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Abstract

The future LHCb experiment at the Large Hadron Collider (LHC) at CERN will per-
form precision measurements of CP violation parameters in the neutral B systems. In
this thesis the performance of the LHCb RICH system is evaluated, and the feasibil-
ity of a measurement of the CP violation parameter γ, using the decays B0

d → D∗−π+,
B0

d → D∗−π+ and their CP conjugates, is investigated.
Efficient methods for the reconstruction of B0

d → D∗−π+ decays at LHCb are developed.
Using the GEANT–based LHCb detector simulation program SICb, the reconstruction
efficiencies and signal to background ratios are estimated. It is demonstrated that the
decay channel B0

d → D∗−π+ can provide a precision in γ of a few degrees after one year
of LHCb data taking.

A full–scale prototype of the LHCb RICH 2 detector has been tested in a testbeam
at CERN in Summer 1998. It is shown to work according to expectation, in particular
in the defining aspects of a RICH detector, the photon yield and the Cherenkov angle
resolution. These results demonstrate that the LHCb RICH detectors are well understood
and give confidence in the model of the RICH system used in the simulation studies for
LHCb detector optimisation. In a testbeam in Summer 1999 a RICH prototype was
tested using a 3×3 cluster of Multi–anode Photo Multiplier Tubes equipped with lenses.
The tubes were read out within the LHC bunch–crossing interval of 25 ns for the first
time. It is demonstrated that the MaPMT performs well and is a suitable photodetector
for the LHCb RICH.
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Introduction

The future LHCb experiment is designed to
perform high precision CP violation mea-
surements in the B system. It is one of
the four experiments at the LHC collider
at CERN, which is under construction and
scheduled to start operation in 2006.

The research presented in this thesis is con-
cerned with the following aspects of the
LHCb project:

• The LHCb RICH system, which pro-
vides particle identification. This is
essential for obtaining the clean data
samples needed for the LHCb physics
programme.

• The feasibility of a measurement of the
CKM angle γ at LHCb, using the decay
B0

d → D∗π.

The structure of this document is as follows:

Chapter 1 introduces the formalism to de-
scribe CP violation in the B0

d system and
reviews the status of CP violation in the
Standard Model. The motivation for preci-
sion measurements of CP violation param-
eters in the B0 system with LHCb is given,
in particular for the measurement of the
CKM angle γ. The channel B0

d → D∗π is
introduced as a theoretically clean way of
obtaining γ.

This is followed by an introduction to
the LHCb experiment in chapter 2. An
overview of the main detector components
is given; the LHCb RICH is motivated
and described in detail. This chapter
summarises the LHCb detector design and
draws on the following sources: [TP98],
[RIC00], [Mag00], [Cal00], [GAM00].

Chapters 3, 4, and 5 present the research
performed by the author.

In chapter 3, the feasibility of a γ measure-
ment at LHCb with the channel B0

d → D∗π
is investigated. Efficient reconstruction
techniques are developed. From event sam-
ples generated with the LHCb detector sim-
ulation program SICb, signal yields and pu-
rites for the B0

d → D∗π reconstruction are
calculated. The results are used to estimate
the precision on γ achievable at LHCb.

In chapters 4 and 5 data from beam tests
of RICH prototypes are analysed. Chap-
ter 4 investigates the performance of a full-
scale prototype of the RICH 2 detector.
The results presented in chapter 5 focus
on the photo detector choice for the LHCb
RICH. Results from a test of a RICH proto-
type equipped with a cluster of Multi-anode
Photo Multiplier Tubes, read out with high-
speed electronics, are presented.

The conclusion in chapter 6 summarises

xxv
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the results obtained in the previous chap-
ters.



Chapter 1

CP Violation, γ, and B0
d→ D∗π

1.1 Overview

In this chapter, the formalism to describe
CP violation in the B0

d system is developed,
and the theory of CP violation in the Stan-
dard Model is reviewed. More complete ac-
counts of the Standard Model, CP Violation
and the B0

d system can be found in the fol-
lowing publications: [PS97, BS00, HQ98].

Firstly the operations of C, P , and T
are introduced in a the context of a La-
grangian field theory. Then CP viola-
tion in the B0

d system, and the observables
in measurements of time-dependent decay
rate asymmetries are described in a model–
independent way in section 1.3.

How CP violation is accommodated in the
Standard Model of particle physics is dis-
cussed in section 1.4. The close relationship
between CP violation and the generation of
fermion masses in the Standard Model is
demonstrated, which is the largest source
of free parameters in the Standard Model.
It will also be shown that CP violation mea-
surements are particularly suitable to over-
constrain the Standard Model and search
for New Physics.

The description of CP violation in terms
of unitarity triangles is introduced in sec-
tion 1.4.9. The current experimental status
of the CP violation in the Standard Model
will be reviewed. It will become apparent
why CP violation is expected to be large in
the B0 system. The variables of the model-
independent description of the B0

d system
are related to Standard Model model pa-
rameters, and the significance of the param-
eter γ is discussed.

The channel B0
d → D∗π as a method of mea-

suring γ is introduced in section 1.5. The
significance of this measurement in the con-
text of other γ measurements is shown.
The parameters used in chapter 3 are in-
troduced, where the feasibility of a γ mea-
surement with B0

d → D∗π at LHCb is inves-
tigated.

1.2 C, P, and T

Two different kinds of symmetry operations
can be distinguished, continuous and dis-
crete symmetries. Examples for continuous
symmetry operations are rotation in space
and translation in time. That those symme-

1
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tries, and the associated conservation laws
for angular momentum and energy, hold ex-
actly is fundamental to our understanding
of physics.

On the other hand, while it seems intu-
itively appealing that the laws of physics
should also be invariant under discrete sym-
metries like mirror reflection, they are not
[LY56], and it turns out that it is possible to
construct physical theories that “naturally”
accommodate this.

CP is the combined operation of charge con-
jugation and parity. Charge conjugation,
C, is the exchange of a particle with its an-
tiparticle. Parity, P , is a mirror reflection
followed by a 180◦ rotation.

So far, CP violation has only been un-
ambiguously observed in the kaon system
[CCFT64]. It is anticipated however, that
CP violation effects are much larger in the
B0 system. Clear evidence for this is ex-
pected soon from measurements at the B–
factories and the Tevatron.

CP is related to the time reversal operator,
T , which reverses the direction of motion,
via the combined operation CPT . CPT is
an exact symmetry in any local Lagrangian
field theory. CP violation and T violation
are therefore equivalent.

1.2.1 Field Operators and C,
P, T

Modern particle physics is described in the
language of quantum field theories. De-
scribing CP violation in this context re-

quires the transformation properties of the
relevant fields under the symmetry opera-
tions. Below, the transformation properties
of spin 0, spin 1, and spin 1

2
fields under the

operations of C, P and, for completeness,
T , are summarised.

Eigenvalues

All of the symmetry operators are their
own inverse:

C2 = 1, P2 = 1, T 2 = 1 (1.1)

Therefore the possible eigenvalues are 1 and
−1.

Charge Conjugation

The operation of charge conjugation, de-
noted by C, replaces all particles with their
antiparticles. The field operators of spin 1,
spin 0, and spin 1

2
fields transform under C

as follows:

Spin 1 fields

CAµ (t, ~x) C−1 = −Aµ (t, ~x) (1.2)

Spin 0 fields

Cφ (t, ~x) C−1 = φ† (t, ~x) (1.3)

Spin 1
2

fields

Cψ (t, ~x) C−1 = iγ2γ0 tψ̄ (t, ~x) (1.4)

where the index t stands for transposition,
and γi are the Dirac γ matrices.
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Parity

Parity, denoted by P , is the operation of re-
placing all space coordinates xa with −xa,
which is the effect of a mirror reflection fol-
lowed by a 180◦ rotation.

The effect of parity on the field operators is
given by:

Spin 1 fields

PAµ (t, ~x)P−1 = Aµ (t,−~x) (1.5)

Spin 0 fields

Pφ (t, ~x)P−1 = φ (t,−~x) (1.6)

Spin 1
2

fields

Pψ (t, ~x)P−1 = γ0ψ (t,−~x) (1.7)

This operation reverses the momentum of
a particle, but it does not change angular
momentum or spin. It therefore transforms
left-handed particles, which have their spins
pointing opposite to the direction of mo-
tion, into right–handed particles, with the
spin pointing into the direction of motion.

In section 1.4.1 the notion of left-handed
and right-handed fermions will play an im-
portant role. We will use the following no-
tation for left and right-handed fermionic
fields:

ψL = left-handed field

ψR = right-handed field

The operator 1
2

(1− γ5) projects out the
left-handed component of a Dirac-field:

ψL (t, ~x) ≡ 1

2
(1− γ5)ψ (t, ~x) . (1.8)

Similarly for the right-handed component:

ψR (t, ~x) ≡ 1

2
(1 + γ5)ψ (t, ~x) . (1.9)

Using {γ5, γ0} = 0:

PψL (t, ~x)P−1 = γ0ψR (t,−~x) . (1.10)

Time Reversal

Time reversal, denoted by T , transforms
t → −t and thus reverses the direction of
motion. It reverses both the momentum,
~p → −~p, and the spin, ~s → −~s and there-
fore does not change the handedness of a
particle. The effect on the field operators is:

Spin 1 fields

T Aµ (t, ~x) T −1 = Aµ (−t, ~x) (1.11)

Spin 0 fields

Pφ (t, ~x)P−1 = φ (−t, ~x) (1.12)

Spin 1
2

fields

T ψ (t, ~x) T −1 = γ1γ3ψ (−t, ~x) (1.13)

1.2.2 CP in a Lagrangian
Field Theory

In order to be able to see whether a La-
grangian is invariant under CP or not, we
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Table 1.1: Transformation Properties

Dirac bilinears (fermionic fields)
scalar pseudoscalar vector axial vector

O ψ̄iψj iψ̄iγ
5ψj ψ̄iγ

µψj ψ̄iγ
µγ5ψj

(CP)O (CP)−1 ψ̄jψi −iψ̄jγ5ψi −ψ̄iγµψj −ψ̄iγµγ5ψj

Bosons and the derivative operator
scalar pseudoscalar vector boson derivative

O H A W±µ ∂µ
(CP)O (CP)−1 H −A −W∓

µ ∂µ

need to know how it transforms under this
operation. A list of the transformation
properties of the relevant building blocks of
the Lagrangian is given in table 1.1 (from
[HQ98]).

Taking into account the Lorentz invariance
and hermiticity of the Lagrangian, the CP
transformation rules in table 1.1 imply that
any allowed term built from a combination
of the fields and derivatives listed in ta-
ble 1.1 transforms to its Hermitian conju-
gate under CP . Coefficients in front of such
terms however do not change. Hence CP
is equivalent to complex–conjugating these
coefficients, and therefore any Lagrangian
containing complex coefficients may violate
CP .

It is of course possible that such complex co-
efficients are merely physically meaningless
phases, in which case they can be removed
by re-defining the phases of the fields. The
Lagrangian of the electroweak theory is an
example where such a re-definition is not
possible and one complex phase remains.
This is the source of CP violation in the

Standard Model and is treated in more de-
tail in section 1.4.7.

1.3 Model–Independent

Description of the

Neutral B0–System

1.3.1 Introduction

When B0
d mesons are produced at the LHC,

they are created in the hadronisation of
quarks with definite flavour:

B0
d = (b̄, d) B0

d = (b, d̄)

However, due to the electroweak interac-
tions these flavour eigenstates are not the
mass–eigenstates of the B0

d mesons. As
a consequence, the flavour eigenstates B0

d

and B0
d mix to form the mass and lifetime

eigenstates, BH, and BL.

|BH,L〉 = p|B0〉 ∓ q|B0〉,
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The operation of CP transforms one flavour
eigenstate to the other; it is defined up to
an arbitrary phase α:

CP|B0〉 = eiα|B0〉

In the absence of CP violation, the mass
eigenstates would would be identical to the
eigenstates of the CP operator. Conversely,
if BH and BL are not CP eigenstates, and if
their is no phase convention in which they
are, then there is CP violation in the B0

d–B0
d

mixing.

CP violation in the mixing is in fact be-
lieved to be negligible in the B0

d system.
The relevant type of CP violation for the
scope of this thesis, is CP violation in the
interference between decays with and with-
out mixing.

Below, these ideas will be examined in a
more formal manner. The parameters de-
scribing CP violation in the B0

d system will
be related to observables in time dependent
decay rates. The formalism developed here
will be used later in chapter 3 to describe
CP violation in the decay B0

d → D∗π.

In principle, the following discussion is valid
for any system of two distinct, CP conju-
gate neutral particles, like the K0 and the
B0

s system. However, the assumption made
below, that the life–time difference between
the mass eigenstates is negligible, is valid
for B0

d system only.

1.3.2 Evolution of the B0-B0

system

The Schrödinger Equation for a superposi-
tion of flavour eigenstates, a|B0〉+ b|B0〉, is:

i
d

dt

(
a
b

)
= H

(
a
b

)
. (1.14)

This is the Schrödinger Equation restricted
to the |B0〉− |B0〉 subspace of state vectors.
The full Schrödinger Equation always has a
Hermitian Hamiltonian, leaving the length
of the state–vector constant in time. But as
the system is allowed to leave the |B0〉−|B0〉
subspace by decaying to other particles, H
in equation 1.14 will not be Hermitian. Any
matrix can be expressed as the sum of an
Hermitian and an anti-Hermitian matrix:

H =
1

2

(
H + H†

)
+

1

2

(
H−H†

)
= M− i

2
Γ,

(1.15)

where the Hermitian matrices M and Γ are
defined by:

M ≡ 1

2

(
H + H†

)
, Γ ≡ i

(
H−H†

)
.

(1.16)

From CPT invariance:

〈B0|H|B0〉 = 〈B0|H|B0〉. (1.17)

Therefore the diagonal elements of H are
the same and H can be written as:

H =

(
h11 h12

h21 h11

)
. (1.18)

As M and Γ are Hermitian, their off-
diagonal elements are complex conjugates
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of each other:

M =

(
m11 m12

m∗12 m11

)
, Γ =

(
Γ11 Γ12

Γ∗12 Γ11

)
.

(1.19)

H has the following eigenvalues:

λH,L = h11 ±
√
h21 · h12 (1.20)

and eigenvectors

~vH,L ≡
(

p
∓q

)
(1.21)

with
q

p
= −

√
h21

h12

. (1.22)

The diagonalised Hamiltonian Hd is:

Hd =

(
HH 0
0 HL

)

=

(
h11 +

√
h12h21 0

0 h11 −
√
h12h21

)
.

(1.23)

The diagonal mass and decay matrices, de-
fined by

Md =
1

2

(
Hd + H†d

)
, Γd = i

(
Hd −H†d

)
,

(1.24)
are:

Md =

(
MH 0

0 ML

)

=

(
Re(HH) 0

0 Re(HL)

)
(1.25)

Γd =

(
ΓH 0
0 ΓL

)

=

(
−2Im(HH) 0

0 −2Im(HL)

)
.

(1.26)

The subscripts L and H stand for the “light”
and the “heavy” physical B0-states. The
mass- and width difference between those
states is:

∆m = MH −ML, ∆Γ = ΓH − ΓL (1.27)

which are related to mij and Γij via

∆m− i

2
∆Γ = 2

√
h12h21

= 2

√(
m12 −

i

2
Γ12

)(
m∗12 −

i

2
Γ∗12

)
,

(1.28)

giving:

(∆m)2 − 1

4
(∆Γ)2 = 4 |M12|2 − |Γ12|2 ,

(1.29)

∆m∆Γ = 4Re(M12Γ∗12) (1.30)

and

q

p
= −

√
h21

h12

= −
√
h12h21

h12

= −
1
2

(
∆m− i

2
∆Γ
)

m12 − i
2
Γ12

= −
m∗12 − i

2
Γ∗12

1
2

(
∆m− i

2
∆Γ
) . (1.31)

1.3.3 CP Violation in the
Mixing

Using a phase convention in which

CP|B0〉 = |B0〉, (1.32)
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the CP operator in B0–B0 space is given by
the first Pauli spin matrix:

CP = σ1 =

(
0 1
1 0

)
. (1.33)

We can write the Hamiltonian, like any
other 2× 2 matrix, as

H = a01 + a1σ1 + a2σ2 + a3σ3 (1.34)

where ai are four complex numbers. Then
CP invariance requires:[

HCP−conserving, σ
1
]

= 0. (1.35)

With the above definitions:[
H, σ1

]
= −a2σ3 + a3σ2. (1.36)

Therefore, for a CP conserving Hamilto-
nian, a2 = a3 = 0, and the most general
CP conserving Hamiltonian can be written
as:

HCP−conserving =

(
a0 a1

a1 a0

)
. (1.37)

With equation 1.31 we get therefore:

CP Conservation⇒ p = −q (1.38)

Changing to a general phase convention
with CP|B0〉 = eiα|B0〉 is equivalent to a
basis transformation:

|B0
d〉′ = e+iα/2|B0

d〉, |B0
d〉′ = e−iα/2|B0

d〉.
(1.39)

The column-vectors transform like:(
a
b

)′
=

(
e−iα/2 0

0 eiα/2

)(
a
b

)
,

(1.40)

and CP is given by:

(
e−

i
2α 0

0 e
i
2α

)(
0 1
1 0

)(
e
i
2α 0
0 e−

i
2α

)
=

(
0 e−iα

eiα 0

)
. (1.41)

Therefore

CP|B0〉 = eiα|B0〉 (1.42)

as required. In this basis, H is given by:

H =

(
h11 h12e

−iα

h21e
iα h11

)
(1.43)

and the ratio q/p transforms like:

q

p
→ q

p
eiα. (1.44)

So the phase–convention independent state-
ment is:

CP Conservation⇒ |p| = |q| (1.45)

1.3.4 B0 decays

In the previous section it was shown that
the mass eigenstates for the B0-system are
given by:

|BH,L〉 = p|B0〉 ∓ q|B0〉, (1.46)
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with |p|2 + |q|2 = 1 and q
p

= −
1
2(∆m− i

2
∆Γ)

m12− i
2

Γ12
.

Inverting the above equation gives:

|B0〉 = +
1

2p
|BH〉+

1

2p
|BL〉

|B0〉 = − 1

2q
|BH〉+

1

2q
|BL〉. (1.47)

The two B0
d mesons can in principle have

different life times. This is produced by de-
cay channels common to B0

d and B0
d. The

branching ratios for such channels are of the
order of 10−3, or smaller. As various chan-
nels contribute with different signs, one ex-
pects that their sum does not exceed the
individual level, so ∆Γ � Γ, or, more pre-
cisely,

∆Γ

Γ
= O

(
10−2

)
(1.48)

is a rather safe and model-independent as-
sumption. The present measured value of
∆m is given by [G+00]:

xd ≡
∆mB0

d

ΓB0
d

= 0.730± 0.029. (1.49)

Therefore:
∆Γ� ∆m (1.50)

for the B0
d system. So Γ12 � m12, and

therefore

|p| = |q| (1.51)

is a very good approximation. Therefore
there is no considerable CP violation in B0

d

mixing. With |p| = |q| we can write the
ratio q/p as:

q

p
= eiφmix (1.52)

where φmix is the mixing phase. Within the
Standard Model, the box diagram for B0

d

mixing gives

φmix = −2β (1.53)

as will be shown in section 1.4.13.

The wavefunction of a particle created as a
B0 at time t = 0 develops as:

|B0(t)〉 =
1

2p
|BH〉e−i(MH− i

2
ΓH)t

+
1

2p
|BL〉e−i(ML− i

2
ΓL)t.

(1.54)

With ΓH ≈ ΓL ≡ Γ:

|B0(t)〉 = e−
Γ
2
t 1
2p{

|BH〉e−iMH t + |BL〉e−iMLt

}

= e−
Γ
2
t 1
2p

{(
p|B0〉 − q|B0〉

)
e−iMH t

+
(
p|B0〉+ q|B0〉

)
e−iMLt

}

= e−
Γ
2
t 1
2

{(
|B0〉 − q

p
|B0〉

)
e−iMH t

+
(
|B0〉+

q

p
|B0〉

)
e−iMLt

}
.

(1.55)

The amplitude for the decay to the final
state |f〉 is then:
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〈f |HI |B0(t)〉

= e−
Γ
2
t 1
2

·
{(
〈f |HI |B0〉 − q

p
〈f |HI |B0〉

)
e−iMH t

+
(
〈f |HI |B0〉+

q

p
〈f |HI |B0〉

)
e−iMLt

}

= e−
Γ
2
t 1
2
〈f |HI |B0〉

·
{(

1− q

p

〈f |HI |B0〉
〈f |HI |B0〉

)
e−iMH t

+

(
1 +

q

p

〈f |HI |B0〉
〈f |HI |B0〉

)
e−iMLt

}
,

(1.56)

where HI is the interaction Hamiltonian.
Defining

η ≡ q

p

〈f |HI |B0〉
〈f |HI |B0〉

, (1.57)

〈f |HI |B0(t)〉 = e−
Γ
2
t 1
2
〈f |HI |B0〉

·
{

(1− η) e−iMH t + (1 + η) e−iMLt

}
.

(1.58)

The square of the matrix element, and
therefore the decay rate, neglecting the
phasespace factor and some constants, is:∣∣∣〈f |HI |B0(t)〉

∣∣∣2
= e−Γt 1

4

∣∣∣〈f |HI |B0〉
∣∣∣2 · {2 + 2 |η|2

+
(
1− η + η∗ − |η|2

)
e−i∆mt

+
(
1 + η − η∗ − |η|2

)
e+i∆mt

}

= e−Γt 1
2

∣∣∣〈f |HI |B0〉
∣∣∣2 · {(1 + |η|2

)
+
(
1− |η|2

)
cos(∆mt)

−2Im(η) sin(∆mt)

}
.

(1.60)

Defining

η =
p

q

〈f |HI |B0〉
〈f |HI |B0〉

(1.61)

for the CP conjugate final state f , and
making the appropriate substitutions, the
matrix element of all four decay rates:
B0,B0 → f, f can be derived. The results
are given in equation 1.59, page 10.

The complex parameters η and η are
observable, phase–convention independent
quantities that can be extracted from time–
dependent decay rate measurements.

1.3.5 CP violation in decays
to CP eigenstates

If the final state |f〉 is a CP eigenstate,

and we assume
∣∣∣ q
p

∣∣∣ = 1 we get |η| = 1,
and η and η are complex conjugates of
each other. Then the four decay rates in
equation 1.59 reduce to two. In the absence
of CP violation, η = 1 or η = −1. In the
presence of CP violation, the phase of η is
equal to the phase difference between the
two decay paths, B0

d → f and B0
d → f :

η = ±eiδCP , (1.62)

where δCP is the CP violating phase. The
amplitude of the time–dependent asymme-
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Decay rates

∣∣〈f |HI |B0(t)〉
∣∣2 = e−Γt 1

2

∣∣〈f |HI |B0〉
∣∣2 · {(1 + |η|2

)
+
(

1− |η|2
)

cos(∆mt)− 2Im(η) sin(∆mt)
}

∣∣∣〈f |HI |B0(t)〉
∣∣∣2 = e−Γt 1

2

∣∣〈f |HI |B0〉
∣∣2 · {(1 + |η|2

)
−
(

1− |η|2
)

cos(∆mt) + 2Im(η) sin(∆mt)
}

∣∣∣〈f |HI |B0(t)〉
∣∣∣2 = e−Γt 1

2

∣∣∣〈f |HI |B0〉
∣∣∣2 · {(1 + |η|2

)
+
(

1− |η|2
)

cos(∆mt)− 2Im(η) sin(∆mt)
}

∣∣〈f |HI |B0(t)〉
∣∣2 = e−Γt 1

2

∣∣∣〈f |HI |B0〉
∣∣∣2 · {(1 + |η|2

)
−
(

1− |η|2
)

cos(∆mt) + 2Im(η) sin(∆mt)
}

(1.59)

try of the two decay rates gives the sine of
the CP-violating phase:

A(τ) =
Γ (B0 → f)− Γ

(
B0 → f

)
Γ (B0 → f) + Γ

(
B0 → f

)
= Im(η) sin(∆mτ)

= ± sin(δCP) sin(∆mτ) . (1.63)

1.3.6 CP violation in decays
to non-CP eigenstates

Even if the final state is not a CP eigenstate,
CP violation can be measured if both the B0

and the B0 can decay to the same final state
f . Then

η = |η| ei(δCP+∆qcd)

η = |η| ei(−δCP+∆qcd), (1.64)

where ∆qcd is a possible, non-CP-violating
strong phase. Now all four expressions
for the decay rates are needed. The CP-
violating effect is in the difference between
the asymmetries formed from the decay
rates.

Aη(τ) =
Γ
(
B0 → f

)
− Γ

(
B0 → f

)
Γ (B0 → f) + Γ

(
B0 → f

)
= 1−|η|2

1+|η|2 cos(∆mτ)− 2Im(η)

1+|η|2 sin(∆mτ)

(1.65)

and

Aη(τ) =
Γ
(
B0 → f̄

)
− Γ

(
B0 → f̄

)
Γ
(
B0 → f̄

)
+ Γ

(
B0 → f̄

)
= 1−|η|2

1+|η|2 cos(∆mτ)− 2Im(η)

1+|η|2 sin(∆mτ) .

(1.66)

From fits to the amplitudes of the sine and
cosine part of the asymmetries, |η|2, Im(η)
and Im(η), or equivalently |η|2, δCP and
∆qcd, can be extracted.
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1.4 CP Violation in the

Standard Model

1.4.1 The Standard Model

The Standard Model of the electroweak and
strong interactions is based on the gauge
group SU(3)C×SU(2)L×U(1). The SU(3)-
colour part of it describes the strong in-
teraction. The SU(2)L × U(1) part de-
scribes the electroweak interactions. While
the SU(3)–colour symmetry is directly re-
alised in nature, the SU(2)L × U(1) is
broken by the Higgs mechanism, giving
rise to the massive weak–interaction vec-
tor bosons, the W± and Z0. Interac-
tions with the Higgs fields are also re-
sponsible for generating fermion masses
in a gauge invariant way. One sym-
metry emerges unbroken from the Higgs
mechanism: the U(1)QED symmetry that
describes the electromagnetic interactions,
mediated by the massless photon. The elec-
troweak part of the Standard Model is re-
ferred to as the Glashow-Salam-Weinberg
(GSW) model [Gla61, Sal68, Wei67].

The Standard Model is completely defined
by

• the definition of the gauge groups;

• the representation of the gauge groups
assigned to the different particles;

• the requirement that the Standard
Model should be renormalisable.

The following summarises those Standard

Model aspects which are relevant to CP vi-
olation in the B0

d system.

The particles of the Standard Model with
their quantum numbers are listed in tables
1.2 and 1.3, and their masses are given in
table 1.4.

Right–handed neutrinos are not listed in ta-
ble 1.2, although recent evidence for non-
zero neutrino masses [F+98] suggests their
existence. However, a discussion of the pos-
sible consequences of this discovery is be-
yond the scope of this thesis.

1.4.2 The Strong CP Problem

The most general Lagrangian that fulfils the
above requirements of gauge invariance and
renormalisability, contains a term that vio-
lates C, P and CP in the strong interac-
tion. Highly accurate measurements, es-
pecially of the neutron electric dipole mo-
ment1, suggest however that the C, P , and
CP violating term in the strong Lagrangian
vanishes, leaving only terms that conserve C
and P separately, or at least that the sym-
metry violating term is very small. While
this is allowed in the Standard Model, it
is by no means explained. This is known
as the “Strong CP Problem”. For the pur-
pose of this thesis, we will accept that C
and P are symmetries of the Strong Inter-
action, and concentrate on CP violation in
the electroweak sector.

1The current limit is < 0.63 · 10−25ecm [G+00]
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Table 1.2: The particles of the Standard Model with quantum numbers,
excluding the gauge bosons which are listed in table 1.3

Fermions SU(2)L U(1)Y U(1)QED

Weak Isospin 1
2

Hypercharge Electric Charge

leptons T T 3 Y Q = T 3 + Y(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1
2

(
+1

2

−1
2

)
−1

2

(
0
−1

)
eR µR τR 0 0 −1 −1

All leptons have 0 colour charge and do not take part in the strong interaction

quarks(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

1
2

(
+1

2

−1
2

)
+1

6

(
+2

3

−1
3

)
uR cR tR 0 0 +2

3
+2

3

dR sR bR 0 0 −1
3

−1
3

All quarks come in SU(3)QCD-colour triplets and take part in the strong interaction:
u =

(
ured, ugreen, ublue

)
, d =

(
dred, dgreen, dblue

)
, etc.

Higgs Boson
h0

1
2

−1
2

1
2

0
The Higgs is colour neutral. It couples to all massive particles.

Table 1.3: Standard Model Gauge Bosons

Gauge Bosons SU(2)L U(1)Y U(1)QED SU(3)QCD

Weak Isospin 1
2

Hypercharge Electric Charge colour charge

T T 3 Y Q = T 3 + Y

Weak:

 W+

Z0

W−

 1

 +1
0
−1

 0

 +1
0
−1

 no colour

QED: photon γ 0 0 0 0 no colour

QCD: 8 gluons gi 0 0 0 0
rḡ, rb̄, gr̄, gb̄, br̄, bḡ,
rr̄−bb̄√

2
, rr̄+bb̄−2gḡ√

6
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Table 1.4: Particle Masses. The precision
of all measurements, except for the quark
masses, is higher than the number of dig-
its given. All data are taken from [G+00],
unless indicated otherwise.

leptons
νe νµ ντ

< 3 eV < 0.19 MeV < 18.2 MeV
“limit is not
without ambigu-
ity” [G+00]

(90% C.L.) (95% C.L.)

Super-Kamiokande data are consis-
tent with νµ ↔ ντ oscillations with
5 · 10−4 < ∆m2 < 6 · 10−3 eV2 at 90%
C.L. [F+98].

e µ τ
0.5 MeV 0.1 GeV 1.8 GeV

quarks
u c t

1− 5 1.15− 1.35 174.3± 5.1
MeV GeV GeV
d s b

3− 9 75− 170 4.0− 4.4
MeV MeV GeV

mu/md = 0.2− 0.8, ms/md = 17− 25
Higgs h0

> 113.5 GeV (95% C.L.)
[IK00]

electro-weak gauge bosons
W± Z0 γ

80.4 GeV 91.2 GeV 0
QCD gauge bosons gi

0

1.4.3 The GSM Theory of
Electroweak Interac-
tions

The GSM theory of weak interactions uni-
fies the electromagnetic and weak interac-
tion. It reconciles gauge invariance of the
Lagrangian with the observation of massive
vector bosons.

In general, massive gauge bosons lead to
non-gauge invariant theories. Glashow,
Salam and Weinberg’s theory starts with
a SU(2) × U(1) gauge theory with mass-
less gauge bosons. The symmetry is broken
via the Higgs mechanism [Hig64b, Hig64a],
leading, in a gauge invariant way, to the
massive gauge bosons W± and the media-
tor of the newly predicted neutral currents,
the massive Z0. One massless gauge bosons
remains, the photon, which is the gauge
boson of the unbroken U(1)QED symmetry.
Crucial for the success of the theory was
that it could be shown to be renormalisable
[tHV72].

In the GSW theory the masses of the
fermions are generated in a gauge invariant
and renormalisable way, by Yukawa cou-
plings of the Higgs field to the fermions. It
is those Yukawa couplings that lead to CP
violation in the Standard Model.
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1.4.4 SU(2) × U(1) and the
Higgs

Massless Gauge Bosons

The covariant derivative for an SU(2) ×
U(1) local gauge theory is

Dµ = ∂µ − igAaµT a − ig′Y Bµ, (1.67)

where the T a are the generators of the
SU(2) gauge symmetry. They are evaluated
according to the SU(2) representation the
derivative acts on. The generator of U(1)
is Y , which is just a number. Aaµ and Bµ

are massless SU(2) and U(1) gauge bosons,
respectively.

The Higgs Field

To obtain the physically observed massive
gauge bosons W±

µ and Z0
µ, the SU(2)×U(1)

symmetry is broken via the Higgs mech-
anism. The Higgs field is a scalar field in
the spinor representation of SU(2), with
U(1) charge 1

2
:

φ =

(
H+

H0

)
, (1.68)

where H+ and H0 are complex fields. The
indices + and 0 anticipate the electric
charge assignments, to be defined later. For
the spinor representation of SU(2), and
U(1) charge 1

2
, the covariant derivative is:

Dµ = ∂µ − igAaµ
σa

2
− i1

2
g′Bµ, (1.69)

where σa are the Pauli spin matrices.

We can use SU(2) gauge freedom to trans-
form the Higgs field:(

H+

H0

)
→ eiξa

σa

2

(
H+

H0

)
=

1√
2

(
0

v + h0

)
(1.70)

where v and h0 are real numbers. This is
called the “unitarity gauge”. To break the
symmetry, the Higgs acquires a vacuum ex-
pectation value:

〈φ〉 =
1√
2

(
0
v

)
(1.71)

The Higgs Boson is the excitation of the
Higgs field from the vacuum expectation
value and corresponds to h0 in equation
1.70.

Mass-Eigenstates of Gauge Bosons

The mass terms for the gauge bosons come
from the kinetic term of the Lagrangian for
the Higgs field:

∆L = (Dµφ)† (Dµφ) (1.72)

evaluated at the vacuum expectation value
of the Higgs. The mass eigenstates of the
heavy gauge bosons are:

W µ± ≡ 1√
2

(
A1 ∓ iA2

)
(1.73)

Zµ ≡ 1√
g2 + g′2

(
gA3µ − g′Bµ

)
.(1.74)

One massless gauge boson remains, the
photon:

Aµ =
1√

g2 + g′2

(
g′A3µ + gBµ

)
(1.75)
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Dµ in Terms of the Massive Gauge
Bosons

Before writing down the covariant deriva-
tive in terms of the mass eigenstates of the
gauge bosons, it is useful to make the fol-
lowing definitions:

• the charge raising and lowering operators:

T± ≡
(
T 1 ± iT 2

)
, (1.76)

• the charge quantum number:

Q ≡ T 3 + Y (1.77)

• the weak mixing angle θw:

cw ≡ cos θw =
g√

g2 + g′2

sw ≡ sin θw =
g′√

g2 + g′2
, (1.78)

• the electron charge:

e =
gg′√
g2 + g′2

(1.79)

With these definitions, the covariant deriva-
tive in terms of the physically observable
gauge bosons is given by:

Dµ = ∂µ − i
e√
2sw

(
W+
µ T

+ +W−
µ T

−
)

− i
e

swcw
Zµ
(
T 3 − s2

wQ
)

− ieAµQ. (1.80)

1.4.5 Fermions

The observation that only left-handed
fermions couple to the W boson can be
accommodated by choosing two different
representations of SU(2) for left and right
handed fermions. Left-handed fermions are
put into SU(2) doublets with

T 3 =

(
+1

2
0

0 −1
2

)
. (1.81)

There are the left-handed leptons with
Y = −1

2
:

EiL =

(
νi

li

)
L

=

((
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

)
.

(1.82)

The charge Q = Y + T 3 has the observed
values 0 and 1. Similarly for left-handed
quarks

QiL =

(
ui

di

)
L

=

((
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

)
(1.83)

with Y = +1
6
, Q = Y + T 3 = +2

3
,−1

3
.

Right–handed fermions are put into SU(2)
singlets, with T 3 = 0.
eiR = (eR, µR, τR) with Y = Q = −1
uiR = (uR, cR, tR) with Y = Q = +2

3

diR = (dR, sR, bR) with Y = Q = −1
3

.
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1.4.6 Electroweak Interac-
tions with Fermions

The Lagrangian of electroweak interactions,
ignoring fermion masses, follows directly
from the above charge-assignments. The ki-
netic terms are given by:

L = ĒL
(
iD6
)
EL + ēR

(
iD6
)
eR

+Q̄L

(
iD6
)
QL +

ūR
(
iD6
)
uR + d̄R

(
iD6
)
dR, (1.84)

where Dµ is given by equation 1.67, with T a

and Y evaluated according to the field on
which they act, for example for left–handed
quarks:

T a =
σa

2
, Y =

1

6
(1.85)

or for right–handed electrons:

T a = 0 Y = −1. (1.86)

In terms of mass eigenstates of the W± and
Z0 bosons:

L = ĒL
(
i∂6
)
EL + ēR

(
i∂6
)
eR

+Q̄L

(
i∂6
)
QL

+ūR
(
i∂6
)
uR + d̄R

(
i∂6
)
dR

+g
(
W+
µ J

µ+
W +W−

µ J
µ−
W + Z0

µJ
µ
Z

)
+eAµJ

µ
EM (1.87)

where the W boson currents

Jµ+
W =

1√
2

(ν̄Lγ
µeL + ūLγ

µdL)

Jµ−W =
1√
2

(
ēLγ

µνL + d̄Lγ
µuL

)
(1.88)

couple the Y 3 = 1
2

to the Y 3 = −1
2

fermions,
while the Z currents are all diagonal:

JµZ =
1
cw

{
ν̄Lγ

µ

(
1
2

)
νL

+ēLγµ
(
−1

2
+ s2

w

)
eL + ēRγ

µ
(
s2
w

)
eR

+ūLγµ
(

1
2
− 2

3
s2
w

)
uL + ūRγ

µ

(
−2

3
s2
w

)
uR

+d̄Lγµ
(
−1

2
+

1
3
s2
w

)
dL + d̄Rγ

µ

(
1
3
s2
w

)
dR

}
.

(1.89)

The terms in the electromagnetic current,
are also diagonal and do not distinguish be-
tween left and right handed particles:

JµEM = ēγµ (−1) e+

ūγµ
(

+
2

3

)
u+ d̄γµ

(
−1

3

)
d

(1.90)

From the expressions for the different cur-
rents, we see that we retrieve the experi-
mentally observed C and P violation in the
weak interactions mediated by the W± and
the Z0, while the electromagnetic current
conserves both C and P separately. No in-
teraction violates CP at this stage of the
theory.

1.4.7 CP Violation

Fermion Mass Terms

So far in the theory all fermions are mass-
less, in contradiction to observation. Sim-
ply adding mass terms to the Lagrangian,
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such as

∆L = −me (ēLeR + ēReL) , (1.91)

is not allowed. These terms violate gauge
invariance because we had to put the left-
handed and the right-handed fermions into
different SU(2) representations in order to
account for the observed maximal C and P
violation of the weak interaction.

Gauge invariant mass terms can be gen-
erated by couplings to the Higgs field.
The most general renormalisable gauge-
invariant coupling for the leptonic fields is:

Lm = −λijl Ēi
L · φe

j
R + h.c. (1.92)

and for the quark fields:

Lm = −λijd Q̄i
L · φd

j
R − λiju εabQ̄i

Laφ
†
bu
j
R + h.c.

(1.93)

where λijl , λijd and λiju are general, complex
valued matrices. The second term in equa-
tion 1.93 is missing for the leptonic fields
due to the absence of right-handed neutri-
nos.

Below we will show how the quark mass
terms in equation 1.93 lead to the possibil-
ity of CP violation in the Standard Model.

Quark Masses

In order to find the Lagrangian in terms
of the physical particles, we have to diag-
onalise the Yukawa couplings in equation
1.93.

Any complex matrix λ can be written as

λ = UDW † (1.94)

where U and W are unitary matrices,
and D is a diagonal matrix with positive
eigenvalues. Using the same notation as
above, we define the matrices Uu, Du,Wu

and Ud, Dd,Wd by

λu = UuDuW
†
u , λd = UdDdW

†
d . (1.95)

Changing the basis for right-handed quarks:

uiR → W ij
u u

j
R, diR → W ij

d d
j
R (1.96)

eliminates the matrices Wu and Wd from
the Higgs couplings in equation 1.93. Since
all three right–handed up–type quarks have
the same coupling to the gauge fields, as do
the three right-handed down–type quarks,
Wu and Wd commute with the correspond-
ing covariant derivatives. Therefore∑

i

(
ūR
(
iD6
)
uR + d̄R

(
iD6
)
dR
)

(1.97)

is invariant under the transformation 1.96
and Wu and Wd simply disappear from the
theory.

Similarly we transform

uiL → U ij
u u

j
L, diL → U ij

d d
j
L. (1.98)

This eliminates Uu and Ud from the terms
in equation 1.93 that involve the lower com-
ponent of the Higgs field, and in unitarity
gauge this is the only component that is
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non-zero. In this new basis, only the diago-
nal elements in equation 1.93 survive. Eval-
uated at the vacuum expectation value for
φ:

Lm = −mi
uū

i
Lu

j
R −mi

dd̄
i
Ld

j
R (1.99)

where mi
u and mi

d are the quark masses,
given by

mi
u =

1√
2
Dii
uv, mi

d =
1√
2
Dii
d v (1.100)

The fact that the quark mass terms are all
proportional to v might suggest that they
should be of a similar magnitude. In reality
they vary over four orders of magnitude, as
shown in table 1.4. This is allowed in the
Standard Model, since Dii

u,d are free param-
eters, but it is not explained.

