the 32-dimensional spinor W into two inequivalent spinors through the relation

1
W = 51 £ Do)V, (4)

The semi-spinor ¥y (¥(_)) transforms as a 16 (16) dimensional irreducible rep-
resentation of SO(10). ¥y (¥(_y) contains 1 + 5+ 10 (1 4+ 5+ 10) in its SU(5)
decomposition. In terms of their oscillator modes we can expand them as[2]

1 ii 1
(e >= 0> M, + abjbﬂo > M4 4

ﬂe”’“lmb}bgbjbfnm > My, (5)

1 .. ‘
Wy, >= bibbblblbt|0 > N, + EeZJklmb,ZblTbIn\O > Ny + 010 > Ni  (6)



where the SU(5) singlet state |0 > is such that b;|0 >= 0. The subscripts a,b =
1,2,3 are the generation indices. For the sake of completeness we identify the

components of a 16 plet |¥ (), > in terms of particle states so that

Ma = VICJa; Maa = Dzaa; Mgﬁ = eaﬁ’yUICJa'y; Ma4 = Elja
Mia = ULaa; Ma5 = VLa; Mza = DLaoz; Mig) = E]J:a (7)
where «, 3,7 = 1,2,3 are color indices and we adopt the convention that all

particles are left handed(L).

Our main focus is the computation of the cubic and quartic couplings in the
superpotential. As already mentioned in the introduction the couplings of the
tensor fields 10, 120 and 126 with 16 x 16 have already been computed in Ref.[5]
and here we focus on the couplings of the tensor fields 1, 45 and 210 with 16 x
16. Specifically the interactions of interest in the superpotential involving 164

semispinors are of the form

1 (ORI =
WL = hyy < 0[BTy > @ (8)
a5) 1w =, =
W£+) = Ehab < \Il(—)a’BZHV‘\D(JF)b > CDIW (9)
210 1 e =, -
W£+) = Jhab < \I’(f)a‘BF[uFVFPF/\}"IJ(Jr)b > Pppx (10)

where .
B=T] T=—i [ 1)) (11)
p=odd k=1
is an SO(10) charge conjugation operator, and
1

1)
P[MFVFPP)\} = E Z(_l) PPHP(l)FVP(Q) FﬂP(s)FAP(z;) (12)
P

with Y p denoting the sum over all permutations and dp takes on the value 0 and 1
for even and odd permutations respectively. Semi-spinors W) with a ~ stands for
chiral superfields. The result essential to the analysis of the above SO(2N) (N=5)
invariant couplings is the theorem [5] that the vertex I',I',I'y.I'y @, » where
@10 could be a large tensor representation, can be expanded in the following

form
D A O B e bgb}blt:"‘b;rz@%%%---% + (bib}blz"‘bichiic]-ck...cn + perms)
+ (bibjblz...bj;@éﬁjck...cn + perms) +..t (bz‘bjbk‘“bn—lb;@@@jﬁk--fn%cn + pe?“ms)
(13)



where we have introduced the notation ®,, = ®g; +iP9;_; and Oz, = Py; — 1Py, ;.
This is extended immediately to define the quantity Diciz,.. With an arbitrary
number of barred and unbarred indices, where each ¢ index can be expanded out
so that @, z,.. = Poic;z,... TiPoi—1¢5,.. €tc.. Further the object @.,c 5, ...c, transforms
like a reducible representation of SU(N) which can be further decomposed in its

irreducible parts.

3 The 45-plet tensor coupling

We first present the result of the trivial 16 x 16 x 1 couplings. Eq.(8) at once gives
Do (e Lo < L cimo
W, — i <NaTMb - ONEM + NaTMbZ-) H (14)
where H is an SO(10) singlet. For eg. above /NQT represents the transpose of the

chiral superfield, N, etc.. A similar analysis gives WSLI)_ and one has

1)

WL = hy, < W7, | BTy, > @

N T o
— iy (~MIN, + SMITN,;; - MEN; ) H. (15)

To compute the 16 x 16 x 45 couplings we expand the vertex X, ®,, using Eq.(12)
where ®,,, is the 45 plet tensor field

1
Sy Py = ~ (bib; sz, + bIbIPe,c, + 2b1b; e, — Doz, ) - (16)

The reducible tensors that enter in the above expansion can be decomposed into

their irreducible parts as follows

@Cngn = h7 @Cﬁj = h] + 55]h7 écicj = h ]; @agj = hZ] (17)

To normalize the SU(5) Higgs fields contained in the tensor ®,,, we carry out a
field redefinition