The effect of the transformation of the left-
handed quark basis cancel as long as only
diagonal terms are involved, so Ud and Uu
vanish in all the kinetic terms such as ūL∂6 uL
and in the electromagnetic and the Z cur-
rent in equation 1.87. The only place where
they remain are the W± currents:

ūiLγ
µdiL → ūiLγ

µ
(
U †uUd

)ij
djL (1.101)

and

d̄Lγ
µuL → d̄iL

(
U †dUu

)ij
γµujL. (1.102)

This leads to the definition of VCKM:

VCKM ≡
(
U †uUd

)
(1.103)

which is the matrix transforming the mass-
eigenstates of the down-type quarks to the

weak-interaction isospin partners of the up-
type quarks (the weak eigenstates). All the
Standard Model predicts about this matrix
is, that it is unitary; its entries can be com-
plex and therefore violate CP .

One Complex Phase

A general three-dimensional unitary matrix
has 9 parameters, which can be taken as 3
real Euler angles plus 6 phases. We can re-
move phases by re-defining the quark basis:

qiL → eiδ
i

qiL (1.104)

With three generations of quarks, there are
six phases we can change. One over-all
phase cancels in equations 1.101 and 1.102,
leaving five relative phases that will effect
VCKM. We can therefore remove all com-
plex phases from VCKM, except one. This
one phase uniquely parametrises CP viola-
tion in the Standard Model.

For the case of two generations, by the same
argument, all phases can be rotated away
from the mixing matrix, leaving no room
for CP violation. This consideration led
Kobayashi and Maskawa in 1973 to the con-
clusion that a third generation of particles
was needed to accommodate CP violation
in the electroweak theory [KM73]. The ex-
tension of Cabibbo’s concept of a mixing
angle to quark mixing in three or more gen-
erations, is therefore usually referred to as
the Cabibbo–Kobayashi–Maskawa (CKM)
matrix, VCKM.

The parametrisation for the CKM matrix
favoured by the Particle Data Group [G+00]
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VCKM =

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 (1.105)

with cij = cos θij and sij = sin θij for generation labels i, j = (1, 2), (1, 3), (2, 3).

is given in equation 1.105, with the three
real angles θ12, θ13, θ23 and the complex
phase δ13.

1.4.8 Structure

It is useful to label the elements of the CKM
matrix as follows:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 . (1.106)

Then the transition amplitude from a d to
a u quark is proportional to Vud, the tran-
sition amplitude from a u to a d quark to
V ∗ud, etc.

Experimentally, it is found that the magni-
tudes of the CKM matrix elements follow a
clear structure. In terms of the sine of the
Cabibbo angle, λ ≡ sin θC = 0.22, the order
of magnitude of the CKM matrix elements
is:  1 λ λ3

λ 1 λ2

λ3 λ2 1

 . (1.107)

This observation led Wolfenstein to a
parametrisation of the CKM matrix as a
power series in the parameter λ, which is,
up to O(λ3), given by [Wol83]: 1− 1

2λ
2 λ Aλ3 (ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1

 .
(1.108)

where A, ρ, η are real parameters of order 1.
The CP violating phase is parametrised by
η. Up to O(λ3), the only complex elements
in this parametrisation are Vtd and Vub. In
terms of the parametrisation given in equa-
tion 1.105, this approximation is given by:

 1− 1
2
s2

12 s12 s13e
−iδ13

−s12 1− 1
2
s2

12 s23

s12s23 − s13e
−iδ13 −s23 1

 .
(1.109)

1.4.9 Unitarity Triangles

The requirement that the CKM matrix is
unitary:

VCKMV
†

CKM = 1 (1.110)

leads to 9 conditions, which are automati-
cally fulfilled in any of the above parametri-
sations. Six of them can be expressed in so-
called unitarity triangles, which are three
complex numbers adding up to zero dis-
played in the complex plane. Below, the six
unitarity relations leading to the six trian-
gles are listed, together with an indication
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of the length of each side in orders of λ:

1) V ∗udVus + V ∗cdVcs + V ∗tdVts = 0
O(λ) O(λ) O

(
λ5
)

2) V ∗cdVud + V ∗csVus + V ∗cbVub = 0
O(λ) O(λ) O

(
λ5
)

3) V ∗usVub + V ∗csVcb + V ∗tsVtb = 0
O
(
λ4
)

O
(
λ2
)

O
(
λ2
)

4) V ∗cdVtd + V ∗csVts + V ∗cbVtb = 0
O
(
λ4
)

O
(
λ2
)

O
(
λ2
)

5) V ∗udVtd + V ∗usVts + V ∗ubVtb = 0
O
(
λ3
)

O
(
λ3
)

O
(
λ3
)

6) V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0
O
(
λ3
)

O
(
λ3
)

O
(
λ3
)

(1.111)

If there is no CP violation, the trian-
gles all degenerate to lines. Describing
CP violation in terms of unitarity trian-
gles has the advantage that changing the
parametrisation of the CKM matrix, and
hence the phase-convention for the quarks,
simply rotates the whole triangle in the
complex plane, but leaves the side lengths
and the relative angles inside the triangle
unchanged. Therefore the unitarity trian-
gles are a convention–independent way of
parametrising CP violation in the Standard
Model.

The area of the all unitarity triangles is
the same and is the geometric, convention-
independent equivalent of the single com-
plex phase in the CKM matrix [Jar85]:

Area of all triangles =
1

2
|J | (1.112)

Figure 1.1: The Unitary Triangle
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QQs

γ β

V ∗tbVtdV ∗ubVud

V ∗cbVcd

with

J
3∑

m,n=1

εikmεjln = Im
(
VijVklV

∗
ilV
∗
kj

)
(1.113)

for any i, j, k, l ∈ {1, 2, 3}

1.4.10 The Unitarity Triangle
and the Angles γ, β

Most of the triangles have very unequal
sides. To measure CP violation in decays
related to such triangles, for example in the
K0 system associated to triangle number 1,
is very difficult: the two long sides have lit-
tle relative phase difference and therefore
little CP violating effects; the third side
might have a larger phase difference relative
to the long sides, but it also corresponds to
very small branching fractions.

Only in the last two triangles are all sides of
the same order of magnitude. Both are re-
lated to observables in decays of neutral B
mesons: number 5 to B0

s decays and num-
ber 6 to B0

d decays. Up to O(λ3) in the
Wolfenstein parametrisation, the two trian-
gles coincide. Therefore triangle number
6 is called The Unitary Triangle. This is
shown in figure 1.1, where also the angles γ
and β are defined. The parameter α that is
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often found in the literature, corresponds to
the third angle in figure 1.1; α ≡ π−β− γ.
In the Wolfenstein parametrisation up to
O(λ3) only Vub and Vtd are complex. Divid-
ing each entry of the matrix by its modulus
gives:  1 1 e−iγ

1 1 1
e−iβ 1 1

 . (1.114)

This relates the complex phases of the CKM
matrix in Wolfenstein parametrisation di-
rectly to the convention-independent de-
scription in terms of unitarity triangles. Up
to O(λ3), β and γ are the only non-zero
phases in the CKM matrix, and only de-
cays involving b → u or d → t transitions
can violate CP . Both are accessible in the
B0

d system, and both can to be measured at
LHCb. How β and γ relate to observables
in the B0

d system will be discussed in section
1.4.13.

1.4.11 Existing Constraints
on the CKM Matrix

Measurements Without CP Violation

The magnitudes of eight of the nine entries
of the CKM matrix have been measured di-
rectly, with varying precision. All numbers
are taken from [G+00]:

1. |Vud| = 0.9735± 0.0008 from nuclear β
decay.

2. |Vus| = 0.2196 ± 0.0023 from semilep-
tonic kaon and hyperon decays.

3. |Vcd| = 0.224 ± 0.016 from charm pro-
duction by neutrino and antineutrino
beams off valence d-quarks.

4. |Vcs| = 1.04±0.16 from semileptonic D
decays.

5. |Vcb| = 0.0402 ± 0.0019 from semilep-
tonic B decays.

6. |Vub/Vcb| = 0.090±0.025 from semilep-
tonic B decays.

7. |Vtb|2

|Vtd|2+|Vts|2+|Vtb|2
= 0.99 ± 0.29 from

semileptonic top decays.

8. |Vcs| = 0.9891 ± 0.016 from the ratio
of hadronic W± decays to leptonic de-
cays. Assuming three generations, this
measurement tests unitarity and does
not constrain |Vcs|.

For an arbitrary number of generations, but
still using unitarity of the expanded matrix,
this results in the following 90% confidence
limits on the matrix elements:

0.9722−0.9748 0.216−0.223 0.002−0.005 · · ·
0.209−0.228 0.959−0.976 0.037−0.043 · · ·
0.00−0.09 0.00−0.16 0.070−0.993 · · ·

.

..
.
..

.

..


(1.115)

Assuming three generations, and excluding
result number 8:(

0.9742−0.9757 0.219−0.226 0.002−0.005
0.219−0.225 0.9734−0.9749 0.037−0.043
0.004−0.014 0.035−0.043 0.9990−0.9993

)
(1.116)

From the measurement of the B0
d and B0

s

oscillation period, the mass differences
between the mass eigenstates in each
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system are found to be:

∆mB0
d

= 0.473± 0.016 ps−1 (1.117)

∆mB0
s
> 14.3 ps−1 at 95% C.L. (1.118)

This yields to the following constraints:

|V ∗tbVtd| = 0.0083± 0.0016 (1.119)

and

|Vtd| / |Vts| < 0.24. (1.120)

In the case of three generations, |Vts| ≈ |Vcb|
and

|Vtd| < 0.1. (1.121)

CP Violation Measurements

The unitarity triangle provides an elegant
way to combine the constraints from the
measurements of the magnitudes of the
CKM matrix elements with the results from
CP violation experiments.

The CP violation parameter εK from mea-
surements in the K0 system restricts, in
principle, the apex of the unitarity trian-
gle to a hyperbola in the complex plane.
Due to theoretical uncertainties in calculat-
ing hadronic effects, the interpretation of
εK in terms of CKM parameters is difficult,
and the constraints on the unitarity triangle
from εK are weak despite its precise value.

Figure 1.2 shows the constraints on the
apex of the unitarity triangle as shown in
[G+00] in July 2000. At that time, the best

Figure 1.2: Constraints on the apex of
the Unitarity Triangle from the measure-
ments of the sides, and from εK , taken from
[G+00].

measurement of sin(2β) came from CDF:
sin(2β) = 0.79+0.41

−0.44 [A+00a]. Since then,
the first results from the B0 factories have
been released. The current status is:

sin(2β) =

• 0.58+0.32
−0.34(stat)+0.09

−0.10(sys),
BELLE [A+01a]

• 0.34± 0.20(stat)± 0.05(sys),
BaBar[A+01b]

each showing a 1.7σ effect for CP violation
in the B0

d system.

1.4.12 Status in 2006

By the year 2006, accurate measurements
of sin(2β) are expected from the B0 facto-
ries and the Tevatron. With 500 fb−1 at the
Υ(4S) and a similar performance from CDF
and D∅, the precision on sin(2β) is expected
to be ∼ 0.02.

Such a precision is not expected for the
measurement of γ. The branching ratios
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of the relevant decay channels are either
very small, typically O(10−5), or CP vio-
lating effects are tiny, as in B0

d → D∗π with
|η| ∼ λ2. Therefore very high statistics are
required. The B0

s system that also allows
measurements of γ is not accessible to the
B0-factories if they continue to run at the
Υ(4S). While first estimates of γ might be
possible, the uncertainties are expected to
be too large to give strong constraints on
the unitarity triangle.

1.4.13 β and γ in the B0
d Sys-

tem

The Angle β

The angle β appears via Vtd = |Vtd| e−iβ in
the box diagrams for B0

d − B0
d mixing:

Vtb* Vtd

Vtb*Vtd

b

d

t

t
b

W W
d

o o
B
_

B ∝ e−i2β

(1.122)

and

VtdVtb*

Vtb*Vtd

b

d b

d
o ot

W

W
t B

_
B ∝ e−i2β.

(1.123)

In principle, all up-type quarks (u, c, t) con-
tribute to the internal quark lines; but as
the amplitude is proportional to the mass
of the internal quark, the top quark contri-
bution dominates entirely.

In terms of the parameters introduced in
section 1.3.4:

q

p
= e−i2β. (1.124)

The decay B0
d → J/ψKS is often referred

to as the “gold–plated decay”. It allows a
clean extraction of the mixing angle φmix,
as both the tree-level diagram:

V*cb

Vcs
d s

W
b c

c

s
d

B
J/ψ
K

∝ e0
(1.125)

and the penguin contribution to the
decay have the same phase:

s
d

W

b s

c

c

d

u,c,t
K

J/ψ

B
∝ e0

(1.126)

where the non-zero phase in the penguin
contribution due to the b → u transition
can be neglected as it is doubly Cabibbo
suppressed relative to the others.

The mixing phase φmix enters as the phase
difference between the two interfering decay
paths:

-2 β

J/ KSψB

Bmixing phase

J/ψKS is a CP = −1 state, and there is
no phase in the amplitude B0

d → J/ψKS.
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Therefore the parameter η defined in equa-
tion 1.57, is given by

ηJ/ψKS =
q

p
· (−1) = −eiφmix = −e−i2β.

(1.127)

So the time dependent asymmetry is:

A(τ) =

Γ (B0
d → J/ψKS)− Γ

(
B0

d → J/ψKS

)
Γ (B0

d → J/ψKS) + Γ
(
B0

d → J/ψKS

)
= − sin(−2β) sin(∆mτ ) (1.128)

where ∆m is the mass difference between
the two B0

d mass eigenstates and τ is the
decay eigentime.

The Angle γ

The angle γ enters whenever a decay in-
volves a b → u transition, the most promi-
nent example being the decay to the CP
eigenstate π+π−:

V*ub

Vud

b
W

+

-
d d

u
u

d π

πB
∝ eiγ (1.129)

Again, the measured quantity is the phase-
difference between the two interfering
decay paths. In the decay B0

d → π+π− this
is, at tree-level, 2 (β + γ):

+γ

-2 β - γ
+ -

_ _

b uphase from

b uphase from

B

B

π
mixing phase

π

π+π− is a CP = +1 state, and hence η is
given by

ηππ = eφmix ·
(
+e−i2γ

)
= e−i2(β+γ). (1.130)

So the time dependent asymmetry is:

A(τ) =

Γ (B0
d → π+π−)− Γ

(
B0

d → π+π−
)

Γ (B0
d → π+π−) + Γ

(
B0

d → π+π−
)

= sin(−2 (β + γ)) sin(∆mτ ) (1.131)

However, in interpreting the measured
phase-difference as 2 (β + γ), we have
neglected penguin contributions:

d

W

b u,c,t d
u
u
d

B
π
π

+
−

(1.132)

but here, in contrast to the case of
B0

d → J/ψKS, they do play a significant role.
If the relative size of the penguin contri-
butions were known, the result could be
interpreted in terms of β and γ, but this
is difficult to estimate from first princi-
ples. Several techniques have been pro-
posed to measure the penguin contributions
[LNQS91, B+00], for example by combining
this measurement with results from other,
flavour-symmetry related decays [Fle00].

In this thesis though, we will instead look at
a decay that does not suffer from penguin
contributions and therefore allows a theo-
retically clean extraction of the Standard
Model γ. This decay is B0

d → D∗−π+.
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1.4.14 Entry Points for New
Physics

Most extensions of the Standard Model are
at high mass scales (�MW ). Significant ef-
fects at tree–level are therefore unlikely, but
may enter as contributions to the higher or-
der processes which play an important role
in many CP violation measurements in the
B0 system. A particular example is B0

d–
B0

d mixing which is mediated by a box dia-
gram. Flavour Changing Neutral Currents,
which appear in many New Physics models,
could affect the mixing phase φmix measured
with B0

d → J/ψKS. Generally, as CP viola-
tion is an interference effect, higher order
contributions due to New Physics can af-
fect the measured phase-differences. This
is true especially for those decays where
loop-corrections are already important in
the Standard Model. Decays with large
penguin contributions are therefore particu-
larly sensitive to New Physics, one example
being B0

d → π+π−.

1.4.15 The B0
s System

The LHC will not only produce a large num-
ber of B0

d mesons, it will also be a copi-
ous source of B0

s mesons. As the angle γ
enters via b → d transitions, it is as ac-
cessible in the B0

s system as it is in the
B0

d system, effectively doubling the num-
ber of potential decay channels to over-
constrain γ. Having access to both the
B0

s and the B0
d system also provides for a

very promising way of constraining penguin
contributions by combining the analysis of
flavour–symmetry related decays, such as

B0
d → π+π− and B0

s → K+K− [Fle00].

The equivalent of the ‘gold plated’ decay
B0

d → J/ψKS in the B0
d system is the

channel B0
s → J/ψφ in the B0

s system. It
gives a clean measurement of the B0

s–B0
s

mixing phase φsmix. Up to O(λ3) in the
Wolfenstein parametrisation, this phase is
zero. Finding a large mixing phase in the
B0

s system would therefore be a sign of New
Physics. Expanding the CKM matrix up
to O(λ4) introduces a small complex phase
to Vts of O(λ2), referred to as −δγ. The
B0

s -B0
s mixing phase in the Standard Model

is therefore:

φsmix = −2δγ (1.133)

The measurement of γ, δγ and other pa-
rameters in the B0

s system requires sensitiv-
ity to the very rapid B0

s oscillation period
of < 0.44 ps.

1.5 Extracting the Angle

γ from B0
d → D∗π

With the decay channels B0
d → D∗π, the an-

gle γ can be measured in a theoretically
clean way. The result is easy to inter-
pret in terms of Standard Model parame-
ters as B0

d → D∗π does not suffer from pen-
guin contribution. For the same reason, the
measurement is expected to be rather un-
affected by New Physics. Therefore, the
γ measurement from B0

d → D∗π provides
a benchmark that other γ measurements
which are more sensitive to non-Standard
Model processes, can be compared against.
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D∗π is not a CP eigenstate, but as both B0
d

and B0
d can decay to the same final state

D∗+π−, a CP violation measurement is pos-
sible, as shown in section 1.3.6.

The relevant decay amplitudes are:

V*cb

Vud π+

D* -o

d

b

d

u

d

c
B

∝ e0
(1.134)

and

Vub

V*cd

d

b u

c

d

d

D*-

π+B
o

∝ e−iγ.

(1.135)

If we take, using the notation of section
1.3.4, D∗−π+ ≡ f and D∗+π− ≡ f̄ , then
the parameters η and η, defined in equa-
tions 1.57 and 1.61, are given by:

η = |η| ei(φmix−γ+∆qcd) (1.136)

and

η = |η| ei(−(φmix−γ)+∆qcd) (1.137)

so the CP violating phase is δCP = φmix −
γ. The mixing-induced phase φmix will be
measured very accurately from the chan-
nel B0

d → J/ψKS, so γ can be extracted. In
the Standard Model, φmix = −2β, but even
if New Physics enters in the mixing, the
φmix in the B0

d → D∗π measurement and the
φmix measured in B0

d → J/ψKS are the same
quantity, and the γ extraction is unaffected.

As one of the decay amplitudes is doubly
Cabibbo suppressed relative to the other:∣∣∣∣∣∣ V*cb

Vud π+

D* -o

d

b

d

u

d

c
B

∣∣∣∣∣∣ ∼ GFλ
2 (1.138)

∣∣∣∣∣∣∣ Vub

V*cd

d

b u

c

d

d

D*-

π+B
o

∣∣∣∣∣∣∣ ∼ GFλ
4 (1.139)

the interference effects between the two de-
cay paths:

-2 β - γ
*+ -B

B phase from b u

D π
mixing phase

are tiny. Therefore, meaningful sensitivity
requires high statistics and pure samples.

As shown in section 1.3.6, in principle all
unknown quantities,

{
|η|2 , Im(η) , Im(η)

}
,

can be extracted from fits to the two
asymmetries Aη and Aη. This can then be
used to calculate φmix − γ and ∆qcd from

sin(∆qcd + (φmix − γ)) =
Im(η)

|η|
(1.140)

sin(∆qcd − (φmix − γ)) =
Im(η)

|η|
(1.141)

In practice though, the smallness of |η|2 ∼
λ4 makes fitting it impossible for the num-
ber of events expected at LHCb.

Therefore, in the following it is assumed
that |η| can be obtained from elsewhere
with reasonable accuracy. For the purpose
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of the feasibility study presented in chap-
ter 3, a reasonable value for |η| has to be
assumed. The simplest assumption regard-
ing the hadronic effects is, that they cancel
in the ratio of the ampltidues. Then |η| is
given by the magnitude of CKM matrix el-
ements:

|η| = |Vub| |Vcd|
|Vcb| |Vud|

. (1.142)

Using results 1, 3 and 6 in section 1.4.11
gives |η| = 0.021. This value is assumed
throughout this thesis.

1.6 Conclusion

The Standard Model is highly predictive
with respect to CP violation, which it
parametrises by a single complex phase
δ13. This makes CP violation measurements
particularly suitable to test the Standard
Model and search for signs of New Physics.
Furthermore, CP violation and the gen-
eration of fermion masses are inextricably
linked in the Standard Model via the CKM
matrix. Measuring CP violation parame-
ters might give us insight into the under-
lying processes of fermion mass generation
and flavour mixing, the largest sources of
free parameters in the Standard Model.

Although CP violation has been observed
for the first time in 1964, it is still unclear
whether the Standard Model explanation of
it is correct. The only place where CP vio-
lation has been unambiguously observed is
still the neutral K0 system. Because of the-
oretical uncertainties in the interpretation

of the measured CP violation parameters
in the K0 system, they do not considerably
constrain the Standard Model. However,
from these measurements and our current
knowledge of the CKM matrix, the Stan-
dard Model predicts CP violation in the B0

system to be large.

CP violation can be observed as an interfer-
ence effect between decay amplitudes that
involve CKM matrix elements with differ-
ent phases. Up to O(λ3) in the Wolfenstein
parametrisation, all CKM matrix elements
have zero phase, except for the two smallest
entries, Vtd = |Vtd| e−iβ and Vub = |Vub| e−iγ.
Both are accessible in the B0

d system. The
phase β appears in the box diagram for B0

d–
B0

d mixing; this phase will be well measured
by the year 2006 by the B0 factories and the
Tevatron. The other phase is γ, on which
no strong constraints are expected before
LHCb starts data taking.

The phase γ appears in all B0
d and B0

s de-
cays that involve b → u transitions. Typi-
cal branching fractions for those decays are
∼ 10−5. Measuring γ in many different de-
cay channels will thoroughly over-constrain
the Standard Model parametrisation of CP
violation. Some of these channels are more
likely to be affected by New Physics than
others, and comparison can reveal New
Physics. In order to perform these mea-
surements, high statistics and clean data
samples are essential. This requirement on
sample purity provides the motivation for
the RICH system at LHCb, which is dis-
cussed in detail in this thesis.

The decay B0
d → D∗π is an example for a

γ sensitive channel that is expected to be
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robust against New Physics. As it does
not suffer from penguin contributions, the
measurement is easy to interpret in terms
of Standard Model parameters. B0

d → D∗π
will therefore provide a benchmark mea-
surement of the Standard Model γ. Com-
paring this with other measurements of γ
will test the Standard Model description of
quark mixing and CP violation.

In chapter 3, the feasibility of a γ measure-
ment with the channel B0

d → D∗π at LHCb
is investigated, using a detailed Monte Car-
los simulation of the LHCb detector.



Chapter 2

The LHCb experiment

2.1 The LHC

The planned Large Hadron Collider (LHC)
at CERN will collide protons at a centre–
of–mass energy of 14 TeV at a design lu-
minosity of ∼ 1034 cm−1s−1. At these en-
ergies, direct observation of New Physics
at mass–scales of ∼ 1 TeV is feasible. The
LHC will also be the most copious source of
B hadrons in the world.

The accelerator will be housed in the 27 km
tunnel that has been built for the LEP ex-
periment, that is presently being disman-
tled. LHC is scheduled to start data taking
in 2006 with a luminosity of 1033 cm−1s−1

and upgrade to its full luminosity after a
few years. The high luminosity will be
achieved by filling each of the two rings with
2835 bunches of 1011 particles each [Gro95];
the interval between successive bunch cross-
ings at each of the four interaction points is
25 ns.

Four major experiments will take data
at the LHC: ALICE, CMS, ATLAS and
LHCb. The high luminosity and the na-
ture of hadron collisions result in high ra-
diation levels near the interaction points,

requiring radiation–hard detector compo-
nents. The bunch–crossing rate of 40 MHz
imposes high demands on the speed of the
detector elements and readout electronics
for all experiments.

A diagram of the LHC with the four exper-
iments is shown in figure 2.1.

2.2 LHCb

LHCb is specifically designed to make best
use of the large number of bb pairs pro-
duced at the LHC. This large number is
a consequence of the huge bb cross sec-
tion for 14 TeV proton–proton collisions of
∼ 500µbarn [N+00].

The detector is a single arm spectrometer,
which is motivated by the kinematics of bb
production in high energy proton–proton
collisions, as discussed below.

The LHCb experiment re–uses the DELPHI
pit at interaction point 8, which constrains
the total length of the detector to ∼ 20 m.

29
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Figure 2.1: LHC and LHCb. The LHC collider is housed in the former LEP tunnel.
LHCb is accommodated at interaction point 8.

2.2.1 Bottom Production at
LHCb

In proton–proton collisions, bb pairs are pro-
duced by flavour creation, flavour excitation
and gluon splitting [N+00, Bar01]. A typ-
ical flavour creation mechanism, gluon fu-
sion, is illustrated in figure 2.2.

At LHC energies, the parton distribution
functions of the proton are such that it is
most likely that partons with very differ-
ent momenta interact [Bar01]. This has two
major consequences for the design of a ded-
icated B physics detector:

Figure 2.2: Typical diagram for bb pro-
duction in proton–proton collisions (from
[N+00])
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Figure 2.3: The LHCb Detector shown in the bending (x-z) plane. The angular accep-
tance is 300 mrad.

• The B hadrons produced are highly
boosted.

• Both, the b and the b̄, are predomi-
nantly produced in the same forward
or backward cone.

Momentum spectra of B0
d mesons in

B0
d → π+π− decays are shown in figure 2.5.

For a lifetime of ∼ 1 ps for B hadrons,
the high momenta result in typical decay
lengths of the order of 1 cm. Long decay
lengths are important for the reconstruction
of the B0 decay time, which is needed for the
measurement of the time–dependent decay

rate asymmetries introduced in chapter 1.

The polar angle distribution of the bb pairs
produced in 14 TeV proton–proton colli-
sions, simulated with PYTHIA is shown
in figure 2.6. The fact that in most cases
both of the b quarks are produced within
the same narrow forward cone motivates the
LHCb detector geometry. Why it is impor-
tant that both b quarks are within the LHCb
acceptance will become clear in the follow-
ing section.
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Figure 2.4: The LHCb Detector shown in the non–bending (y-z) plane The angular
acceptance is 250 mrad.

2.2.2 B0–tagging

In order to measure the asymmetries given
in equations 1.128 and 1.131, the flavour
of the B0–meson at the time of creation
needs to be known. LHCb will predomi-
nantly use opposite–side tagging, where the
flavour of the reconstructed B0–meson at
creation is estimated from the flavour of the
accompanying B–hadron, (the “tagging B”)
at decay. It is necessary to assume that
the tagging B did not oscillate before de-
caying. The term “opposite side tagging”
has historical roots: as shown above, at

LHCb both b quarks are produced in the
same forward cone, which makes this tag-
ging method suitable for a single–arm spec-
trometer.

The flavour of the tagging B is found by
finding one particle that is likely to come
from a B–decay, but does not come from the
reconstructed B0. This particle is either a
lepton with high transverse momentum, or
a kaon with high transverse momentum and
significant impact parameter with respect
to the primary vertex [TP98]. The charge
of the lepton gives the charge and therefore
the flavour of the b–quark it decayed from.
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Figure 2.5: Momentum distribution for
B0

d mesons in B0
d → π+π− decays. From

[TP98].

Figure 2.6: Polar angles of hadrons formed
from bb pairs, calculated by PYTHIA from
[TP98].

Conversely, the charge of the tagging kaon
is related to the flavour of the b quark via
the decay chain b→ c→ s.

Not all tags will identify the flavour of the
reconstructed B0 meson correctly. One con-
tribution to the mistag is for example the
possibility that the tagging–B, which may
be a B0

s meson, has oscillated before decay.
As shown in chapter 3, a wrong tag fraction
of ωtag increases the statistical error on the
fit parameters in the decay rate asymme-
tries by a factor of 1

(1−2ωtag)
. The statistical

error is also inversely proportional to the
square–root of the number of events, and
therefore to 1/

√
εtag, where εtag is the tag-

ging efficiency.

As a measure the tagging performance it
is useful to introduce the “tagging power”
Ptag:

Ptag ≡ εtag (1− 2ωtag)2 (2.1)

A sample with Ns events, a mistag frac-
tion of ωtag, and a tagging efficiency εtag is
statistically equivalent to Ptag ·Ns perfectly
tagged events.

At LHCb, a tagging efficiency εtag = 40%,
with a mistag fraction of ωtag = 30% is
expected [B+00], which corresponds to
Ptag = 6.4%.

2.2.3 Luminosity

At the LHC design luminosity of
∼ 1034 cm−1s−1, most bunch crossings
would involve more than one inelastic
proton–proton interaction. Such multiple
interactions severely complicate the task
of B0–tagging, and of cleanly locating the



34 CHAPTER 2. THE LHCB EXPERIMENT

Figure 2.7: Probabilities for having
0, 1, 2, 3, 4 inelastic pp interactions per
bunch crossing as a function of the luminos-
ity, assuming an inelastic cross section for
pp interactions of σinel pp = 80 mb [TP98]

primary and secondary vertices. Both are
essential for measuring time dependent
decay rate asymmetries. LHCb’s pile–up
veto counter, which is part of the ver-
tex detector discussed in section 2.2.6,
therefore rejects multiple interactions at
the trigger level. The luminosity at the
LHCb interaction point is reduced by a
special defocusing of the beam, in order to
optimise it for single interaction events.

Figure 2.7 shows that the maximum
number of single interactions can be
achieved with a luminosity of about
∼ 4 · 1032 cm−1s−1, assuming an inelastic pp
cross section of 80 mb. The design luminos-
ity of LHCb is 2 · 1032 cm−1s−1, which re-
sults only in a small decrease of single inter-

action events, while reducing the number of
multiple interactions by half. This improves
the trigger performance and reduces both
radiation damage and occupancy of detec-
tors.

With this luminosity, LHCb expects about
5.6 · 1011 single–interaction bb events pass-
ing the pile–up veto per year. Due to its
comparably moderate luminosity require-
ments, LHCb can start its full physics pro-
gramme from the first day of running.

2.2.4 Detector Overview

Amongst the most important features of the
LHCb detector are:

• An excellent proper time resolution to
exploit the full B physics potential at
the LHC, including measurements in
the rapidly oscillating B0

s system.

• Particle identification by two Ring
Imaging CHerenkov (RICH) counters,
for clean data samples and flavour tag-
ging with kaons.

• A dedicated B trigger, including high
pt hadron and lifetime triggers for high
efficiency.

Figures 2.3 and 2.4 show schematic
overviews of the LHCb detector, and also
define the orientation of the co–ordinate
system. The origin is at the interaction
point, the z–axis along the beam line, the
x–axis (horizontal) in the bending plane of
the magnet, and the y axis (vertical) in the
non–bending plane.
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LHCb comprises a vertex detector system,
which includes the pile–up veto counter; a
magnet and a tracking system; two RICH
counters; an electromagnetic calorimeter
and a hadron calorimeter, and a muon de-
tector. All detector sub–systems, except for
the vertex detector and RICH 1, are split
into two halves that can be separated hori-
zontally for maintenance and access to the
beam pipe.

Below, the different components are de-
scribed briefly. The following sections are
derived from the LHCb Technical Proposal
(TP) [TP98], or, where available, the corre-
sponding Technical Design Report (TDR).
The TDR was available for the Magnet
[Mag00], the Calorimeters [Cal00] and the
RICH system [RIC00].

The specifications given in the Technical
Proposal provided the basis for the sim-
ulation study presented in chapter 3. In
case a TDR is available and the specifica-
tions differ significantly, this is indicated.
As RICH–related studies constitute a large
part of the research presented in this thesis,
the RICH is described in more detail.

2.2.5 Beam Pipe

The beam pipe consists of three sections. A
1.8 m section around the interaction point
with a large diameter of about 120 cm ac-
commodates the vertex detector, placed in-
side. This is followed by a 1.5 m long conical
section inside RICH 1, with a 25 mrad open-
ing angle. The third part, which extends
to the end of the detector, is 16 m long and
has a 10 mrad opening angle. Current plans

foresee a beam pipe made from aluminium,
but alternatives are under study, in partic-
ular a beryllium–aluminium alloy.

2.2.6 Vertex Detector System

The vertex detector system comprises the
vertex detector itself, and the pile–up veto
counter. The vertex detector has to

• allow the primary and the secondary
vertex to be reconstructed accurately
enough for the measurement of time–
dependent asymmetries, particularly
in the rapidly oscillating B0

s system;

• provide information to the high–
impact parameter level 1 trigger.

The vertex information needs to be avail-
able for the level 1 trigger decision. It is
read out within 1µs.

The pile–up veto counter

• rejects multiple interaction events and
provides this information to trigger
level 0.

It has to be read out within 25 ns.

The vertex detector

The current vertex detector design con-
sists of 17 stations between z = −18 cm and
z = +80 cm. Each station comprises two
silicon discs, positioned perpendicularly to
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Figure 2.8: Vertex detector layout

the beam; one disc with circular strips,
measuring the distance r to the z axis, one
with radial strips to measure the azimuthal
angle φ.

The readout pitch of the r–strips varies
from 40 to 80µm, the pitch for the φ strips
from 40 to 104µm. This pitch variation is
chosen to provide a low, uniform occupancy
of ∼ 0.5%, and the best resolution for those
hits closest to the interaction point. For a
measurement point in a station with a hit
in both the r and the φ disc, the resolution
is between 6 and 10µm. The impact pa-
rameter resolution is about 40µm for high
momentum tracks.

The silicon discs cover radial distances from
r = 6 cm down to r = 1 cm. With the ex-
pected radiation levels this close to the in-
teraction point, they are expected to sur-
vive for at least one year, when operated at
5oC.

The first 12 discs cover z = −18 cm to
z = 26 cm, placed at 4 cm separations.
These are followed by 5 discs further down-
stream to cover tracks with low polar an-
gles.

With this geometry, every track within
the acceptance of the detector, down to
θ = 15 mrad, traverses at least three vertex
detector stations.

The complete vertex system is located in-
side an enlarged section of the beam–pipe.
The detector stations are separated from
the primary vacuum of the LHC machine by
a thin wall, that also acts as an RF shield.
In order to keep the stresses on the wall
low, so that it can be built introducing as
little material as possible, the vertex detec-
tor stations are placed into a secondary vac-
uum. The current design foresees each de-
tector station to be enclosed in an individ-
ual cap made from 100µm thick aluminium.
As these caps form cavity–like structures,
the design requires a dedicated wake field
suppressor in the vicinity of the beam.

Including guard rings and the RF shield,
the vertex detector reaches down to
r = 4 mm. In order to avoid the beam being
steered into the vertex detector, the whole
system will be mechanically retracted from
the beam line during filling and tuning pe-
riods. To achieve this, the vertex detector
discs are split into two halves that can be
separated vertically. The two halves are off-
set by 2 cm in z to achieve an overlap of the
sensitive areas.
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Pile–up Veto Counter

Two dedicated r–discs act as a pile–up
veto, available in time for the level 0 trig-
ger. They are placed upstream of the main
vertex detector. Each disc is subdivided
into six 60◦ sectors, each with 300 strips
pitched between 120 and 240 mm. The on–
detector electronics include a discriminator,
from which the binary signals are sent to the
nearby vertex–finding processors.

The r coordinates of the outgoing tracks,
measured in the two planes, are used to
calculate the approximate z position of the
primary vertex. If more than one primary
vertex is found, the event is rejected. Sim-
ulations show that a primary vertex is re-
constructed with a resolution of 1 mm along
z; with this performance 80% of double in-
teractions are rejected, while 90% of single
interactions are retained.

Current Developments

The vertex detector design is still being op-
timised. The pitch of the circular strips of
the r detectors is likely to be increased rel-
ative to the TP design. Also, a change in
the radial coverage to 0.8 cm < r < 4.5 cm,
and an increase of the number of stations
to 25 is being considered. The design of the
RF shielding of the disks is under review
[vB+00].

2.2.7 Dipole Magnet

In order to achieve a precision on the mo-
mentum measurements of better than half
a percent for momenta up to 200 GeV, the
magnet has to provide an integrated mag-
netic field of 4 Tm. The required aperture
is ±300 mrad in x and ±250 mrad in y.

For the Technical Proposal [TP98], a
window–frame magnet with superconduct-
ing bedstead coils and horizontal pole faces
had been assumed. This is also the lay–out
used for the simulation studies presented in
chapter 3.

Since then, the design has been changed
to a warm magnet. Apart from a faster
construction and significant cost savings,
the warm magnet design has several advan-
tages, in particular that it permits regular
field inversions to reduce systematic errors
in CP violation measurements.

As seen in figure 2.4, in the new design the
poles are inclined to follow the acceptance
angles. This allows the 4 Tm integrated
field to be retained with a power consump-
tion of 4.2 MW. An iron shielding plate
protects the vertex detector region and the
RICH 1 detector from fringe fields.

A picture of a 1:25 model of the magnet
is shown in figure 2.9. The new design is
described in detail in [Mag00].

The effect of the new magnet design on the
physics performance has been studied in de-
tail and is not detrimental compared to the
superconducting design [CFH+99, For99].
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Figure 2.9: Photograph of a 1:25 model of the LHCb magnet, with a person drawn to
scale (from [Mag00]).

2.2.8 Tracking System

The tracking system is divided into two sub-
systems, the inner and the outer tracker.
The outer tracker covers most of LHCb’s
acceptance, where the particle flux is below
1.4 · 105 cm−2s−1. Straw drift chambers will
be able to cope with such fluxes. Within a
region |x| < 60 cm and |y| < 40 cm, the
fluxes approach 3.5 · 108 cm−2s−1 and a dif-
ferent technology is needed.

LHCb will have 11 tracking stations. The
first one is directly after the vertex detector,

the last one just after RICH 2. The position
of the tracking stations is shown in figures
2.3 and 2.4.

Outer Tracker

The solution foreseen at the time of the
Technical Proposal was to use honeycomb
drift–chambers, with a resolution of bet-
ter then 200µm. With a fast CF4–based
drift gas, the signal latency is two bunch–
crossing intervals. Since then the design
has been changed to straw–chambers with
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equivalent specifications.

The inner boundary of the Outer Tracker
region is defined by requiring an occupancy
of less than 10%.

Inner Tracker

Two different options for the Inner Tracker
are being considered:

• Microstrip Gas Chambers with GEM

• Silicon Strip Detectors

Microstrip Gas Chambers with GEM:
The Microstrip Gas Chamber (MSGC) with
Gaseous Electron Multiplier (GEM) is the
baseline solution for the inner tracker.
MSGC’s tend to suffer from sparking which
is greatly reduced by the addition of one or
more GEMs.

The GEM is a 50µm thick kapton foil
coated on both sides with copper and per-
forated with 60µm holes at a 140µm pitch.
The curvature of the conducting surfaces
near the holes is very high, so, in conjunc-
tion with the small distance between the
metal layers, even a moderate voltage dif-
ference results in very strong electric fields.

The electrons released by an ionising par-
ticle traverse the gas drift region towards
the anode, pass through the GEM, where
they get multiplied through avalanche pro-
cesses typically by a factor of 20. To achieve
an overall gain of 4000, an MSGC with one
GEM can now safely operate at a gain of
200.

The proposed detectors have a 2 mm drift
gap, a 50µm GEM foil and a 2 mm am-
plification gap. Glass substrates with a
diamond–like coating are used, with a read-
out pitch of 220µm. Amplification with two
or more GEMs is under consideration.

In a 1.1 T field the strip hit multiplicity is
around 1.5 and the hit resolution is better
than 65µm. The average occupancy is be-
low 1% and the maximum occupancy 4%,
at a minimum distance of 36 mm from the
beam. A total sensitive area of 14 m2 is
equipped with about 200, 000 readout chan-
nels.

Silicon Strip Detectors: Until the
MSGC/GEM detectors are demonstrated
to be an entirely feasible technology, Silicon
Strip Detectors (SSD’s) are kept as a back–
up solution. SSD’s are well–tested, precise,
fast and radiation hard, but unfortunately
more expensive.

2.2.9 Calorimeters

The calorimeter system separates hadrons,
electrons and photons, and measures their
energy and position.

The information provided by the calorime-
ter system forms the basis of the trigger
level 0 decision, which looks for high ET
electrons, photons and hadrons. This task
provides the main design constraints as suf-
ficient information for the level 0 decision
must be provided and processed within the
25 ns between each bunch crossing.
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For the off–line analysis, the calorimeter
will play a crucial role in π0 reconstruc-
tion, required for example in the channel
B0

d → ρπ that is sensitive to γ.

The calorimeter specifications as presented
in the Technical Proposal [TP98] form the
basis for the simulation study presented in
chapter 3. Recently, the calorimeter group
have presented their Technical Design Re-
port [Cal00]. The most significant changes
are:

• the addition of a scintillator pad detec-
tor in front of the preshower;

• a modification of the cell geometry;

• a reduction of the HCAL depth.

Here we will describe the new design, refer-
ring to the old specifications where signifi-
cant changes have taken place.

General Structure

The first element of the calorimeter system
is a scintillator pad detector (SPD), that
signals charged particles. This is followed
by the preshower (PS) detector, which is
then followed by 25 radiation length of elec-
tromagnetic calorimeter and 5.6 interaction
lengths of hadron calorimeter.

Geometry

The acceptance and detector segmentation
of the three sub–systems are geometrically

Figure 2.10: SPD/PS, ECAL: lateral seg-
mentation. One quarter of the detector
front is shown. The cell sizes are given for
the ECAL and reduce by ∼ 1.5% for the
SPD/PS.

Figure 2.11: HCAL: lateral segmentation.
One quarter of the detector front is shown

matched to facilitate the trigger forma-
tion. The inner polar acceptance starts at
30 mrad, and the outer acceptance follows
the 300 mrad acceptance in x and 250 mrad
acceptance in y of the LHCb spectrometer.

The lateral segmentation of the calorime-
ters increases closer to the beam–line, tak-
ing into account a variation in hit density
of two orders of magnitude. The segmen-
tation of the SPD/PS and the electromag-
netic calorimeter is shown in figure 2.10, the
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Figure 2.12: ECAL segmentation for TP

Cell
sizes
(mm):

inner:
40× 40

middle:
80× 80

outer:
160× 160

Figure 2.13: HCAL segmentation for TP

Cell sizes • inner: 80× 80 mm2 • middle:
160× 160 mm2 • outer: 320× 320 mm2

segmentation of the HCAL in figure 2.11.

The calorimeter design for the TP had a
different cell structure, which is shown in
figures 2.12 and 2.13. Figure 2.13 also il-
lustrates the retraction of the calorimeter
halves about the beam line.

Detector Technologies

Preshower: The first element of the
calorimeter system is a scintillator pad de-
tector (SPD), that signals charged particles.
This is followed by a 12 mm lead wall and
another scintillator pad detector, which to-
gether form the preshower (PS) detector.
The SPD has been added since the TP.

ECAL: The preshower is followed by
an electromagnetic Shashlik calorimeter,
which is 25 X0 thick. Shashlik calorimeters
with similar specification to the LHCb
design have achieved energy resolutions of

σE
E

=
10%√
E
⊕ 1.5% (E in GeV)

[B+96, B+94]. This performance is achieved
using a sampling structure of 2 mm of
lead interspersed with 4 mm of scintillator
plates, and light collection by wavelength
shifting fibres.

HCAL: The structure chosen is an
iron/scintillator tile calorimeter, read out
by wavelength shifting fibres. The scintil-
lator and iron plates are aligned in the di-
rection of the beam. The sampling struc-
ture provides on average 4 mm scintillator
thickness for every 16 mm of iron. With an
overall material thickness of 1.2 m, or 5.6λI,
the expected energy resolution is:

σE
E

=
80%√
E
⊕ 10% (E in GeV).

For the TP an HCAL with 7.3λI was
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planned, with an energy resolution of

σE
E

=
80%√
E
⊕ 5% (E in GeV).

2.2.10 Muon Detector

The muon detector provides offline muon
identification, and information for the trig-
ger level 0, which searches for high pt
muons. It consists of four stations, M2 to
M5, embedded into an iron filter, placed
after the calorimeters, and one unshielded
station, M1, in front of the calorimeters.

Depending on occupancy, either Multi-
gap Resistive Plate chambers (MRPC’s) or
Cathode Pad Chambers (CPC’s) will be
used. Most of the coverage will be provided
by the cheaper MRPC’s. But as their per-
formance begins to decrease significantly at
rates above 5 kHz/cm2, CPC’s will be used
for station M1 and the coverage near the
beam line, where the rates are higher.

The shielding in front of the last muon
station is listed in table 2.1. In order to
reach the last of the five muon stations,
a muon must have an energy of at least
6 GeV. Additional shielding immediately
behindM5 protects it from backsplash from
nearby LHC beam elements and from par-
ticles emerging from the collider tunnel.

Recent Developments

Since the Technical Proposal, the muon
chamber design has been further optimised.

Table 2.1: Muon detector components and
shielding in terms of radiation and inter-
action lengths, listed in the order in which
they are encountered by a particle travelling
downstream. Numbers are given for the old
(TP) and the new calorimeter design.

Detector Compo- Depth
Element sition z/X0 z/λI

M1 CPC
ECAL+PS+SPS (new) Pb/Scint. 27 1.3

ECAL,PS (TP) Pb/Scint. 28 1.3

HCAL (new) Fe/Scint. 55 5.6
HCAL (TP) Fe/Scint. 68 7.3

Shield-1 Fe 17 1.8
M2-5 MRPC/CP

Shield-2,3,4 (each) Fe 39 4.2
Total Thickness (new Calo) 216 21

Total Thickness (TP Calo) 230 23

For most parts of the muon detector Multi-
Wire Proportional Chambers (MWPC) will
be used. The lowest-occupancy region in
stations M3 M4 and M5 will be equipped
with Resistive Plate Chambers (RPC).
The choice of technology for the highest–
occupancy regions near the beam pipe in
stations M1 and M2 has still to be made
[Sch00].

2.2.11 The Trigger

As B hadrons have a long lifetime and are
rather heavy, events with B hadrons can be
distinguished from other inelastic pp inter-
actions by the presence of a secondary ver-
tex and particles with high transverse mo-
mentum. Trigger levels 0, 1 and 2 select
events by these two criteria. The final trig-
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ger level, 3, is then used to select the par-
ticular B decay topologies of interest.

Level 0

Trigger level 0 triggers on high–pt parti-
cles and rejects multiple interactions. It has
to operate at the LHC bunch–crossing fre-
quency of 40 MHz. Level 0 comprises three
high–pt triggers, the muon, the hadron and
the electron trigger, which use information
from the calorimeters and the muon system
only. The fourth component of the level 0
trigger is the pile–up veto provided by the
vertex detector. Trigger level 0 is designed
to achieve a suppression factor of 40.

The latency of the level 0 trigger is 128 clock
cycles, or 3.2µs. The requirements of high–
speed and radiation hardness demand the
use of specialised, purpose-built hardware.

Level 0 Decision Unit

The trigger accepts an event if it has one
or more high pt candidates above the set
thresholds and is flagged as a single inter-
action by the pile–up veto. The thresholds
will be defined to optimise the event yields
in the channels of interest. The threshold
cuts in the Technical Proposal are:

• pt(µ) > 1 GeV

• ET (e) > 2.34 GeV

• ET (γ) > 4 GeV

• ET (hadron) > 2.4 GeV

Figure 2.14: Schematic of the LHCb Trigger
level 0 and level 1 architecture.
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• di–lepton events are accepted with re-
duced thresholds.

The particle spectra are such that this
choice assigns the majority of the available
bandwidth to the hadron trigger.

Level 1

Trigger level 1 triggers on detached vertices.
Level 1 is designed to suppress the input
rate of 1 MHz by a factor of 25. A schematic
of the trigger level 0 and level 1 layout,
showing the detector components involved
at each level, is given in figure 2.14.

The implementation of the level 1 algo-
rithms includes a mixture between spe-
cialised hardware and farms of high–
performance commercially available proces-
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Figure 2.15: Trigger logic of level 0 and
level 1
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sors. The latency of the level 1 algorithms
is variable, but limited to a maximum of
256µs. To ensure that the level 1 front–end
buffer does not overflow, it must be able to
store up to 250 events accepted by level 0.

A schematic of the trigger logic is shown in
figure 2.15.

Level 0 and 1: Recent Developments

Since the Technical Proposal, the level 0 la-
tency has been increased to 4µs, and the
maximum level 1 latency to 1700µs.

Level 2

Trigger level 2 uses momentum informa-
tion from the tracker to eliminate fake sec-

ondary vertices which are typically caused
by multiple–scattering of low–momentum
tracks.

Level 2 is designed to reduce its input rate
of 40 kHz by a factor of 8, to 5 kHz.

Level 0, 1 and 2 Performance

The efficiencies of trigger levels 0, 1 and 2
are given in table 2.2 for different decays
(from [TP98]).

Level 3

Trigger level 3 performs full and partial
event reconstruction to select specific de-
cay channels of interest. It makes use of
information from almost all detector com-
ponents, including possibly the RICH, as il-
lustrated in the flow diagram in figure 2.16.
In order to select the decays of interest, it is
expected that level 3 will implement a loose
sub–set of the final selection cuts. The ef-
ficiency of the level 3 trigger is therefore
expected to be close to 100% with respect
to this selection.

The suppression factor of level 3 is ∼ 25, to
give a data recording rate of ∼ 200 Hz.

2.3 The RICH system

2.3.1 Motivation

LHCb intends to perform high precision
measurements on many different B0 decay
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Table 2.2: Trigger efficiencies of Level 0, 1 and 2 for events where the final state is
reconstructed offline and its flavour is correctly tagged, for non-specific flavour final
states. Level 0, 1 and 2 triggers are applied consecutively.

Decay Mode Physics Level-0 Level-1 Level-2
B0

d → π+π− + right tag γ 0.76 0.48 0.83
B0

d → J/ψ(e+e−)KS + right tag β 0.72 0.42 0.81
B0

d → J/ψ(µ+µ−)KS + right tag β 0.88 0.50 0.81
B0

s → D+
s K− + right tag γ − 2δγ 0.54 0.56 0.92

B0
d → D0K∗0 γ 0.37 0.59 0.95

Figure 2.16: Data flow diagram for Trigger
level 3.
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Table 2.3: Some channels that are sen-
sitive to γ, and depend on K/π sep-
aration. The ticks indicate the im-
portance of the RICH information for
each analysis:

√
=significant improvement;√√

=essential.

Channel K/π-sep.

B0
d → D∗π

√

B0
s → DsK

√√

B0
d → ππ

√√

B0
s → KK

√√

B0
d → DdDd

√√

B0
s → DsDs

√√

channels. Many interesting decay channels
are themselves backgrounds to topologically
similar ones. Typically the branching ra-
tios are of the order of ∼ 10−5. Particle
identification and in particular K/π separa-
tion is provided by the RICH. This is essen-
tial for obtaining the clean samples needed
to perform a comprehensive range of high–
precision CP violation measurements.

Figures 2.17, 2.18 and 2.19 show simu-
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Figure 2.17: B0
d → π+π− and same-

topology background, without RICH (sim-
ulation)
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Figure 2.18: B0
s → K+K− and same-

topology background, without RICH (sim-
ulation)
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Figure 2.19: B0
s → DsK and same-topology

background, without RICH (simulation)
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lated invariant mass distributions for the
channels B0

d → π+π−, B0
s → K+K− and

B0
s → DsK (from [ABF+01]). Also shown

are background contributions from various
same–topology decays. In all cases, the sig-
nal, shown in red, is overwhelmed by the
background. The background channels can
themselves show CP violation effects, which
could cause uncontrollable systematic un-
certainties at these low purities.

Also crucial for the measurement of decay–
rate asymmetries is B0–tagging, which is ex-
plained in section 2.2.2. The K/π separa-
tion provided by the RICH allows the use
of kaons for B0 tagging. This is equivalent
to a 31

2
fold increase in statistics compared

to the performance without kaon tagging.

Figure 2.20 shows the momentum distribu-
tion of (a) pions in B0

d → π+π− events, and
(b) tagging kaons. This illustrates the need
for K/π separation over a wide range of mo-
menta; LHCb seeks K/π separation from
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Figure 2.20: Momentum distributions for
(a) the highest momentum pion from
B0

d → π+π−, shown for momenta between
0 and 200 GeV, and (b) tagging kaons be-
tween 0 and 20 GeV.

momenta of ∼ 1 GeV to beyond 100 GeV.

2.3.2 Cherenkov light

Cherenkov angle, θC

When a particle passes through a dielectric
and has a speed larger than the speed of
light in that substance, a cone of Cherenkov
light is emitted. The opening angle θC of
the cone is related to the speed β of the
particle by:

cos θC =
1

nβ
=

1

n

√√√√1 +

(
m

p

)2

(2.2)

for units with c = 1; n is the refractive index
of the material, which in general varies with
the wavelength of the emitted radiation.

The maximum Cherenkov angle for a given
refractive index is:

cos θmax =
1

n
. (2.3)

For n− 1� 1:

θmax ≈
√

2 (n− 1). (2.4)

Number of Photons

The distribution of photons must, for
symmetry reasons, be flat in the azimuthal
angle φ. The number of photons, Nγ,
emitted per unit length of radiator, l, per
unit photon–energy E = h̄ω, is given by
[FT37, Gin40]:

dNγ

dldE
=

α

h̄c
Z2

(
1− 1

(β n(E))2

)

=
α

h̄c
Z2 sin2θC(E) (2.5)

where Z is the charge of the particle in
units of e. Entering the values of the
constants in units of cm and eV, and
integrating over the length of the particle
track, L, we get for a particle with Z = 1:

dNγ

dE
=

370

eV cm
sin2θC(E)L. (2.6)



48 CHAPTER 2. THE LHCB EXPERIMENT

Figure 2.21: Principle of operation of a
RICH detector

2.3.3 RICH Counters

RICH counters measure the opening angle
θC of the Cherenkov cone by imaging it onto
an array of photodetectors. The theory of
RICH detectors is developed in [YS93]. In
the LHCb RICH detectors, the Cherenkov
cone is focused onto the detector surface
with spherical mirrors. The mirrors are
slightly tilted to allow the photo detectors
to be positioned outside the detector accep-
tance. The basic principle is illustrated in
figure 2.21.

Given the momentum p, the mass m can be
calculated, and the particle type identified.

Number of Detected Photons

The detector parameters that determine the
number of photons detected can be grouped
into “detector response” parameters, and

“detector geometry” parameters.

The detector geometry parameters are:

• εA, the geometric efficiency of the de-
tector. It is the probability that a pho-
ton reaching the photodetector plane
hits the active area of a photodetector.

• L, the length of the radiator.

The detector response parameters are:

• T(E), the probability that a photon
reaches the photo–detector plane. This
comprises the transmission of the ra-
diator gas, the mirror reflectivity, and
other elements of the detector optics,
for example optical filters;

• Q(E), the quantum efficiency of the
photodetector. It is the probability
that a photon is converted into an elec-
tron, as a function of the photon en-
ergy;

• εD, the efficiency with which the photo
electron is detected.

The detector response parameters can be
summarised in a single figure, N0, “the
figure of merit” for a RICH detector:

N0 ≡
370

eV cm

∫
εDQ(E)T(E)dE. (2.7)

It is also useful in this context, to define the
differential detector response as a function
of the photon energy

n0(E) ≡ 370

eV cm
εDQ(E)T(E). (2.8)
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Using these definitions together with equa-
tion 2.6, the number of photons detected
with a Cherenkov detector, Npe, is given by:

Np.e. = LεA

∫
n0(E) sin2θC(E)dE. (2.9)

For the approximation that sin2θC(E) is
constant over the relevant energy range:

Np.e. ≈ LεAN0 sin2θC . (2.10)

Momentum Range

The lower end of the momentum range over
which the RICH can operate is defined by
the threshold for Cherenkov light emission:

1

n

√√√√1 +

(
m

p

)2

≤ 1

⇒ p ≥ m√
n2 − 1

. (2.11)

From equation 2.2, we get for small angles
θC and for large momenta, p� m:

1− 1

2
θ2
C ≈

1

n

(
1 +

1

2

m2

p2

)
. (2.12)

The approximation of small angles is valid
for the LHCb RICH system, where the max-
imum Cherenkov angle is between 32 mrad
and 240 mrad (radiator dependent).

The difference in θ2
C for two tracks with

the same momenta, but different masses, is
therefore:

θ2
2 − θ2

1 = − 1

n

∆(m2)

p2
(2.13)

⇔ ∆θ · (θ2 + θ1) = − 1

n

∆(m2)

p2
(2.14)

where ∆θ = θ2 − θ1 and ∆(m2) = m2
2 −m2

1.
For large momenta, we can approximate

θ1 + θ2 ≈ 2θmax ≈ 2

√
1− 1

n2
. (2.15)

Hence the difference ∆θc between the
Cherenkov angles of two particles with the
same momentum p and different masses is,
for p� ∆(m2) and θC ≈ θmax � 1, given
by:

∆θc ≈ −
1

2
√
n2 − 1

· ∆(m2)

p2
. (2.16)

If the Cherenkov angles are Gaussian dis-
tributed with a width σθ, the number of sig-
mas of separation between two tracks, nσ,
is given by

nσ =
1

2

1

σθ
√
n2 − 1

· ∆(m2)

p2
. (2.17)

For the limits on the momentum range, we
get therefore:

pmin ≈
m√
n2 − 1

pmax ≈

√√√√1

2

1

σθ
√
n2 − 1

· ∆(m2)

nσ

(2.18)

where, for K/π separation, m is the pion
mass, and ∆(m2) the difference between the
squares of the kaon and the pion mass. The
minimum number of sigmas separation be-
tween the two particle hypotheses, nσ, is
typically required to be 3.
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Resolution

The width of the Cherenkov angle distribu-
tion is determined by

• Emission point error: As the spheri-
cal mirrors are slightly tilted, the point
where a photon hits the detector sur-
face depends on the position along the
radiator where it was emitted, which is
not known.

• Chromatic dispersion: The re-
fractive index, and therefore the
Cherenkov angle, depends on the wave-
length of the emitted photon, which is
not known.

• Tracking: To calculate θC from the
hit position on the detector surface, the
track direction needs to be known.

• Pixelisation: The photodetector
granularity limits the position resolu-
tion on the detector plane, and there-
fore the Cherenkov angle resolution.

A more detailed discussion of the above con-
tributions can be found in chapter 4.

The Cherenkov angle resolution for the
complete ring also depends on the

• Number of photo electrons per
track: The more photo electrons are
detected, the more accurate is the
Cherenkov angle reconstruction. As-
suming the errors on the Cherenkov an-
gle reconstruction for each photon are
independent, we get for the Cherenkov

angle resolution of the whole ring: σθ ∝
1√
Np.e.

.

The above contributions need to be bal-
anced carefully against each other, and cost.
For example, increasing the wave–length
range over which the photodetectors are
sensitive increases the number of photo elec-
trons per track, but worsens the chromatic
dispersion. Improving the photodetector
resolution increases the cost in proportion
to the number of readout channels. How-
ever, the overall performance is not signifi-
cantly improved once a resolution has been
achieved that is on a similar level to the
other error contributions.

2.3.4 The LHCb RICH

Two RICH Detectors

As shown in equation 2.18, the upper and
the lower limit of the momentum range cov-
ered by a RICH detector depend on the
refractive index of the radiator, and the
Cherenkov angle resolution. In order to
provide K/π separation from ∼ 1 GeV to
> 100 GeV, the LHCb RICH system em-
ploys two RICH detectors with three radi-
ators.

The first radiator is silica aerogel with a re-
fractive index of n = 1.03. This is suitable
for the lowest momentum tracks starting at
about 1 GeV. Aerogel is a fine mixture be-
tween a solid and a gas. It has a structure
that is much smaller than the wavelength of
visible light, so its optical properties are a
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mixture of those of the individual materials
and can be fine–tuned.

The useful wavelength range of aerogel is
limited by Rayleigh scattering of photons
with small wavelength. The transmission
of light of wavelength λ through a length L
is proportional to

e−CL/λ
4

,

where C is the clarity coefficient. In the
simulation studies for the assessment of the
RICH performance, C = 0.008µm4/cm is
assumed. Aerogels with C = 0.004µm4/cm
are however under study, which would re-
sult in reduced photon losses due to scat-
tering.

A Mylar filter immediately downstream of
the aerogel is used to absorb wavelength be-
low ∼ 350 nm in order to reduce the back-
ground due to scattered photons. The
best possible efficiency for those unscat-
tered photons transmitted by the mylar, ex-
tending into the visible spectrum, is an im-
portant consideration in the photodetector
choice.

The intermediate momentum region is cov-
ered by gaseous C4 F10 with n = 1.0014,
providing K/π separation up to ∼ 70 GeV.
Both radiators are part of the RICH 1 de-
tector that is positioned close to the inter-
action region, immediately downstream of
the vertex detector. This is to minimise the
required photodetector area and to provide
a wide acceptance for low-momentum par-
ticles. A schematic of RICH 1 is shown in
figure 2.22. RICH 1 covers tracks with po-
lar angles between 25 and 300 mrad.

Figure 2.22: RICH 1 Schematic

The particle first traverses 5 cm of aerogel–
radiator, and then 83 cm of C4 F10 gas.
From simulation studies we expect to de-
tect about 7 photons from the aerogel and
33 photons from the C4 F10 gas.

Figure 2.23 shows the Cherenkov angle
against the momenta of pions and kaons for
the two radiators. Figure 2.24 shows the
two photo detector planes with (simulated)
Cherenkov rings identified by the pattern
recognition algorithm. The rings from the
aerogel and the gas are clearly visible and
distinguishable.

In order to cover momenta up to > 100 GeV
and tracks at polar angles below 25 mrad,
a second detector, RICH 2, is placed fur-
ther downstream. Its polar angle accep-
tance starts at 15 mrad. Given the strong
correlation between the momentum and the
polar angle of the tracks, as demonstrated
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Figure 2.23: Cherenkov angle vs momen-
tum for pions and kaons in RICH 1
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Figure 2.24: Rings in RICH 1

Figure 2.25: Polar angle versus momen-
tum for all tracks in simulated B0

d → π+π−

events. The regions covered by RICH 1 and
RICH 2 are indicated by dashed lines.

in figure 2.25, it is sufficient for RICH 2 to
cover polar angles up 120 mrad.

Equation 2.18 shows that, in order to in-
crease the momentum coverage towards
higher momenta, one can either improve the
Cherenkov angle resolution, or reduce the
refractive index. In RICH 2, both options
are pursued. The radiator is C F4 gas with
n = 1.0005. To improve the resolution com-
pared with RICH 1, a larger detector is con-
structed. The focal lengths of the mirror
and mirror–detector distance are increased,
which gives a larger image and thus reduces
the pixelisation error. The small dispersion
of C F4 results in a reduced chromatic er-
ror. The smaller Cherenkov angle, and the
reduced curvature of the mirror, lead to a
reduced emission point error.

A schematic of RICH 2 is shown in figure
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Figure 2.26: RICH 2 schematic, with
RICH 1 drawn to scale for comparison .

2.26. In order to keep the length of the de-
tector small, the light is reflected from the
spherical mirrors first onto two flat mirrors,
and from there to the detector plane.

2.3.5 Pattern Recognition

To associate rings in the two RICH detec-
tors with tracks found in the tracking sys-
tem and to make particle assignments, a
global likelihood fit is performed, using all
available information from the three radia-
tors simultaneously.

A likelihood function is calculated assuming
an approximately Gaussian distribution in
the Cherenkov angle distribution for each
track, plus background. For each track

found in the tracking system, the number
and position of photons on the detector sur-
face for a given particle type assumption
is calculated and compared with the num-
ber found. The combination of particle as-
signments producing the largest likelihood
is the result of the fit.

The log–likelihood function that is max-
imised is:

lnL = −
∑

track j

µj + (2.19)

∑
pixel i

ni ln

 ∑
track j

aij + bi

 ,

where aij is the expected number of de-
tected photoelectrons from track j in pixel
i (under a given set of track particle-type
hypotheses), and µj =

∑
i aij is the expec-

tation for the total number of detected pho-
toelectrons from track j; ni is the number of
photoelectrons falling into pixel i; bi is the
expected background falling in pixel i from
sources without a reconstructed track.

2.3.6 Photodetectors

The photodetector for the LHCb RICH
must be

• efficient, with sensitivity extending
into the visible spectrum;

• fast (1 bunch–crossing every 25 ns);

• precise (pixel size: ∼ 2.5× 2.5 mm2);

• affordable to cover 2.6 m2;
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• radiation hard to exposures up to
3 kRad/year;

• tolerant to magnetic fringe fields of
20− 30 Gauss.

The baseline photodetector choice is the
Hybrid Photo Diode, HPD. Multi–anode
Photo Multiplier Tubes (MaPMTs) are
kept as a back–up solution until all tech-
nical challenges of the HPDs have been
solved.

HPDs

An HPD consists of a vacuum tube with
a light–sensitive photo cathode at the en-
trance window and a silicon detector at
the tube base. Between the photocathode
and the silicon detector a high voltage of
∼ 20 kV is applied. If a photon hitting the
cathode is converted to an electron, this
electron is accelerated by the applied elec-
tric field onto the Si sensor, where it cre-
ates a large number of electron–hole (e–h)
pairs. The energy required to create an e–h
pair in Si is 3.6 eV, hence the number of e–h
pairs created by a 20 kV electron is about
20000/3.6 ≈ 5.6 · 103. In practice this num-
ber will be slightly smaller, as some energy
will be lost in the dead layers of the sensor.

Apart from the high photon detection ef-
ficiencies achievable with HPDs, they also
allow for a very good signal to noise ratio,
as the gain is achieved in a single dissipa-
tive process with a very large mean number
of e–h pairs. The standard deviation of this
distribution is

√
F ·N where F is the Fano

Factor [Fan47] and N the number of e–h

pairs produced. For electrons incident on
a Si target, F ≈ 0.11 [ABS80]. The rela-
tive width of the distribution of the num-
ber of created e–h pairs per single photo

electron is therefore about
√

0.11
5·103 = 0.5%.

Hence the widths of the peaks in the pulse
height spectra shown in figure 2.30 are al-
most entirely due to electronics noise.

Backscattering

Not all electrons deposit all of their en-
ergy in the Si - about 18% are backscat-
tered [Dar75], losing some of their energy
before scattering back from the Si to either
re–enter at another point, or leave the sen-
sitive region altogether.

In order to estimate the potential back-
ground from backscattered electrons which
re–enter the Si, we will derive an expres-
sion for the probability of a photo electron
entering the Si detector in an HPD more
than once. For the case of an homoge-
neous electric field, it is easy to show that
the maximum radius over which a backscat-
tered electron can re–enter is 2h, where h is
the distance between the cathode and the Si
detector. As shown in [A+90b], the proba-
bility per unit area for a backscattered elec-
tron to re–enter at any point within this ra-
dius is approximately constant. Therefore,
for a Si sensor of diameter d and a tube of
height h, the probability that any electron
enters the Si twice is ∼ 0.18 · (d/(4h))2.
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Figure 2.27: Schematic of the Pixel HPD

2.3.7 The Pixel HPD

The HPD for the LHCb RICH detectors
is being developed in association with the
company DEP1. A diagram of the device is
shown in figure 2.27. The electrons released
from the 75 mm diameter cathode are cross–
focused by two electrodes onto the anode,
demagnifying the image by a factor of ∼ 5.

The Cathode

The cathode is a multi–alkali S20–type de-
posited on the inside of the 7 mm thick
quartz entrance window. The quantum ef-
ficiency of the cathode as a function of the
photon energy, taken from measurements of
HPD prototypes, is shown in figure 2.28.
The measurement includes light–losses in
the quartz window. The sensitive range of
the cathode extends approximately from 2
to 7 eV.

1Delft Electronische Producten (DEP), The
Netherlands

Figure 2.28: Quantum efficiency of the pho-
tocathode (including the effect of the quartz
window) as a function of photon energy.

Figure 2.29: Dispersion of radiators.
The plots show (n − 1) as a function of the
photon energy, indicating the limits set by the
sensitivity of the photocathode. The excluded
area in the plot for the aerogel is due to the
Mylar filter. On the right hand side, the chro-
matic error for the single–photon resolution is
given.
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Figure 2.29 illustrates the effect this
range has on the chromatic error. The inte-
grated quantum efficiency of the cathode is:∫

Q(E)dE = 0.77 eV. (2.20)

Electron Optics

The electron optics cross–focus the photo
electrons released from the ø75 mm cathode
onto a ø15 mm area on the Si sensor.

Prototype tests have shown that the demag-
nification is almost perfectly linear across
the cathode surface. The spatial resolution
of the electron optics is described by the
width of the Point Spread Function (PSF).
The PSF describes the radial distribution
of electrons on the Si surface, generated by
a point source on the photo cathode. The
width of the PSF is required to be much
smaller than the pixel size on the Si sensor,
which is 0.5× 0.5 mm2. In prototype tests,
the RMS of the PSF was measured to be
between 33 and 54µm, clearly fulfilling this
requirement.

The Anode

The anode of the Pixel HPD is a square
silicon sensor divided into 32 × 32 pix-
els of 500× 500µm2 size, bump–bonded to
a pixel readout chip. The entire anode–
assembly is encapsulated within the tube.
With a demagnification factor of 5, the

Figure 2.30: Single–channel pulse height
spectrum from full–scale HPD prototype
with a 61 pixel Si sensor and external, ana-
logue readout electronics (from [Gys])

effective pixel size on the tube surface is
2.5× 2.5 mm2.

Each logical 500× 500µm2 pixel is seg-
mented into 10 physical 50× 500µm2 diode
pixels. Each physical pixel is bump–bonded
onto a readout cell with matching dimen-
sions on the front–end pixel readout chip.

Detection Efficiency

Figure 2.30 shows the pulse height spec-
trum of a full–scale prototype of the tube,
however equipped with a 61 pixel silicon
sensor and external analogue readout elec-
tronics (figure 2.31). The effect of backscat-
tered electrons depositing only a fraction of
their energy in the Si is clearly visible in
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Figure 2.31: Photograph of full–scale pro-
totype. A mirror behind the device shows
the pin–grid array for the readout of the 61
pixel Si sensor (from [Gys]).

the areas between the peaks. Because of
the small size of the Si sensor relative to
the height of the tube, nearly all backscat-
tered electrons land outside the Si sensor, so
that background due to backscattering can
be neglected. Including the signal loss due
to backscattering, the detection efficiency
of photo electrons in the final tube design
is expected to be ∼ 90 %.

The Pixel Chip

The pixel chip must be able to read out the
Si sensor within the 25 ns between bunch
crossings. It provides the digitisation and
buffering of the data awaiting the level 0
trigger decision.

After pre–amplification, shaping and dis-
crimination, the signals from the 10 phys-
ical pixels are combined in an OR gate to
form a single binary signal. The result is
stored in one of twenty delay units, awaiting
the level 0 decision. After a level 0 accept,

the data of each logical pixel are passed to
one of four 4–event FIFO buffer, forming
together a 16 deep de–randomiser.

The data from each chip are read out
in < 900 ns through 32 parallel lines at
40 MHz. With this, the dead time losses
in the DAQ are maintained below 1%.

The architecture of a pixel cell is shown in
figure 2.32.

The chip is fabricated in 0.25µm CMOS
technology, using a layout adapted for radi-
ation tolerance. The total power consump-
tion of the chip is ∼ 0.5 W.

Occupancy and Binary Readout

Binary readout has the benefits of simpli-
fying the electronics, reducing power con-
sumption, and in particular reducing cost.
The physics performance of the RICH will
not be significantly affected by the reduced
information provided by binary readout,
because the occupancy levels per pixel are
expected to be low and multiple photo elec-
tron events are therefore rare. Simulation
studies show that the typical occupancy
per pixel is about 1%, and never exceeds
8%. The occupancy per pixel, averaged
over each tube, is shown in figure 2.33.

Shielding

Both RICH detectors will be shielded
against stray fields from the LHCb dipole
magnet. Nevertheless, it is expected that
the tubes will have to operate in a resid-
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Figure 2.32: Schematic of the Pixel Cell architecture. One of the ten physical pixels
making up each logical pixel is shown. The signals from the physical pixels are OR’ed
into one binary signal. Two of twenty delay units, and one of four FIFO buffers available
for the storage of the binary signal from the logical pixel are shown.

Figure 2.33: Simulated occupancies per pixel in RICH 1 and RICH 2, averaged over one
tube. In each case, half the detector plane is shown; the local co–ordinate system is
chosen such that beam–pipe is at x ≈ −30 cm and y = 0.

RICH 1 RICH 2

Occupancy < 8% Occupancy < 1%
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ual field of up to 20 or 30 Gauss. To shield
the tubes from these magnetic fields, each
will be surrounded by a 0.9 mm thick µ–
metal shield. A schematic of the tube with
the µ–metal shield is shown in figure 2.35.
A prototype of the tube, with full electron
optics and fitted µ–metal shield, has been
tested in a field of 30 Gauss. The proto-
type differed from the final design in that it
had a phosphor cathode, and a CCD cam-
era instead of the pixel sensor for the photo
electron detection. Figure 2.34 shows how
a cross on the cathode is imaged on the an-
ode with and without a magnetic field of
30 Gauss, for a vertical field, and for a field
along the tube axis. The cross remains on
the Si sensor, and the point–spread func-
tion is not significantly affected. Hence the
magnetic field effects can be corrected off–
line.

2.3.8 Readout

The first stage of the RICH readout is per-
formed by the pixel chip encapsulated in
each tube. Signals from two tubes are
read out by one “Level-0 Adapter Board”,
mounted on–detector. The adapter board:

• further multiplexes the data,

• drives optical data links to the off–
detector (level 1) electronics,

• distributes clock and trigger signals to
the front–end chips.

The pixel chip and the adaptor board form
together the level 0 electronics.

The signals from the adaptor board are
passed via optical links to the level 1 read-
out board, located about ∼ 100 m away
from the detector in the counting room.
This allows the use of non–radiation hard
electronics for level 1. The level 1 readout
board:

• buffers the data during the level 1 la-
tency,

• performs zero–suppression and de–
randomisation,

• removes events that fail trigger level 1,

• provides the interface to the rest of the
LHCb detector electronics, the “Tim-
ing and Control” (TTC) system and
the “Detector Control System” (DCS).

• passes the data on to the DAQ and
event–building network.

A schematic of the RICH readout architec-
ture is shown in figure 2.36.

Tube Mounting

The tubes will be stacked hexagonally in
a metal support structure, with a distance
of 87 mm between the tube centres. This
is illustrated in figure 2.37. With a pack-
ing fraction for hexagonal close packing of
90.7% and an active diameter of 75 mm, this
gives an active–area fraction of εA = 67%.

To increase detection efficiency, the pho-
todetectors are slightly tilted relative to the
detector plane, so that the cathode windows
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Figure 2.34: Prototype test of shielded tube in a magnetic field.
The figures show how a cross on the cathode is imaged on the anode with and without a magnetic field
of 30 Gauss. Left for a vertical field, and right for a field along the tube axis. The area of the Si sensor
is marked with a box.

Vertical field Longitudinal field

Figure 2.35: Tube with magnetic shielding

are perpendicular to the incident light. This
reduces shadowing effects from the µ–metal
shield, and reflection losses. The tilted
tube–mounting is illustrated in figure 2.38
for the example of RICH 1.

2.3.9 Mirrors

The mirrors need to cover a total area of
∼ 20 m2. In RICH 1, the 2.7 m2 large spher-
ical mirror will be divided into 16 rect-
angles. The 9.2 m2 spherical mirror for
RICH 2 will be divided into 56 hexagonal
mirror segments, and the 7.6 m2 flat mirrors
by 40 squares.

The mirrors will be made from 6 mm glass,
coated with 900 nm aluminium, which will
be protected by a 200 nm quartz layer. The
expected reflectivity is 90%, averaged over
the relevant wavelength range.

The mirrors will be aligned first by an in–
situ survey of all positions. The precision of
this first alignment is expected to be better
than 0.5 mrad in RICH 1 and 0.1 mrad in
RICH 2. Once LHCb operates, a laser sys-
tem will be employed to monitor changes in
time. To achieve the final precision of bet-
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Figure 2.36: A schematic of the LHCb RICH readout architecture

(32:1)

(16:1)
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Figure 2.37: Tube Mounting (RICH 1).
The tubes, shown with their µ–metal
shields, are hexagonally stacked in a metal
support structure.

HPD
metal

support
web

µ electronics
card

Figure 2.38: Stacked Tubes in RICH 1. In-
clining the tubes towards the beam line in-
creases the photon detection efficiency.

Table 2.4: Contributions (expressed in
fractions of a radiation length) to the ma-
terial in RICH 1 and RICH 2, which fall
within the LHCb acceptance.

Item RICH 1 RICH 2
Entrance window 0.001 0.014
Aerogel 0.033
Gas radiator 0.024 0.017
Mirror 0.046 0.046
Mirror support 0.030 0.033
Exit window 0.006 0.014
Total (X0) 0.140 0.124

ter than 0.1 mrad, β = 1 tracks in the data
will be used.

2.3.10 Material Budget

The total material placed in the detector ac-
ceptance by the RICH system amounts to
∼ 26% of a radiation length. The contribu-
tions from the different RICH components
to the material budget are given in table
2.4.

2.3.11 LHCb RICH Perfor-
mance

Table 2.5 summarises the characteristics of
the three radiators of the RICH, and gives
the values for the different contributions to
the single–photon Cherenkov angle resolu-
tion, and the average number of detected
photo electrons per ring. The values for σθ
and Np.e. are the result of a detailed simu-
lation study [RIC00].



2.3. THE RICH SYSTEM 63

Table 2.5: Characteristics of the 3 radiators

RICH 2 RICH 1

C F4 C4 F10
Aero-
gel

Characteristics
L [cm] 167 85 5
n 1.0005 1.0014 1.03
θmax

c [mrad] 32 53 242
pthresh(π) [GeV] 4.4 2.6 0.6
pthresh(K) [GeV] 15.6 9.3 2.0
θc resolution for single photo electrons

σemission
θ [mrad] 0.31 0.74 0.60
σchromatic
θ [mrad] 0.42 0.81 1.61
σpixel
θ [mrad] 0.18 0.83 0.78
σtrack
θ [mrad] 0.20 0.42 0.26
σtotal
θ [mrad] 0.58 1.45 2.00

Number of photo electrons per ring
Npe 18.4 32.7 6.6

Assuming for the Cherenkov angle resolu-
tion that σθ =

σsingle p.e.√
Np.e.

, we get a Cherenkov

angle resolution for RICH 2 of 0.135 mrad.
From equation 2.18, page 49, we obtain
a 3σ K/π separation from ∼ 1 GeV up to
93 GeV. A 2σ separation can be achieved
up to 114 GeV, and 1σ up to 162 GeV. This
assumes that the Cherenkov angle distri-
bution is well described by a simple Gaus-
sian. As shown in chapter 4, this is not
always a good approximation. It also as-
sumes that the errors on the Cherenkov an-
gle for each photon are uncorrelated, which
is not the case for example for the track-
ing error. However it might be possible, to
reduce the contribution from the tracking
error considerably, by refitting Cherenkov
rings already identified in the pattern recog-
nition, independent of the tracking informa-
tion. Such fit methods are currently being

investigated.

Monte Carlo studies with a detailed model
of the RICH and a full implementation
of the pattern recognition algorithm have
been performed. The results of the pattern
recognition algorithm for the light particles
e, µ, K and p are shown in table 2.6. The
performance is given in terms of the purity
P of the sample, and the efficiency ε. P is
defined as the fraction of tracks for which
a given RICH particle assignment is cor-
rect; ε is defined as the fraction of tracks of
a given type, that receive the correct par-
ticle assignment by the RICH. The table
is given for well–reconstructed tracks with
1 GeV < p < 150 GeV. The K/π separation
provided by the RICH is impressive: 95% of
pions are identified as pions or lighter par-
ticles, and 92% of kaons as kaons or heavier
particles.

2.3.12 RICH Physics

The RICH in Event Selection

Figures 2.39, 2.40, and 2.41 illustrate the
dramatic improvements in the signal to
background ratio that can be achieved by
using the RICH, for three channels that
measure the angle γ. In all cases the ef-
ficiency of the signal selection is 80-90%
(from [ABF+01]).

The RICH in B0 Tagging

In order to decide the flavour of the re-
constructed B0 at its creation, LHCb uses
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Table 2.6: Results from the pattern recognition applied to well–reconstructed tracks in trig-
gered and accepted signal events between 1 and 150 GeV/c. Each track gives one entry in the
table, and X denotes tracks below threshold in all radiators; the rows give the reconstructed
particle type, P is the purity and ε the efficiency. The sample corresponds to 500k tracks, but
has been normalised to 1k. From [RIC00]

True particle type
Rec e µ π K p X P

e 97.4 0.7 24.6 1.4 0.5 3.1 0.76
µ 4.0 8.7 69.5 2.0 0.5 4.9 0.10
π 2.5 1.3 545.7 3.3 0.7 5.1 0.98
K 0.3 0.1 12.7 70.6 4.8 4.3 0.76
p 0.2 0.0 1.7 4.3 35.9 0.0 0.85
X 9.9 0.8 19.8 3.2 0.0 55.6 0.62
ε 0.85 0.76 0.81 0.83 0.85 0.76

Figure 2.39: B0
d → π+π− and same–topology background, with and without RICH (sim-

ulation)

0

1000

2000

3000

4000

5000

6000

7000

5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5

Invariant mass  [ GeV/c2 ]

E
ve

n
ts

  /
  2

0 
M

eV
/c

2

No RICH

Bd
�  → ππ

Bd
�  → πK

Bs�  → πK

Bs�  → KK

Λb → pK

Λb → pπ RICH−→

0

250

500

750

1000

1250

1500

1750

2000

2250

5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5

Invariant mass  [ GeV/c2 ]

E
ve

n
ts

  /
  2

0 
M

eV
/c

2

With RICH

Bd
�  → ππ

Bd
�  → πK

Bs�  → πK

Bs�  → KK

Λb → pK

Λb → pπ



2.3. THE RICH SYSTEM 65

Figure 2.40: B0
s → K+K− and same–topology background, with and without RICH (sim-

ulation)
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Figure 2.41: B0
s → DsK and same–topology background, with and without RICH (simu-

lation)
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Figure 2.42: Compare Performance
with RICH/ with perfect particle
identification: with RICH: Ptag = 4.5%
with perfect ID: Ptag = 6.6%

electrons, muons and kaons from the decay
of the accompanying B decay (see section
2.2.2).