In terms of the normalized fields the kinetic energy of the 45 plet of Higgs
—(9A<I>W3A<I>T takes the form

ju%

kin

L45—Hzggs _ _aAHaAHT _ aaAHijaAHj‘-j . 5aAHzJaAH”T — aAH;aAH;T (19)
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The terms in Eq.(18) are only exhibited for the purpose of normalization and
the remaining supersymmetric parts are not exhibited as their normalizations are
rigidly fixed relative to the parts given above[8]. Finally, straightforward evaluation
of Eq.(9) using Eqgs.(15-17) gives

1 ; S |
wi? = %hg‘;) V5 (gNZTsz' + 7o Nay My - NaTMb) H
PN 1 o
+ (—NaTMém + §€UklmNaTiijk) Hlm
1 P
+ (—NaTlme + éeijklmN;TM{)k) Him
+2 (N3, M7 — NJTM,; ) H). (20)
From Eq.(19) one finds that the 16 5y — 16,7 — 455 couplings consist of the following
SU(5) invariant components: 5y — 5y — 1y, 10y — 100 — 1g, Iy — 1py — 1g, In —
105 — 104,105 — 5pr — 104,105 — 1as — 105,55 — 105 — 104, 105 — 10p — 244,

and 5y — 5yr — 245 couplings. One can carry out a similar analysis for W(fi) and

one finds

5 1w

4 = =~
Wi = grltab < V(nal BEw [P > P
— —hy V5 (SMEIN; + —M¥JTN,; — MTN, ) H
\/i ab [\/_ 5 ai b+ 10 a bij a b

—~ —~ 1 .. o~y o~

+ (~MTNG + SHMNEN ) i,
P, 1 o e

+ <_M3‘Nblm + ieijklmM;]TNlbc) Hlm

o~

+2 (MZFTNy,; — MEN] ) Hi). (21)

4 The 210-plet tensor coupling

We turn now to the computation of the 16 x 16 x 210 couplings. Using Eq.(12)

we decompose the vertex I',I',I' )I'x®,,,» so that

DT 0®,0 0 = 4b10E0 0, cm + 40100kl Pesz iz, + DIBIDED Do cper
bbb Peyz o5 — 6DIDI Py ez, + 6l Pe oz,
+3De, iz enzn — 12610 ® ez ez + OOIDIODIP ez, -

(22)



The tensors that appear above can be decomposed into their irreducible parts as
follows

m 1 igklm
¢ 24€z]klmh ; q)cic]-ckcl = ﬂej h

i L
Pzzemen = hijs  Pezjemen = D+ géjh

emmentn = N @Eizjzkzl =
cbcic]'cmém = hZ]v
ij L J ipJ J i J i 1 isj v
Pesema = hi + 3 <5lhk — Ophy + 0xhy — 0 hk:) T30 <5z5k - 5k51) h
q)cicjcka = h;]k + 5 (6kh” - 6lj th + 6[1hjk?)
Opzzpe = hlgp, + 5 (51 i — O3k + Sthji) (23)
where h, h', h;, h', h;;, hi, hi’"; hi,, and hj are the 1-plet, 5-plet, 5-plet, 10-plet,

10-plet, 24-plet, 40-plet, 40-plet, and 75-plet representations of SU(5), respectively.
We carry out a field redefinition such that

h= 4\/§H; h' = 8V6H"; h; = 8V/6H,;
hij — \/§Hij; hz‘j = \/§Hij; h; = \/§H;

y 2 4 2 iy 92
ik ik 7 7 3 3
hzj = \/;Hz] ) hjkl = \/;ijﬁ hkyz = \/;Hk]l (24)

Now the kinetic energy for the 210 dimensional Higgs field is —8A¢Wp)\3 )

HUPA)
which in terms of the redefined fields takes the form

L0995 — _ 9, HOAHT — OuHIOHT — 0,4H,0 Hyt
- - 1 ) .
—gaAH”aAH”T — 570aH;0"Hl; — 01H;0 H]

—gaAHﬂ’“aAHﬂkT a HL 0 H Zk—ﬁgaAHJlaAH,jf. (25)

Evaluation of Eq.(10) using Eq.(21) and the normalization of Eq.(23) gives

Wi — \[ ) \[ NiM, + - NT M} + 1NZTMb> H
3 b TN M
|
- (NgmMﬁ s NN H

V3

s 1
1 <NaTMlbm 6 zgklmNT Mbk:> Hlm

aij
ISR P
—§ (NgTMbi + gNaT;kM'”> Hi
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1 ey 1
+6€ijklmN;TM[])nHﬁlm 6 zgklmNT MijZlm

awmn

1 'l (2 7
+4N£]M“H )+ NTM,y;H + NITM,H,). (26)

We note that 16y — 165, — 210y couplings have the SU(5) invariant structure
consisting of 1y — 137 — 15,105y — 1037 — 15,55 — 5ar — 15,105 — 137 — 107,

5y —103 — 10, 1y — 100 — 105, T0x — 5ar — 1047, 55 — 5ar — 2457, T0x — 10,y — 244,
5y — 10y — 405,105 — 5pr — 40, 108 — 100 — 755, In — 5ar — 55, 58 — 1as — Hg.