The kaon tag is only possible with the K/π
separation provided by the RICH. Figure
2.42 compares the performance of the kaon
tag using the RICH, with the performance
if the particle identification were perfect.

The performance parameters of the kaon
tag are [RIC00]:

• Efficiency ε = 31.2%

• Mistag rate ω = 31.0%

• statistically equivalent to
Ptag = ε (1− 2ω)2 = 4.5%
perfectly tagged events.

The total tagging power at LHCb is
Ptag ≈ 6.4%, therefore it can be seen that
the kaon contribution dominates.

2.4 Detector Simulation

The results on the B0
d → D∗π reconstruc-

tion efficiencies and purities presented in
chapter 3, as well as the physics results
taken from [RIC00], [B+00] and [TP98] to
illustrate the performance of the RICH,
have been obtained using the LHCb detec-
tor simulation and reconstruction program
SICb [Tsa97]. The relevant versions of SICb
for the study presented in chapter 3 are ver-
sion 112 to 116; the specifications given here
refer to those versions. The Monte–Carlo
event generator used in SICb is PYTHIA
5.7/JETSET 7.4. The detector response is
simulated using the GEANT 3.21 package.

2.4.1 Generating Events

Default settings were used for the physics
parameters in PYTHIA. bb pairs in hadron
collisions are produced by the mechanisms
of gluon fusion, gluon splitting and flavour
excitation. The contribution of each mech-
anism to the total cross section is of the
same order of magnitude, but the resulting
kinematics differ. There are two ways to
generate bb events in PYTHIA:

1. Using a steering card MSEL=5, a
gluon fusion mechanism (gg → bb) is
simulated. Each event contains at least
one bb pair.

2. Using a steering card MSEL=1, all
QCD 2 → 2 processes are simulated,
and all production mechanisms con-
tribute to the bb production. But now
only 1% of the events contain a bb pair.
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The events used in the study presented in
chapter 3 were generated using the more ef-
ficient method with MSEL=5. Studies per-
formed since indicate that the kinematics
obtained with MSEL=1 result in a slightly
increased trigger efficiency [CKW98].

In the simulation studies presented in 3, all
mesons are treated as scalar particles, in-
cluding vector mesons such as the D∗.

2.4.2 Simulating the Detector

Environment

LHC: SICb contains a simplified model of
the LHC beam elements, the LHCb cavern
and infrastructure.

Magnet: A detailed field map of the mag-
netic field of the old, superconducting mag-
net is provided, including inhomogeneities
and stray fields.

Beam Pipe: A simplified model for the
beam pipe is used in the simulation. Stud-
ies with a more realistic model of an alu-
minium vacuum pipe performed since indi-
cate that the number of secondary particles
generated in the simplified version is rather
optimistic [TvH00]. This is one of the mo-
tivations for the study of alternative beam
pipe designs.

Sub Detectors

Vertex Detector: The simulation of the
Vertex Detector includes details such as
the energy deposition in the Si wavers and
charge sharing between the strips. The sup-
port structure and the R.F. shield are in-
cluded in the simulation.

Tracker: For the honeycomb chambers in
the Outer Tracker, the drift time is simu-
lated from the position of the particle tra-
jectory in the drift cell. Hits in the In-
ner Tracker are generated with a single–hit
RMS of 60µs.

Calorimeters: The energy deposition in
the ECAL is simulated using GEANT. Elec-
trons with less then 1 MeV and hadrons
with less than 10 MeV are ignored. Above
these thresholds, the shower development in
the calorimeter materials can be simulated
accurately, including energy leakage at the
boundaries. The threshold energy for the
HCAL is 500 MeV for all particles. Stud-
ies using the lower ECAL energy thresholds
show that the higher threshold values are a
reasonable simplification.

Muon Detector: The iron absorbers and
the muon stations are simulated, taking
into account low–energy particles produced
in secondary interactions when generating
the pad–hits.

RICH: For the RICH performance stud-
ies performed for the RICH–TDR, which
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form the basis of the results presented
in section 2.3.11, a detailed simulation
of Cherenkov radiation and digitisation is
used. This is described in detail in [RIC00].
In the SICb versions used for the study
presented in chapter 3, only parametrised
photo–detector efficiencies and resolutions
were available.

Event Reconstruction

Vertexing: Full pattern recognition is
implemented for tracks in the vertex detec-
tor. The primary vertex is determined us-
ing all tracks found in the vertex detector.
This includes tracks outside the spectrom-
eter acceptance, without momentum mea-
surement. For such tracks, the strong corre-
lation between polar angle and momentum
(figure 2.25) is used to estimate the momen-
tum from the angle. The resolution of the
reconstructed primary vertex is σx,y = 9µm
and σz = 38µm for inelastic proton–proton
collisions.

Trigger 0 and 1: Full pattern recogni-
tion for the level 0 high pt trigger and the
level 1 vertex trigger is implemented.

Tracking: For the tracking system, pat-
tern recognition is not fully implemented.
Instead, Monte Carlo–truth information is
used to identify hits in the tracker with
tracks. However, preliminary studies in-
dicate a track–seeding efficiency close to
100% [FN00]. The tracks are fitted using
a Kalman–filter algorithm, where continu-
ous energy losses and multiple scattering

are taken into account.

Particle Identification: Parametrised
angular resolutions of measured Cherenkov
angles in the three radiators are used to cal-
culate the probabilities for the e, µ, π, K
and p hypotheses. For the results from the
TDR, presented in section 2.3.11, full pat-
tern recognition was implemented.

Tagging and Trigger Levels 2 and 3:
The tagging algorithm was not available
in SICb at the time this study was per-
formed; also, trigger levels 2 and 3 were not
available. All events passing trigger level 1
are treated as triggered and tagged. Event
yields and the physics performance param-
eters are calculated from the simulation re-
sults assuming a tagging efficiency of 40%,
a mistag fraction of 30%, and a combined
efficiency of trigger levels 2 and 3 of ∼ 92 %
for the decay B0

d → D∗π.

2.5 Conclusion

The LHCb detector is designed specifically
to make best use of the huge number of bb
pairs produced at the future LHC collider.
Approximately 5.6 · 1011 bb from single in-
teraction events passing the pile–up veto
are expected per year.

Crucial for the LHCb physics program is
the particle identification provided by the
RICH system. The two RICH detectors
will provide K/π separation over a large
momentum range, starting at momenta of
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∼ 1 GeV. The upper limit is ∼ 100 GeV for
3σ separation. Useful K/π separation ex-
tends beyond 100 GeV.

The LHCb RICH forms the basis of chap-
ters 4 and 5. For the simulation studies
presented in chapter 3, a detailed model of
the LHCb detector, described in section 2.4,
was used.
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Chapter 3

The Angle γ from B0
d→ D∗π

3.1 Introduction

The channel B0
d → D∗π1 allows a theoret-

ically clean determination of the angle γ,
that is expected to be robust against New
Physics. It therefore provides a Stan-
dard Model benchmark that other γ mea-
surements which are more susceptible to
New Physics, such as B0

d → DdDd and
B0

s → DsDs, can be compared against. Any
deviation between these γ values will sig-
nal non–Standard Model higher order pro-
cesses.

In this chapter a simulation study is pre-
sented, investigating the feasibility of a γ
measurement at LHCb using B0

d → D∗π.

The first part of this chapter investi-
gates the event yields and signal to back-
ground ratios achievable at LHCb, using
LHCb’s GEANT–based detector simulation
program SICb. Two methods of recon-
structing B0

d → D∗π events are presented:

1Unless the context requires otherwise, this no-
tation implies all four decay rates: B0

d → D∗−π+,
B0

d → D∗−π+, B0
d → D∗+π−, B0

d → D∗+π−

• The exclusive method, where the fol-
lowing decay chain

B0
d

- D∗−π+

- D0π−

- K+π−

is fully reconstructed.

• The inclusive method, where all de-
cays of the D0 are reconstructed si-
multaneously, as long as they involve
at least two charged particles, X+,Y−:

B0
d

- D∗−π+

- D0π−

- X+Y− . . .

Only the two pions from the B0
d and

the D∗ decay vertex are used for the
reconstruction of the B0

d 4–momentum
and decay time.

In the second part of this chapter the
event yield and signal–to–background re-
sults from the first part are used to calculate
the expected precision in γ.

The influence that the event yield, the sig-
nal to background ratio, and the detector

71
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parameters have on the precision of the
measurement is derived in section 3.5.

3.2 Event Reconstruc-

tion

3.2.1 Basic Reconstruction
Principles

B Decay

The distinguishing properties of B hadrons
are their large mass (∼ 5 GeV) and their
long mean life (τ ∼ 1 ps). For example in
the decay B0

d → D∗π, the 5 GeV B0
d meson

decays to the 3 GeV lighter D∗, and a π that
will carry most of these 3 GeV as kinetic
energy.

The B0
d lifetime of ∼ 1.5 ps corresponds to

flight distances of ∼ 1 cm at LHCb.

To identify B decays, we therefore look
for events with detached vertices and high
transverse momentum particles. This ap-
proach is central to the LHCb trigger algo-
rithm, as explained in chapter 2.

D∗ Decay

The D∗ decays almost instantaneously, so
that the B0

d-vertex and the D∗-vertex are
identical; this is what makes the inclusive
reconstruction described in section 3.4 pos-
sible.

The mass difference between the D∗ and the

D0 is 144.5 MeV, leaving only 5 MeV after
subtracting the pion mass, so that the pion
will essentially be at rest in the D∗ centre-
of-mass frame. In the following it is referred
to as the “slow pion”, πslow, as opposed to
the “fast pion”, πfast, from the B0

d → D∗π
decay. The difference between the recon-
structed D∗-mass and D0-mass provides a
very powerful cut for the D∗-reconstruction.

Decay Time

The CP violation parameters are extracted
from time-dependent asymmetries. The
decay eigentime is given by

τ =
mc2

|~p| c · c
l (3.1)

where l is the decay length, obtained from
the primary and secondary vertex positions,
m is the B0

d-mass and ~p the 3–momentum.

Extracting the CP asymmetry with good
precision requires that the reconstruction
error on the decay time is small compared
to the B0

d-B0
d oscillation period of 13.3 ps.

3.3 Exclusive Recon-

struction of B0
d → D∗π

3.3.1 Datasets

The LHCb simulation program SICb, de-
scribed in section 2.4, was used to generate
two sets of Monte Carlo data:
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Signal Events: 7 000 signal events are
generated, where each event contains
at least one B0

d → D∗π decay, with
the subsequent decays D∗− → D0π− and
D0 → K+π−.

The events are generated such that the mo-
mentum of the b quark that forms the B0

d

is within a forward cone of 600 mrad, so
that most decays are within the LHCb ac-
ceptance. Simulation studies where the b
quarks are generated over 4π show that 40%
of the events survive a corresponding cut on
the b–quark polar angle.

The tagging algorithm was not available for
this study. Therefore, all events are treated
as if they were tagged. The finite tag-
ging efficiency of 40% is however taken into
account when calculating the event yields.
The mistag probability of 30% is taken into
account when the γ reach is calculated later
in this chapter.

With a branching fraction for this decay
chain of 6.8 · 10−5, an efficiency of the cut
on the polar angle of the b of 40%, and
a tagging efficiency of 40%, the 7k gener-
ated signal events corresponds to 6.4 · 108

B0
d events at LHCb. With a probability

that a b quark forms a B0
d meson of 40%,

the probability that at least one of the b’s
forms a B0

d is 64 %. The event sample corre-
sponds therefore to a total of 109 bb events
or 5 h of LHCb data taking2.

Generic b− b̄ Events: 500 000 bb events
generated over 4π are used for background

2Assuming 5.6 · 1011 bb pairs at LHCb in 107

seconds

estimates. It is expected, that the trig-
ger will highly suppress events without a B
hadron decay. Therefore an event set con-
taining only bb events is sufficient for this
study. Only those of the 500 k bb events
that pass trigger levels 0 and 1 are writ-
ten to tape and available for the analysis
(43 473 events). Assuming the same tagging
efficiency as for the signal events, this cor-
responds to 1.25 · 106 bb events before tag-
ging, or 22 s of LHCb data taking.

3.3.2 Reconstruction and
Preselection

Because the flight distance of the D∗ is effec-
tively zero, there is only the primary vertex
and two decay vertices to reconstruct: the
decay vertex of the B0

d and the decay vertex
of the D0.

Some loose cuts on the track and vertex
quality, the reconstructed particle masses,
and the RICH information are applied in
the reconstruction:

• Each track is required to be recon-
structed from at least 30 measurement
points.

• The χ2 of the track fit is required to be
less than 500.

• The χ2 of the vertex fit is required to
be less than 20.

• SICb provides a probability for each
track to be of a certain particle type.
This is based predominantly on the
fast parametrisation of the RICH, with
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some information taken into account
from the ECAL and the muon cham-
bers. All tracks are required to be ‘con-
sistent’ (probability > 5%) with the re-
quired particle type.

• The reconstructed masses of the D∗

and the D0 are required to be within
±100 MeV of their true value.

• The mass of the reconstructed B0
d is re-

quired to be within ±1 GeV of the true
value.

In cases in which two possible B0
d candidates

share one or more tracks, only the one with
the better χ2 on the B0

d-vertex fit is kept.

3.3.3 Selection Cuts

The selection cuts applied, and their ef-
fect, are listed in table 3.1 for signal events,
for combinatoric background within signal
events, and for the background sample.
Events are selected where

1. the transverse momentum (pt) of the
fast pion candidate is larger than
1 GeV;

2. the average pt of all tracks in the decay
is larger than 0.5 GeV;

3. the impact parameter of the fast pion
is larger than 50µm;

4. the decay length of the B0
d candidate is

larger than 0.5 mm;

5. the mass difference between the D∗ and
the D0 candidate is between 143.5 and
146.5 MeV;

6. the reconstructed mass of B0
d candidate

is within ±30 MeV of the true B0
d mass.

With the available statistics, no back-
ground event passes all cuts. In order
to make a meaningful background esti-
mate, therefore, the number of events
surviving the wide preselection mass
window of ±1 GeV is also recorded.

By far the most powerful cut is the one
on the mass difference between the recon-
structed D∗ and D0. Figure 3.1 shows the
signal and the background distribution for
the mass difference. The plots show all re-
constructed and triggered events, without
any selection cuts applied.

3.3.4 Event Yield and S/B Es-
timates

Yield

After all cuts are applied, 140 signal events
remain. Assuming 5.6 · 1011 bb events per
year at LHCb, and a combined efficiency of
92% for trigger levels 2 and 33, this corre-
sponds to an annual yield of (73± 6) k trig-
gered, tagged and reconstructed B0

d → D∗π
events. Table 3.2 shows the event yields
with and without trigger levels 0 and 1 ap-
plied. The combined trigger level 0 and
level 1 efficiency is 26%.

3This assumes the level 2 efficiency for
B0

s → D−s π
+, given in table 2.2 (page 45), and a

100% efficient level 3.
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Table 3.1: Exclusive reconstruction: Selection cuts. For each cut, both the number of
events is given that pass the selection if only this cut is applied and the number if all
cuts except this cut are applied. The number of events after the preselection is given in
the first row of the table. The number of events passing all cuts is given in the last row.

Combina-
Signal torical Background
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t
of
±

1
G

eV

triggered (level 1) and topology recon-
structed

196 208 6058

(1) pt(πfast) > 1 GeV 182 152 131 0 3705 8
(2) 〈pt〉all > 0.5 GeV 196 147 171 0 3218 3
(3) IP > 50µm 169 159 156 0 4305 3
(4) decay length > 500µm 187 141 175 0 4811 4
(5) B vtx quality: χ2 < 30 193 140 85 2 1758 48
(6) D∗-D0 ∆m ∈ [143.5, 146.5] MeV 190 144 44 10 121 236
(7) B0

d-mass within ±30 MeV (only sg) 186 147 47 1 – –
All cuts 140 0 1
... narrow mass–window for background 0

Table 3.2: Trigger Efficiency (exclusive)

events
effi-
ciency

no trigger 534
level 0 221 42%
level 1 140 63%
combined efficiency 26%

Background

Applying all cuts except the final mass cut
leaves one background event, which has a
reconstructed mass of 4.6 GeV. With this
one event, the statistical error4 on the num-
ber of background events within the wide
mass window is +2.3

−0.83.

The ratio of background events inside the

468.2% central interval confidence limit for a
Poisson distribution
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Figure 3.1: Mass difference between recon-
structed D∗ and D0 for signal and back-
ground.
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wide mass window to the number inside the
narrow mass window is 49, before any cut is
applied. Applying all cuts except the pres-
election requirement on the track qualities
of the D0 decay products, and the cut on
the D∗–D0 mass difference, leaves 305 back-
ground events inside the wide mass window
and 9 inside the narrow one, giving a ratio
of 305/9 = 34.

Removing instead the preselection require-
ments on the track qualities of the πfast

and πslow, and applying only the cut on
the D∗–D0 mass difference, gives a ratio of
288/9 = 32.

Assuming that after all cuts are applied,
there are 32 times as many background
events in the wide mass window as there
are in the narrow mass window, leads to an
estimate of the signal to background ratio
of 5.6+26.8

−3.9 . The large uncertainty is due to
the statistical fluctuations on the one back-
ground event. Neglecting other error con-
tributions, the signal to background ratio is
better than 1.4 at the 90% confidence-level.

3.3.5 Mass and Time Resolu-
tion

The B0
d mass distribution for the recon-

structed signal events is shown in figure 3.2.
The Gaussian fit to the mass-distribution
has a width of 13.6 MeV.

An important parameter for the CP viola-
tion measurements is the time resolution. A
Gaussian fit to the time resolution, shown
in figure 3.3, returns a width of 60 fs. This
could be improved further if a constrained
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Figure 3.2: Reconstructed B0
d mass
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Figure 3.3: Time resolution (exclusive)
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were to be used. However, 60 fs is 1/200 of
the B0

d-B0
d oscillation period and therefore

perfectly adequate for the measurement.

3.3.6 Result Summary

73 000 reconstructed, triggered and tagged
exclusive B0

d → D∗π decays are expected
per year at LHCb. A good signal-to-
background ratio, time and mass-resolution
can be achieved. A summary of the results
is shown in table 3.3.

Table 3.3: B0
d → D∗−π+ exclusive: Result

summary

Signal yield (73± 6) k per year
Signal/Backg 5.6+26.8

−3.9

> 1.4 at 90% confidence
mass-resoln 13.6 MeV
time-resoln 60 fs

3.4 Inclusive Recon-

struction of B0
d → D∗π

With the inclusive reconstruction method,
all decays B0

d → D∗−π+ with D∗− → D0π−

are reconstructed simultaneously, thus in-
creasing the visible branching ratio by a fac-
tor of 20. Only the slow and the fast pion
are used in the reconstruction of the B0

d mo-
mentum. Two charged tracks from the D0

decay are used for background reduction.

3.4.1 Datasets

For this analysis, a new set of signal data
was generated, and the number of bb events
for the background studies was increased:

1. 20 000 events with at least one
B0

d → D∗−π+ decay each, are generated
such that the momentum of the b quark
forming the B0

d meson lies within a
600 mrad forward cone. As previously,
no tagging algorithm is applied, and
all events are treated as if they were
tagged. The finite tagging efficiency
is taken into account when calculating
the final event yields. With a branch-
ing ratio for this decay of 2.76 · 10−3,
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a probability for a b to be within the
600 mrad forward cone of 40%, and a
tagging efficiency of 40%, the sample
corresponds to 45.3 · 106 B0

d events, or
70.8 · 106 bb events at LHCb, which is
equivalent to 21 min of LHCb opera-
tion.

2. The same set of 500 k events as used
for the exclusive case, plus 274 k new
bb events, generated over 4π, are used
for background studies. Of those new
274 k events, all are written to tape and
are available for the analysis, not only
those that pass the trigger. Assuming
the same tagging efficiency as for the
signal events, this corresponds to a to-
tal of 1.94 · 106 bb events before tag-
ging, or 35 s of LHCb data taking.

3.4.2 Principle

Below, we will show that this inclusive re-
construction is possible, and that, despite
the missing information from the D0 mo-
mentum, the full B0

d 4–momentum can be
obtained from the available parameters.

Parameter Counting

The task is to reconstruct the 4–momentum
of the B0

d from the momentum of the fast
pion coming from the B0

d → D∗πfast decay,
and the slow pion from the D∗ → D0πslow

decay. The topology of the decay in the
laboratory frame of reference is illustrated
in figure 3.4.

Given the 4–momenta of the two pions,

Figure 3.4: B0
d → D∗π decay in space (not

drawn to scale). The information used in
the reconstruction is encircled in red.
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0D D*

prim
vertexvtx
B  decay

there remain 8 missing parameters, the 4–
momenta of the B0

d and of the D∗. En-
ergy and momentum conservation provide 4
constraints. The D∗ mass provides another
constraint by relating the energy and mo-
mentum of the D∗. The D0 mass constrains
the magnitude of the D∗ momentum in the
πslow rest–frame. The remaining two con-
straints come from the knowledge of the di-
rection of the B0

d momentum, obtained from
the primary vertex and B0

d-decay vertex po-
sition. The B0

d-decay vertex can be recon-
structed from the slow and the fast pion as
the flight-distance of the D∗ is negligible.

Formulae

In the following the superscript “lab”
indicates the laboratory frame and “S” the
rest–frame of the slow pion, πslow. The
πslow rest–frame is chosen rather than the
rest frame of the D∗, because it is the πslow

that is detected, and from its 3–momentum
and mass we directly get the Lorentz
transformation from its rest–frame to the
lab–frame:
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Figure 3.5: Equation 3.6 corresponds to finding the intercepts between a line and an
ellipsoid in momentum space. The vertical scale is enlarged with respect to the horizontal
one by a factor of ∼ 20.
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(
E S

~p S

)

(3.2)

where the spatial entries in the transfor-
mation matrix are written in a compact
notation with the indices i, j going from 1
to 3. Then the momentum of the D∗ in the
lab–frame is:

~p lab
D∗− =

(
α0 + ∆α cos(θS)

)
~p lab
πs

+
∣∣∣~pSD∗−∣∣∣ (1− cos2(θS)

) 1
2 ~u

(3.3)

where θS is the angle of the D∗ momentum
in the πs rest–frame with respect to ~p lab

πs

and ~u is a unit vector perpendicular to

~p lab
πs . The parameters α◦ and ∆α are given

by:

α◦ ≡
E S
D∗−

mπ−
, ∆α ≡

∣∣∣~pSD∗−∣∣∣
mπ

1 +
m2
π∣∣∣~p lab

πs

∣∣∣2


1
2

.

(3.4)

All quantities on the right hand side of
equation 3.3 are known, except for two: θS

and ~u. The 3–vector ~u corresponds to only
one unknown, as it is defined to have unit
length and to be perpendicular to ~p lab

πs .

The geometrical interpretation of 3.3 is that
the momentum vector of the D∗ lies on an
ellipsoid in momentum space. The ellip-
soid is rotationally symmetric around the
axis defined by the πslow momentum, and
has a major axis of length ∆α

∣∣∣~p lab
πs

∣∣∣ ≈
3.9

∣∣∣~p lab
πs

∣∣∣ and a minor axis of length
∣∣∣~pSD∗−∣∣∣ =

550 MeV.

The direction of the B0
d, ~V , and the mo-

mentum of the fast pion, ~pπf , are related by:
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λ~V = ~pπf + ~pD∗ (3.5)

where λ is unknown and λ~V is the
3–momentum of the B0

d. Adding this
information reduces the number of un-
knowns from five in equation 3.3, to three
unknowns for three equations. Dropping
the “lab” superscripts:

λ~V = ~pπf +
(
α◦ + ∆α cos(θS)

)
~pπs

+
∣∣∣~pSD∗−∣∣∣ (1− cos2(θS)

) 1
2 ~u. (3.6)

The geometrical interpretation of this equa-
tion is illustrated in figure 3.5. The solu-
tions are the intercepts between an ellip-
soid of possible D∗ momenta, and the line
of possible B0

d momenta.

In the following we will find the algebraic
solution to this problem in terms of the pa-
rameters b and ~u, where b is defined as

b ≡ cos
(
θS
)
. (3.7)

We first multiply both sides of equation 3.6
with ~pπslow

to get:

λ =
α◦ + b ∆α~p 2

πslow
− ~pπfast

· ~pπslow

~V · ~pπslow

= bA+B, (3.8)

with

A ≡
∆α~p 2

πslow

~V · ~pπslow

, B ≡
∆α~p 2

πslow
+ ~pπfast

· ~pπslow

~V · ~pπslow

.

(3.9)

Inserting this back into equation 3.6 gives:

(
1− b2

) 1
2 ~u =

b
(
A~V −∆α~pπslow

)
∣∣∣~pSD∗−∣∣∣

+
B~V − α◦~pπslow

− ~pπfast∣∣∣~pSD∗−∣∣∣ .

(3.10)

Defining

~G ≡ A~V −∆α~pπslow

|~pSD∗−|
, (3.11)

~H ≡ B~V − α◦~pπslow
− ~pπfast

|~pSD∗−|
, (3.12)

this can be written as(
1− b2

) 1
2 ~u = b ~G+ ~H. (3.13)

Squaring equation 3.13 gives a quadratic
equation in b with the following solutions:

b1,2 = −
~G · ~H

1 + ~G2
±

( ~G · ~H
1 + ~G2

)2

−
~H2 − 1
1 + ~G2

 1
2

.

(3.14)

Inserting the solution for b back into equa-
tion 3.13 gives the solution for the vector ~u;
inserting both into equation 3.3, gives the
3–momentum of the D∗. Combined with
the D∗ mass, and the 4–momentum of the
fast pion, the full B0

d 4–momentum can be
reconstructed.

Two solutions: If there are two real so-
lutions to equation 3.14, the solution which
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Figure 3.6: Approximating the B0
d momentum if equation 3.14 does not have any real

solutions.
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returns the ‘better’ value for the B0
d–mass

is chosen. This solution is used for calcu-
lating all reconstruction parameters, except
for the B0

d–mass itself. Here, in order to
avoid biases in the background estimation,
the B0

d–mass used in the final mass cut is
taken as the average of the masses obtained
from both solutions. In fact, because

∣∣∣~pSD∗−∣∣∣
is very small, the ellipsoid in figure 3.5 is
thin, so the two solutions, and their values
for the reconstructed B0

d-mass, lie very close
to each other.

The effect this approximation has on the
mass resolution is illustrated in figure 3.7.
It shows the reconstructed B0

d mass minus
the true B0

d mass, calculated using Monte
Carlo truth information. If always the so-
lution with the better B0

d mass had been
chosen, the exact B0

d mass would have been
obtained every time, and this plot would
show a δ function at zero. The error intro-
duced by taking the average mass instead is
∼ 0.1 GeV.

Figure 3.7: Monte-Carlo truth for inclusive
B0

d → D∗π: reconstructed mass - true mass,
no cuts applied. The plot shows the effect
of using the average B0

d mass if there are
two solutions, rather then the ‘better’ one.
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No solution: In case equation 3.14 re-
turns no real solution, which means that the
measured B0

d-direction does not go through
the ellipsoid, a solution is found by vary-
ing the B0

d-direction as illustrated in figure
3.6. The line indicating the B0

d-direction is
rotated towards the centre of the ellipsoid
until it meets the surface of the ellipsoid;
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this intercept point is taken as the solution.
In the reconstruction routine, a tolerance
is placed on how much the corrected B0

d-
direction deviates from the measured one.

3.4.3 Preselection

For convenience, the analysis is performed
on a set of preselected events, which are ob-
tained by applying loose cuts on some ba-
sic parameters.5 The preselection program
searches for combinations of four charged
tracks which meet the listed criteria. These
tracks are candidates for the πfast and
the πslow needed for the B0

d–reconstruction,
and two oppositely charged decay-products
from the D0, in the following referred to
as X+, Y −. The latter are needed for the
cut on the D∗–D0 mass difference described
in section 3.4.6. All combinations of four
tracks that satisfy the following preselection
criteria are kept:

1. The χ2 of the B0
d–vertex reconstruction

is less than 25.

2. The transverse momentum of πfast is
larger than 1.5 GeV.

3. The impact parameter significances of
πfast and πslow with respect to the pri-
mary vertex are larger than 2.

4. The B0
d–vertex is downstream of the

primary vertex.

5. The D0–vertex is downstream of B0
d–

vertex.

5The program to perform the preselection was
kindly supplied by John Holt (Oxford, CERN).

6. The impact parameter significance of
X+, Y − with respect to the primary
vertex is larger than 2.

7. The pseudo mass of D0, calculated
from X+ and Y−, is smaller than
2.3 GeV.

8. The D∗–D0 mass difference, calcu-
lated as described below, is less than
0.5 GeV.

9. The impact parameter of πslow with
respect to the D0–vertex is less than
0.3 mm.

10. The reconstructed B0
d–mass is less than

20 GeV.

All criteria, except for number 2 and num-
ber 9, are also re–applied in the final event
selection with tighter cuts. The motivation
for cut number 9 is that, because the πslow

and the D0 momentum in the D∗ rest–frame
are very small, the D0 and the πslow momen-
tum are collinear in the lab–frame to a good
approximation.

3.4.4 Event Selection

Due to the reduced information compared
to the exclusive case, the inclusive recon-
struction is more susceptible to background
contamination. This requires hard cuts on
the usual B0

d physics criteria as well as on
parameters like the track quality and the
vertex χ2.

Four particle tracks are reconstructed: the
two pions necessary for the B0

d reconstruc-
tion, πfast and πslow, and two oppositely
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charged tracks from the D0-decay, X+, Y −,
used for the cut on the D∗–D0 mass differ-
ence.

The cuts and their effects are summarised
in table 3.4, 88.

The two cuts that are specific to the in-
clusive reconstruction are the cut on the re-
construction parameters, and the cut on the
D∗–D0 mass difference. These are described
in the following two sections.

3.4.5 Cutting on Reconstruc-
tion Parameters

For the case that there are no real solutions
to equation 3.14, the candidate B0

d direction
is adjusted. This occurs about 40% of the
time for well reconstructed signal events.
The new direction is required to lie within
2σ of the original direction, where σ is cal-
culated assuming a constant vertex resolu-
tion of σx,y = 9µm, σz = 38µm for the pri-
mary, and σx,y = 20µm, σz = 250µm for
the secondary vertex. The values for the
primary vertex are taken from [TP98]. The
values for the secondary vertex are obtained
by taking the width of the core Gaussian in
fits to the vertex resolution shown in figure
3.8. The plots show the reconstructed ver-
tex position minus the true vertex position
separately for the x, y, and z coordinate,
and are made with a looser selection in or-
der to increase statistics. The cuts used are
indicated with a “∗” in table 3.4. Here, if
more than one combination of tracks passes
all cuts in a given event, Monte Carlo truth
information is used to select the signal com-
bination, rather than the algorithm used in

the final event selection which is described
later.

The efficiency of the cut on the correction to
the B0

d direction is shown in figure 3.9. The
top–plot shows the number of signal events
as a function of the adjustment of the B0

d

direction in terms of σ. The bottom plot
shows the fraction of events below a given
cut. The signal efficiency for a 2σ cut is bet-
ter than 90%. The signal events selected for
these plots are the same as those used in the
vertex resolution plots above. For the back-
ground sample, the same cuts are applied,
but events are selected according to the al-
gorithm described in section 3.4.7 in case
more than one event passes all cuts. The
cut rejects 94% of the background events.

3.4.6 Cutting on the D∗-D0

Mass Difference

Although the D0 is not fully reconstructed,
the cut on the D∗-D0 mass difference can
still be applied to suppress background,
although with reduced efficiency. Two
charged tracks from the D0, X+, Y −, are
selected. The invariant mass of these two
tracks is subtracted from the invariant mass
calculated from X+, Y − and the slow pion:

∆m ≡ M
(
X+, Y −, πslow

)
−M

(
X+, Y −

)
=

√
(pX+ + pY − + pπslow

)2

−
√

(pX+ + pY −)2 (3.15)

In the above equation, pX+ etc are 4–
momenta, and p2 is to be intepreted as pµpµ.
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Figure 3.8: Vertex resolution with double–Gaussian fit. The parameters (P1,P4),
(P2,P5), (P3,P6) are the amplitudes, means and widths respectively of the two Gaussians
fitted to the distributions.
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If X+, Y − constitute all decay products of
the D0, this is simply the D∗-D0 mass differ-
ence. In general though, there will be some
missing momentum. In the expression for
the mass difference, this missing momen-
tum cancels to some degree, so that this is
still a powerful cut for the inclusive case, as
shown in figure 3.10. For these plots, as well
as in the final selection, the two charged
particles are required to form a vertex at
least 1σ downstream of the B0

d vertex, with
a vertex χ2 of less than 4 and an impact
parameter significance with respect to the
primary vertex of more than 3. The pseudo
mass formed from the two tracks is required
to be within [0.4, 1.9] GeV.

3.4.7 Cut Summary and
Event Yield Estimate

Cut Summary

Below, all cuts are listed with a short de-
scription. The effect of the cuts on the num-

ber of signal and background events is sum-
marised in table 3.4.

Most cuts applied in the final event selec-
tion are either not applied in the preselec-
tion, or they are applied with looser require-
ments. The only exceptions are the follow-
ing two cuts that are left at their preselec-
tion values:

(i) Transverse Momentum of πfast

> 1.5 GeV: This cut selects B decays
by their large mass.

(ii) Impact Parameter of πslow with re-
spect to D0 vertex < 0.3 mm: The
D0 and the πslow are nearly at rest
in the D∗ frame and therefore nearly
collinear in the lab–frame. This cut on
the vertex formed by X+,Y− therefore
selects D0 candidates that are likely to
come D∗− → D0π− decays.

The cuts that are applied in the final event
selection are listed below:



3.4. INCLUSIVE RECONSTRUCTION OF B0
D → D∗π 85

Figure 3.9: The cut on the correction
of the B0

d-direction, with reconstruction-
quality cuts applied.

Number of signal events

ev
en

ts
/

0.
1
σ

0

100

200

300

400

500

600

0 1 2 3 4 5

B0
d-dir correction / σ

Fraction of signal events below cut.

fr
ac

ti
on

of
ev

ts
b

el
ow

cu
t

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

B0
d-dir correction / σ

Fraction of background events below cut.

fr
ac

ti
on

of
ev

ts
b

el
ow

cu
t

0

0.025

0.05

0.075

0.1

0.125

0.15

0 1 2 3 4 5

B0
d-dir correction / σ

Figure 3.10: Mass difference between re-
constructed D∗ and D0 for signal and back-
ground, in inclusive reconstruction.
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1. Reconstruction cut: This is the cut
on the correction to the B0

d direction,
necessary in about 40% of the signal
events to find a solution to equation
3.14. This cut is described in detail in
section 3.4.5.

2. πfast RICH info: It is required that
the particle identification provided by
the RICH pattern recognition is either
‘pion’ or ‘muon’. For momenta above
150 GeV, which are beyond the K/π
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separation capabilities of the RICH,
tracks with particle assignment ‘kaon’
are also accepted.

3. πslow RICH info the same as for πfast,
except that ‘kaon’ is never accepted.

4. πfast momentum < 200 GeV This
ensures that the πfast momentum is
within the dynamic range of the elec-
tromagnetic calorimeter.

5. πfast, πslow electron–rejection: Elec-
trons are rejected using a combina-
tion of RICH and calorimeter informa-
tion. As suitable calorimeter recon-
struction is not available, the calorime-
ter performance is approximated using
Monte Carlo truth information. For
particles within its acceptance, and
momenta between 5 and 100 GeV, it
is assumed that the calorimeter pro-
vides perfect e/hadron discrimination.
All electrons within that momentum
range within the calorimeter accep-
tance are rejected. It is assumed
that the calorimeter rejects electrons
with 90 % efficiency up to 200 GeV.6

All πfast candidates that would not
have a hit in the calorimeter because
they are outside its acceptance are re-
jected, unless the RICH can exclude
the possibility that they are electrons
(e-probability of < 5%).

6. πfast, πslow muon–rejection If either
of the two pions has a hit in one of the

6In the event selection, electrons with momenta
> 100 GeV simply pass the cut. If such an event
had passed all cuts, it would have been weighted
accordingly.

muon–chamber station 2, 3, 4, or 5, the
event is rejected.

7. B0
d–vertex χ2 < 2: This ensures that

the πfast–πslow vertex is well measured.

8. Track χ2/dof < 1 of πfast and πslow:
This ensures that both tracks forming
the B0

d vertex are well measured.

9. Impact Parameter significance of
pions with respect primary ver-
tex > 4: The impact parameter signif-
icance is defined as the impact param-
eter (IP) divided by the error estimate
for the impact parameter. Both pions
are required to have an impact param-
eter with respect to the primary vertex
of at least 4σ, and are thus compatible
with coming from a B0

d decay.

10. pt of B0
d < 60 GeV A cut on the re-

constructed transverse momentum of
the B0

d. This is not a “physics cut”,
as both signal and background events
tend to have much smaller pt than
60 GeV. It is applied to eliminate
badly reconstructed events and follows
the observation that such events can
sometimes possess very large values for
the pt of the B0

d.

11. D0–vertex χ2 < 4: This ensures that
the D0 vertex is well reconstructed.

12. D0 vertex downstream of B0
d ver-

tex: This cut demands that the recon-
structed D0 vertex is at least 1σ down-
stream of the reconstructed B0

d vertex,
and is thus compatible with being part
of the B0

d decay chain.
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13. IP-significance of X+,Y−: The im-
pact parameter significance with re-
spect to the primary vertex for each of
the two charged tracks from the D0 is
required to be at least 3. This ensures
that X+ and Y − are compatible with
a B decay.

14. D0 mass: The mass of the partially
reconstructed D0, obtained by adding
the 4–momenta of the X+ and Y − can-
didate and forming the invariant mass,
is required to be within [0.4, 1.9] GeV.
The lower limit ensures that the X+

and Y − candidates carry a significant
part of the D0 momentum. The upper
limit ensures that the candidates are
not incompatible with coming from a
D0 decay.

15. D∗–D0 Mass difference: The differ-
ence in invariant mass of the combined
X+, Y −, πslow momentum to the com-
bined X+, Y − momentum is required
to be within [140, 160] MeV. This is a
powerful cut for the identification of D∗

decays, as described in detail in section
3.4.6

16. B0
d-mass: The reconstructed B0

d–mass
is required to be within ±0.2 GeV of
the true B0

d mass. As, with this mass
cut, no background event survives, the
mass–window for background events is
widened to±2.0 GeV to increase statis-
tics.

Cuts 5 and 6 were introduced after
it had been found that, without those
cuts, semileptonic B0

d decays such as
B0

d → D∗−µ+νµ constitute the dominant

part of the background. Those cuts on the
track χ2/dof appear very tight, but given
the distribution found in the simulation,
with typical values around 0.6, they have
a high efficiency.

Deciding Between Suitable Candi-
dates

In case there is more than one combination
of tracks that passes all cuts, a combina-
tion is selected according to the following
algorithm:

1. Choose the one with the better B0
d ver-

tex χ2.

2. If the two χ2 differ by less than ±20%,
choose the one with the higher pt of the
fast pion.

3. If the above differ by less than ±20%,
choose the one with the better D0 ver-
tex χ2.

4. If the above differ by less than ±20%,
choose the one where the IP signifi-
cance of πslow with respect to the D0

decay vertex is smallest.

5. If the above differ by less than ±20%,
choose the one where the D∗–D0 mass
difference is closest to its theoretical
value.

This selection procedure is only relevant if a
highly reduced set of cuts is used. Applying
the full set of cuts, except the trigger, to
the signal tapes, no event is found where
more than one combination of πfast and πslow

candidates survives all cuts.
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Table 3.4: Inclusive reconstruction: Selection cuts.
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Table 3.5: Trigger Efficiency (inclusive)

events
effi-
ciency

no trigger 189
level 0 90 48%
level 1 63 70%
combined efficiency 33%

Yields and Trigger Efficiency

After all cuts are applied, 63 signal events
remain, corresponding to an annual event
yield of 460± 60 k events. The efficien-
cies of trigger levels 0 and 1 are sum-
marised in table 3.5. The four signal events
found on the background tapes correspond
to 1.1+0.8

−0.5 M events, which is consistent with
the above result.

Combined Inclusive and Exclusive
Yields

Applying the inclusive reconstruction
method to the same signal events that were
used for studying the exclusive case yields
30 events.7 Assuming that all of those
would have been selected by the exclusive
reconstruction, the combined number from
the inclusive and exclusive reconstruction
is, rounded to the nearest 10 k, 520± 60 k.