An analysis similar to that for Eq.(25) gives W( 10

(210) (210)
W+— 4! hab

(210) 1 /5 (ATA 1 s 1/\TA>

—/= (M Ny + —MY”"Ny;; + -M_N; | H
\/; 2\/; a bt 10 @ bij + 5o b

V3
4
3
L3

4

< U BULLL L, DN Ly > Dpn

P 1 o
(MaTNblm + éeijklmM;]Tng> Him

(l\/flflmT/l\\Tb + (13 ”klmMTNb]k> Him
V3 (SIERG - MR
+ 112 e”klmM”TN”Hk’lm — 112 ikim T N 2 NbiiHgm

_iﬁng AN HE — MENH - MINIH,]. (27)

(210)

We note that the couplings of W,ZJr )

are in general not the same as in Wfio .
Thus some of the terms have signs which are opposite in the two sets. Further, we
note that there are in general two ways in which the 40 plet and the 40 plet can
contract with the matter fields. For the case of W(E}FO) one of the 40 plet tensor
index contracts with the tensor index in of the 10 plet of matter and similarly one
of the tensor index on the 40 contracts with the tensor index in the 10 of the 16
(see Eq.25). However, in the Wfio) couplings this is not the case. Here one of the
tensor index of 40 plet contracts with the tensor index in of the 5 plet of matter
and similarly one of the tensor index in 40 contracts with the tensor index in the
5 plet of matter (see Eq.26).

5 Quartic Couplings of the form 16 16 16 16

In phenomenological analyses one generally needs more than one Higgs represen-

tations. Hence to keep the analysis very general we not only keep the generational
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indices but also allow for mixing among Higgs representations. To that end, we as-
sume several Higgs representations of the same kind: ®x, ®,,y, ®,,0z. Consider

the superpotential

W W Wi 25
where
e — WO W W (29)
and
aex15) 1 (1) 1 (45) 1 (210)
Wigss = iq)XMXX’(I)X’ + i@wyMyy'q)WV + §q>qu/\2MZZ/ @qu/\Z" (30)

The terms W(_ll, ngi)/, W(_2J1r0)l in Eq.(28) are the same as those given by Egs.(8),
(9), and (10) except that the tensors ®, ®,,, and ®,,,\ are replaced by f)(;)@;(,
f;s) ®,,y, and f;m) D, o0z, respectively. We next eliminate ®x, @y, Puupnz as

superheavy dimension-5 operators using the F-flatness conditions:

aW(laxE) aW(lﬁxE) aW(laxE)
—=0; —=0;, —=0. (31)
6<I>X 3<I>Wy a(buyp)\z
The above leads to
WU T4 T+ To. (32)

11, I45 and Zy19 can be computed quite straightforwardly by integrating out the
heavy SO(10) singlet, 45 and 210 plets fields in the superpotential. Details are
given in Appendix A. We record here the results.

1 DU S U
Ti = ~Aapea~NEMPNE ME 4 4NTM,,NT, MY — aNTM,,N/TM,

- 5 aij

+ANTM,NE MY — SNIM,NI"M,; — 4aNTM,NIM,]  (33)

(45) (45) (45) (45)

I45 = (_4)‘ad,cb + 11Aab,cd) NZT]-/\\/-[biNgTMdj +8 (Aad,cb + )‘ab,cd) NiTMbjﬁgkmsj

+ (4)‘;4;,)01; - 7&45,14) ﬁiTﬁbi/N\g;kﬁék + (4)‘;4;,)01; + )‘;4b5,)cd) ﬁgmbﬁT 1\7[27

cij

(45)

1 o P S
+_)‘ab,cd[_8€”klmNT M NE M, — 8¢ipm NTM NFTMI™ — 16NE, M/ NT, MY

4 aij aik cjl
L3N MYNT, N + 24NN, NN, — 20NN, N8,
(34)
1 e e e~ v s
Toro = — 5[4 (18N g — 25 ) NETMENIT My + 16 (Mg + 5 c0) NoTMy, NG MY



where

(45)

(210) (210) \ $HTR T ~GT ik (210) (210) \ GTR T 3T N Fij

+12 (_2/\ad,cb + 3/\ab,cd) Na MbichkMd +4 (_6/\ad,cb + /\ab,cd) Na MchijMd
(210) (210) \ 5T /\Z]/\T Sakl (210) (210) \ TR 7 ~Fi TN &

+ (8)\ad,cb + 25)\ab,cd) Naiij chled +8 (8)\ad,cb + )\ab,cd) Na Mch Mdl]

(210) TR NT N NT N NN NFT N NT NFINT ol

+5NTM,NTM,}]
(35)

)\fllb),Cd _ hfllb)h;l)f;l) [(M(l) +M(1)T)—1 {M(l) (M(l) +M(1)T)—1 B 1H f(l)

xxr

Nvea =iy by 7 [(ME7 4 M) M (MO ™) )]

vy Y

(210) (210) , (210) .(210) (210) (210)T\ —1 (210) (210) (210)T\ —1 (210)
N = By 1 (M M) (e T ]

zz " Z

(36)

The exact same technique can be used to compute the quartic couplings of the form
[1616]10[1616]10, [1616]120[1616]120, and [1616]155[1616]196 arising from the elimina-
tion of the 10 plet, the 120 plet and the 126 plet of heavy Higgs using the cubic
couplings already derived in Ref.[5]. Similarly one can compute [1616)[1616] and

[1616][1616] couplings using the technique above.

6 Vector Couplings

For the construction of couplings of vector fields with 164 plets it is natural to

consider the couplings of the 1 and 45 vector fields as abelian and Yang-Mills

gauge interactions. However, one cannot do the same for the 164164210 couplings.

These couplings cannot be treated as gauge couplings as there are no corresponding

Yang-Mills interactions for the 210 plet. For this reason we focus here first on the

computation of the gauge couplings of the 1 and 45 plet of vector fields. The

supersymmetric kinetic energy and gauge couplings of the chiral superfield ¢2 can

be written in the usual superfield notation

/ 440 tr($tes” ) (37)

where V is the Lie valued vector superfield. Similarly the supersymmetric Yang-

Mills part of the Lagrangian can be gotten from

/ 420 tr(WoW,,)) + / 420 tr (W W) (38)
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where W, is the field strength chiral spinor superfield. Since supersymmetry does
not play any special role in the analysis of SO(10) Clebsch-Gordon co-efficients,
we will display in the analysis here only the parts of the Lagrangian relevant for
our discussion. Thus the interactions of the 16, of fermions with gauge vectors

for the 1 and 45 plet cases are given by

LY, = g0 < a7y [Ty, > By (39)
45 11 (45)
Lsr+) = gggab < ‘I’(+)a’707AZuu“I’(+)b > Paw (40)

where 74(A, B = 0 — 3) spans the Clifford algebra associated with the Lorentz
group, ¢’s are the gauge coupling constants, and ®,4 and ®,,, are gauge tensors
L™ with v,

__, J—

of dimensionality 1 and 45, respectively. Similarly one defines L
replaced by W_ in Egs.(38) and (39).
We first present the result of the trivial 16 x 16 x 1 couplings. Eqs.(38) and

(12) at once give
_ 1 o
LD — g (MWAM;, My MY + MQVAM,,i) Ga. (41)

The barred matter fields are defined so that M;; = Mm”y etc.

A similar analysis gives L™ and one has

&8
LY = g0 < Ul [Ty > Da
oW (& 1 ij = ;
= goy (Na’yANb + iNijNbij + Nai’yANb> Ga. (42)
We next discuss the couplings of the 45 plet gauge tensor ®4,, whose decompo-
sition in terms of reducible SU(5) tensors can be written similar to Eq.(15). This

can be further reduced into irreducible parts similar to Eq.(16) by
1 o
Pacoe, =847 Pac; =8a;+ 55;-&; Poacie; = 815 Pazz; = 8aij (43)
and normalized so that
g4 = 2v5G; 8aij = \/iGAiﬁ g1 = V2G; gf4j = \/§Gf4j- (44)

The kinetic energy for the 45-plet is given by —;F % Fap,, where F/P is the 45
of SO(10) field strength tensor. In terms of the redefined fields, 45-plet’s kinetic
energy takes the form

11

395G (1)

auge ]‘ ) ?
L " = =5 Gapg """ — Q,QQABJQ“
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As mentioned in the beginning of this section we do not exhibit the gaugino and
D terms needed for supersymmetry since their normalization is fixed relative to
terms exhibited in Eq.(44). Using Egs.(39), (15) and the above normalizations we
find