7This number assumes that the efficiency of the
cut on the D0-vertex χ2 is the same for the exclusive
events, although this quantity was not available in
the analysis. There are 35 events left without that
cut.

3.4.8 Background Estimation

Wide Mass Window

No background events are left after all cuts
are applied. In order to obtain enough
statistics for a signal-to-background esti-
mate, the B0

d mass cut is relaxed for
the background events from ±0.2 GeV to
±2 GeV around the true B0

d mass. 6 events
are found within the wide mass window.

In order to use this result for an estimate
of the signal to background ratio within the
small mass window, the ratio of background
events in the wide mass window to the num-
ber in the small mass window needs to be
known. The simplest assumption is that a
ten times smaller mass window should have
ten times less events. As we show below,
this is not true due to kinematic reasons.

Background Composition

The following decays constitute the 6 back-
ground events that survive the wide mass
cut:

1. B0
d → D∗−π0π+ (−1.5 GeV)

2. B0
d → D∗+ρ0π− (−1.1 GeV)

3. B0
d → D∗−ρ0π+ (−1.1 GeV)

4. B0
d → D∗−ωπ+ (−1.7 GeV)

5. B0
d → D∗−ωπ+ (−1.7 GeV)

6. B0
d → D∗+D∗−s (−1.7 GeV)
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where the number in parenthesis is the re-
constructed B0

d mass minus the true B0
d

mass. The reconstructed B0
d mass is much

lower than the true B0
d mass in all cases.

This is also true for the four background
events that survive the other cuts but lie
outside the wide mass window – they all
have low reconstructed B0

d masses.

In all six of the above events the slow pion
from the D∗ and the two charged particles
from the D0 decay are identified correctly.
The charged pion from the first generation
of the decay, present in all decays except for
decay number 6, is taken as the fast pion.
In decay number 6, a pion from the decay
of the D−s from D∗−s → D−s ... is taken as
the fast pion.

So the topologies of the surviving back-
ground events are very similar to the signal
events, except that there is some missing
momentum in the B0

d reconstruction. This
missing momentum is the reason for the sys-
tematically low reconstructed B0

d masses in
the background events. Therefore, scaling
the number of background events by a fac-
tor of 1/10 to estimate the background in
the small mass window would be an over–
estimation.

To confirm with higher statistics that the
D∗ reconstruction is generally successful,
the selection is repeated with relaxed cuts
on the B0

d reconstruction while leaving the
D∗–D0 cuts unchanged. The changes rela-
tive to the cuts listed in table 3.4 are:

• Cut 1: reconstruction cut: < 4σ in-
stead of < 2σ

• Cut 7: B0
d–vertex χ2 < 4 instead of < 2

• Cut 9: Impact parameter significance
of pions > 3 instead of > 4

• Cut 17: no cut on the B0
d-mass instead

of ±2 GeV

43 background events pass those cuts. 8 of
them have the slow pion mis-identified, the
other 81% are of the same type as the 6
background events that pass the full set of
cuts with the wide mass window. Of the
decays with mis-identified pion

• 2 have a pion from the primary vertex
taken as the slow pion.

• 3 are decays of the type
B0

d → π + many other particles, where
the pion from the B0

d decay is taken as
the slow pion.

• 2 are charged B+ decays, where a pion
from further down the decay chain is
taken as the slow pion.

• 1 is a Λb decay.

The 8 events with mis-identified pions have
a similar mass–distribution as the other
events, all lying below the narrow ±0.2 GeV
mass window. Of these, 4 are below the
±2 GeV mass window.

The Signal to Background Ratio

Taking into account the above observations,
the strategy chosen to estimate the fraction
of events inside the small mass window is to
use Monte-Carlo truth information to select
events with a correctly identified πslow, and
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Figure 3.11: First two plots: mass–spectra of background events where the slow pion is
correctly identified, without and with (relaxed) reconstruction cuts applied. Third plot:
mass–spectrum with all cuts applied. For each plot the ratio of events in the wide to the
narrow mass window is indicated.
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to loosen all other selection cuts. Without
cuts, the ratio of the number of background
events in the wide mass window to the num-
ber in the small mass window is 16. To
make the data selection more realistic, cuts
on reconstruction parameters that are im-
portant in the mass reconstruction are ap-
plied:

• Cut 1: correction < 4σ instead of <
2σ;

• Cut 7: B0
d–vertex χ2 < 4 instead of

< 2;

• Cut 11: as before: pt of B0
d< 60 GeV.

Also, Monte-Carlo truth information is
used to ensure the right particle type for
the fast pion. The trigger is not applied.
This results in 92 background events in the
wide mass window and 6 in the small one,
giving a ratio of 15+10

−6 . Figure 3.11 shows
the mass distributions for events with cor-
rectly identified πslow before and after these
cuts are applied, and, in the third plot, the

six events that survive the standard set of
cuts with the wide mass window.

Taking the conservative estimate of a ra-
tio of 15 gives an estimate for the signal to
background ratio of 4.4+4.4

−1.1, where the er-
ror is calculated as a 68.3% central inter-
val confidence limit using numerical meth-
ods. The signal to background ratio is bet-
ter than 2 at the 90% confidence level. For
the confidence limits, only the statistical er-
ror on the 6 background events left in the
wide mass window and the statistical error
in the calculation of the fraction of back-
ground events inside the narrow mass win-
dow are taken into account.

3.4.9 Mass and Time Resolu-
tion

Figures 3.12 and 3.13 show the recon-
structed mass and decay time distributions.
The lack of events for small decay times is
due to the cut on the B0

d decay length. Fig-
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Figure 3.12: Mass Resolution, with relaxed
cuts, keeping those on the reconstruction
parameters
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Figure 3.13: Reconstructed decay times
with relaxed cuts, keeping those on the
reconstruction parameters and B0

d mass.
There is no event below 0.4 ps.
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ure 3.16 shows the differences between re-
constructed and true values for the decay
time. In order to obtain large enough a
sample to estimate the mass and the decay
time resolution from these plots, only the
subset of cuts marked with an asterisk in ta-
ble 3.4 is applied, including the reconstruc-
tion cut. The usual algorithm is used to
decide between two combinations of tracks
in an event that passes all cuts. The trigger
is not applied. For the vertex, momentum
and time resolution estimates, the cut on
the B0

d mass is also applied.

A Gaussian fit to the mass distribution re-
turns a width of 220 MeV, as shown in fig-
ure 3.12. Because the mass-distribution is
not strictly Gaussian, the fraction of events
within a certain error on the B0

d mass is also
shown as a function of that error. 68.3 % of
events are within in ±220 MeV and 95.5 %
are within ±550 MeV.

The time resolution depends directly on
the vertex and the momentum resolution.
The vertex resolutions, shown in figure 3.14,
are consistent with those found earlier, be-
fore applying the reconstruction cut and the
mass cut. Now the x and y resolution is
reasonably well described by a single Gaus-
sian. The momentum resolution is fitted
with two Gaussians, the narrower of which
has a width of 2 GeV. 68.3 % of events have
reconstructed momenta within ±5.7 GeV of
the true value.

A Gaussian fit to the time-resolution,
shown in figure 3.16, returns a σ of 160 fs.
The integrated fraction of events within
a given error-range is plotted underneath,
showing that 68.3% of events are within
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Figure 3.14: Vertex Resolution, with relaxed cuts, keeping those on the reconstruction
parameters and B0

d mass cut. For the resolution in z, the parameters (P1,P4), (P2,P5),
(P3,P6) are the amplitudes, means and widths respectively of the two Gaussians fitted
to the distributions.
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Table 3.6: B0
d → D∗−π+ inclusive: result

summary, and combined inclusive + exclu-
sive event yield.

Signal yield (460± 60) k per year
Combined
excl.+incl. yield (520± 60) k per year

Signal/Backg 4.4+4.4
−1.1

> 2 at 90% confidence
mass-resoln 220 MeV
time-resoln 170 fs

±171 fs. Both values are much smaller than
the B0

d-B0
d oscillation period. The effect of

the finite time resolution on the γ measure-
ment is therefore negligible.

3.4.10 Result Summary

Using the inclusive reconstruction method,
the total event yield can be increased by
a factor of ∼ 7 compared to the exclusive
method, to more than half a million events
per year, with good background rejection.

The full B0
d 4–momentum is reconstructed

from the fast and the slow pion. A mass
resolution of 220 MeV and time resolution
of 170 fs, or 0.013 B0

d-B0
d oscillation periods,

can be achieved, despite the limited infor-
mation used.

A summary of the main results from this
section is given in table 3.6.

3.5 Estimating the γ

Sensitivity

In this section, the result of the reconstruc-
tion studies are used to estimate the preci-
sion with which the CKM angle γ can be
extracted from the decay rate asymmetries:

Aη(τ) =
Γ(B0

d → D∗−π+)− Γ(B0
d → D∗−π+)

Γ(B0
d → D∗−π+) + Γ(B0

d → D∗−π+)
(3.17)
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Figure 3.15: Momentum Resolution, with
relaxed cuts, keeping those on the recon-
struction parameters and B0

d mass. The pa-
rameters (P1,P4), (P2,P5), (P3,P6) are the
amplitudes, means and widths respectively
of the two Gaussians fitted to the distribu-
tions.
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Figure 3.16: Time Resolution, with relaxed
cuts. Only the cuts on the reconstruction
parameters and B0

d mass are applied.
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and

Aη(τ) =
Γ(B0

d → D∗+π−)− Γ(B0
d → D∗+π−)

Γ(B0
d → D∗+π−) + Γ(B0

d → D∗+π−)
(3.18)

as introduced in chapter 1. Note that the
asymmetries are defined such that differ-
ences in the detection efficiencies of the two
final states cancel.

Using a stand–alone program, events are
generated according to the measured de-
cay rates of the four decay channels under
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The four undiluted decay rates are given apart from a common normalisation factor.
The parameters η and η for the decay B0

d → D∗π are given by:

η = |η| ei(∆qcd+(φmix−γ)) η = |η| ei(∆qcd−(φmix−γ)).

1) Γ(B0
d → D∗−π+) = RD∗−(τ) = e−Γτ

{(
1 + |η|2

)
+
(
1− |η|2

)
cos(∆mτ)− 2Im(η) sin(∆mτ)

}
2) Γ(B0

d → D∗−π+) = RD∗−(τ) = e−Γτ
{(

1 + |η|2
)
−
(
1− |η|2

)
cos(∆mτ) + 2Im(η) sin(∆mτ)

}
3) Γ(B0

d → D∗+π−) = RD∗+(τ) = e−Γτ
{(

1 + |η|2
)

+
(
1− |η|2

)
cos(∆mτ)− 2Im(η) sin(∆mτ)

}
4) Γ(B0

d → D∗+π−) = RD∗+(τ) = e−Γτ
{(

1 + |η|2
)
−
(
1− |η|2

)
cos(∆mτ) + 2Im(η) sin(∆mτ)

}
(3.16)

study. From log-likelihood fits to the asym-
metries, the error on γ is estimated.

The first step in this analysis is to derive
the measured decay rates and asymmetries,
including detector effects, from the theoret-
ical ones given in sections 1.3.4 and 1.3.6.
For ease of reference, and in order to define
the notation used in the following sections,
the undiluted decay rates are given again in
equation 3.16 (page 95).

The asymmetries including the detector ef-
fects will be given in terms of A(τ), which
stands for both Aη(τ) and Aη(τ), before de-
tector effects are taken into account.

3.5.1 Decay Rates, Including
Detector Effects

Detector-effects are taken into account by
assuming a Gaussian-distributed time reso-
lution of 170 fs, a uniform mistag probabil-

ity of 30 % and an acceptance function:

PA(τ) = max

(
0,

(aτ)3

1 + (aτ)3 − b
)

(3.19)

with a = 0.96 ps−1, b = 0.09

giving the probability that an event with
decay-eigentime τ is recorded. The accep-
tance function is taken from [TP98]. It
takes into account that the trigger, and also
the final event selection, rejects events with
small decay–lengths. A background to sig-
nal ratio of B/S = 0.2 is assumed.

Time Resolution

With a true decay rate

Rt(τ) = e−Γτ (a+ b cos(ωτ) + c sin(ωτ))
(3.20)

the measured decay rate is, taking into ac-
count the finite time–resolution and time–
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dependent acceptance:

RAστ (τ0) =
∞∫
0

PA(τ0, τ)Rt(τ) · gτ0(τ0 − τ) dτ.

(3.21)

Here, τ is the decay eigentime of the B0
d,

and τ0 is the reconstructed decay eigen-
time; PA(τ0, τ) is the acceptance function
and gτ0(τ0 − τ) the resolution function. In
general both might be quite complicated,
and numerical methods will be necessary to
perform the integral. Here, in order to be
able to do the integral analytically, we will
assume that the time resolution is described
well by a Gaussian, and that the acceptance
function is a function of the measured de-
cay time, τ0, only. Then the expression for
the measured decay rate becomes:

RAστ (τ0) = PA(τ0)

∞∫
0

1√
2πστ

e
− (τ0−τ)2

2σ2
τ

e−Γτ (a+ b cos(ωτ) + c sin(ωτ)) dτ.

(3.22)

All three parts of the above sum can be
solved simultaneously by calculating:

F (τ0) =

∞∫
0

1√
2πστ

e
− (τ0−τ)2

2σ2
τ e−Γτeiωτdτ.

(3.23)

Taking the part independent of τ outside
the integral gives:

F (τ0) =
1√

2πστ
e−

1
2( τ0στ )

2

∞∫
0

e
− 1

2σ2
τ
(τ2−2(τ0+(iω−Γ)σ2

τ)τ)dτ.

(3.24)

Defining

z ≡ τ0 + (iω − Γ)σ2
τ (3.25)

and completing the square in the exponent,
this becomes:

F (τ0) =
1√

2πστ
e−

1
2( τ0στ )

2

e+ 1
2( z

στ
)

2

·
∞∫
0

e
− (τ−z)2

2σ2
τ dτ. (3.26)

In practice, only events with long decay
times pass the trigger, and therefore

Re(z) = τ0 − Γσ2
τ > a few στ

for the relevant values of τ0. Then the
integral from 0 to ∞ can be replaced
with an integral from −∞ to ∞, and the
solution is:

F (τ0) =
1√

2πστ
e−

1
2( τ0στ )

2

e+ 1
2( z

στ
)

2

·
∞∫
−∞

e
− (τ−z)2

2σ2
τ dτ

= e−
1
2( τ0στ )

2

e+ 1
2( z

στ
)

2

= e
1

2σ2
τ
((iω−Γ)2σ4

τ+2τ0((iω−Γ)σ2
τ)).

(3.27)

Re-ordering gives the final result:
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F (τ0) = e−
1
2
σ2
τ ·(Γ2+ω2)e−Γ(τ0−Γσ2

τ)eiω(τ0−Γσ2
τ)

(3.28)

So the effect of the finite time-resolution
on the function

R (τ) = e−Γτ (a+ b cos(ωτ) + c sin(ωτ))

can be described by simultaneously scaling
the amplitudes a, b, and c, and shifting the
parameter τ according to:

a → ae−
1
2
σ2
τ ·Γ2

b → be−
1
2
σ2
τ ·(Γ2+ω2)

c → ce−
1
2
σ2
τ ·(Γ2+ω2)

τ → τ − Γσ2
τ . (3.29)

This transforms the asymmetry to:

Aστ(τ) = e−
1
2
σ2
τ ·(∆m)2

A(τ − Γσ2
τ ) (3.30)

The measured decay rates, taking into ac-
count the finite time resolution, but not the
acceptance function, are given in equation
3.31 (page 98).

Background

In this study it is assumed that the
background is independent of the decay
considered; this is to say that at any
given time, the number of background
events interpreted as B0

d → D∗−π+ decays
is the same as the number interpreted as
B0

d → D∗−π+ decays. As will be shown in
section 3.5.6, this results in a conserva-
tive estimate on the statistical precision

in γ. For a background to signal ratio
of B/S, the measured decay rate for
B0

d → D∗−π+, RB
S

D∗−(τ), becomes, in terms

of the decay rates without background:

RB
S

D∗−(τ) =

RD∗−(τ) +
B

S
· 1

2

(
RD∗−(τ) +RD∗−(τ)

)
(3.32)

and similarly for the other decay rates.
The measured asymmetry, AB

S
(τ), is given

by:

AB
S
(τ) =

1

1 +B/S
A(τ), (3.33)

where A(τ) is the asymmetry without back-
ground.

Mistag

Including a mistag fraction of ωtag, the
measured decay rate for B0

d → D∗−π+,
Rωtag D∗−(τ), becomes, in terms of the decay
rate without mistag:

Rωtag D∗−(τ) =

(1− ωtag)RD∗−(τ) + ωtagRD∗−(τ)

(3.34)

and similarly for the other decay rates.
The measured asymmetry, Aωtag(τ), is given
by

Aωtag(τ) = (1− 2ωtag)A(τ) (3.35)

where A(τ) is the asymmetry for perfect
tagging.
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Measured decay rates with finite time-resolution, and no other detector effects included.
The decay rates are given apart from a common normalisation factor.

B0
d → D∗−π+:

RστD∗− (τ) = e−Γ(τ−Γσ2
τ)
{
e−

1
2
σ2
τ ·Γ2

(
1 + |η|2

)
+

e−
1
2
σ2
τ ·(Γ2+ω2)

[(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
− 2Im(η) sin

(
∆m

(
τ − Γσ2

τ

))]}

B0
d → D∗−π+:

RστD∗− (τ) = e−Γ(τ−Γσ2
τ)
{
e−

1
2
σ2
τ ·Γ2

(
1 + |η|2

)
−

e−
1
2
σ2
τ ·(Γ2+ω2)

[(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
− 2Im(η) sin

(
∆m

(
τ − Γσ2

τ

))]}

B0
d → D∗+π−:

RστD∗+ (τ) = e−Γ(τ−Γσ2
τ)
{
e−

1
2
σ2
τ ·Γ2

(
1 + |η|2

)
+

e−
1
2
σ2
τ ·(Γ2+ω2)

[(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
− 2Im(η) sin

(
∆m

(
τ − Γσ2

τ

))]}

B0
d → D∗+π−:

RστD∗+ (τ) = e−Γ(τ−Γσ2
τ)
{
e−

1
2
σ2
τ ·Γ2

(
1 + |η|2

)
−

e−
1
2
σ2
τ ·(Γ2+ω2)

[(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
− 2Im(η) sin

(
∆m

(
τ − Γσ2

τ

))]}
(3.31)
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The Full Expression

The expressions for the measured decay
rates as function of the decay eigentime,
including all detector effects considered,
are given in equations 3.36 (page 100) .
The measured asymmetry, Am(τ), in terms
of the undiluted asummetry A(τ) is given
by:

Am(τ) = e−
1
2
σ2
τ ·ω2

tag
1− 2ωtag

1 +B/S
A(τ − Γσ2

τ ).

(3.37)

Explicitly written out, this is:

Am,η(τ) = D

(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
2
(
1 + |η|2

)
+D

2Im(η) sin
(
∆m

(
τ − Γσ2

τ

))
2
(
1 + |η|2

)
(3.38)

and

Am,η(τ) = D

(
1− |η|2

)
cos
(
∆m

(
τ − Γσ2

τ

))
2
(
1 + |η|2

)
+D

2Im(η) sin
(
∆m

(
τ − Γσ2

τ

))
2
(
1 + |η|2

) ,

(3.39)

with

D ≡ e−
1
2
σ2
τ ·ω2

tag
1− 2ωtag

1 +B/S
. (3.40)

3.5.2 Generating Events

Two methods are used to generate events,
one where a series of events is calculated
analytically, and one that uses Monte-Carlo
techniques.

The preferred method is the analytical ap-
proach. Its main advantage is its speed.
The analytical method provides an event
sample for which the fit always returns the
correct parameter values, that were used
used in the generation.

The Monte Carlo simulation is used to
cross-check the results in two ways. A large
number of data samples is generated and
fitted. Both the RMS spread in the fit re-
sult and the mean of the error estimates for
each fit are compared with the results ob-
tained using the default method.

Calculating Events Analytically

In order to generate an event sample that is
suitable for an unbinned log–likelihood fit,
the measured decay rates given in equation
3.36 need to be translated into four series
of decay times, one series for each decay.

For the purpose this discussion, we define
the normalised, measured decay rates:

ri(τ) =
Rmi(τ)∫
Rmi(τ)dτ

(3.41)

where i stands for one of the four channels
under study, and Rmi(τ) is the measured
decay rate for that channel, according to
the definitions:

Rm 1(τ) ≡ RmD∗−(τ)
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Decay rates including all detector effects considered, apart from a common normalisa-
tion factor:

Rm D∗−(τ) = PA(τ) ·
(

(1− ωtag)RστD∗−(τ) + ωtagRστD∗−(τ) +
B

S
· 1

2
(
RστD∗−(τ) +RστD∗−(τ)

))
Rm D∗−(τ) = PA(τ) ·

(
(1− ωtag)RστD∗−(τ) + ωtagRστD∗−(τ) +

B

S
· 1

2
(
RστD∗−(τ) +RστD∗−(τ)

))
Rm D∗+(τ) = PA(τ) ·

(
(1− ωtag)RστD∗+(τ) + ωtagRστD∗+(τ) +

B

S
· 1

2
(
RστD∗+(τ) +RστD∗+(τ)

))
Rm D∗+(τ) = PA(τ) ·

(
(1− ωtag)RστD∗+(τ) + ωtagRστD∗+(τ) +

B

S
· 1

2
(
RστD∗+(τ) +RστD∗+(τ)

))

(3.36)

Rm 2(τ) ≡ RmD∗−(τ)

Rm 3(τ) ≡ RmD∗+(τ)

Rm 4(τ) ≡ RmD∗+(τ)

Principle Given ri(τ) and the total num-
ber of events to be generated for channel i,
Ni, the number ∆N of events between τ and
τ + ∆τ is:

∆N ≈ Ni ri(τ)∆τ. (3.42)

Inverting this gives

∆τ ≈ ∆N

Ni ri(τ)
. (3.43)

The smallest number of events we can gen-
erate is 1. Therefore we choose ∆N = 1:

∆τ(τ) ≈ 1

Ni ri(τ)
(3.44)

Thus in principle a suitable event sample of
size Ni, distributed according to decay rate
Rmi(τ), may be generated by starting at
τ = 0, and then increasing τ Ni − 1 times

in steps of 1
Niri(τ)

, recording one event for
each decay time τ .

Starting the iteration at τ = 0 is however
not possible for the measured decay rates
discussed here, since ri(0) = 0 due to the
acceptance function. Therefore, the pro-
cedure is started at the value of τ where
ri(τ) is maximal, and then goes into both
the positive and the negative direction di-
rection, until Ni events are generated.

Because r(τ) → 0 for large τ , the maxi-
mum decay time for which events are gen-
erated needs to be limited to ensure that
∆τ ≈ ∆N

Nr(τ)
remains a good approxima-

tion. In this analysis, events are gener-
ated for a maximum decay time of one B0

d–
B0

d oscillation period, which corresponds 8.6
B0

d lifetimes. Theoretically, restricting the
maximum decay time could be problematic,
since the acceptance function only affects
decays with small decay times. However,
this effect is negligible, since the fraction
of events beyond 8.6 B0

d lifetimes is tiny.
The agreement of the fit-results using this
method with results from the Monte-Carlo
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study corroborates this.

To increase accuracy, the step size ∆τ is cal-
culated about half–way inbetween the gen-
erated decay times: For each value of τ , first
∆τ ′ = ∆τ(τ) is calculated, and then τ is in-
creased by ∆τ(τ + ∆τ ′/2), or decreased by
∆τ(τ −∆τ ′/2).

Relative Sample Sizes: In order to gen-
erate the correct relative numbers of events
for each of the four decay rates, the values
of Ni are calculated before the procedure
starts, by integrating the expressions for the
decay rates, and scaling the result accord-
ing to the total number of events desired,
Ntotal:

Ni = Ntotal

τmax∫
0
Rmi(τ)dτ

τmax∫
0

4∑
j=1

Rmjτdτ
, (3.45)

where τmax is the maximum decay time for
which events are generated.

Monte-Carlo Generated Events

Standard techniques are used to generate
the sample of Monte Carlo events.

Differences Between the Methods

The decay rate distributions the Monte
Carlo simulation is based on, and those used
for the analytical method, are not identi-
cal. While the analytical method uses the
decay rates derived in section 3.5.1, the

Monte Carlo first generates the decay rates
without any detector effects, and then im-
plements the finite time resolution using a
Gaussian random number generator. This
makes the Monte Carlos simulation inde-
pendent of the approximation made in sec-
tion 3.5.1, equation 3.27, where an integra-
tion from 0 to ∞ was replaced with an in-
tegration from −∞ to ∞. In the section
3.5.1 it was argued that the approximation
is very good, as long as the decay times are
not too short. But while a fit to the analyt-
ical events must be successful because the
events are generated with the same func-
tion with which they are fitted, a successful
fit to the Monte Carlo generated samples
validates this argument.

3.5.3 Fitting Events

To estimate the error on γ, the decay
time asymmetries Am η and Am η are fit-
ted to the generated event samples using
an unbinned log–likelihood method. The
function minimisation and error estimation
is performed using the software package
MINUIT [Jam94].

The Log–Likelihood Function

The log–likelihood function that is max-
imised is:
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Figure 3.17: Log-likelihood curves for one year of data taking (520 k events), using the
analytical method for generating events. For each parameter, the function is shown for
values ±2σ around the fitted value, with the other two parameters fixed at their fit-values. |η|2

is forced to be positive. The events were calculated for (φmix − γ) = 40◦ and ∆qcd = 0◦. With
|η| = 0.021, this corresponds to Im(η) = −Im(η) = 0.0134, and |η|2 = 4.41 · 10−4. The red lines
indicate the input values.
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ln (L) =
∑

all B0
d
→D∗−π+ evts

ln (pη(τi))

+
∑

all B0
d
→D∗−π+ evts

ln (1− pη(τi))

+
∑

all B0
d
→D∗+π− evts

ln (pη(τi))

+
∑

all B0
d
→D∗+π− evts

ln (1− pη(τi))

(3.46)

where τi are the measured decay times.
pη(τi) is the probability to find a
B0

d → D∗−π+ event at time τi, rather
than a B0

d → D∗−π+ event, and pη(τi) is

the probability to find a B0
d → D∗+π−

event rather than a B0
d → D∗+π− event. In

terms of the measured asymmetries, pη and
pη are given by:

pη,η(τ) =
Am,η,η(τ) + 1

2
. (3.47)

The formulae derived in section 3.5.1 for the
decay rates and asymmetries in the pres-
ence of a finite time resolution are only

valid for values of τ − Γσ2
τ that are not too

small. Therefore, in principle, decay times
with τ − Γσ2

τ < 3στ are ignored in the fit.
The acceptance function used for generat-
ing the events however, removes all events
with τ < 3.36στ , so that this restriction
does not have any practical consequences.

In figure 3.17 the log-likelihood function is
shown for the three fit parameters Im(η),
Im(η) and |η|2. The plots are obtained from
a fit to the analytically generated data, by
varying one parameter and leaving the oth-
ers fixed at their fit results.

From the third plot it can be seen that
the error on |η|2 is much larger than
|η|2 itself. It is impossible, therefore,
to fit it with sufficient precision to ex-
tract sin(∆qcd + (φmix − γ)) = Im(η)

|η| and

sin(∆qcd − (φmix − γ)) = Im(η)
|η| .
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Constraining |η|

As the value for |η| cannot be extracted
from the fit, we shall assume that it can
be obtained from elsewhere. The precision
on the angle γ is estimated for two scenar-
ios: firstly when |η| is known exactly, and
secondly when |η| is known with a Gaussian
error of

σ|η|
|η| = 10%.

In order to constrain |η| in the fit for the
case of a finite error on its value, the like-
lihood function is multiplied with a Gaus-
sian:

L → L · exp

−1

2

(|η|estim − |η|fit)
2

σ2
|η|

 .
(3.48)

where |η|estim is the assumed value of |η|,
and |η|fit is the parameter varied in the fit.

Choice of Parameters

The parameters varied in the fit are{
|η|2 , Im(η) , Im(η)

}
,

which are related to the angle γ by

φmix − γ =
1
2

(
arcsin

(
Im(η)
|η|

)
− arcsin

(
Im(η)
|η|

))
.

(3.49)

Im(η) and Im(η) are effectively independent
of each other. They are in principle corre-
lated by the factor

(
1 + |η|2

)
in the denom-

inator of the amplitude of the sine term in

the asymmetry, but since |η|2 � 1 the two
terms are practically independent.

It has been established empirically that the
errors in Im(η) and Im(η) are independent of
their actual values. They are also indepen-
dent of assumptions regarding the error on
|η|, as long as this error does not exceed sev-
eral hundred percent, and they scale with
the square-root of the number of events.

The Error on γ From the Errors on
the Fit Parameters

In the following we shall investigate how the
errors on Im(η) and Im(η) translate to an
error on the angle γ, and how this depends
on the input values for φmix − γ and ∆qcd,
and the knowledge of the parameter |η|.

For this study it is useful to make the fol-
lowing definitions:

φ± ≡ ∆qcd ± (φmix − γ) (3.50)

and

u+ ≡ sin(φ+) =
Im(η)

|η|
, (3.51)

u− ≡ sin(φ−) =
Im(η)

|η|
. (3.52)

As long as |η|2 is fixed, fitting Im(η) and
Im(η) is equivalent to fitting u±, and the
errors in u± and Im(η), Im(η) are propor-
tional to each other:

σu± =
1

|η|
σIm(η),Im(η). (3.53)
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In this case u+ and u− are uncorrelated. If
|η|2 is not fixed, the errors on σu± are:

σu± =

√√√√( 1

|η|
σIm(η),Im(η)

)2

+

(
u±

σ|η|2

2 |η|2

)2

(3.54)

or in terms of σ|η| rather than σ|η|2

σu± =

√√√√( 1

|η|
σIm(η),Im(η)

)2

+

(
u±
σ|η|
|η|

)2

.

(3.55)

u+ and u− are now correlated, with a co-
variance:

cov(u+, u−) = u+u−

(
σ|η|
|η|

)2

, (3.56)

and the errors have a weak dependence on
input values. Finally, for the error on γ this
translates to:

σγ =
1

2

((
σu+

cos(φ+)

)2

+

(
σu−

cos(φ−)

)2

−2 tan(φ+) tan(φ−)
σ|η|
|η|

) 1
2

. (3.57)

3.5.4 Results

The errors on Im(η) and Im(η) are:

σIm(η) = σIm(η) =
3.37 · 10−3

√
years of data taking

.

(3.58)

For the case of zero–error on the parameter
|η|, this translates directly to:

σu± =
0.160√

years of data taking
, (3.59)

which corresponds to first order, for the case
of small angles φ+, φ−, to an error on γ of:

σγ ≈
6.5◦√

years of data taking
. (3.60)

For the case of a 10% error on |η| we find
after one year that the error on u± is

0.16 < σu± < 0.19 (3.61)

and after 4 years:

0.08 < σu± < 0.13 (3.62)

and after 16 years:

0.04 < σu± < 0.11. (3.63)

Here the upper bound corresponds to the
case that u+ = u− = 1 and the lower bound
to the case that u+ = u− = 0, which is
equivalent in precision to the case when |η|
is known exactly.

It can be seen that an uncertainty in the
knowledge of |η| of 10% starts to propagate
to an uncertainty on u± after a few years of
data taking.

Because of the non-linear transformation
between the fitted quantities and the an-
gles, the error in γ is highly dependent on
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Figure 3.18: Error on φmix − γ after 1 and 5 years of data taking as a function of the
value of φmix − γ, for four different values of ∆qcd. Solid lines: 5 years of data taking,
broken lines: 1 year of data taking; red lines:

σ|η|
|η| = 0%, blue lines:

σ|η|
|η| = 10%. The

singularities seen in each plot are unphysical and are discussed in the text.
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the values chosen for ∆qcd and φmix − γ.
Figure 3.18 shows the error on φmix − γ as
a function of the value of φmix − γ for four
different values of ∆qcd. Results are given
for one and five years of LHCb data taking,
using equation 3.57 to calculate the values
from the result for the error on Im(η). The
red lines correspond to the case with zero
error on the parameter |η| and the blue lines
to the case where

σ|η|
|η| = 10%; the broken

lines indicate the error after one year of data
taking, and the solid lines indicate the error
after five years.

Near the edges of the parameter space,

where cos(φ±) approaches zero, the sim-
ple error propagation laws used in equation
3.57 do not give a meaningful answers any-
more. Therefore the errors shown are only
meaningful for values of φmix − γ at a dis-
tance from the edge of the parameter space
that is larger than the estimated error itself.
If it turns out that the values measured in
the real data are indeed near the edge of
the allowed parameter space an alternative
procedure would be required to estimate the
uncertainty in γ.
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3.5.5 Comparison with Monte
Carlo

To cross–check the results, errors are com-
pared between the fits to the analytically
generated events and the fits to those
generated using Monte Carlo techniques.
This is performed for two sets of values for
φmix − γ and ∆qcd:

φmix − γ = 40◦

∆qcd = 0◦

}
⇒
{
u+ = 0.643
u− = 0.643

and

φmix − γ = 40◦

∆qcd = 40◦

}
⇒
{
u+ = 0.985
u− = 0

.

The uncertainty on |η| is assumed to be
10%.

For each combination of values for φmix− γ
and ∆qcd, 100 sets of events are generated,
each set equivalent to 1 year of LHCb data
taking.

Each set of Monte Carlo events is gener-
ated with a different value for |η|. Those
values are randomly generated according
to a Gaussian distribution of width σ|η| =
0.1 · |η|, and mean µ|η| = 0.021. When con-
straining |η| in the fit, using equation 3.48,
it is always the mean value for |η| that is
used.

The results for the different methods, pre-
sented in table 3.7, show good agreement,
giving confidence in the results of section
3.5.4.

3.5.6 Factors that Influence
the Statistical Error

It is interesting to establish the dependence
that the statistical error, σγ, has on certain
input parameters and assumptions, in par-
ticular the level and distribution of back-
ground events.

Detector Effects

The statistical precision of the fit is directly
proportional to the amplitude of the asym-
metry. The asymmetry in the presence of
detector effects is given by.

AB
S
,στ

(τ) = e−
1
2
σ2
τ ·ω2

tag
1

1 +B/S
A(τ − Γσ2

τ ).

(3.64)

The error is also proportional to 1√
NS+B

,

where NS+B is the total number of events.
In terms of the number of signal events,
NS+B is given by:

NS+B = NS

(
1 +

B

S

)
(3.65)

where NS is the number of reconstructed,
triggered and tagged signal events. There-
fore, the error on γ is proportional to

σγ ∝ e
1
2
σ2
τ ·(∆m)2

√
1 +B/S

1− 2ωtag

1√
NS

. (3.66)
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Table 3.7: Fit results and error estimates obtained from fits to 100 sets of Monte Carlo
data, compared with the results from the analytical method. Each set of events is equiv-
alent to 1 year of LHCb data taking. The uncertainty in |η| is assumed to be 10%. The
term “calc. error” refers to the error on u± calculated from the MINUIT error estimate
on Im(η) and Im(η), using equation 3.55.

MC-generated events Analytical evts

φmix − γ, ∆qcd
input
value

mean of
100 fit
results

RMS of
100 fit
results

mean calc.
error from
100 fits

fit result
calc. er-
ror

40◦, 0◦ u+ 0.643 0.646 0.167 0.174 0.643 0.173
u− -0.643 -0.671 0.155 0.174 -0.643 0.173

40◦, 40◦ u+ 0.985 0.997 0.182 0.190 0.985 0.188
u− 0.000 -0.002 0.150 0.161 8 · 10−5 0.160

Dependence on |η|

As shown above, the errors on Im(η) and
Im(η) are independent of the actual values
of Im(η) and Im(η). γ is related to Im(η)
and Im(η) by

sin(∆qcd + (φmix − γ)) =
Im(η)

|η|
,

and

sin(∆qcd − (φmix − γ)) =
Im(η)

|η|
.

Therefore the error on
sin(∆qcd ± (φmix − γ)) scales directly
with the value of 1/ |η| that is assumed in
the study, and for small errors on Im(η)
and Im(η), so does the error on γ.

Including the dependence on |η|, the error
on γ is proportional to:

σγ ∝
1

|η|
e

1
2
σ2
τ ·(∆m)2

√
1 +B/S

1− 2ωtag

1√
NS

. (3.67)

Background

The simplest model for the background dis-
tribution, and that adopted in this chap-
ter, is that the background fraction is in-
dependent of the decay time, and of the
decay considered. Therefore the num-
ber of background events interpreted as
B0

d → D∗−π+ decays is the same as the
number interpreted as B0

d → D∗−π+ decays,
and the number interpreted as B0

d → D∗+π−

is the same as the number interpreted as
B0

d → D∗+π−.

Using the symbols X and Y for the two
decay rates, the asymmetry without back-
ground is given by:

A(τ) =
X(τ)− Y (τ)

X(τ) + Y (τ)
(3.68)

which, in the presence of this type of back-
ground, transforms to(

X + 1
2
B
S (X + Y )

)
−
(
Y + 1

2
B
S (X + Y )

)(
1 + B

S

)
(X + Y )
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=
X(τ)− Y (τ)(

1 + B
S

)
(X(τ) + Y (τ))

.

So the background cancels in the numer-
ator, but increases the denominator and
hence reduces the amplitude of the asym-
metry:

AB
S
(τ) =

1

1 +B/S
A(τ). (3.69)

This increases the error on the fit param-
eters by a factor of 1 + B/S. Taking into
account the extra number of events, which

reduces the error again by
√

1 +B/S, the
total increase in statistical uncertainty due
to a background to signal ratio of B/S is√

1 +B/S.

This simple model for the background is not
very realistic, as it appears that most back-
ground will in fact come from B0 → D∗±

decays with correctly identified D∗±. The
background will therefore follow the B0

d os-
cillation.

Using the symbols δx and δy for the part
of the background that does not follow the
oscillations, the asymmetry in the presence
of background becomes:

X(τ)
(
1 + B

S

)
+ δx(τ)− Y (τ)

(
1 + B

S

)
− δy(τ)(

1 + B
S

)
(X(τ) + Y (τ))

=
X(τ)− Y (τ)
X(τ) + Y (τ)

+
δx(τ)− δy(τ)(

1 + B
S

)
(X(τ) + Y (τ))

So the asymmetry in the presence of back-
ground that is more akin to that found in
the event reconstruction is given by:

A(τ) + δA(τ), (3.70)

instead of

1

1 +B/S
A(τ) ≈ A(τ)− B

S
A(τ), (3.71)

where δA(τ) is small compared to B
S
A(τ).

The observation that most of the back-
ground will come from B0

d → D∗± decays
therefore leads to a reduced statistical er-
ror, as it leaves the amplitude nearly un-
changed.

For the study presented above, the simple
background model has been used with a
B/S ratio of 0.2. This model gives a conser-
vative estimate of the statistical precision in
γ.

3.5.7 Systematic Errors

The results of section 3.5.4 are statistical
errors alone. Below we will discuss possi-
ble systematic uncertainties, and how they
might be controlled.

The Time Resolution

The measured asymmetry can be written as

Am,η(τ) = C · cos
(
∆m

(
τ − Γσ2

τ

))
+S · sin

(
∆m

(
τ − Γσ2

τ

))
.(3.72)

The parameters C and S have been intro-
duced as the amplitude of the cosine and
the sine term respectively:

C = D
1− |η|2

2
(
1 + |η|2

)
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S = D
Im(η)

1 + |η|2
, (3.73)

where D stands for the dilution due to
detector effects, as defined in equation
3.40. With these definitions:
Am,η =

C

√
1 +

S2

C2
· cos

(
∆m

(
τ − Γσ2

τ

)
− arctan

(
S

C

))
.

(3.74)

So fitting Im(η) ≈ 1
2
S/C is essentially

equivalent to fitting the phase-shift:

∆φ ≡ ∆mΓσ2
τ + S/C (3.75)

To ignore the finite time-resolution, we
would therefore need ∆mΓσ2

τ � 2 |η|.
Above we found στ = 170 fs for the inclusive
case. Hence:

∆mΓσ2
τ

2 |η|
= 21%. (3.76)

To first order, this corresponds to a bias
in ∆qcd ± (φmix − γ) of ∼ 13◦ if the effect
were completely ignored. This bias is
reduced for the interesting case where
∆qcd � 1, and the phase–shift due to the
finite time–resolution is the same for Im(η)
and Im(η). Then the bias cancels to first
order when calculating

φmix − γ =
1
2

(
arcsin

Im(η)
|η|

− arcsin
Im(η)
|η|

)
.

The above shows that it will be essential to
obtain an accurate description of the time–
resolution. It is also important to take into
consideration any dependence that the ac-
ceptance function might have on the true
decay time. This was ignored when deriving
the expression for the measured decay rates

and would have an effect on the phaseshift,
in particular where the acceptance changes
rapidly with the decay time.

Background

The background level can be estimated
from the sidebands in the distribution of
the reconstructed B0

d mass. To estimate
systematic errors, for example due to pos-
sible CP asymmetries in the background,
requires a better knowledge of the back-
ground composition than is possible with
the limited statistics available.