3 1 P
Lgﬁ) = 9((14;) [V5 <—3Ma’YAsz' + TOMaijVAMb] + Ma’YAMb> Ga

1 /— 1 ...,
+E <Ma7AMlbm + QEZ]klmMaiﬂAMbk> Gaim

1 /— 1 i j m
_ﬁ (Malm’yAMb + aeijklmMaﬁ)/AMik> Gf4
+V2 (Mm-wAij + Mﬂ’YAsz') 451 (46)

A similar analysis gives
@s) _ 11 @y
L = e

4 3— ; 1 —; —
= g((zbS) V5 (gNaﬁANi - TONJVAszj - NﬂANb> Ga

. 1.
+— (Nfl YN, + §€Z]klmNaﬂAijk> Gaim

<Vl S Y > Pap

_ 1 N
—— (NaVAszm + iez‘jkszaJVANf) Gl

—V2 (N(Jl YA Npri + NaﬂANi) il (47)

We discuss now the 210 vector multiplet. This vector mutiplet is not a gauge
multiplet with the usual Yang-Mills interactions. This makes the multiplet rather
pathological and it cannot be treated in a normal fashion. Specifically Eq.(37) is
not valid for this case in any direct fashion. However, for the sake of completeness,
we present here the SO(10) globally invariant couplings corresponding to Eq.(40).

Thus we we have

1 o
Lf}rm = Egab < \Ij(+)a’707AF[urvrpF>\]’\Ij(+)b > D awpx- (48)

To compute the couplings we carry out expansions similar to Egs.(21) and (22)

and to normalize the fields we carry out a field redefinition

10 | |
ga =45 Ga g1 =8V0Gy; gai=8V6Gy
gi{ = \/ﬁGfZ% gAij = \/ﬁGAzj; gqu = \/§Gf4j

g 92 A 2 . NI
ijk ijk 7 % . ) L
ga = \/;sz v BAjkl = \/; Ajkl> S = /3 Akl (49)
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so that the 210-plet’s kinetic energy —iFAVB;AFABWp,\ takes the form

17
—oauge 1 1, y 11 ”
Li}ﬁi gouge — ——gABgABT — §QABQAB f— 55@{39’43”
1 1 1
AB ijk ABz ikt ABk:l

As discussed above, the 210 vector multiplet is not a gauge multiplet and thus the
quantity G4p is just an ordinary curl. Using Eqgs.(47), (21) and the normalizations

of Eq.(49) one can compute L(f}ro). One finds
1 21 — 1 ii 11—
LZY = —gu V5 (Ma’YAMb - 1—0MaiﬂAMb] + 5Ma’YAsz') Ga

\/_ ab
V3 7/ — 1
+7 <—Ma7AMém + EEZ]klmMaiﬂAMbk) Gaim
3/ 1
+§ (—Malm”YAMb + EEijklmMa’YAMz];k) foxn

1
+\/_ ( Asz + 3Mazkﬁ)/AMk]> A]
1 .., — 1 n ~kim
—§€”klmMam7AMbijkalm 3€zgkzmMﬂAM] GHr
1
QMGU’}/AMMG kl+2Ma7AMbGAZ+2Ma7 M, GY]. (51)

A similar analysis gives

L(210) _ 1 o

-— = 4|gab < \I/(—)GWOVAP[MFVF/JFA]‘\Ij(—)b > ©auwpr

1
_g(210) [\/g (Naﬁ)/ANb

1 1—
_ —N74AN,, N, ANZ)G
\/6 ab aﬁy bj+5 7 A

10
V3 [—im 1 ..,
+7 (Na VANb o aewklmNai’YAijkz) GAlm
V3

_ 1 y "
+7 (Na’YANblm — 6€ijklmNa]’YAlef> Gl

+v3 <_Nai’7AN{) + gNikVAkai)
1 ... 1
+6€”klmNan’7ANbij Glim + 6€UklmN JVANnlem
Lkl 4 ij 5 AN T AN (i

Supersymmetrizations of Egs.(51) and (52) requires that we deal with a massive

vector multiplet and this topic will be dealt with elsewhere[10].
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7 Possible role of large tensor representations in
model building

Most of the model building in SO(10) has occured using small Higgs representations|9]
and large representations are generally avoided as they lead to non-perturbative
physics above the grand unified scale. However, for the purposes of physics below
the grand unified scale, the existence of non-perturbativity above the unfied scale
is not a central concern since the region above this scale in any case cannot be
fully understood without taking into account quantum gravity effects. Thus there
is no fundamental reason not to consider model building which allows for couplings
with large tensor representations. Indeed large tensor representations have some
very interesting and desirable features. Thus, for example, if the 126 develops a
VEV in the direction of 45 of SU(5) one can get the ratio 3:1 in the 7227 ele-
ment of the lepton vs. the down quark sector in a natural fashion as desired in
the Georgi-Jarlskog textures[11]. A similar 3:1 ratio also appears in the 120 plet
couplings. Because of this feature the tensor representations 120 and 126 have
already appeared in several analyses of lepton and quark textures[6]. Further, it
was pointed out in Ref.[5] that the tensor representation 126 may also play a role
in suppressing proton decay arising from dimension five operators in supersym-
metric models. This is so because couplings involving 126 plet of Higgs to 16 plet
of matter do not give rise to dimension five operators. The result derived here in-
cluding the computation of cubic and quartic couplings may find application also
in the study of neutrino masses and mixings. Thus, for example, one may consider
contributions to the neutrino mass (N) and to the up quark mass (U) from the
contraction [16,165]45[16,16]s5. From Eq.(33) we find that a contribution to N
arises from the fifth term in the bracket of Eq.(33) while the contribution to U
arises from the second term in the bracket of Eq.(33). Now comparing the above
with Eq.(8) of Ref.[5] for the 10 plet Higgs coupling which gives a N:U ratio of
1:1 we find that the two couplings refered to above in Eq.(33) give N:U=3:8 in
agreement with Ref.[12]. Regarding the 210 dimensional tensor, such a mutiplet
could play a role in the quark-lepton and neutrino mass textures. The role of a
210 dimensional vector multiplet is less clear. One possible way it may surface
in low energy physics is as a condensate field. However, this topic needs further
exploration. A more detailed discussion of model building including large tensor

representations is under investigation.
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8 Conclusion

In this paper we have given a complete determination of the SO(10) invariant
couplings 16+ — 164 — 1, 165 — 164 — 45 and 16+ — 164 — 210 in the superpotential
in their SU(5) decomposed form. Further, we have computed all the allowed
quartic interactions in the superpotential of the type 16:16416:16.. We also
exhibited a technique which is much simpler and involves elimination of heavy
fields in cubic couplings in their SU(5) decomposed form. These techniques can be
directly applied to the computation of quartic couplings of the type 16, 16,16, 16,
using cubic couplings involving 16,16, with the 10, 120 and 126 tensor multiplets
which have already been computed in the work of Ref.[5]. An analysis of vector
couplings involving the SO(10) vector mutiplets 1, 45 and 210 was also given. In
all of our analysis we have made explicit use of the theorem developed in Ref[5] on
the decomposition of SO(10) vertices which allows the complete determination of
the couplings with large tensor representations. It would be very straightforward
now to expand all the SU(5) invariants in terms of SU(3)c x SU(2), x U(1)y
invariants using the particle assignments given by Eq.(7) and an example of this is
given in Appendix B. We also discussed in this paper some interesting features of

large tensor representations and the role they may play in future model building.
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10 Appendix A

We expand here on the technique for the elimination of heavy fields for the case
when the fields belong to a large tensor representation. There are infact three

approaches one can use in affecting this elimination. The first one is the direct
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approach where one eliminates the heavy large Higgs representation in its SO(10)
form. While this is the most straightforward approach the disadvantage is that
the analysis of dimension 4 operators cannot be directly made use of and one
has to carry out the entire computation from scratch. An alternative possibility
is that one utilizes the result of computations of dimension 4 operators already
done to compute dimension five operators. In this case, however, since all the
heavy Higgs fields are in their SU(5) irreducible representations the elimination
of such fields would involve cross cancellations which are quite delicate. Thus, for
example, in its SU(5) decomposition 210 = 1+ 5+ 5+ 10+ 10 + 24 + 40 + 40+ 75
and elimination of these involve cancellations between the 10 and the 40 plet
contributions, between the 10 and the 40 plet contributions, and between the 1,
24 and 75 plet contributions. Such cancellations make the analysis tedious once
again. It turns out that there is yet a third possibility which is to derive the
dimension 4 operators in SU(5) decomposition leaving the SU(5) fields in their
reducible form where possible, i.e., to use Eq.(13) without further reduction of
the tensor fields in their irreducible components. Thus, for example, in this case
one would carry out the following SU(5) decomposition of the SO(10) tensor,
210 = 5+ 5+ 50 + 50 + 100 where 50, 50, 100 are reducible SU(5) representations.
After computing the dimension 4 operators in terms of these tensors one eliminates
them. This method has the advantage of having the cancellations of the second
approach already built in. We give now more details of the three approaches.