Mistag

The mistag fraction needs to be known ex-
actly in order extract Im(η) from ampli-
tudes of the asymmetry. It can be mea-
sured by fully reconstructing charged B de-
cays. The procedure assumes no correla-
tion between the B used for tagging, and
the tagged B. The decay B0

d → J/ψK∗ can
also be used to extract the mistag fractions
[B+00].

It is expected that from the channel
B± → J/ψK± alone, the mistag fraction can
be determined to a relative precision of 10−3

within one year [B+00], so the systematic
error due to this source can be safely ig-
nored.

These control channels can also be used to
determine a possible charge asymmetry in
the mistag.
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Rate Normalisation

In the expressions for the asymmetries so
far, it has been assumed that there are as
many B0

d produced as B0
d, and that the tag-

ging efficiencies for both mesons are the
same. In fact a production asymmetry
of the order of a percent or so is antici-
pated [TP98]. An asymmetry in the de-
tector might also lead to different tagging
efficiencies because of the correlation be-
tween the detected particle flux and the
charge, brought about by the dipole mag-
net. These detector asymmetry effects will
be minimised by switching the magnet po-
larisation frequently.

Using the symbols ρ and ρ̄ for the produc-
tion rates of B0

d and B0
d mesons respectively,

and ε and ε̄ for their respective tagging effi-
ciencies, the normalisation factor rB is de-
fined as:

rB(τ) ≡ ρ(τ)ε(τ)

ρ̄(τ)ε̄(τ)
. (3.77)

The asymmetry changes from

A(τ) =
Γ(B0

d → D∗−π+)− Γ(B0
d → D∗−π+)

Γ(B0
d → D∗−π+) + Γ(B0

d → D∗−π+)
(3.78)

to:

Am(τ) =
Γ(B0

d → D∗−π+)− rB(τ)Γ(B0
d → D∗−π+)

Γ(B0
d → D∗−π+) + rB(τ)Γ(B0

d → D∗−π+)
,

(3.79)

neglecting the other detector effects. For a
time–independent rB, we get:

Am(τ) = A(τ)− 1

2
(rB − 1) , (3.80)

which can in principle be fitted. This
would result in an increased statistical er-
ror, and relies on the assumption that rB
is time independent. Alternatively, rB can
be extracted from B0

d → J/ψK∗ decays, to
a precision of about 2 · 10−3 within a year
[TP98, B+00].

Error on η

As |η| cannot be extracted from the asym-
metries, it must be obtained from else-
where. One option is to calculate |η|,
which is difficult mainly because of un-
known hadronic effects. It might be pos-
sible to use experimental data to constrain
those effects, for example by using the
flavour–symmetry related decay B0

s → DsK
which has |η| ∼ 1, but this has not yet been
investigated.

Any error in the value obtained for |η| in-
duces a corresponding error on γ according
to expression 3.49.

3.5.8 γ Reach - Result Sum-
mary

For 520 000 reconstructed, triggered and
tagged B0

d → D∗π events, a wrong–tag frac-
tion of ωtag = 30% and a background to
signal ratio of S/B = 0.2, the statistical
error on the parameters Im(η) and Im(η)
is 3.37 · 10−3. This error scales with the
square–root of the number of events. For
|η| = 0.021, it translates to an uncertainty
in γ of ∼ 7◦, depending strongly on the val-
ues for φmix − γ and ∆qcd.
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The extraction of γ from the fit results re-
quires that the parameter |η| is known to
a reasonable precision. For an error on |η|
of 10%, the systematic and statistical un-
certainties contribute in equal measure to
the total uncertainty in γ after a few years
of data taking. The method is very sensi-
tive to the exact knowledge of the decay–
time resolution function, and also requires
that that a dependence of the acceptance
function on the true decay time for a given
measured decay time is taken into account.

3.6 Conclusion

Two methods of reconstructing the decay
B0

d → D∗π have been presented, the exclu-
sive method, where an entire decay chain
is reconstructed, and the inclusive method,
where the full B0

d 4–momentum is recon-
structed using the fast and the slow pion
from the B0

d and the D∗ decay only.

The combined event yield from these two
methods is estimated to be about half a
million reconstructed, tagged and triggered
B0

d → D∗π events per year. Nearly 90%
of the events are provided by the inclusive
method alone. Despite the reduced set of
information used in the reconstruction, the
inclusive method provides a good signal to
background ratio of 4.4+4.4

−1.1, and a time res-
olution of 170 fs, which is small compared
with the B0

d-B0
d oscillation period. The ex-

clusive method achieves a similar signal to
background ratio, and a time resolution of
60 fs.

Given this performance, the angle γ can be

measured with a precision of ∼ 7◦ within
one year of data taking, depending on the
values for φmix−γ, ∆qcd and |η| assumed in
the study, and the uncertainty in |η|. Inde-
pendent of these assumptions are the results
for the parameters Im(η) and Im(η), which
can be fitted with a precision of 3.4 · 10−3

within one year of data taking.

The γ measurement crucially depends on
the knowledge of |η|, which needs to be
taken from elsewhere, and on the exact
knowledge of the decay time resolution
function.
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Chapter 4

Full–Scale RICH 2 Prototype

4.1 Introduction

A full scale prototype of the RICH 2 de-
tector was built, and tested in the summer
and autumn of 1998 at the CERN SPS fa-
cility. The main focus of this chapter is to
report on the performance of this prototype
in the two key aspects of a RICH detec-
tor, the number of detected photons and
the Cherenkov angle resolution. The results
are compared with those from a detailed
Monte Carlo simulation, in order to estab-
lish if our understanding of the prototype
is correct and therefore whether the RICH
performance studies, using the LHCb de-
tector simulation, are meaningful. First, a
brief description of the test–beam setup and
the main hardware components is given.

4.2 Experimental Setup

4.2.1 Overview

A full scale prototype of RICH 2 has been
built and equipped with commercially avail-
able 61–pixel HPDs. The prototype is de-

signed as a vacuum vessel, connected to a
gas circulation system to control and moni-
tor the pressure and purity of the C F4 gas,
and monitor the temperature. It was placed
into the X7 beam line of the CERN SPS fa-
cility.

A schematic of the test–beam setup is
shown in figure 4.1, together with the defi-
nition of the co–ordinate system used in the
text.

The beam enters the vessel along a tube
of 90 mm diameter, through a 250µm thick
Mylar window. The beam direction is mea-
sured using a three–plane Si telescope.

The Cherenkov photons generated in the
1.8 m long gas volume are reflected off a
spherical mirror with focal length f = 4 m,
onto the photodetectors placed in the focal
plane of the mirror. The mirror axis is tilted
by 18◦ relative to the beam line, and the
axis connecting the mirrors and the photo
detector plane is at a 36◦ angle to the beam
line.

To trigger the readout electronics, scintilla-
tion counters are placed into the beam. To
allow testing of the system independent of

113
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Figure 4.1: RICH2 test–beam setup and co–ordinate system
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Figure 4.2: Photograph of RICH prototype being set up in the X7 beam area
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the beam, an LED is placed inside the ves-
sel near the entrance window of the beam.
The LED light source can be synchronised
with the readout electronics.

4.2.2 The Beam

The RICH prototype is mounted in the
CERN X7 beam line. The beam is set
to provide negative particles with momenta
from 10 to 150 GeV. The momentum spread
of the beam is less than 1%. The beam com-
position is mainly pions and kaons in the
ratio of 9:1.

A CEDAR differential Cherenkov counter
is placed in the beam, in order to be able
to obtain data for a single particle type. A
differential Cherenkov counter detects pho-

tons within a very narrow Cherenkov an-
gle range, and thus triggers, for a given
Cherenkov angle acceptance, on one partic-
ular type of particle. The CEDAR identi-
fies the desired particle type with very high
purity, but unknown efficiency [BMP+82].

Readout of the detectors is triggered by
time correlated signals provided by two
pairs of scintillation counters placed 8 m
apart along the beam line. The smaller
scintillation counter is 20× 20 mm2 in size,
which defines the dimensions of the beam.

The beam divergence and position are mea-
sured using a silicon telescope consisting
of three planes of Si pixel detectors. Two
planes are placed upstream of the detector
and one downstream, the first and the last
plane being 8 m apart. Each Si plane is seg-
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mented into 22×22 square pixels with a side
length of 1.3 mm.

The aperture of the beam and hence the
beam divergence can be varied indepen-
dently in x and y direction. For the study
presented here, data runs with a small beam
divergence and wide aperture have been se-
lected. The beam divergence in x and y has
been measured to be between 0.12 mrad and
0.18 mrad, as described in section 4.4.

4.2.3 The RICH Prototype

Mechanics

The vacuum vessel is constructed using alu-
minium alloy1 plate, folded and welded at
the box edges. The box is black–anodised to
reduce reflection of stray light. Port–holes
are machined into the side and backplate.
These can be used, for example, to mount
a standard photomultiplier tube to check
for light leaks. The ports are sealed using
blank plates and O–rings when the box is
connected to the pump or the gas system.

A 10 mm thick removable backplate sup-
ports the mirror. It is bolted to the box
and sealed with a rubber O–ring. The mir-
ror position can be adjusted with three mi-
crometer screws. A movement of a microm-
eter screw of 1 mm corresponds to a shift of
the image on the detector plane of ∼ 8 cm.

Attached to the box are two extensions of
the same material as the box. The tube
along the beam line provides the RICH 2

1BS HS30

Figure 4.3: Dependence of the refractive in-
dex (n) – 1 on the photon energy, for C F4

at STP

radiator length of 1.8 m, and the tube at 36◦

covers the necessary 4 m distance between
mirror and detector plane.

The detector plane provides space for seven
HPDs and one MaPMT in a circular ar-
rangement with their centres at a 113 mm
radius. The MaPMT will not be discussed
here. However, results from a testbeam us-
ing only MaPMTs are presented in chapter
5. HPD 1 . . .HPD 7 are positioned at the
azimuthal angles 40◦, 75◦, 165◦, 195◦, 285◦,
320◦, 0◦ respectively. A schematic of the
detector plane is shown in figure 4.1.

The C F4 Gas Radiator

For all tests reported here, CF4 gas is used
as the radiator, as in the final RICH 2 de-
sign. The pressure and temperature of the
gas are constantly monitored. The refrac-
tive index of C F4 as a function of photon
energy at STP, as parameterised in [A+90a],
is shown in figure 4.3. The data presented
here have been taken at 900 mbar and 20oC.
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Figure 4.4: C F4 gas circulation system

The schematic in figure 4.4 shows the gas
circulation system which provides the C F4–
gas to the RICH prototype. A molecu-
lar sieve is used to remove water vapour.
The system uses a microprocessor inter-
face2 to set and stabilise the gas pressure
and to record pressure, temperature and the
concentration of water vapour and oxygen
throughout the data taking.

The absolute pressure of the C F4 in the ves-
sel is maintained to within 1 mbar of the re-
quired value. The oxygen concentration is
always controlled below 0.1% and the wa-
ter vapour concentration below 100 ppm by
volume.

2Siemens S595U

Figure 4.5: Mirror reflectivity as a function
of photon energy

The Mirror

The focal length of the mirror is 4003 mm.
It is made from glass coated with alu-
minium. Its reflectivity as a function of
photon energy has been measured at CERN
and is given in figure 4.5

The 61 Pixel HPD

For the RICH Prototype tests the final
HPD design described in section 2.3.6 was
not yet available. Instead the commercially
available “61 Pixel HPD” from DEP is
used. A visualisation of the tube is shown
in figure 4.6. The photo cathode is an
S20 type (semi–transparent Sb Na2 K Cs),
deposited on the inside surface of a 2 mm
thick fused silica window. The sensitive
range of the photo cathode starts at about
2.5 eV and is limited at higher energies by
the fused silica at 7.3 eV. The quantum
efficiency was measured by DEP and is
shown in figure 4.7. The last measurement
point is at 6.2 eV, the graph is extrapolated
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Figure 4.6: The 61 Pixel HPD
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Figure 4.7: Quantum Efficiency of DEP S20
photo cathode as a function of photon en-
ergy (averaged over 7 HPDs)

to 7.3 eV, assuming the quantum efficiency
stays constant between 6.2 and 7.3 eV.
With this, and a cut–off at 7.3 eV, the
integrated quantum efficiency is∫

Qeff(E) dE = 1.34 eV. (4.1)

The Si diode detector is processed on a
300µm n–type substrate and the p–type
implant is segmented as an hexagonal array
of 61 hexagonal pixels with pixel dimensions
of 2 mm flat to flat, as shown in figure 4.6.
The electron optics are such that the image
on the pixel array is magnified by 6.1 % with
respect to the image on the photo cathode,
so the effective pixel size on the cathode sur-
face is 1.88 mm. The effective area on the
anode has therefore a diameter of ∼ 17 mm.

The photo electrons travel 12 mm from the
photo cathode at a potential of −12 kV to
the back (ohmic) surface of the silicon at
0 V. This surface implant has been thinned
to ∼ 100 nm thickness. The diodes are re-
verse biased at 60 V which ensures deple-
tion. Ohmic contacts to the diode pix-
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Figure 4.8: Schematic of 61 pixel HPD
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Figure 4.9: Transmission of borosilicate
(“Pyrex”) filters

els are provided by a 2.5 mm pitch, 80–pin
grid array which feeds through into the vac-
uum tube via a ceramic carrier, solder bump
bonded to the metallised p–type pixels. A
schematic of the HPD is shown in figure 4.8.

Filters

Filters are used to limit the wavelength
range at higher energies and thus reduce
chromatic aberration. The filters are made
from borosilicate (“Pyrex”), that cuts off

Figure 4.10: Detection efficiency as a func-
tion of photon energy

at about 4 eV, or 310 nm. The transmis-
sion of these filters as a function of energy
is shown in figure 4.9. Data were taken with
and without Pyrex filters.

Detector Response N0

Multiplying the curves 4.5, 4.7 and 4.9 gives
the detection efficiency as a function of the
photon energy for the case with filter, as
shown in figure 4.10. Integrating this, gives
the detector response parameter N0, defined
in 2.7:

N0 = 115 cm−1 (4.2)

and for the case without filter:

N0 = 358 cm−1. (4.3)

This neglects the finite efficiency with which
the photo electrons generated in the cath-
ode are detected by the Si sensor. In this
chapter, all values for N0 are given for a
photo electron detection efficiency of εD =
100%. This is motivated by the photon
counting method used below, where the sig-
nal loss due to undetected photo electrons
is corrected for.
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Figure 4.11: RICH prototype readout and
DAQ

Readout and DAQ

The small single photo electron signals and
the large number of pixel connections out of
the vacuum envelope make the readout and
data acquisition system for the prototype
RICH particularly challenging.

A low–noise and slow (compared to the
40 MHz bunch–crossing at LHCb) pre–
amplifier is used. Fast readout elec-
tronics as described in chapter 5 were
not available for this test. Each
HPD is connected to a front–end board,
on which a 128–channel Viking VA2
pre–amplifier/shaper/multiplexer chip is
mounted [MNTW94]. The multiplexed

Figure 4.12: Pulse height spectrum from
analogue readout of a 61 pixel HPD
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analogue signals from each of the seven
front–end boards are transmitted via dis-
tribution boards to a VME flash–ADC sys-
tem3. A schematic of the complete readout
chain is shown in figure 4.11. A detailed
description of the electronics and the data
acquisition system can be found in [A+98].

An example of the ADC spectrum of a sin-
gle HPD pixel, obtained with the LED, is
shown in figure 4.12. The zero, one two and
three photo electron peaks are clearly visi-
ble.

3 AROMA: an 8–channel flash–ADC module,
designed for the analogue readout of prototype sil-
icon detectors for the CERN ATLAS experiment
[ARO]
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4.3 Monte Carlo Simula-

tion

The aim of the test–beam was to establish
whether the RICH prototype works accord-
ing to expectation, especially with respect
to the photon yield and the Cherenkov an-
gle resolution. To evaluate the prototype,
the test–beam results are compared with
the results from a detailed purpose–built
Monte Carlo simulation. The simulation
assumes a particle beam with a beam di-
vergence as measured in the test–beam,
typically ∼ 0.125 mrad. The beam pro-
file is assumed to be uniform within the
20× 20 mm, as seen in the data. The mea-
surement of the beam divergence and the
beam profile are discussed in section 4.4.

Photons are generated with energies be-
tween 1.5 eV and 7.3 eV, according to equa-
tion 2.5, at random points along the particle
trajectory.

To calculate the refractive index of C F4 as
a function of photon energy, the Lorentz–
Lorentz equation is used (from [YS93]):

n2 − 1

n2 + 2
= a f(E) (4.4)

with

a = 0.3738 cm3 · nd (4.5)

where nd is the molecular number density
of the gas. Here, C F4 gas is treated as an
ideal gas, so that

nd =
1

Rgas

· P
T

(4.6)

where Rgas is the Gas Constant, P the pres-
sure and T the temperature. The function
f in equation 4.4 is given by the Sellmeir
relation:

f(E) =
F1

E2
1 − E2

+
F2

E2
2 − E2

. (4.7)

From [A+90a], we take F1 = 7626.16 eV2,
E1 = 20.0 eV, and F2 = 0. Figure 4.3 shows
the parametrisation of the refractive index
of C F4 as a function of photon energy at
STP.

After the Cherenkov angle has been calcu-
lated, the photon is ray–traced through a
computer model of the prototype. Photons
that hit the walls of the vessel or tubes are
treated as lost. The measured mirror re-
flectivity and filter transmission, shown in
figures 4.5, and 4.9, are used to calculate
the probability that a photon is absorbed
at the mirror or the filters. To calculate
the probability that a photon reaching the
photodetectors is converted to a photo elec-
tron, the quantum efficiency as a function
of photon energy, averaged over the seven
tubes, is used. This is shown in figure 4.7.

Once the photo electron has been produced,
its detection efficiency at the Si detector is
not simulated. Instead, the data are cor-
rected for signal loss, and the corrected pho-
ton counts are compared with the Monte
Carlo results.
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4.4 Measuring The

Beam Divergence

For the Cherenkov angle reconstruction ex-
plained later in this chapter, the beam is
assumed to go exactly along the z axis.
This assumption is not entirely correct and
causes an additional spread in the recon-
structed Cherenkov angles. In order to
be able to reproduce this spread in the
Monte Carlo simulation, the beam diver-
gence needs to be known.

The three Si telescope planes are used to
measure the beam divergence. For this
measurement, events are selected where
each of the three Si planes has exactly one
hit. As three points always lie in one plane,
the task of fitting the particle trajectory can
be reduced to finding that plane and then
performing a linear regression.

As the positions of the Si planes are not
known accurately, their exact relative posi-
tions have to be determined from the data.
To do so, a fit is performed by varying the
assumed x and y position of the central
plane as well as the rotation angles of the
central and the third plane. The rotation
is performed around an axis going through
the centre of the plane, parallel to the z–
axis. The parameters varied in the fit are
shown in figure 4.13.

To find the optimal values for these param-
eters, the total χ2 of all the straight–line
fits to the Si hits in first 12 k events in the
given data set, is minimised. This proce-
dure leads to the results given in table 4.1
for the two runs that are discussed later

Figure 4.13: Variables used in the align-
ment of the Si telescope. The position of
the planes assumed at the start of the fit is
given by the broken lines, the true position
by the solid lines.
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in this chapter. As the Si telescope posi-
tion was not changed between the runs, the
alignment procedure is expected to return
the same results in both cases. As can be
seen from the table, the agreement is indeed
very good.

The values for the beam divergence in x and
y are between 0.12 and 0.18 mrad, which
includes the contribution due to pixelisation
of ∼ 0.047 mrad.

The hit densities in the three Si planes seen
in figure 4.14 show a nearly uniform beam
profile within the 20× 20 mm2 acceptance
defined by the smaller of the scintillation
counters that trigger the read out.

The measured RMS of the beam position
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Table 4.1: Results of the beam divergence
measurement and Si telescope alignment.
The alignment co–ordinates are given in fig-
ure 4.13. The results are given for the data
discussed in section 4.5.4.

run with run with-
filter out filter

x2 −0.82 mm −0.84 mm
y2 0.64 mm 0.67 mm
φ2 8 mrad 19 mrad
φ3 5 mrad 25 mrad
beam div x 0.135 mrad 0.179 mrad
beam div y 0.120 mrad 0.124 mrad
RMS beam pos. x 5.1 mm 5.0 mm
RMS beam pos. y 5.3 mm 5.3 mm

Figure 4.14: Hit density in the three
Si telescope planes for the run with filter.
(units are mm)

Figure 4.15: ADC spectrum from pixel ly-
ing on the Cherenkov ring, after 5 k events,
with Pyrex filter. A Gaussian is fit to the
pedestal. P1, P2, P3 are amplitude, mean
and width respectively, and a line marks the
3σ cut.
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in x and y of 5.0 to 5.3 mm is that ex-
pected from a nearly flat beam profile. A
perfectly flat beam profile would result in
an RMS in both coordinates of 5.8 mm for
a 20× 20 mm2 acceptance.

4.5 Photon Counting

The number of photons detected deter-
mines, together with the Cherenkov angle
resolution, the performance of the RICH
detector. Thus a key aim of the test–beam
was to determine whether the observed pho-
ton yield was in accordance with expecta-
tion.

The basic photon counting procedure is to
define for each pixel a threshold cut and
count everything above that cut as one hit.
To set the threshold cut, the pedestal of
each pixel is fitted with a Gaussian. The cut
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is set mσ above the pedestal mean, where
σ is the pedestal width. The default for the
analysis presented below is m = 3.

As there is some overlap between the
pedestal and the signal peak, only the part
of the pedestal where this overlap is small,
is used in the fit. The interval over which
the fit is performed is [µ − 5σ, µ + 1.5σ],
where µ is the fitted pedestal mean. For
the purpose of defining this interval, a first
fit is performed without limits.

4.5.1 Background Estimates

In order to compare the measured
Cherenkov photon yield with expecta-
tion, hits originating from background
sources must first be subtracted.

Three types of background are treated sep-
arately:

i) electronic noise;

ii) detector noise and other non–
Gaussian, beam–independent back-
ground;

iii) beam–related background.

Electronic Noise

Assuming that the electronic noise is Gaus-
sian in distribution, the fit to the pedestal
is used to estimate the number of hits from
this source. The integral of the Gaussian,
calculated from the fit result, is multiplied

Figure 4.16: ADC spectrum from the same
pixel as in figure 4.15, with beam synchro-
nisation switched off, after 15 k events. A
Gaussian is fit to the pedestal. P1, P2,
P3 are amplitude, mean and width respec-
tively. A line marks the 3σ cut, where σ is
taken from the fit to the signal spectrum in
figure 4.15. 47 events lie above this line.
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by the fraction of the Gaussian that lies
above the cut; for the example of a 3σ
cut, this is 0.135%. For pixels without any
signal events, so that nearly all events are
in the pedestal, the number of background
hits per event is therefore 1.35 · 10−3, if the
Gaussian fit describes the pedestal well. In
the data, where the average number of hits
per pixel per event is ∼ 1%, the average
number of background hits per pixel per
event is found to be 1.34 · 10−3, in agree-
ment with expectation. The variation be-
tween tubes is less than 1

2
%.

Detector Noise and Other Non–
Gaussian Beam–Independent Back-
ground

The origin of this type of background can be
for example thermal electrons in the photo
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detectors, or photons from stray light en-
tering the vacuum tank.

To estimate this background, pedestal runs
are used. These are runs where the syn-
chronisation between beam and readout is
switched off. The number of hits in the
pedestal run that are above the threshold
cut, after subtraction of electronic noise, is
taken as the background estimate. Scaled
according to the number of events, the
background is subtracted pixel by pixel
from the photon counts in the beam data.
For the pedestal run, the threshold cut is
set at µp + mσb, where µp is the mean of
the pedestal in the pedestal run, while σb is
the width of the pedestal found in the beam
data for the same pixel.

The detector noise varies significantly be-
tween the different HPDs. For a 3σ cut, the
values found for the run with filters range
from 0.7 · 10−3 hits per event per pixel for
HPD 4, to 4.8 · 10−3 hits per event per pixel
for HPD 5; the average value is 1.8 · 10−3.
For the run without filters, the values are
0.6 · 10−3 for HPD 4, 5.3 · 10−3 for HPD 5,
and 2.0 · 10−3 for the average value.

The pedestal run chosen for each back-
ground estimate is the most recent one prior
to the data run of interest. The procedure
is repeated with different pedestal runs in
order estimate a systematic error.

Beam Related Background

Anything that scatters Cherenkov light ran-
domly can cause such background, such
as imperfections in the mirror, dust, etc.

Also, the small amount of back–scattered
photo electrons that re–enter the Si waver
can contribute to the beam–related back-
ground. As discussed in section 2.3.6, the
probability that a photo electron produces
two hits in the Si waver is ∼ 0.18·(d/(4h))2,
where h is the height of the tube, d the
diameter of the Si sensor, and 0.18 the
backscattering fraction. For the case of the
61 pixel HPD, h = 12 mm and d = 18 mm,
therefore ∼ 2.5% of all electrons enter the
Si twice.

The beam related background is estimated
as part of the fit to the Cherenkov angle
distribution, as explained in section 4.5.3.
The fit is performed after all the other cor-
rections to the data have been applied.

The beam related background is found to be
the smallest background contribution, with
∼ 1.8 · 10−4 hits per event per pixel for the
run with pyrex filters, and 3.2 · 10−4 hits per
event per event for the run without filters.

The Total Background

With a 3σ cut, for the data taken
with pyrex filers, the total background is
3.3 · 10−3 hits per event per pixel, or 0.18
hits per event per tube. This corresponds
to 42% of all hits. Without pyrex filters, the
total background is 3.7 · 10−3 hits per event
per pixel or 0.20 hits per event per tube,
which constitutes 21% of all hits. How the
background contributions vary for different
threshold cuts is shown in tables 4.5 and
4.8, described later.
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4.5.2 Signal Loss

Depending on the threshold cut, a certain
fraction of signal events will fall below that
cut and be lost. In order to estimate this
fraction, the output of an HPD pixel is
modelled with a function described below.
The best fit of this function to the pulse
height spectra is used to estimate the sig-
nal loss.

The number of signal events in data taken
with Cherenkov photons is too small to fit
the shape of the signal distribution. There-
fore, the fits are performed on data taken
with an LED as the light source.

From fits to the LED spectra, the fraction of
single photo electron events lost below the
cut is calculated for each pixel. Because of
the small number of hits per event, nearly
all hits in the Cherenkov data are single
photo electrons. However, multiple photo
electron events are significant in the LED
data. Therefore it is necessary to extract
from the LED data the single photo electron
loss, rather than the total loss. This infor-
mation is applied pixel by pixel to correct
the photon counts in the Cherenkov data.

Fitting the LED Spectra

The function that is fitted to the LED data
consists of a Gaussian for the pedestal and a
Gaussian plus a backscattering component
for the single and the double photo electron
peak. The fit region is restricted from 4σ of
the pedestal below its mean to 2σ of the
double photo electron peak above the mean
of that peak.

Figure 4.17: Three–point approximation
to the distribution of the energy fraction
deposited by back–scattered electrons in Si.
The broken line is the distribution convo-
luted with a Gaussian, that takes into ac-
count electronics effects. For the convo-
luted curve, the x axis is to be interpreted
as “electronics response”, normalised such
that the pedestal is at x = 0 and the single
photo electron peak at x = 1.
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The back–scattering component:
The largest part of the signal loss is due
to back–scattering. When electrons are
back–scattered, only a fraction of their
energy is deposited in the silicon before
they re–emerge and possibly enter again
elsewhere. The probability that a 12 keV
electron is back–scattered from a Si target
is ∼ 18% [Dar75]. The distribution of the
energy fraction deposited in the Si is mod-
elled from data for electrons with incident
energy of 10 keV hitting an aluminium
target [Dar75].
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As established above, the effect of the
re–entering of back–scattered electrons is
small. It can therefore safely be ignored in
signal loss estimates, as the signal loss it-
self is only a small correction to the photon
count.

A three–point interpolation to the data in
[Dar75] is convoluted with a Gaussian, to
approximate the pulse height distribution
of the back–scattered electrons, as shown
in figure 4.17. The Gaussian takes into ac-
count the electronic noise and has the same
width as the Gaussian that fits the single
photo electron peak.

The shape of the backscattering compo-
nent for the double photon peak is ob-
tained by convoluting two single–photon
back–scattering distributions. This is then
convoluted with a Gaussian of the same
width as the double photo electron peak.

The backscattering components are con-
strained to 18% of the single photo electron
contribution and

1− (1− 0.18)2 = 32.76%

of the double photo electron contribution.
With these constraints, the back–scattering
components do not add any degrees of free-
dom to the fit, as they are completely deter-
mined by the Gaussians that fit the photo
electron peaks.

The fit: Figure 4.18 shows a fitted LED
spectrum with the backscattering contribu-
tions shown as broken lines. On average,
for a 3σ cut, the loss of single photo elec-
tron events is 12%, where a signal loss of

Figure 4.18: LED spectrum with fit. The
broken lines are backscattering contribu-
tions
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11% is due to back–scattering alone. Vari-
ations in the signal loss estimate due to dif-
ferent assumptions for the back–scattering
fraction, and the use of different LED runs,
are considered for the systematic error esti-
mates presented in tables 4.4 and 4.7 later
in this chapter.

Masking Pixels

Certain pixels are either dead or very noisy,
or simply the fit to the pedestal does not
converge. Such pixels are ignored in the
analysis and masked. The same pixels are
masked in both data runs presented below,
and in the Monte Carlo simulation. The
masked pixels, and their position on the de-
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Figure 4.19: Masked Pixels:
The HPDs are shown at their position on the detector plane as seen from the mirror.
The HPDs themselves have been enlarged by a factor of 2, for clarity.
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tector plane, are shown in figure 4.194.

Photon Counts

Figure 4.20 shows a colour–coded data dis-
play of all the seven HPDs on the detec-
tor plane, after the corrections for detec-
tor noise and electronic noise, and signal
loss. The beam related background has not
been subtracted. This, and other parame-
ters, will be estimated from the fit to the
Cherenkov angle distribution described be-
low.

In this figure, the number of integrated hits,
Nhits, is shown for each tube. This counts
single photo electron events as well multi-
ple photo electrons events as one hit. The
number of photo electrons, Npe, is there-
fore larger than Nhits. As long as the num-
ber of photons per pixel per event is small,
though, Nhits ≈ Npe is a good approxima-
tion. In the data displayed, no pixel has
more than 2.5 · 10−2 hits per event.

4.5.3 Fitting the Cherenkov
Angle Distribution

Fitting the Cherenkov angle distribution
gives a Monte–Carlo independent estimate
of N0 and an estimate of the resolution of
the detector. It also allows the beam related
background for the photo electron count to
be determined.

4The program providing the graphical data dis-
play shown in figures 4.19 and 4.20 was kindly sup-
plied by Brinick Simmons (Imperial College).

The hit distribution on the photo detec-
tor plane, integrated over several thousand
events, is fitted. A simple model for the
Cherenkov angle distribution is used in the
fit, essentially a Gaussian plus a flat back-
ground, with a few complications explained
below. From the distribution in Cherenkov
angle space, the expected number of pho-
tons in each pixel on the detector surface is
calculated.

The fit returns the width of the Cherenkov
angle distribution and its mean, the num-
ber of background events per pixel, and the
number of photo electrons per ring from
Cherenkov light that would have been ob-
served for the case that the geometrical cov-
erage were εA = 100%. As will become ap-
parent below, the number of photo electrons
per ring for εA = 100% emerges “naturally”
from this fit method, and allows to calculate
N0 independent of the exact ring position
and the complicated geometry in which the
photo detectors are arranged on the detec-
tor plane.

The main advantage of this procedure is,
that it naturally solves several problems re-
lated to the detector geometry which in
other methods, for example the fitting his-
togramed Cherenkov angle distributions,
would have to be corrected for:

• Certain Cherenkov–angles are covered
by a larger number of pixels than oth-
ers and this distorts the Cherenkov
angle distribution. This is naturally
taken care of in a fit in pixel space.

• Masked pixels do not pose a problem
in this fit procedure. They can simply
be ignored.
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Figure 4.20: Data Display for run 1415, integrated over 5213 events. The Cherenkov
light is generated by 100 GeV kaons passing through 1.8 m of C F4 at 900 mbar and 20oC.
All corrections to the data have been applied, except for the subtraction of beam–related
background. The HPDs are displayed in their position on the detector plane as seen from
the mirror. For clarity, the size of the HPDs has been increased by a factor of 2.
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• The expected number of photo elec-
trons per pixel is calculated by inte-
grating the hit density per unit area
on the detector plane over the entire
pixel surface, instead of only using the
value at the pixel centre. The fit result
is therefore independent of the pixeli-
sation, and does not include the pixeli-
sation error.

• The ‘figure of merit’, N0, is defined to
be independent of the geometric cover-
age of the photo detectors. With a ge-
ometry as complicated as the one in the
test–beam setup, where the geometric
coverage crucially depends on the ring
position and size, calculating N0 from
the photon counts is difficult. This fit
method directly calculates N0.

Cherenkov Angle Reconstruction and
Alignment

Reconstruction: The Cherenkov angle
can be reconstructed exactly from the emis-
sion point, the detection point, and the po-
sition of the centre of curvature (CC) of the
spherical mirror. For symmetry reasons,
the reflection point on the mirror surface
must lie in the same plane as defined by
the formerly mentioned three points. The
geometry in that plane is illustrated in fig-
ure 4.21. The solution for the reflection
point and the Cherenkov angle is derived
in [FS98].5 Taking the radius of curvature
to be 1, and defining:

• q ≡ distance of emission point from CC
5An alternative approach to the one described

here can be found in [YS93]

Figure 4.21: Geometry of Cherenkov angle
reconstruction.
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• p ≡ distance of detection point from
CC

• p‖ ≡ distance of detection point from
CC, parallel to q.

• p⊥ ≡ distance of detection point from
CC, perpendicular to q.

• α ≡ the polar angle of the solution rel-
ative to q,

leads to the following equation for
x ≡ sinα,

x4 + ax3 + bx2 + cx+ d = 0 (4.8)

with

a =
−4q2p⊥

(2pq)2
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b =
p2
⊥ +

(
p‖ + q

)2

(2pq)2 − 1

c =
2qp⊥

(
q − p‖

)
(2pq)2

d =
p2
⊥ (q2 − 1)

(2pq)2 (4.9)

The quartic equation can be solved using
standard techniques, given for example in
[BS91] or [Lit50]. The CERN program li-
brary provides a routine that implements
those techniques [Köl94]. The quartic equa-
tion returns 2 real solutions, one in the for-
ward direction, and one in the backward di-
rection; the solution in the forward direc-
tion is chosen. From sinα it is easy to find
the reflection point on the mirror. Given
that, the Cherenkov angle can be calcu-
lated from the emission point and the di-
rection of the particle.6 Neither of the two
are known exactly. The emission point is
assumed to be at the centre of the radia-
tor, which minimises the associated error.
The particles are assumed to travel exactly
along the z axis. The uncertainties associ-
ated with these assumptions are discussed
in section 15 below.

Alignment: An uncertainty in the exact
position of the centre of curvature of the
mirror introduces an uncertainty in recon-
structed the Cherenkov angle. The mirror
was positioned by adjusting the microm-
eter screws until the Cherenkov ring on
the event display was well centred. This

6The FORTRAN implementation of the
Cherenkov angle reconstruction used in this thesis
was kindly supplied by Roger Forty, CERN

Figure 4.22: Reconstructed Cherenkov
angle before and after alignment (5213
events).
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method of adjustment is accurate to about
one pixel size on the detector plane, which
corresponds to 1

2
mrad in Cherenkov angle

and 1
4

mrad in the mirror position. In order
to determine the Cherenkov angle resolu-
tion precisely, off–line alignment is neces-
sary. The detector is aligned by minimising
the overall RMS of the Cherenkov angle dis-
tribution as a function of the mirror orien-
tation (the radius of curvature and the dis-
tance between mirror and detector are not
subject to the alignment procedure). The
deviation of the mirror position from its
nominal position is found to be 0.007 mrad
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in the x − z plane and −0.15 mrad in the
y − z plane. This procedure is very sim-
ple, but as it is not a proper likelihood fit,
the uncertainty in the result is difficult to
estimate. Therefore, the Cherenkov angle
resolution measurements are performed in
a way that has the least possible require-
ments on alignment, as will be explained in
section below.

The Shape of the Cherenkov Angle
Distribution

The shape of the Cherenkov angle distribu-
tion, before pixelisation, is determined by
three factors

1) chromatic aberration

2) beam divergence

3) emission point error

We will evaluate below the expected
Cherenkov angle distribution for the test–
beam run described in section 4.5.4, where
100 GeV kaons pass through 1.8 m of C F4

at 20oC and 900 mbar. The photon energy
range is limited by pyrex filters.

The chromatic aberration: The
Cherenkov angle distribution due to chro-
matic aberration can be calculated from
the photon detection efficiency as a func-
tion of photon energy given in figure 4.10.
Using this together with the expression for
the number of photo electrons generated
per unit energy (equation 2.7), gives the
number of photons detected per unit

Figure 4.23: dNpe

dE
as a function of photon

energy, for 100 GeV kaons passing through
1.8 m of C F4 at 20oC and 900 mbar

Figure 4.24: Expected contribution of the
chromatic aberration to the Cherenkov an-
gle distribution for the test–beam settings
described in section 4.5.4.
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Figure 4.25: Expected Cherenkov an-
gle distribution,including the effects of the
chromatic aberration and the beam diver-
gence, for the test–beam settings described
in section 4.5.4.
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energy. This is given in figure 4.23. For
a given particle speed v and dispersion
relation n(E), there is a one–to–one rela-
tion between the photon energy and the
Cherenkov angle, given by:

cos θC =
c

v · n(E)

Transforming the distribution shown in fig-
ure 4.23 into Cherenkov angle space, and
normalising it, gives the Cherenkov an-
gle distribution due to the chromatic er-
ror shown in figure 4.24. It has a mean of
28.03 mrad and an RMS of 0.14 mrad.

The beam divergence is measured to
be 0.135 mrad in x and 0.120 mrad in y.7

Taking this into account by convoluting the

7These numbers include the pixelisation error in
the beam telescope of ∼ 0.47 mrad which must be
subtracted off in quadrature in order to obtain the
true beam divergence.

purely chromatic distribution in figure 4.25
with a Gaussian of width 0.125 mrad, gives
the Cherenkov angle distribution shown fig-
ure 4.25, with a width of 0.18 mrad.

The emission point error arises due to
the 18◦ tilt in the mirror relative to the
beam direction, which makes exact knowl-
edge of the emission point necessary to cor-
rectly calculate the Cherenkov angle from
the hit position on the detector plane.

The emission point error can be separated
into three contributions, one from each of
the of the uncertainties in x, in y and in
z–position. The size of each contribution
depends on the azimuthal angle on the de-
tector plane, and is therefore different for
each HPD.

To calculate the emission point error, 10 M
simulated events are generated with a fixed
Cherenkov angle and beam direction, but
random emission point within the allowed
volume. The length of this volume in z
is defined by the length of the radiator,
which extends from z = 0 at the mirror to
z = −1.8 m upstream. In x and y it is de-
fined by the smaller of the two scintillation
counters that trigger the read–out, which
has dimensions of 20× 20 mm2.

The plots in figures 4.26, 4.27, 4.28 show
the reconstructed Cherenkov angles versus
the azimuthal angle on the detector plane.

The gray–scale indicates the number of
detected photons for a given combination
of Cherenkov angle and azimuthal angle.
The numbers inside the plots are the RMS
spreads caused by the given type of uncer-
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Figure 4.26: Emission point errors due to
ignorance of x-y position. The numbers inside
the plots are the RMS spreads caused by the given
type of uncertainty, for each HPD.
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Figure 4.27: Emission point errors due to
ignorance of z position.The numbers inside the
plots are the RMS spreads due to the emission point
error in z, for each HPD.
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Figure 4.28: Total Emission Point Error.
The numbers inside the plots are the RMS spreads
due to the total emission point error, for each HPD.
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tainty, for each HPD.

For figure 4.26, the Cherenkov angle is re-
constructed approximating the x or the y
position, or both, by the centre of the radi-
ator. For figure 4.27 only the z position is
approximated, and x and y are taken from
Monte–Carlo truth. Figure 4.28 shows the
total emission point error.

Figures 4.29, 4.31, and 4.32 show the
Cherenkov angle distribution from 1 M
Monte Carlo events, generated with fixed
azimuthal angle φ = 165◦. This corre-
sponds to the centre of HPD number 3. For
a given azimuthal angle φ, the Cherenkov
angle distribution due to the emission point
uncertainty in only one co–ordinate is well
described by a flat distribution between the
minimum and the maximum reconstructed
Cherenkov angle (in the following referred
to as “box–function”).

The RMS due to the combined x and y
emission point error is about half the size of
the combined error due to the chromatic er-
ror and beam divergence: 0.06− 0.09 mrad
compared with 0.18 mrad. Also, the dif-
ference in RMS between the HPDs due to
the combined emission point error in x and
y is very small compared to the over all
width of the Cherenkov angle distribution.
The expected Cherenkov angle distribution
at HPD number 3, including the emission
point error in x and y, is shown in figure
4.30. The graph is obtained by convolut-
ing the distribution in figure 4.25 with two
box–functions of 0.28 mrad and 0.07 mrad
width.

In contrast, figure 4.27 shows that the emis-
sion point error due to the uncertainty in z

Figure 4.29: Emission point error at the
centre of HPD 3 (φ = 165◦) from 1 M sim-
ulated events
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Figure 4.30: Expected Cherenkov angle dis-
tribution in HPD 3, including the effects
of chromatic error, beam divergence, and
emission point error in x–y
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Figure 4.31: Emission point error in z at
the centre of HPD 3 from 1 M MC events
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Figure 4.32: Total emission point error at
the centre of HPD 3 from 1 M MC events
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Figure 4.33: Expected Cherenkov angle dis-
tribution in HPD 3, with all error contribu-
tions.
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varies significantly with azimuth. At HPD 1
and HPD 6, the emission point error in z is
0.03 mrad and therefore negligible, while it
is 0.19 mrad at HPD 3 and HPD 4, which
is larger than the combined error due to
chromatic aberration and beam divergence.
The total emission point error ranges from
0.07 mrad to 0.21 mrad, as shown in figure
4.28. Figure 4.33 shows the Cherenkov an-
gle distribution in HPD 3, including all er-
ror contributions. The graph is obtained
by convoluting the distribution in figure
4.25 with three box–functions of appropri-
ate width.

The Fit Function in Cherenkov Angle
Space

In order to maintain simplicity and to min-
imise the number of assumptions, the func-
tion chosen to fit the Cherenkov angle dis-
tribution is just one Gaussian plus one flat
background, with two modifications:

• The mean Cherenkov angle is fitted
separately for each tube.

• The emission point error in z is treated
separately.

These modifications are now discussed in
turn.

Different Mean Cherenkov Angles:
A residual mis–alignment of the detector
would show up as an increased width of the
distribution. Because the azimuthal cover-
age of the tubes is very small, for each indi-

vidual tube the effect of a moderate mis-
alignment is well described by a shift in
the mean of the distribution. Therefore,
the mean Cherenkov angle is fitted indepen-
dently for each of the seven HPDs.

For large mis–alignments, the width of
the reconstructed Cherenkov angle distri-
bution in individual tubes could also be
affected. The difference in the fit result
of the mean Cherenkov angle gives an es-
timate of the residual alignment. The
largest difference between the means of two
HPDs is 0.25 mrad. Geometrical consid-
erations show, that this does indeed not
have a significant effect on the width of
the reconstructed Cherenkov angle distri-
bution for any individual tube. Fitting
the mean Cherenkov angle distribution in-
dependently for each tube therefore takes
sufficient account of possible effects due to
misalignment.

Emission point error: As shown above,
the emission point error depends on the az-
imuthal position on the detector plane and
is therefore different for each HPD. In ev-
ery single co–ordinate, the reconstructed
Cherenkov angle distribution due to the
emission point error is well described by a
box–function.

The combined emission point error in x and
y, and the differences in that emission point
error between the tubes, are small com-
pared to the other error contributions. In
the fit it can therefore be accommodated as
part of the Gaussian.

The emission point error in z though, varies
significantly, reaching values which make
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it the dominant contribution to the total
uncertainty. Therefore, the differences be-
tween the tubes cannot be ignored. For
tubes with a large emission point error
in z, the Gaussian approximation to the
Cherenkov angle distribution is bound to be
poor. The emission point error is therefore
taken into account separately when calcu-
lating the hit distribution on the detector
surface.

The Gaussian is used only to describe the
Cherenkov angle distribution without the
emission point error in z. To describe the
Cherenkov reconstructed angle distribution
at a given azimuthal angle on the detec-
tor plane, this Gaussian is convoluted with
a box function that describes the emission
point error in z at that azimuthal angle.
This box function is not part of the fit. The
width of the box function can be calculated
by comparing the reconstructed Cherenkov
angles for the cases that the emission point
is assumed to be at the beginning or at the
end of the radiator tube.

The normalised probability density for a
photon hit as a function of the Cherenkov
angle θ and the azimuthal angle φ on the
detector plane, is given by:

P (θ, φ) =
1

2π
g (θ) ∗ b (θ,∆θ(φ)) , (4.10)

where g (θ) is a normalised Gaussian:

g (θ) =
1√
2πσ

e
(θ−µ)2

2σ2 . (4.11)

and “∗” the convolution operator.
b (θ,∆θ(φ)) represents the box func-
tion of width ∆θ:

b (θ,∆θ) =

{
1

∆θ
if |θ| < ∆θ

2

0 otherwise

}
(4.12)

where ∆θ depends on φ as shown in figure
4.27.

Only µ and σ are parameters of the fit. As
the result of the fit, we expect a Gaussian
approximation to the distribution shown in
figure 4.30, with a mean of 28.03 mrad and
a width of 0.202 mrad.

The Fit Function on the Detector
Plane

The density of detected Cherenkov photons
per unit area for 100% geometric coverage,
as a function of position on the detector
plane, is given by:

Nrg pe · P (r, φ) = Nrg pe · P (θ, φ)
dθ

rdr
.

(4.13)

P (r, φ) is the normalised probability den-
sity per unit area, to find a photon in the
area element r dφ dr at a distance r from
the centre of the detector plane at an az-
imuthal angle φ. P (θ, φ) is the convolution
of a Gaussian and a box–function defined
in equation 4.10. Nrg pe is the total number
of photo electrons if the geometric coverage
were 100%.

The fit also allows for a flat background, B,
so the total number of photo electrons per
unit area is given by

dNsg+bg

dA
(r, φ) = Nrg pe ·P (r, φ)+B. (4.14)
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From this, the expected number of photo
electrons in each pixel is calculated by inte-
grating

dNsg+bg

dA
(r, φ) over the pixel surface:

Npixel fit =
∫

pixel surface

(Nrg pe · P (r, φ) +B) r dφ dr

(4.15)

This integral is evaluated numerically.

The fit parameters are seven mean
Cherenkov angles µi, one for each HPD, a
single width, σ, and the flat background
B. Another important result from the fit is
the number of photo electrons per ring for
100% geometric efficiency, Nrg pe. This not
a free parameter in the fit, but determined
from the normalisation condition that the
total number of photo electrons found in
the data be the same as the number of
detected photo electrons calculated from
the function.

Note that, as before, we approximate
Nrg hits ≈ Nrg pe in the data analysis.

The fit is performed by minimising:

χ2 =
∑

all pixels

(Ni pixel fit −Ni data)2

σ2
i data

(4.16)

where Ni data is the number of hits in pixel
i found in the data after all correction
described in section 4.5 are applied, and
Ni pixel fit is the number of hits in pixel i
calculated from the fit parameters, using
equation 4.15. The error σi data on the pho-
ton count in each pixel is calculated from
the statistical errors of the different contri-
butions to the photon count, including the

background estimates and the signal loss es-
timates.

Testing the Fit on Monte Carlo Data

As the fit function is a rather simple ap-
proximation to the expected distribution of
the data, the usual methods to evaluate the
reliability of a fit, such as χ2 probabilities,
are not applicable. Therefore the fit has
been tested in a series of Monte Carlo ex-
periments: 500 sets of Monte Carlo data,
each with 5 k events, have been generated.
Table 4.2 shows the mean and the RMS of
the 500 fit results for the different parame-
ters. The fit results are compared with the
output from the Monte Carlo simulation for
0.5 M generated events, which has a statis-
tical error on the number of photo electrons
per ring of less than 0.04%.

The events are generated for 100 GeV kaons
passing through 180 cm of C F4 at 900 mbar
and 20oC. The beam divergence is taken to
be 0.125 mrad in x and y. For the data /
Monte Carlo comparison later in this chap-
ter, the Monte Carlo events are generated
using the measured beam divergence with
slightly different values in x and y as given
in table 4.1. For the purpose of comparing
the fit results with the Monte Carlo input
however, it is useful to generate the events
with the same beam divergence in x and y.

The beam profile is assumed to be flat
within the 20× 20 mm2 defining the beam
dimensions. The centre of curvature of the
mirror is shifted relative to its nominal po-
sition by −0.007 mrad in x and −0.15 mrad
in y, as found in the data. In addition to
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Table 4.2: Values obtained from 0.5 M Monte Carlo generated events, compared with the
mean fit results from fitting 500 simulated datasets with 5 k events each. N0 is calculated
from the number of hits, not photo electrons, in both, data and Monte Carlo.

Mean of 0.5 M
MC events
(not from fit)

mean and
RMS of fit

results
N0[ cm−1] 112.3 112.8 ±1.9
Nrg hits 15.88 15.96 ±0.27
µ(mrad) 28.03 28.03 ±0.01
σ(mrad) 0.202 0.198 ±0.006
Background / pixel 3 · 10−3 (2.97 ±0.07) · 10−3

hits/HPD 0.309 0.311 ±0.005

the Cherenkov photons, a flat background
is generated with 3 · 10−3 hits per event per
pixel, which corresponds approximately to
the total background found in the data.

The width of the Cherenkov angle distribu-
tion, excluding the emission point error in
z, is 0.202 mrad.

For 0.5 M simulated events, the mean num-
ber of photo electrons per ring for 100%
geometric coverage is Nrg ph = 16.02; the
value for N0 calculated from that is N0 =
113.3 cm−1. This is slightly smaller than
the value given in equation 4.2 in the be-
ginning of this section, because it includes
the losses of ∼ 2% due to photons hitting
the walls of the radiator tube.

In the data, it is the number of hits per pixel
which is counted, rather than the number
of photo electrons. The mean number of
hit pixels per ring for the same set of simu-
lated events is Nrg hits = 15.88. Calculating
N0 from Nrg hits, we find N0 = 112.3 cm−1.
In the following, all values for N0 are cal-

culated from Nrg hits, but as seen here, the
difference to calculating it from the Npe is
is less than 1%.

In table 4.2 the results after fitting 500 sam-
ples each with 5 k events are compared with
the input values. In the fit to the data,
seven independent values for the means of
the Cherenkov angle distribution are fitted.
The entry µ in the table refers to the mean
of those seven means. The background is
given in terms of hits per pixel per event.
The last entry, hits/HPD, is the average
number of signal hits per HPD per event.

The results show very good agreement be-
tween the results calculated by generating
0.5 M Monte Carlo events, and those ob-
tained from the fits. Still, as to be expected
given the simplified fit function, the results
are not unbiased: For example the statisti-
cal error on the mean of the fit results for
N0 is 1.9 cm−1/

√
500 = 0.08 cm−1, which is

about 6σ away from the correct value. Im-
portantly though, this bias is much smaller
than the RMS spread in the fit results, so
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it does not effect the validity of the fit. The
RMS spread on the fit results for 5 k events
for each parameter is of the order of 3% or
less.

4.5.4 Results

Photon Counts and Resolution for
100 GeV Kaons, using Pyrex filters

The data were taken with the following con-
figuration:
Pressure 900 mbar
Temperature 20oC
Beam momentum 100 GeV
Particle type Kaons
Filter Pyrex
No events 5213

The data are corrected for noise and sig-
nal loss as described in section 4.5. The fit
described in section 4.5.3 is applied to the
data and the results are given in table 4.3.
The errors given on the data are the sys-
tematic error estimate. Also the mean and
RMS from fits to 500 MC experiments are
given. The fit, the systematic error and the
Monte Carlo results, are discussed in detail
below.

Figure 4.34 shows the Cherenkov angle dis-
tribution of the data and, superimposed,
the fit result. While the fit is performed
on the detector plane, the plot shows the
result in Cherenkov angle space. Because
some angles are represented by more pix-
els on the detector plane than others, the
Cherenkov angle distribution is distorted,
which explains the small difference between
the mean in figure 4.34 and that in table

Figure 4.34: Reconstructed Cherenkov an-
gles, shown in blue, with effect of pixelisa-
tion clearly visible. Superimposed in red,
the fit to the data.
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4.3.

The results from 500 Monte Carlo experi-
ments with the same number of events as
the data are also given in table 4.3. The
difference in the Monte Carlo program com-
pared to the one used for table 4.2 is that
the events are generated using the measured
beam divergence, which differs slightly in x
and y.

The Monte Carlo events are generated with
a mean of 3 · 10−3 background hits per
pixel per event, which corresponds ap-
proximately to the total background in
the data. The fits to the Monte Carlo
generated events return (2.97± 0.07) · 10−3

background hits per pixel per event.

Most background contributions in the data
though, are subtracted before the fit is per-
formed, leaving only the small beam re-
lated background which is given in the ta-
ble. However, the statistical uncertainty as
a consequence of the total background in
the data is similar to that in the Monte
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Table 4.3: Run with pyrex filter: The results of the fit to the data are compared with the
with mean values from 0.5 M simulated events, and the results from 500 fits to Monte
Carlo generated data sets containing 5213 events each. The value for the mean Cherenkov
angle is the average of the fit result for each HPD.

Mean of 0.5 M
MC events
(not from fit)

MC: mean and
RMS of fit re-
sults

data fit±σsys

N0[ cm−1] 112.3 112.5 ±1.7 107.6 ±5.5
Nrg hits 15.88 15.92 ±0.24 15.26 ±0.6
µ [mrad] 28.035 28.045 ±0.006 28.07 ±0.01
σ [mrad] 0.199− 0.208 0.198 ±0.006 0.200 ±0.004
Beam-related BG/pixel (1.8 ±1.4)10−4

hits/HPD 0.309 0.299 ±0.005 0.284 ±0.015

Carlo generated data sets. A summary of
all background contributions found in the
data is given in table 4.5.

Systematic Error: In order to estimate
a systematic error on the data, the photon
counting procedure has been repeated with
several different settings compared to the
default procedure. The results are given in
table 4.4. The systematic error on the fol-
lowing contributions to the final corrected
photon count are estimated:

• Detector noise and other not
beam–related background: The er-
ror on this is estimated by using differ-
ent pedestal runs.

• Electronic noise: The pedestal peak
in the data is fitted over different inter-
vals.

• Beam related background: The fit
procedure is altered, allowing a differ-

ent level of beam related background
for each tube.

• Signal loss Different LED runs are
used for the signal loss estimate,
and different assumption regarding the
backscatter fraction.

• Signal and Background correc-
tion: The photon counting is repeated
using a different threshold cut. A 4σ
cut is chosen for the systematic error
estimate, as it still provides a reason-
able background level and a reasonable
signal loss. The corrected counts for
other threshold cuts are given in table
4.5 and also show good agreement.

Adding in quadrature the difference of table
entry “default” to all variations considered
(excluding d and e), gives conservative esti-
mates for the systematic errors: 5.5 cm−1

for N0, 0.6 for Nrg hits, 0.01 mrad for the
Cherenkov angle mean and 0.004 mrad for
the width of the Cherenkov angle distribu-
tion.
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Table 4.4: Results for different configurations (3σ cut except h)
configuration N0 Nrg hits µ σ bg

pix
· 103 hits/

[ cm−1] [ mrad] [ mrad] tube
default 108 15.3 28.075 0.200 0.18 0.284
a different pedestal run for de-

tector noise
105 14.8 28.066 0.199 0.05 0.275

b different LED run (1368) for
signal loss

110 15.6 28.074 0.200 0.19 0.300

c assume 20% backscattering 109 15.5 28.075 0.200 0.19 0.288
d assume 16% backscattering 106 15.1 28.075 0.200 0.18 0.280
e fit pedestal up to 1.2sigma 108 15.3 28.076 0.202 0.14 0.284
f fit pedestal up 2.0sigma 108 15.3 28.077 0.202 0.21 0.284
g allow different bg for each

HPD in the fit
105 14.9 28.076 0.199 0.16 0.277

h 4σ cut instead of 3σ 110 15.5 28.075 0.197 0.20 0.289
σsys 5.5 0.6 0.009 0.004 0.14 0.015

The dominant effect comes from using a
different LED run (entry b), which implies
that the signal loss estimate is the least cer-
tain part of the analysis.

Data / Monte Carlo Comparison:
The agreement between data and Monte
Carlo is good. The value for N0 found
in the data is about 4% below the expec-
tation from Monte Carlo, which is com-
fortably within the estimated error margin.
The value for the number of photo electrons
found per tube is 8% below the Monte Carlo
expectation. This value is very sensitive to
the exact ring position and size, as it in-
cludes all geometric effects, so a larger dis-
crepancy might be expected; nevertheless,
it also lies within the estimated errors.

The Cherenkov angle resolution found in
the data agrees very well the Monte Carlo

prediction. The σ from the Gaussian fit also
agrees very well with the RMS of the ana-
lytically derived Cherenkov angle distribu-
tion shown in figure 4.30 .

Signal and Background for Differ-
ent Cuts: Table 4.5 shows the various
background contributions and the signal
loss estimates for different threshold cuts,
together with the corrected number of
hits/HPD. The corrected photon counts dif-
fer relative to the default settings by less
than 6%, even for a 2σ cut with 82% back-
ground. This confirms the validity of the
methods used for the signal loss and back-
ground estimates.
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Table 4.5: Photo electrons counts, signal loss, and background, for different threshold
cuts, with pyrex filter. The background is given relative to the uncorrected photon count.
The signal loss is given relative to the corrected photon count.

cut: 2σ 3σ 4σ 5σ
raw hits/tube 1.61 0.430 0.303 0.240
detector noise 6% 23% 19% 13%
electronic noise 76% 17% 0.6% 0%
beam related backg. 0% 2.3% 3.6% 4%
total bg 81% 42% 23% 18%
loss 7.8% 12% 18% 31%
corrected hits/tube 0.301 0.284 0.289 0.296

Photon Counts and Resolution for
150 GeV Pions, without Pyrex Filters

The same analysis as above has been re-
peated for data taken without pyrex filters
in front of the photo detectors. The setup
is summarised in the following table:
Pressure 900 mbar
Temperature 20oC
Beam momentum 150 GeV
Particle type Pions
Filter none
No events 4461

Due to the absence of the pyrex filters, two
complications enter the analysis. Firstly,
the Cherenkov angle distribution is domi-
nated by the chromatic error, which has a
large skew. This is shown in figures 4.35
and 4.36 for the example of HPD 3. It
can be seen that the Gaussian approxima-
tion is poor. Secondly, the quantum effi-
ciency of the tubes has not been measured
over the entire photon–energy range of in-
terest. For the Monte Carlo simulation,
it is assumed that the quantum efficiency

Figure 4.35: Expected Cherenkov angle
distribution in HPD 3, without filter, for a
beam divergence of 0.125 mrad. The plot
includes all contributions to the shape of
the distribution, except for the emission
point error in z.
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stays constant between the last measure-
ment point at 6.2 eV up to the cut–off from
the glass window at 7.3 eV, as shown in fig-
ure 4.7.

The results of applying the fit procedure de-
scribed in sections 4.5.3 and 4.5.4 are sum-
marised in table 4.6. Figure 4.37 shows the
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Figure 4.36: Expected Cherenkov angle dis-
tribution in HPD 3, without filter, for a
beam divergence of 0.125 mrad. The plot
includes all contributions to the shape of
the distribution.
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Figure 4.37: Reconstructed Cherenkov an-
gles, shown in blue blue, from data without
filter. Superimposed in red, the fit to the
data. The effect of the skew in the data
distribution is clearly visible
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data with the fit superimposed. Comparing
this with figure 4.34 (with filter), the effect
of the skew is apparent. However, given the
simple fit function, the agreement between
the fit and the data is good.

Data / Monte Carlo Comparison:
Table 4.6 gives the results from the fit to
the data as well as the Monte Carlo output
from 0.5 M events and the result of fitting
500 Monte Carlo generated event sets.

Despite the assumption that the Cherenkov
angle distribution can be described with a
simple Gaussian, the fits to the Monte Carlo
generated events agree well with the results
obtained from generating 0.5 M events. On
the other hand, the agreement between data
and Monte Carlo is less good. The value for
N0 found in the data is 11% below the MC
values, which corresponds to a discrepancy
of 3.4σ. The Cherenkov angle distribution
in the data is also significantly narrower,
and the mean Cherenkov angle is smaller
than in the Monte Carlo simulation.

These discrepancies could be explained if
the quantum efficiency in the unmeasured
range dropped more quickly than has been
assumed.

Systematic Errors and Different Cuts:
The systematic error is estimated in the
same way as for the case with filter; the
results are presented in table 4.7. The re-
sults in table 4.8 confirm the signal loss and
background correction results by compar-
ing the corrected photon counts for differ-
ent threshold cuts. The agreement is better
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Table 4.6: Run without pyrex filter: The results of the fit to the data are compared with
the with mean values from 0.5 M simulated events, and the results from 500 fits to Monte
Carlo generated data sets containing 4461 events each. The value for the mean Cherenkov
angle is the average of the fit result for each HPD. The 500 data sets are generated with
an average background of 3 · 10−3 per pixel per event. The fit returns (2.5± 0.2) · 10−3. The
table shows only the beam–related background.

Mean of 0.5 M
MC events
(not from fit)

MC: mean and
RMS of fit re-
sults

data fit±σsys

N0 [ cm−1] 353.4 359.3 ±7.2 316.5 ±8.0
Nrg hits 53.4 54.22 ±1.16 47.50 ±1.3
µ(mrad) 28.984 28.961 ±0.033 28.888 ±0.003
σ(mrad) 0.56− 0.58 0.535 ±0.018 0.444 ±0.01
beam-related BG/pixel (3.1 ±6.0)10−4

hits/HPD 0.895 0.923 ±0.016 0.843 ±0.021

Table 4.7: Results for different configurations, without Pyrex filter (3σ cut except h)
configuration N0 Nrg hits µ σ bg

pix
· 103 hits/

[ cm−1] [ mrad] [ mrad] tube
default 317 47.5 28.888 0.444 0.31 0.843
a different pedestal run for de-

tector noise
320 48.2 28.886 0.446 0.44 0.853

b different LED run (1368) for
signal loss

321 48.3 28.889 0.443 0.29 0.856

c assume 20% backscattering 321 48.2 28.888 0.444 0.32 0.854
d assume 16% backscattering 312 46.9 28.888 0.444 0.30 0.832
e fit pedestal up to 1.2sigma 316 47.5 28.888 0.442 0.33 0.843
f fit pedestal up 2.0sigma 315 47.3 28.886 0.442 0.43 0.839
g allow different bg for each

HPD in the fit
314 47.2 28.889 0.443 0.88 0.837

h 4σ cut instead of 3σ 316 47.4 28.889 0.434 0.20 0.842
σsys 8.0 1.3 0.003 0.010 0.60 0.021
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Table 4.8: Photo electrons counts, signal loss, and background, for different threshold
cuts, without pyrex filter. The background is given relative to the uncorrected photon
count. The signal loss is given relative to the corrected photon count.

cut: 2σ 3σ 4σ 5σ
raw hits/tube 2.12 0.939 0.758 0.623
detector noise 6% 12% 8% 5%
electronic noise 56% 8% 0.2% 0%
beam related backg. 0% 1% 1% 1%
total bg 63% 21% 10% 6%
loss 8.2% 13% 19% 32%
corrected hits/tube 0.853 0.843 0.842 0.864

than 2.5% over the whole range from 2σ to
5σ.

4.6 Conclusions

The full–scale RICH prototype equipped
with HPDs has been tested in two differ-
ent configurations, with and without pyrex
filter. The results are corrected for signal
loss and background contamination. The
good agreement of the corrected photo elec-
tron counts for different threshold cuts con-
firms the correction method. The system-
atic error has been evaluated by repeating
the analysis in eight different ways.

The fit method presented allows an extrac-
tion of the RICH performance parameters
independent of the complicated geometry in
which the photodetectors are arranged on
the detector plane. The validity of the fit
method has been demonstrated by perform-
ing several hundred Monte Carlo experi-
ments, and comparing the fit results with
the results from simulating large numbers

of events.

The comparison between the data and the
detailed Monte Carlo simulation shows very
good agreement for the first data set pre-
sented, where the HPDs are equipped with
pyrex filters. The width of the Cherenkov
angle distribution deduced from the fit also
agrees very well with distribution derived
analytically.

The agreement for the data taken without
filter is less good, and a possible explana-
tion for this has been given. For the first
data set, the quantum efficiency of the com-
bined filter and HPD is well known, while
for the second data set, some part of the
quantum efficiency curve had to be extrap-
olated. It is possible that this extrapolation
is not correct, which could be responsible
for observed discrepancies.

Overall, the success of the fit method and
the data/Monte Carlo comparison show
that the test–beam data are well under-
stood. This gives confidence that the simu-
lation of the full RICH system within LHCb
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are reliable.
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Chapter 5

MaPMTs as Photo Detectors for the
LHCb RICH

5.1 Introduction

In this chapter, the suitability of the Hama-
matsu M64 MaPMT as a photodetector for
the LHCb RICH is investigated. Multi-
anode Photo Multiplier tubes (MaPMTs)
provide a high photon detection efficiency, a
good spatial resolution and, compared with
HPDs, a large signal, which simplifies the
readout.

Single MaPMTs, and a cluster of 3 × 3
MaPMTs in a RICH prototype, have been
tested in a test–beam at the CERN SPS fa-
cility. The MaPMTs have been equipped
with lenses in front of their entrance win-
dows. This is to reduce the losses of pho-
tons in the dead areas at the edges of the
MaPMT, which corresponds to about 50%
of the total area. LHC-speed, pipelined
electronics have been used to read out
MaPMTs for the first time.

The main aims of the tests were to

• evaluate the performance of the
MaPMTs with and without lenses,

• test the performance of the MaPMTs
with fast read-out electronics,

• demonstrate that the MaPMT is a
viable photodetector solution for the
LHCb RICH system.

In the following, the setup and results of the
3 × 3 cluster test will be described in de-
tail. A short account on the tests with sin-
gle MaPMTs, read out with CAMAC elec-
tronics, is given at the end of the chapter.

5.2 Experimental Setup

5.2.1 Overview

The test–beam setup used for the MaPMT
tests resembles closely that described in
chapter 4 for the tests of the full-scale
RICH 2 prototype. The major alterations
are:

• MaPMTs are used instead of HPDs.

151
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Figure 5.1: Testbeam setup for cluster test

Mounted MaPMT array with electronics
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Figure 5.2: Mirror Reflectivity against pho-
ton energy, as measured at CERN.

• For the 3 × 3 cluster test, the elec-
tronics are completely new, providing
LHC-speed readout.

• In order to fit an entire Cherenkov ring
onto the 3 × 3 cluster, the distance
between the mirror and the detector
plane, and the focal length of the mir-
ror, have been reduced to 1.1 m.

• The radiator length is reduced to 1 m,
as in RICH 1.

• No CEDAR counter is available.

A schematic of the modified RICH proto-
type geometry is given in figure 5.1. The
measured reflectivity of the mirror is be-
tween 80% and 90%, as shown in figure 5.2.

5.2.2 MaPMT

The Hamamatsu R7600-03-M64 multi-
anode photo multiplier tube (MaPMT)
consists of an 8× 8 array of square anodes,
each with its own metal dynode chain
incorporated into a single vacuum tube.

Figure 5.3: Quantum efficiency of the
Hamamatsu R7600-03-M64 MaPMT (mea-
sured by Hamamatsu)

The geometry of the tube is shown in
figure 5.4. Each dynode chain consists of
12 dynodes with a voltage distribution as
shown in table 5.1. The data presented
in this chapter are taken with a voltage
of 1000 V between the cathode and the
anode. The photons are converted into
photoelectrons in a bialkali photo-cathode
deposited on the inside of a 0.8 mm thick
UV-glass window. The quantum efficiency
of the photo-cathode is shown in figure 5.3.
This includes the effect of the UV-glass
window, which cuts off at energies above
6.2 eV. The integrated quantum efficiency
is: ∫

Qeff(E)dE = 0.57 eV. (5.1)

The photoelectrons created in the cathode
are electrostatically focused onto the dyn-
ode chains. A sketch of the dynode struc-
ture is given in figure 5.5. The dynode chain
is not symmetric under a rotation of 90◦;
figure 5.5 therefore defines a vertical and
a horizontal direction, for future reference.
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Figure 5.4: Hamamatsu R7600-03-M64
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Table 5.1: Voltage distribution in 12–dynode MaPMT, normalised to the voltage between
dynodes 3 and 4.

relative voltage 3 2 2 1 1 1 · · · 1 1 2
dynode number Cathode 1 2 3 4 5 · · · 10 11 12

Figure 5.5: Side-view of a tube, with the
cathode at the top and the anode at the
bottom, revealing the dynode structure. A
horizontal and a vertical direction on the
tube–surface is defined relative to the ori-
entation of the dynodes.
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Measurements of the sensitivity of the tube
as a function of position are shown in figure
5.6. The MaPMT active area is well mod-
elled by assuming a 2× 2 mm2 pixel size
with constant sensitivity, with 0.3 mm gaps
between the pixels.

Due to the dead area surrounding the
photo-cathode, the active area fraction for
the MaPMTs is only about 50%. The geo-
metrical coverage can be increased by plac-
ing a lens in front of the tube, as illus-
trated in figure 5.7. Nine quartz lenses

Figure 5.6: LED scan across a pixel row and
column, with LED spot-size ∼ 100µm. The
graphs show the number of photoelectrons
per event as a function of the position of the
light spot. For a description of the scanning
facility, see [A+00b]
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(n = 1.5) are used. The lens dimensions
are 26× 26 mm2 area, a maximum height of
24 mm and a radius of curvature of 25 mm.
There is a ∼ 2 mm gap between the lenses
and the entrance window of the MaPMTs.
With these specifications, the full aperture
of the lenses is focused onto the sensitive
area of the MaPMTs, thus doubling the ge-
ometric efficiency.
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Figure 5.7: Doubling the MaPMT active
area using lenses
Schematic of MaPMT array
showing the active area in
brown:

Schematic
of MaPMT
with lens:

Photograph of MaPMT array with lenses:

5.2.3 Mounting

The aluminium plate which held the HPDs,
has been replaced with a light-tight box in-
side which the photodetectors are mounted.
The mounting for the 3 × 3 array of
MaPMTs includes the fast readout elec-
tronics. It can be rotated to change the
angle of incidence of the Cherenkov pho-
tons. A photograph of the MaPMT mount-
ing, with tubes and readout electronics, is
shown in figure 5.1.

One readout board provides space for two
tubes. Figure 5.8 shows the tubes at their
relative positions as seen from the mirror.
For clarity, the boxes representing the tubes
are not drawn to scale; in reality they nearly
touch each other. Tubes that are read out
by the same board are grouped together in
the figure. The arrows next to the tubes in-
dicate the orientation of the tubes in terms
of the horizontal direction, as defined in fig-
ure 5.5. The pixel numbering refers to the
position of the pixels on the readout board,
and is independent of the orientation of the
tube. The tube, board and pixel number-
ing scheme shown in the diagram is used
throughout the text.

5.2.4 Electronics

For the beam tests of the 3 × 3 array of
MaPMTs, a fast, pipelined electronic read
out system is used, which is shown schemat-
ically in figure 5.9. In the following, a short
description of the main components of that
readout system will be given. A more de-
tailed account can be found in [A+00b].



5.2. EXPERIMENTAL SETUP 157

Figure 5.8: Pixel, tube, and board num-
bering. The tubes are shown in their relative
position on the detector plane, as seen from
the mirror. Tubes read out by the same board
are enclosed in a box. The size of the tubes
is not drawn to scale. The arrows next to the
tubes indicate the tube orientation in terms of
the horizontal direction defined in figure 5.5
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Figure 5.9: Block diagram of electronic
readout and data acquisition system for
3× 3 MaPMT array tests.

Bleeder Board

The bleeder board, shown in figure 5.10,
provides the mechanical support and dyn-
ode resistor chain network for up to 16
MaPMTs in a 4 × 4 array. The board also
adapts the MaPMT anode feed-through
pitch of the 1024 data channels to the Pin
Grid Array (PGA) pitch of a kapton ca-
ble. The bleeder board is constructed as
two separate parts: the high voltage distri-
bution board and the pitch adapter board.
These are assembled as a single unit using
an array of soldered interconnect pins.
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Figure 5.10: Bleeder Board (MaPMT side
up)

Kapton Cables

Kapton cables are used to couple the 8× 8
output PGA for each tube in the backplane
of the bleeder board, to the front-end board.
The kapton cable from one MaPMT is cou-
pled to two 40-way SAMTEC1 connectors
(64 data channels and 16 ground lines) on
the front end board. The cables are flexible
printed circuits with the tracks laid on one
side of the kapton and a ground plane on the
reverse. A cable is composed of four strips
of kapton. Each strip connects two columns
of MaPMT output to half the channels of
one SAMTEC connector. The layout of the
kapton strips is shown in figure 5.11.

Front-End Board

The layout of the front-end board is given
in figure 5.12. Its main components are the
AC-coupler network and the APVm chip.
The APV chips are designed for use with

1Cable-to-board SFMC series

Figure 5.11: 4-layer kapton cable

silicon strip detectors or micro–strip gas
chambers which produce signals approxi-
mately ten times smaller than those from
a MaPMT. Therefore the signal from the
MaPMT has to be attenuated to match
the dynamic range of the APVm. This is
achieved with an AC coupler made from a
ceramic base on which gold tracks are laid.
A schematic of the ‘tuning fork’ design of
the AC coupler is shown in figure 5.13.

APVm Chip

The APVm [J+98] is one of the APV series
[dFL+96, R+97] of radiation hard chips de-
signed for the readout of the CMS inner de-
tector [CMS98]. The chips have previously
been tested in a beam environment for the
readout of silicon-strip detectors [dFL+96].

In the readout system for the MaPMT ar-
ray the APVm, running at the LHC bunch-
crossing rate of 40 MHz, samples the 128
input analogue signals every 25 ns. The sig-
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Figure 5.12: Schematic of front end board

Figure 5.13: The AC coupler
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Wire bonds 

Ceramic with
’tuning fork’ 

coupler

Wire bonds
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60    mµ

145     m
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nals are stored in a pipeline structure of
160 cells which allows a maximum first level
trigger latency of 3.2µs. When the events
are output by the chip, the 128 signals are
multiplexed into one analogue data output.
An example of such a data–frame is given
in figure 5.14, which shows the 128 signals
preceded by 12 samples which contain infor-
mation set by the chip: 4 bits signal the be-
ginning of the analogue output and whether
the chip is in error for an event, 8 bits are
used for the pipeline address where the data
are stored. The analogue output is cycled
out of the chip at half the sampling rate.

The APV chip does not meet the require-
ments of the LHCb trigger and readout
architecture, since it has never been de-
signed to do so. The 1:128 multiplexing of
the input signals at 20 MHz is too slow for
the LHCb first level trigger rate of 1 MHz
and a signal return-to-zero within 25 ns is
only possible in the de-convolution mode
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Figure 5.14: APVm output: The figure shows the analogue output of the APVm vs.
sample number. Time flows from left to right. The earliest part of the output, on the
left, gives header information and the pipeline address. This is followed by the data
frame, with its lower baseline voltage. The signal-peak is clearly visible near sample
number 205. The smaller signals at −1 and ±16 relative to the main signal peak are a
consequence of the cross-talk discussed in section 5.6.
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of APVm operation, which requires three
consecutive samples for the algorithm, and
therefore prevents triggering on consecutive
events. Chips suitable for LHCb are cur-
rently under development [A+97, vB+99].

The readout system used in the testbeam
does however provide a test of the suit-
ability of the tubes for integration into the
LHCb readout electronics, as the data from
the tubes are captured within the 25 ns that
are available between bunch crossings at the
LHC.

The DAQ System

The main components of the VME–based
data acquisition system are shown in fig-

ure 5.9. The data are generated from three
sources: the nine MaPMTs, the silicon
beam telescope and the trigger scintillators.
Readout is triggered by the coincidence be-
tween the four scintillators in the beam line.
Any further beam triggers are gated out for
the remainder of the readout cycle. The
control of the front-end chip is performed by
the SEQSI programmable front-end control
module [Mor]. The six APVm chips pro-
duce an analogue data output which is digi-
tised using the Front End Digitiser, a pro-
totype module for the readout of the CMS
inner tracker [BCH+99, Cou]. The FED is
programmed to run in ‘digital scope’ mode,
which means that each individual event is
read out and no data reduction, such as
zero-suppression, is performed.
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5.3 Describing PMT

Spectra

5.3.1 Introduction

Similar to the case of the HPD spectra, in
order to estimate the signal loss, a model of
the output of an MaPMT-pixel is required,
that can be fitted to the measured pulse
height spectra. In order to perform such
a fit, an analytical function is needed that
can be calculated reasonably quickly by a
computer.

Such a function is derived here. In section
5.3.2, an analytical expression is derived
that describes the output of a PMT. The
derivation is based on the assumption that
the number of photoelectrons per event, as
well as the number of secondary electrons
caused by each primary electron at each
stage of the dynode chain, are each de-
scribed by Poisson distributions. It is then
shown how this expression can be adapted
to avoid some of the numerical problems
arising, so that it can readily be calcu-
lated by a computer. A complete numerical
recipe is given and a FORTRAN implemen-
tation of the program is listed in appendix
A. This expression can be used to calcu-
late any “snowball”–like effect described by
a series of Poisson distributions.

In section 5.3.3 it is described how the exact
expression derived in the first part can be
used as the central element of a faster, ap-
proximate algorithm, and how the number
of parameters can be reduced making rea-
sonable assumptions, so that fitting a large
number of spectra in a finite time becomes

feasible. This is then adapted to describe
the digitised output of laboratory read-out
electronics, rather than the number of elec-
trons at the end of a dynode chain.

This approximate function is used in section
5.3.4 to fit Monte Carlo generated pulse-
height spectra to demonstrate the validity
of the method. Finally it is shown how the
fit is used on test–beam data to estimate the
loss of single photoelectron events below a
threshold cut.

5.3.2 An Analytical Function
to Describe the Output
of a PMT

An Expression for the Number of
Photoelectrons at the End of a Dyn-
ode Chain

Assuming the number of photoelectrons
produced in the cathode follows a Poisson
distribution with mean λ1, the probability
to find k1 photoelectrons arriving at the
first dynode is:

P (k1) = e−λ1
λk1

1

k1!
. (5.2)

The probability to find k2 electrons after
the first dynode is the sum over all values
for k1 of the probabilities P (k1), each mul-
tiplied with the probability that the dynode
returns k2 electrons given that k1 arrive:

P (k2) =
∞∑
k1=0

P (k1) · P (k2|k1). (5.3)

Each of the k1 electrons produces a Poisson-
distributed response from the dynode with
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mean λ2 where λ2 is the gain at the 1st dyn-
ode; all k1 electrons together produce a re-
sponse distributed according to the convo-
lution of k1 Poisson distributions, each with
mean λ2. This results in a single Poisson
distribution with mean λ2 · k1:

P (k2|k1) = e−λ2k1
(λ2k1)k2

k2!
. (5.4)

Hence the probability to find k2 electrons
after the first dynode is given by:

P (k2) =
∞∑
k1=0

P (k1) · e−λ2k1
(λ2k1)k2

k2!
. (5.5)

Inserting the right-hand side of equation 5.2
for P (k1) yields, after a few manipulations:

P (k2) = e−λ1
λk2

2

k2!

∞∑
k1=0

(λ1e
−λ2)k1

k1!
kk2

1 . (5.6)

Generalising this for n− 1 dynodes yields:

P (kn) = e−λ1
λknn
kn!

∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kn−1=0

(λ1e
−λ2)k1

k1!
(λ2e

−λ3k1)k2

k2!
(λ3e

−λ4k2)k3

k3!
· · ·

(λn−2e
−λn−1kn−3)kn−2

kn−2!
(λn−1e

−λnkn−2)kn−1

kn−1!
kknn−1.

(5.7)

Each term in equation 5.7 is of the form
of an exponential series, i.e. xk

k!
, except for

the last term with the summation parame-
ter kn−1, which appears as xk

k!
kkn . Using

kknn−1 =
dkn

dykn
eykn−1

∣∣∣
y=0

(5.8)

this last term can be written as

(λn−1e
−λnkn−2)kn−1

kn−1!
kknn−1

=
dkn

dykn
(λn−1e

−λnkn−2e
y)kn−1

kn−1!

∣∣∣∣
y=0

.(5.9)

Using equation 5.9, equa-
tion 5.7 can be re–written as:

P (kn) = e−λ1
λknn
kn!

dkn

dykn
∞∑
k1=0

∞∑
k2=0

· · ·
∞∑

kn−1=0

(λ1e
−λ2)k1

k1!
(λ2e

−λ3k1)k2

k2!
(λ3e

−λ4k2)k3

k3!
· · ·

(λn−2e
−λn−1kn−3)kn−2

kn−2!
(λn−1e

−λnkn−2e
y)kn−1

kn−1!

∣∣∣∣
y=0

.

(5.10)

Now each summation can be carried out in
turn, starting with that over kn−1:

∞∑
kn−1=0

(λn−1e
−λnkn−2e

y)kn−1

kn−1!

= exp(λn−1e
−λnkn−2e

y)
= (exp(λn−1e

−λney))kn−2 ,

(5.11)

then over kn−2:
∞∑

kn−2=0

((λn−2e
−λn−1kn−3)kn−2

kn−2!
·
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(e(λn−1e−λney))kn−2

)
= exp(λn−2e

−λn−1kn−3 · e(λn−1e−λney))

= (exp(λn−2e
−λn−1 · e(λn−1e−λney)))kn−3

(5.12)

and so on. After performing all these
summations, the probability of finding kn
electrons after n − 1 dynodes, with gains
λ2, . . . , λn, starting off with an average of
λ1 photo electrons arriving at the first dyn-
ode, is given by:

P (kn) = e−λ1
λknn
kn!

dkn

dykn

exp(x1 exp(x2 exp(x3 · · ·

exp(xn−1 exp(y)) · · ·)))
∣∣∣∣
y=0

with xi ≡ λie
−λi+1 .