We begin by discussion of the first approach where one eliminates the heavy
fields in the superpotential before one carries out an SU(5) decomposition. Here

on using the flatness conditions one finds

1)

T, = 2’Xabcd < qy* |13|qy(+'b >< q} |13|QJ(*_ (523)
1. s N
Tys = _éAab,cd[ |BF I, |\Il (+)p >< \I/ |BFHP |\Il (+)d >
—10 < W), | BIW 4y, >< W7 |BIU(4)a >] (54)

Expansion in oscillator modes gives

(45)

L5 = Agpoal—4 < W[y Bbibj |V 1y >< Wi | BbIbIW(4)q >
+4 < \I!f_)a|Bbibj|\I/(+)b >< \I!Z‘_)C|Bbjbi|\fl(+)d >
—4 < U7 | BOL b, W gy >< W1 | BT (1) >

+5 < W BBy, >< W BT >, (55)
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A similar analysis for the 210 plet field gives

1
2210 _ _A(210)

553 abcd < @f_)a|BruryrprA|@(+)b >< @f_)C|BruryrprA|\I/(+)d >

—52 < W) | BT LW gy >< U | BT, T [V >

+240 < U7 | B[ sy >< Uiy | BV (1)q >]

1 ~ ~ ~ ~
= — g haneal8 < UTa [ BOIbbb| Ty >< U | BUBLO b W10 >

—6 < \I/* |Bb bkbl|\11 (+)p >< \I/* |Bbkblb b; |\I/(+ d >
+24 < W7 | Bl Wy, >< \I/f_)C|Bb§bLbnbi|\I/(+)d >
—12 < W7 | BOIOH W 4y, >< W) | BB bobibs | W 4y >
—12 < W), |Bbid;| W 4 >< i), | BOIOIO b, [ W (1) >
—6 < \I/* ol BbY, b W4y >< \IJ* | BOL D, W (4a >
—6 < W), | BIW (s >< Wiy | B, bbby ¥ ()0 >
+18 < \I!f_)a|Bbibj|\I/(+)b >< U | BUIb! W (1) >
+24 < U7 | BW 4y >< Ui | BY]ba |V (10 >

—15 < W), |B[W iy >< U | B[¥ (40 >]. (56)

Although this is the most straigtforward technique, one has to carry out the entire
analysis ab initio which can be very labor intensive for the case of large tensor
representations.

We discuss now the second approach where one decomposes the large tensor
representations in its irreducible SU(5) components and utilizes the results of the
cubic superpotential already computed to derive dimension five operators. For
illustration we consider the elimination of the 45 plet in the 16 — 16 — 45 coupling
and for simplicity we consider only one generation of Higgs. We begin by displaying

the 45 plet mass term in terms of its irreducible SU(5) components

1 » .
_M(45)CI)WCI)W = 5/\4(45) [HUHU - H;'Hg - Hﬂ ' (57)

The superpotential is given by

(45) T0/45)ij (10/45) i 7(24/45)] i
WY = JOUASIH 4 JOOMSYGIH, o g0 4 g Y

(58)
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where

5 4 3 1 o~y
J(/45) _ /Qh( %) <5NZT1\/[bZ + 1ON“T;JM” NaTMb>
o h(45) PN 1
J(10/45)lm — \a/% (_NaTMém 2 Z]klmNalmek)

45)

4(0/15) _ P ( NT
\/§

alm

1 o
Mb + §€ijklmNZTMik

Ilm

aik

JEVOT = ok, (NEMY — NITM, ) . (59)

Eliminating the irreducible SU(5) heavy Higgs fields through F-flatness conditions

taking care of the tracelessnes condition for Hl-j one gets

s = /\1/1(45) [5J(1/45) J(1/45) . QOJ(E/45)Z‘J‘ Ji(310/45)

+5Ji(24/45)j J](,24/45)i _ Jr(r?4/45)m J7(124/45)n]' (60)

ly5 computed above is the same as Zy5 given by Eq.(34) using the direct method
(45) | (45)
(45)

with h% (Zg;i replaced by —4\,, ;. As pointed out in the beginning of this ap-

pendix one has cancellations in this procedure between the contributions arising
from elimination of the 1 plet and the 24 plet. Such cancellations become more
abundant for the 210 plet case. Thus for this case it is more convenient to decom-
pose the 210 plet into reducible SU(5) tensors. We begin by exhibiting the mass

term for this case

(210) (210)

1. 3
—M D Py = M — KRR, KWKZM%— 1 KEK3 (61)

16 ik 4 ! 6
where KM, K, KIF, K’ and KiJ are the 5plet, 5plet, 50plet, 50plet and 100plet

representations of SU(5). As before we keep only one generation of Higgs. The

0)

superpotential w?! 4 in this case may be written as

W2_1£) _ JZ(]E)k/flo)K’L]kl+J(5/210)i_jle +J(50/210)ZK”k+Jl(m/210)i]kKﬁjk

(50/210) ijn (50/210)ij e (100/210)ij 1kl (100/210)j cin
N ) (G| K+ g KH 4 Ko

ign

+J(100/210) Kmn (62)

where

J(5/210) . (210)

|Bb blt:b“@(—k)b >
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- h(210) =R
J(6/210)ijkl _ ;Z < \Il* |Bbibjbkbl|\11(+)b >
J(50/210)l hfbm) NTh Buiviviv 1w
ik 6 ()al BUDBIW (130 >
(210)

(B0/210)kt _ _hg

A(_)Q|Bbjbjbkbl|@(+)b >
(210)

ha T, * \T
s o

(210)

J(30/210)ij _ 4 < \Il* |Bb b |\I/ ()b >

(100/210)kl h((fbm) T % Tpt ST

7
(210)

T
Ji(100/210)a 2 < \I/* |Bb b |‘I’ ()b =~

h(210)
J(100/210) — < W7, |BT gy > (63)

Eliminating the reducible SU(5) Higgs fields through the F-flatness condition we
get

lyyo = _3/\/11(210) [4J(100/210 ij Ji(];00/210)k1 i 8J£s]()0/210)mi Ji(100/210)j

+8J(100/210)mnj(100/210) + 3J(100/210)jJ(100/210)i
J(100/210 m Jt (100/210)n 16J¢! (100/210)m 7(100/210)
i (5/210)
+40{](100/210 J(100/210) + 48J(5/210 ]kl(]ijk{l
+12Jl(50/210)ijkJi(]5lg/210)l + 12JT(’?0/210)mij Ji(]§0/210)
+12J(E/210)ijji(357?1/210)m + 12J(E/210)ijji(]50/210)]' (64)

One may now check that ly;g derived above coincides with Zso given by Eq.(56)
(210) , (210)
using the direct method when we make the identification % with 4)\a2blid

11 Appendix B

In this appendix we expand some of the SO(10) interactions in the familiar particle
notation and exhibit the differences between some of the 16 — 16 — 45 and the
16 — 16 — 210 couplings. We start by looking at the gauge interactions of the 24
plet of SU(5) in 16 — 16 — 45 coupling. We can read this off from the last term in
Eq.(45). Disregarding the front factor, this term is of the form

(45) (~r B ¢ i
Loyas5 = gaf (Mm‘WAMlZJ +M27Asz‘) Aj (65)
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An expansion of Eq.(65) using the SM particle states defined by Eq.(7) gives

L Az — Az
Losis = guy > [Ua”YAVf‘?Ub T Da’yAVZ?Db]

r=1
(45) 3 A 14 = ,4 U
+9, [v E WY y( > +(U D), wy v < ) ]
’ yz:=1 ( )‘1 42 \E )/, 42\D/,
@) |3, 1 —— 4 _ _ a 1 /— 4 — 4
+Gap g[_§ (EaL’Y BaE,, +Vary BAVbL) +6 (UQL’Y BaUy, + Dary BADbL)

2 1— -
+§UaR'7ABAUbR — gDaRVABADbR — E,x7'BaE)
T (66)

where V7 is an SU(3) octet of gluons, W¥ is an SU(2) isovector of intermediate
bosons, B4 is the hypercharge boson, 7, and A, are the usual Pauli and Gell-Mann
matrices, and the dots stand for the couplings of the lepto-quark/diquark bosons
to fermions. The above result, of course, contains the SM interactions. Next, let us
look at the vector interaction of the 24 plet of SU(5) in the 16 — 16 — 210 coupling.
This can be read off from Eq.(51) and one has

(210) 1—
Lossa10 = Q;bm ( Ma’YAsz 3Mazk’YAMk]> A]
(210)
lg, (210) Ao
= gg(;fm)ﬁm/% {g(fblo Z DaR’YAVA—DbR
ab r=1

(210)

37 1 /— o 1—
+Gap \/g [—5 (EaL’YABAEbL + VaL”YABAVbL) - gDaR’YABADbR}

3
(210) - T, 14
" (7 B, WAS (f) ) 6D

y=1

Eq.(67) shows that the 24 plet of SU(5) couplings in 16 — 16 — 210, unlike the case
of the 24 plet couplings in 16 — 16 — 45, do not contain the same exact interactions
as in the Standard Model, as for example, the octet of color vector bosons Vi has

both vector and axial vector interactions.
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