(5.13)

Calculating P (kn)

In order to calculate P (kn) it is use-
ful to make the following definitions:

f1 ≡ ex1ex2...e
xn−1e

y

f2 ≡ ex2ex3...e
xn−1e

y

f3 ≡ ex3ex4...e
xn−1e

y

... (5.14)

fn−1 ≡ exn−1ey

fn ≡ ey.

Equation 5.13 can now be written as:

P (kn) = e−λ1
λknn
kn!

f
(kn)
1 (y)

∣∣∣∣
y=0

, (5.15)

where f
(kn)
1 is the knth derivative

of f1 with respect to y. With the
above definitions, the first deriva-
tives of the functions fi are given by:

f ′1 = f1x1 f2x2 · · · fn−1xn−1 fn
f ′2 = f2x2 · · · fn−1xn−1 fn
f ′3 = · · · fn−1xn−1 fn

...
f ′n = fn.

(5.16)
This gives a recursive formula for the first
derivative of fi:

f ′i = fixif
′
i+1 i < n

f ′n = fn, (5.17)

which in turn gives a recursive formula for
the mth derivative:

f
(m)
i =

m−1∑
j=0

(
m− 1

j

)
f

(j)
i xif

(m−j)
i+1 , (5.18)

with f (j)
n = fn ∀j ∈ IN.

With this expression, equation 5.15 can
finally be calculated, by starting with
fn(0) = 1 and calculating f

(m)
i subsequently

for all values i = n, n− 1, . . . , 1 and all val-
ues m = 0, 1, . . . , kn.

Numerical Problems

While the previous section gives a valid al-
gorithm how to calculate P (kn) using equa-
tion 5.15 and the recursive formula 5.18, it
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turns out that the finite precision of a nor-
mal computer will only allow calculations
to be performed for rather small values of
kn before some numbers become either too
large or too small to be stored straightfor-
wardly in the computer memory. This prob-
lem is addressed in the following discussion.

The factor λkn
n

kn!
For any reasonably large

number of dynodes, where the mean num-
ber of electrons coming off the last dynode,
and therefore the interesting values for kn,
is typically in the thousands or even mil-

lions, e−λ1 λ
kn
n

kn!
quickly becomes very small,

while f
(kn)
1 (y)

∣∣∣∣
y=0

grows to extremely large

values. In order to calculate P (kn) for such
values of kn, it is necessary to absorb the

small factor λknn
kn!

into the f
(m)
i . This can be

done by replacing y in equation 5.15 with
py and introducing a compensating factor(

1
p

)kn
:

P (kn) = e−λ1
λknn
kn!

(
1

p

)kn dkn

dykn
f1(py)

∣∣∣∣
y=0

.

(5.19)

Choosing p such that pkn = λknn
kn!

changes
equation 5.15 to

P (kn) = e−λ1
dkn

dykn
f1(py)

∣∣∣∣
y=0

with pkn =
λknn
kn!

. (5.20)

Defining

f
?(m)
kn,i
≡ dm

dym
fi(pkny)

∣∣∣∣
y=0

(5.21)

with pkn =
λn

(kn!)
1
kn

gives
P (kn) = e−λ1f

?(kn)
kn,1

. (5.22)

The recursive formula for calculating f
(kn)
1

remains essentially the same for f
?(kn)
kn,1

:

f
?(kn)
kn,i

=
kn−1∑
j=0

(
kn − 1

j

)
f
?(j)
kn,i

xif
?(kn−j)
kn,i+1

(5.23)

with f
?(m)
kn,n

= pmkn and pkn =
λn

(kn!)
1
kn

,

with one additional complication. In the
original algorithm, when calculating fkn1

using the recursive formula 5.18, all values
for fmi with m < kn calculated in the
previous iterations2 could be used in the
recursive formula for the current iteration.
Now, for calculating f

?(kn)
kn,1

all values f
?(m)
kn,i

with m < kn, i ≤ n have to be re-calculated
at each iteration, because at each iteration
the value for p in equation 5.23 changes.
To calculate f

?(kn)
kn,i

, from equation 5.23, the
values for

f
?(m)
kn,i

,m < kn

are needed. These can be calculated using
only the values for f

?(m)
kn−1,i which have been

calculated one iteration earlier:

f
?(m)
kn,i

= f
?(m)
kn−1,i

(
pkn
pkn−1

)m

with(
pkn
pkn−1

)kn
=

((kn − 1)!)1/(kn−1)

kn
; (5.24)

2where P (0) , . . . , P (kn − 1) were calculated
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so the values for f
?(kn)
kn,i

need to be stored
only for one iteration.

The binomial factor When calculating
f
?(kn)
kn,i

, using the recursive formula 5.23, the

factor
(
kn−1
j

)
in

f
?(kn)
kn,i

=
kn−1∑
j=0

(
kn − 1

j

)
f
?(j)
kn,i

xif
?(kn−j)
kn,i+1

can get very large for large values of
kn, while the corresponding values for
f
?(j)
kn,i

xif
?(kn−j)
kn,i+1 get very small. To avoid

the associated numerical problems, one
can define the arrays u

(j)
kn,i

and v
(j)
kn,i

that
‘absorb’ the binomial factor, such that
equation 5.23 becomes:

f
?(kn)
kn,i

=
kn−1∑
j=0

u
(j)
kn,i

xiv
(kn−j)
kn,i+1 , (5.25)

where

u
(j)
kn,i

=

√√√√(kn − 1

j

)
f
?(j)
kn,i

v
(j)
kn,i

=

√√√√(kn − 1

j − 1

)
f
?(j)
kn,i

. (5.26)

Putting It All Together

Combining the results from the previous
two paragraphs, at each iteration kn, be-
fore calculating f

?(kn)
kn,i

using equation 5.25,

the values for u
(j)
kn,i

and v
(j)
kn,i

, j < kn, are
calculated from their values in the previous
iteration:

u
(j)
kn,i

=

(
pkn
pkn−1

)j√
kn − 1

kn − 1− j
u

(j)
kn−1,i

v
(j)
kn,i

=

(
pkn
pkn−1

)j√
kn − 1

kn − j
v

(j)
kn−1,i

j < kn. (5.27)

These results are then used to calculate:

f
?(kn)
kn,i

=
kn−1∑
j=0

u
(j)
kn,i

xiv
(kn−j)
kn,i+1 (5.28)

and

u
(kn)
kn,i

= v
(kn)
kn,i

= f
?(kn)
kn,i

, (5.29)

starting from

u
(kn)
kn,n

= v
(kn)
kn,n

= f
?(kn)
kn,n

=
λknn
kn!

(5.30)

and

u
(0)
0,i = v

(0)
0,i = f

?(0)
0,i = fi, (5.31)

where the fi are defined by equation 5.14.

The Complete Numerical Recipe

Using the above formulae, the problem of
calculating the probability distribution of
finding kn electrons at the end of a PMT
with n − 1 dynodes can be solved by a
computer. A FORTRAN implementation is
listed in appendix A. The program takes as
its input the array λ[n], with dimension n,
which contains the average number of photo
electrons arriving at the first dynode λ[1]
and the gain at each of the n − 1 dynode,
λ[2], . . . , λ[n]. The program fills the array
P [max] with the probabilities P [k] to find k
electrons at the end of the dynode chain for
all values k ≤ max. The parameter max is
also passed to the program.
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The values for u
(j)
k,i , v

(j)
k,i needed in the re-

cursive formulae, are stored in two two-
dimensional arrays, where one dimension is
taken by the index i = 1, . . . , n, and the
other by the index j = 0, . . . ,max. As
the values for u

(j)
k,i , v

(j)
k,i are needed only for

one value of k at a time, the arrays do not
need to be three-dimensional; the values for
u

(j)
k,i , v

(j)
k,i needed at the iteration calculating

P [k] replace those from the previous itera-

tion, u
(j)
k−1,i, v

(j)
k−1,i.

The steps to calculate P [k], k = 0, . . . ,max
are:

1 Initialise program, test whether input
is sensible, for example if the overall
gain is larger than 0. Calculate all

values for
(

pj
pj−1

)j
, j ≤ max and store

them in an array pfrac[j], j = 1, . . .max
for later use.

2 Start with calculating the probability
to find zero electrons: k = 0

3 Calculate u
(0)
0,i = v

(0)
0,i = fi for i = n, n−

1, . . . , 1, as defined by equation 5.14

4 Store the result in the array: P [0] =

e−λ1u
(0)
0,1

5 Increment k by 1. If k > max, stop
program.

6 Calculate u
(k)
k,n = v

(k)
k,n = λkn

k!

7 Calculate u
(j)
k,i , v

(j)
k,i for j < k and

i = n, . . . , 1 from u
(j)
k−1,i, v

(j)
k−1,i accord-

ing to equation 5.27, using the values
of pfrac[k] calculated in step 1.

8 Calculate u
(k)
k,i = v

(k)
k,i for all values of

i < n using the recursive formula 5.28.
Let the outer loop go over the index i,
starting with i = n−1 and decrement-
ing it by 1 until i = 1, and the inner
loop over the summation index j, start-
ing with j = 0 and incrementing j by
1 until j = k − 1.

9 Store result: P [k] = e−λ1u
(k)
k,1

10 Goto step 5

5.3.3 Fitting Spectra

Increasing Speed by Approximating
P(kn)

When fitting PMT-pulse-height spectra,
speed is a major problem. The number of
operations needed to calculate P (kn) using
the recursive formula in equation 5.18, is

Nsteps ≈
kn∑
i=0

i∑
j=0

nj ∼ k3
n, (5.32)

which becomes absolutely prohibitive for a
typical MaPMT with a gain of ∼ 3 · 105.
Therefore, for fitting the spectra, only the
exact distribution after the first m dyn-
odes is calculated and then scaled by the
gain of the remaining dynodes, gleft =
(gm+1gm+2 · · · gn−1). When scaling the out-
put of the exact distribution calculated for
the first m dynodes, Pexact(km+1), to the
final distribution, the result is convoluted
with a Gaussian of width σscale, taking into
to account the additional spread in the dis-
tribution at each remaining dynode:

σscale =
√
km+1σ0 (5.33)
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with:

σ0 = (gm+1gm+2 · · · gn−1)

·
(

1
gm+1

+ 1
gm+1gm+2

+ · · ·+ 1
gm+1···gn−1

) 1
2 .

(5.34)
So the approximated function, P∼(kn) is

P∼(kn) =
∞∑
j=0

1√
2π
√
j σ0

e

(j·gleft−kn)2

2(
√
j σ0)

2

P (j).

(5.35)
In practice the sum only needs to be calcu-
lated for values of j ·gleft that are a few σscale

around kn.

Reducing the Number of Parameters

P (kn) depends on n parameters: one for
each dynode and one for the number of pho-
toelectrons produced in the cathode. For
the case of the 12-dynode MaPMT, there
are 13 parameters. It is possible, however,
to reduce this number to two:

1. the mean number of photoelectrons
produced in the photo cathode

2. the gain at the first dynode.

Using

g ∝ V α, (5.36)

where V is the voltage difference over which
the electron is accelerated, the gain at the
other dynodes can be calculated from the
gain at the first dynode. The parameter
α has values typically between 0.7 and 0.8
[Ham00]; in the following, α = 0.75 is used.

Adapting the Function to Fit Mea-
sured Data

In practice, spectra are not measured in
numbers of photoelectrons, but in ADC
counts digitised by the readout electronics.
The function describing the spectra needs
to relate the ADC counts, kadc, to the num-
ber of electrons at the end of the dynode
chain, kn. This requires two parameters:
the offset, or pedestal mean, p0, and the
conversion factor, cn of kn to ADC counts.
The resulting function is convoluted with a
Gaussian of width σ to take into account
electronics noise:

Fcont(kadc) =(
1√
2πσ

e
k2

adc
2σ2

)
∗ (P ((kadc − po) /cn) · cn) ,

(5.37)

where ∗ is the convolution operator. Fcont

treats kadc as a continuous variable, with
a one-to-one relation between kadc and kn;
in fact the readout electronics deliver only
integer-value ADC counts, integrating over
the corresponding pulse heights. Thus the
final function for describing ADC spectra
is:

F (kadc) =
∫ kadc+0.5

kadc−0.5
Fcont(k

′
adc)dk′adc. (5.38)

5.3.4 Example Fits

The fits are performed as binned log-
likelihood fits: for each 1-ADC-count wide
bin kadc, containing ni events, the binomial
probability of having ni successes in Nall

trials is calculated, where Nall is the total
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number of events. The probability of an in-
dividual success is given by F (kadc).

The probability distribution for the number
of electrons after the fourth dynode is cal-
culated without approximation. Then the
function is scaled, approximating the addi-
tional spread due to the remaining dynodes
with a Gaussian, as described in the previ-
ous section.

MC-Generated Spectra

The validity of the method has first been es-
tablished on Monte Carlo simulated data.
The Monte Carlo program simulates the
output of a MaPMT pixel. The gain at the
first dynode is g1 = 5 and the gains at the
other dynodes are calculated from g ∝ V α

with α = 0.75. The values for V are given
in table 5.1.

The fit function is applied to two sets of
128 simulations with 105 events each, one
set with 0.15 photoelectrons per event, one
with 3.0 photoelectrons per event. A spec-
trum from each set is shown in figures 5.15
and 5.16.

The fits are performed varying the gain of
only one dynode and calculating the gains
at the other dynodes using the same value
for α as in the Monte Carlo program that
generated the spectrum. The fit results
agree very well with the input values, as
shown in tables 5.2 and 5.3. To test the sen-
sitivity of the fit result on the exact knowl-
edge of α, the fit to the spectrum in fig-
ure 5.15 is repeated assuming different val-
ues for this parameter in the fit-function:

Figure 5.15: MC-generated MaPMT ADC-
spectrum in black, from 100k events, with
λ1 = 0.15. The fit is superimposed in blue.
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Table 5.2: Monte Carlo input compared
with mean and RMS of the results from fits
to 128 simulated spectra, with λ1 = 0.15

MC input
Mean fit result
± RMS spread

λ1 0.150 0.1501±0.0013
g1 5.000 5.0012±0.058
p0 100.00 99.999±0.0038
σ 1.0000 1.0004±0.0027
cn 3.20 · 10−4 (3.23±0.46) · 10−4
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Figure 5.16: MC-generated MaPMT ADC-
spectrum in black, from 100k events, with
λ1 = 3. The fit is superimposed in blue.

10
5

ev
en

ts
/

A
D

C
-c

ou
n

t

10
-5

10
-4

10
-3

10
-2

50 100 150 200 250

ADC counts

Table 5.3: Monte Carlo input compared
with mean and RMS of the results from fits
to 128 simulated spectra, with λ1 = 3

MC input
Mean fit result
± RMS spread

λ1 3.000 3.002±0.022
g1 5.000 4.985±0.107
p0 100.000 99.999±0.021
σ 1.000 0.999±0.016
cn 6.4 · 10−4 (6.45±0.17) · 10−4

α = 0.5 and α = 1.0. The results are given
in table 5.4. Another fit was performed that
does not use the formula g ∝ V α. Here it is
only assumed, that dynodes with the same
accelerating voltage have the same gain. In-
stead of one gain, three gains need to be fit-
ted, one for each accelerating voltage. The
fits are performed using the function min-
imisation and error analysis package MI-
NUIT [Jam94]. The results from this fit,
with error-estimates provided by MINUIT,
are given in the last column of table 5.4.

Comparing the results for the different as-
sumptions shows, that they have little im-
pact on the fitted value for the number of
photo electrons and the gain at the first
dynode. Most of the error introduced by
an incorrect estimate of the parameter α is
absorbed into the ratio of ADC-counts to
electrons, cn, while the values for λ1 and g1

come out close to the input values.

Application to Test–Beam Data

The fit method is applied to spectra ob-
tained in the test–beam, and used to esti-
mate the signal loss at the first dynode and
below the threshold cut, given in table 5.7.

An example of such a fit is given in figure
5.17. It shows the pulse height spectrum
from 6k events in MaPMT 6, pixel 32, run
2610 (no lenses), with the fit superimposed.
Also, the single photoelectron contribution
is shown. The signal loss figures given inside
the plot refer to the signal loss below the
threshold cut only and do not include the
loss of photo electrons at the first dynode
due to the probability of e−g1 that the pri-
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Table 5.4: Monte Carlo input compared with fit-result for the MC-generated pulse height
spectrum shown in figure 5.15, using different assumptions in the fit.

MC input
α = 0.75

Fit result
α = 0.75

Fit result
α = 0.5

Fit result
α = 1

Fit result: 3
indep. dyn’s

λ1 0.1500 0.1490 0.1491 0.1489 0.1492±0.0013
g1 5.00 5.039 4.852 5.291 4.74±0.44
g2, g3, g12 g1 · (2

3)α = 3.69 4.51±1.35
g4, . . . , g11 g1 · (1

3)α = 2.19 1.97±0.21
p0 100.000 100.000 100.000 100.000 100.000±0.003
σ 1.0000 1.0028 1.0029 1.0027 1.0028±0.0025
cn 3.20 · 10−4 2.90 · 10−4 0.373 · 10−4 19.7 · 10−4 (4.37± 0.98) · 10−4

Figure 5.17: Data from 6k events in black,
with fit superimposed in red. In green: The
single photoelectron contribution. The sig-
nal loss refers to the loss below the thresh-
old cut only. The loss at the first dynode is
not included.
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mary electron produced 0 secondary elec-
trons. The results for the fit parameters,
together with the error estimates provided
by MINUIT, are given in table 5.5. The
fit describes the data well, with a χ2/ndf of
1.2.3

3The fit is performed with the same log-
likelihood method that was used for the MC spec-

Table 5.5: Result of fit applied to test–beam
data

Fit result
λ1 0.107±0.005
g1 3.60±0.20
p0 43.06±0.01
σ 0.724±0.008
cn (61±30) · 10−4

5.4 Preparation of Test-

beam Data

Before the data from the testbeam can be
used for further analysis, they need to be
corrected for electronics effects. Serious
problems are caused by cross talk between
channels. The identification and correction
of cross talk is therefore described in detail.
Firstly, the subtraction of common modes
is summarised.

tra; nevertheless, a χ2 value is calculated after the
fit.
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Figure 5.18: Common–mode value for each
tube. The histograms are ordered in the same
way as the tubes in Figure 5.8. Bold lines in-
dicate shared read–out boards. The numbers
above each histogram are the average pedestal
width before → after common mode subtrac-
tion. The numbers inside the histograms are
the σ of the Gaussian fit to the common–mode
distribution, except for tube 8 where the RMS
is given.
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5.4.1 Common Mode

Common mode fluctuations are corrected
tube by tube. In a first iteration, the
pedestal mean (µ) and width (σ) are found
for each pixel. The data are then repro-
cessed. A pixel with a pulse height below
µ + 3σ is classified to be a non-hit pixel.
In each event, the average deviation of the
non-hit pixels in a tube from their respec-
tive pedestal means is subtracted from the
pulse heights in all pixels, to correct for
common mode fluctuations. Figure 5.18

shows the common mode correction tube by
tube for 1.3k events. The common mode
behaviour is very similar for tubes on the
same read–out board.

5.4.2 Cross Talk

In order identify cross talk, LED runs are
used. In these runs, the whole detector
surface is illuminated reasonably uniformly,
resulting in about 0.05 photoelectrons per
pixel per event (above a 5σ cut).

Identifying and Locating Cross Talk

For each pair of pixels x, y, the correlation
coefficient between the pulse heights in
these pixels, hx and hy, is calculated

corr(hx, hy) =
〈hx · hy〉 − 〈hx〉 · 〈hy〉

σhx · σhy

where σhx and σhy are the RMS values of the
pulse height distributions in pixels x and y
respectively. The results are displayed in
two-dimensional plots such as in figure 5.21
for a single tube, or in figure 5.19 for all
pixels read out by the same board. The
numbers on the axes are the pixel numbers
defined in figure 5.8. If two tubes are shown
in the same plot, 64 is added to the pixel
numbers of one of the tubes.

Significant non–zero correlation is evi-
dence for cross talk. As the correlation
coefficient is symmetric by definition,
corr(hx, hy) ≡ corr(hy, hx), this method
does not allow to identify a possible di-
rection of the cross talk. Therefore, the
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Figure 5.19: Correlation coefficients

The plot entries are the correlation coefficients between the pulse heights of the pixel pairs (x,y). To
increase readability, the grey-scale has been set to a maximum of 0.5 (no entry off the diagonal has a
value larger than 0.43).

probability that a hit in pixel x is caused
by a hit in pixel y is calculated:

P (x← y) =
No of hits caused by y in x

total No of hits in x

For calculating this probability, as for pho-
ton counting, a hit is defined as a pulse
height at least 5σ above the pedestal mean;
if there are two hits in a given pixel pair, it
is assumed that the pixel with the larger
pulse height caused the hit in the pixel
with the smaller pulse height. Sometimes of
course, there are two genuine hits (or hits
induced by cross talk from other pixels) in
a pixel pair. For the LED runs used, this
occurs ∼ 5% of the time.

Figure 5.20 shows the cross talk probabili-
ties for two boards with fast readout. The
talked–to pixels x are shown on the hori-
zontal axis, and the talking pixels y on the

vertical axis. Two classes of cross talk can
be identified in those plots:

1. Symmetric cross talk, predominantly
along y = x±1, present in both boards.

2. Asymmetric cross talk, which can be
seen on board 9, but not on board 5.
The asymmetric cross talk forms irreg-
ular patterns, and is as strong between
pixels on different tubes, as it is be-
tween pixels on the same tube.

Figure 5.21 shows the correlation coeffi-
cients for tube 1, once read out with the
fast readout, and once with a CAMAC sys-
tem which does not utilise the fast electron-
ics. No cross talk is observed when the tube
is read out with the CAMAC system. This
demonstrates that cross talk seen in the fast
read out is entirely due to electronics effect.
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Figure 5.20: cross talk probabilities

The plot entries are the probabilities that a hit in pixel x on the horizontal is “caused by” a hit in pixel
y on the vertical axis. The cross talk in board 5 is symmetric. The pair of tubes read out by board 9
show, in addition to that, asymmetric cross talk within the tubes and also between the tubes.
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Figure 5.21: Correlation coefficients between the pulse heights of pixels within one tube
for CAMAC readout (left) and fast readout (right).

Correlation coefficients for all pixel pairs. For better readability, the scale on the 2-D
plots has been reduced to a maximum of 0.5.
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Figure 5.22: Re–numbering channels:
The plots show cross talk probabilities for two boards, for different channel numberings. The
plots for board 5 show only large symmetric cross talk. The small symmetric cross talk (type
1a) is also present, but is not visible on this scale. Board 9 exhibits both symmetric and
asymmetric cross talk, although in this plot, the former contribution is suppressed so that only
the large asymmetric cross talk can be seen. The plots shows that the large symmetric cross
talk is between neighbouring channels in the ceramic fan–in, while the asymmetric cross talk
is between channels with consecutive APV sample numbers. No cross talk is seen between
neighbouring channels on the same kapton strip.

Board 5 Board 9
only (large) symmetric only asymmetric

Nearest neighbour on kapton-strip

Ceramic fan-in

APV sample
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In order to identify the cross talk sources,
plots as in figure 5.20 are reproduced with
changed pixel numberings. The pixels are
re-numbered such that physically neigh-
bouring pixels in some part of the readout
chain are assigned consecutive numbers, so
that they become neighbours on the plot. If
the cross talk shows up along y = x± 1 for
one of these numbering schemes, then there
is cross talk between channels that are phys-
ical neighbours in the corresponding part of
the readout chain. This points towards the
source of the cross talk. The procedure is il-
lustrated in figure 5.22 for three numbering
schemes. The first row of plots the figure
5.22 shows no cross talk between neighbour-
ing channels on the same kapton strip. The
second one reveals the origin of the large
symmetric cross talk, and the third one, of
the asymmetric cross talk.

The following numbering schemes reveal
cross talk:

• APV input number. This corresponds
to the channel ordering in the ceramic
coupler.

• APV sample number. This corre-
sponds to channels that are neighbours
in the APV analogue data frame, as
shown in figure 5.14, page 160. It is the
origin of the asymmetric cross talk.

• Pixel number, as defined in figure 5.8.
This corresponds to the actual pixel-
position on the readout board, inde-
pendent of the orientation of the tube.

The different types of cross talk, with the
sources and respective strengths, are listed

Table 5.6: Four types of cross talk. The last
column indicates the strength of the cross
talk. It gives the average ratio of the cross
talk pulse height to the pulse height of the
signal that induced the cross talk.

Source Relationship Ratio

Symmetric cross talk
1a AC–

coupler
adjacent
channels

0.15

1b Kapton
cables
and PGA

± 8 pixel
numbers

0.011

Asymmetric cross talk
2a APVm

ASIC
Output sam-
ple y → y − 1

0.33

2b APVm
ASIC

Output sam-
ple y → y + 2

0.034

in table 5.6, and are discussed below. In the
table, the strength of each type is indicated
by the average ratio of the cross talk pulse
height to the pulse height of the signal that
induces the cross talk.

Scatter plots relating the pulse heights in
two pixels are shown in figure 5.23, for pixel
pairs exhibiting different types of cross talk.

Symmetric Cross Talk The symmetric
cross talk is present in all boards to a sim-
ilar level. The large symmetric cross talk
(type 1a in table 5.6) is seen between near-
est neighbours in the ceramic fan in. It is
responsible for all large cross talk seen in
figure 5.19 in board 5. This type of cross
talk can be seen mainly along y = x±1, but
also in the series of cross talking pixel pairs
scattered between y = x±8 and y = x±32.
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No cross talk between
pixels 11 and 15 of
tube 4

Small Symm. cross
talk (±8) between pix-
els 11 and 3 of tube 4

Large Symm. cross
talk, between pixels 11
and 12 of tube 4

Asymm. cross talk
pixels 64 of tube 2
talks to pixel 9 of tube
2
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Figure 5.23: Scatter plots showing the ADC counts in pixel x vs ADC counts in pixel y for
different pairs of pixels, showing either no, small symmetric, large symmetric or asymmetric
cross talk.

It is also responsible for cross talk between
tubes, for example the strong cross talk be-
tween pixel 8 in tube 1 and pixel 16 in
tube 4 that can be seen figure 5.19.

The small symmetric cross talk (type 1b) is
seen between pixels with pixel numbers x
and x ± 8. Possible locations for the small
symmetric cross talk are either the pin–
grid–array, or the kapton cables. In the kap-
ton cables it would not be between neigh-
bouring lines on the same kapton strip, but
between lines on different layers of the kap-
ton cable. This is possible, because a small
area of the back of each kapton strip is not
covered by a metal ground line.

It is important to note that, although the
small symmetric cross talk between pixel
numbers x and x ± 8 also corresponds
to nearest neighbours in the tubes them-
selves, its cause cannot lie within the tube.
This has been demonstrated in figure 5.21.
This important conclusion has been corrob-
orated in laboratory-tests carried out using

the LED scanning facilities at Oxford and
Edinburgh University [A+00b].

Asymmetric Cross Talk Large Asym-
metric cross talk (type 2a) is between near-
est neighbours in the APV output data
frame. The pixel with APV sample num-
ber y induces cross talk into the pixel with
APV sample number y− 1, but no signal is
induced by y− 1 into y. It also has the un-
expected property that there is no next–to–
nearest neighbour cross talk. If the pixels
x, y, and z are related by asymmetric cross
talk in the following way

x
talks to←− y

talks to←− z,

none of the signal induced by pixel z into
pixel y is passed on to pixel x. This is the
reason why the scatter plot in figure 5.23 for
the asymmetric cross talk, looks as if the
cross talk were sometimes “switched off”:
the hits in pixel y (number 9) that do not
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Figure 5.24: Correlation coefficients for different subsets of pixels-pairs ( board 9)
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induce a signal into pixel x (number 64)
are those induced by asymmetric cross talk
from a third pixel.

The strength of the asymmetric cross talk
varies greatly between boards, and in fact
within boards. The numbers given in table
5.6 are for the worst cases of board 9 and
board 12.

The small asymmetric cross talk (2b) is
strongest in board 2, which corresponds to
the ratio given in table 5.6. To a smaller ex-
tent, it can also be seen in board 5, where
it is responsible for the small, but non–
zero correlation coefficients between pixels
in different tubes, that can be identified in
figure 5.19.

Identifying All Cross Talk: To ensure
that all cross talk is found, the correla-
tion coefficients of all pixel–pairs in a given
board are histogramed. This is repeated,
step by step removing entries from pixel

pairs that are related by a known type of
cross talk. This includes also pixel pairs,
that are indirectly related. How far combi-
nations of different types of cross talk are
considered when removing entries from the
histograms, depends on the strengths of the
types of cross talk involved. The most indi-
rect relationship considered is that of next–
to–next–to–nearest neighbours.

When all cross talk is removed, the corre-
lation coefficients should be symmetrically
centred around zero. Figure 5.24 shows four
plots of correlation coefficients between the
channel–pairs on board 9, with a Gaussian
fitted to each distribution. From the left to
the right, more and more types of cross talk
are considered. The last plot shows a good
fit of a Gaussian to the data.

The fact that the mean of the Gaussian fit
is 1σ below zero means that a hit in one
pixel slightly reduces the pulse heights in
all other pixels; the same effect can be seen
in figure 5.21.
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No pixel pair has a correlation coefficient
above the range described by the Gaussian
fit. This shows, that all cross talk is found,
that is large enough to be observable with
the methods used.

Cross Talk Conclusion

The cross talk seen in the testbeam data
is very large; for the asymmetric cross talk
seen, typically 33% of the signal seen in a
channel is induced to its cross-talk partner;
for the large symmetric cross talk, this num-
ber is 15%. Each channel is directly related
to 4 or 5 other channels by significant cross
talk.

All cross talk can be related to parts of the
readout system chain. Note that the read-
out electronics described here are not in-
tended to be used in the final design.

As far as the suitability of the MaPMT for
the LHCb RICH is concerned, the cross talk
study confirms the good performance of the
tubes. For the analysis of the testbeam data
though, it will be essential to take the ef-
fects of the cross talk into account.

5.5 Monte Carlo Simula-

tion

The same Monte Carlo simulation as for
the HPD testbeam is used here, with a few
modifications that adapt it to the different
setup.

• Lenses and the quartz window have
been added.

• The quantum efficiency and the mir-
ror reflectivity are changed to those
measured for the MaPMT and the
1117 mm focal length mirror. Those
are shown in figures 5.3 and 5.2.

• The different detector geometry, in-
cluding the detector–plane with the
MaPMT cluster, is taken into account.

The reflection losses at the lens surfaces and
the quartz window are calculated assum-
ing normal incidence. Photons hitting the
sides of the lenses are treated as lost. The
MaPMT pixels are modelled as 2× 2 mm2

pixels with uniform efficiency, separated by
3 mm gaps with zero efficiency. The beam
divergence in the simulation is 0.125 mrad
in x and in y.

A difference with respect to the HPD anal-
ysis is that the signal loss estimates are not
added back into the data, but are instead
subtracted from the Monte Carlo results.

5.6 Photon Counting

5.6.1 Principle

Photon counting is performed pixel by
pixel. The pedestal mean (µ) and width
(σ) are found from the common-mode cor-
rected pulse height spectra. A threshold cut
is defined at µ+ 5σ; any ADC count above
that threshold is considered a single hit.
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The most important differences to the pho-
ton counting procedure described in chapter
4 are:

• The data need to be corrected for cross
talk.

• Nhits ≈ Npe is not a good approxima-
tion anymore, since the number of pho-
toelectrons per pixel per event is larger.
Npe is therefore calculated from Nhits.

• The photon counts in this chapter refer
to the number of photo electrons above
the threshold cut, uncorrected for sig-
nal loss.

• The background estimate is much sim-
plified. Electronics noise is negligible
with a 5σ cut. Pedestal runs show very
small beam–independent background.
As most pixels in each tube lie out-
side the Cherenkov ring, the remain-
ing background can be estimated tube
by tube by averaging over the pho-
ton counts in those pixels, without the
need for a fit.

5.6.2 The Number of Photo-
electrons.

While in chapter 4, the emphasis lay more
on the performance of the RICH detector as
a whole, rather than that of the commercial
HPDs, the focus of this test–beam evalua-
tion the photodetector system, comprising
the lenses, the readout electronics, and the
tubes themselves. It is therefore more ap-
propriate, to quote the photon counts un-
corrected for signal loss, as this is the pa-

rameter of interest in assessing the suitabil-
ity of the photodetectors for LHCb. Signal
loss is however taken into account in the
data–Monte Carlo comparison by correct-
ing the Monte Carlo simulation using signal
loss estimates obtained from the data.

In this analysis, the number of photoelec-
trons per event per pixel is too large for
the effect of double photoelectron hits to
be ignored. Therefore, the approximation
Nhits ≈ Npe is not used and the number of
photoelectrons is calculated from the num-
ber of hits as described below.

Notation and Definitions

The following notation is used throughout
the text (all numbers refer to photon counts
in a single pixel):

λp.e. Mean number of photoelectrons per
event generated in the cathode.

λ5σ Mean number of photoelectrons/event
detected above a 5σ cut.

n5σ Mean number of hits/event detected
above a 5σ cut, counting single and
multiple photoelectrons as a single hit

λ′5σ The approximation to λ5σ used
throughout the text.

As shown in appendix B, the parameter λ′5σ:

λ′5σ ≡ − ln(1− n5σ) (5.39)

gives a very good approximation to λ5σ, the
mean number of photoelectrons detected
above a 5σ cut. It has the advantage that
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it can directly be calculated from the ob-
served mean number of hits above the cut,
n5σ, independent of signal loss estimates.
At the same time, the error introduced is
very small, less than ∼ 3% for any given
pixel in this analysis.

In the following, all photon counts will be
given in terms of λ′5σ, including those cal-
culated from the Monte Carlo simulation.
If the integrated number of photoelectrons
for a pixel is given, rather than the mean
number per event, it is calculated by
multiplying λ′5σ with the number of events
Nevents:

N5σ pe = Neventsλ
′
5σ (5.40)

5.6.3 Correcting cross talk

For photon counting in the 3× 3 array the
presence of cross talk has to be corrected
for. Two methods are used to achieve this:

a) Pixel Hit Correction

Removing Cross Talk: Event by event,
each pixel hit is only retained if none of the
associated cross–talk partners, identified by
the method described in section 5.4.2, has
a higher pulse height. A cross talk partner
to pixel x is here defined as a pixel that can
induce cross talk to pixel x.

Recovering Losses: Losses due to the
rejection of genuine double hits in the cross
talk correction are recovered at the end of
the procedure. For this, the probability for

each pixel to lose a hit in the above correc-
tion procedure due to a genuine hit in one
of its cross talk partners is calculated. This
is then used, pixel by pixel, to correct the
photon counts.

To calculate this probability, it is assumed
that, when the two cross talk related pix-
els x and y have a genuine photon hit, the
probability that the pulse height in pixel x,
hx, is greater than the pulse height hy in its
cross talk partner y, is p(hy > hx) = 1

2
.

With this, the probability that pixel x loses
a hit in the cross talk correction procedure
due to a genuine hit in one of its cross talk
partners yi, is:

P (x loses hit) = 1−
∏

all xtalk partners

(
1− 1

2
n5σ,i

)
(5.41)

where n5σ,i are the mean number of hits per
event in pixels i. The product goes over all
cross–talk partners of x, identified as de-
scribed in section 5.4.2. The result of the
product–term in the above equation is the
total probability that none of the cross talk
partners has a hit with a larger pulse height
than x; subtracting that from 1 gives the
probability that any of them has a larger
pulse height.

To perform this calculation, the true val-
ues for n5σ,i are needed, but only the values
before the losses are recovered are known.
Therefore, an iterative method is used, in
which the corrected values for n5σ,i cal-
culated in one iteration are the input for
the probability calculation in the next it-
eration. This iteration process converges
rather quickly and is stopped when the rela-
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tive difference in the photon counts between
two successive iterations is less than 10−6.

For the Cherenkov data presented below,
this recovery procedure adds 9% to the pho-
ton counts, averaged over all pixels.

Errors: The pixel hit correction method
only requires a complete list of pixels that
are related by cross talk. It is independent
of the particular type and intensity of the
cross talk, and is therefore unaffected by the
associated uncertainties.

However, there is a small uncertainty in
the resulting photon counts associated with
assumption that p(hx > hy) = 1

2
for all

pixel pairs. The combined photon count
for each pixel pair related by symmetric
cross talk is rather insensitive to which
value of p(hx > hy) is chosen, as a higher
count in pixel x is balanced by a corre-
spondingly lower count in pixel y, because
p(hx > hy) = 1 − p(hy > hx). However,
this cancellation does not take place for the
case of asymmetric cross talk. For asym-
metric cross talk, an error in p(hx > hy) of
∆p will result in an error in the corrected
value for n5σ,x of

∼ ∆p · n5σ,x · n5σ,y. (5.42)

The difference in the photon counts ob-
tained using p(hx > hy) = 0 and p(hx >
hy) = 1 for the asymmetric cross talk, com-
pared with p(hx > hy) = 1

2
, is less than 1%

for the Cherenkov ring, while it is ∼ 6%
for LED data. The small value for the
Cherenkov data is due to the fact that the
pixels related by asymmetric cross talk are

not spatially related on the detector plane,
so that in most cases, at least one of the
pixels x, y is off the ring and n5σ,xn5σ,y is a
small number.

b) Pulse height Correction:

The pulse height in each pixel in each event
is corrected for cross talk. This produces
the corrected pulse height spectra used later
for fits to the spectra, and the signal loss
estimates. This method allows event–by–
event cross talk correction, while method
(a) relies on statistical methods to recover
lost hits.

To correct the pulse height in a given pixel
x, a fraction of the pulse height found in the
same event in each of its cross talk partners
is subtracted from the pulse height in x.

To establish what fraction of the pulse
height of a pixel is typically induced into
each of the pixels it talks to, LED data
runs are used. For each pixel pair related
by cross talk, the ratio of the pulse height in
the talked–to pixel to the pulse height in the
talking pixel is histogramed, as shown for
two examples in figure 5.25. One pixel pair
shown is related by symmetric cross talk,
and one by asymmetric cross talk. For the
symmetric cross talk, two such plots exist
for each related pixel pair x, y, one where x
is taken as the talking pixel, and one where
y is taken as the talking pixel. Only those
events are used for the plots where there
is a hit in the talking pixel, and where the
pulse height in the talking pixel is larger
than that in the talked–to pixel.
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Figure 5.25: Pulse height ratios: The pulse
height in the talked–to pixel is divided by
the pulse height in the talking pixel.
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For the plots shown in figure 5.25, fits to
the peaks in the histograms show a mean
cross talk ratio of 0.11 and 0.44 for the
symmetric and the asymmetric case respec-
tively. The histogram for the asymmetric
cross talk shows an additional peak around
zero. This is because there is no next-
to-nearest neighbour contribution to asym-
metric cross talk: the peak around zero
comes from events that were induced them-
selves into the talking pixel by asymmetric
cross talk from a third pixel.

To obtain the mean cross talk ratios used in
the pulse height correction one Gaussian is
fitted to each peak, plus one broader Gaus-
sian to take into account the background
from genuine double hits. Only the mean
and width from the fits to the peaks are
given in figure 5.25.

Since there is no next–to–nearest neighbour
cross talk in the case of the asymmetric
cross talk, this adds a complication to the
cross talk correction. Assuming that the
pixels x, y, and z are related by asymmet-
ric cross talk in the following way:

x
talks to←− y

talks to←− z,

it is necessary to know whether the hit in
pixel y is itself induced by asymmetric cross
talk from z, or not. If this is the case, is
no subtraction from the pulse height in x
is required. This is decided by comparing
the pulse height in pixel y with that in z.
If the ratio of the pulse heights in y and
z is close to the typical ratio for cross talk
induced by z into y, the pulse height in x is
not corrected.
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Figure 5.26: Spectra before and after cross
talk correction with method (b). The line
indicates the 5σ cut. P1, P2, P3 are the ampli-
tude, mean and sigma of the fit to the pedestal
respectively. The threshold cut is defined using
the results from the fit to the pedestal before
the cross talk correction, and remains at the
same place after the cross talk correction.
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Figure 5.26 shows a pulse height spectrum
before and after the event-by-event cross
talk correction is applied.

Comparing the Methods

The two methods agree up to ∼ 7% as seen
in Table 5.8 (page 194). The largest dif-
ference (20%) is in tube 4, where the event
by event cross talk correction is not com-
pletely successful. It is the tube that has by
far the largest signal, and therefore requires
also the largest pulse-height correction in
method (b), while the pedestal width, and
therefore the threshold cut, is the same as
for the other tubes. This is illustrated in
figure 5.27, that shows a pulse height spec-
trum from a pixel in tube 4 before and after
cross talk correction.

Because method (a) is robust against such
problems, it has been chosen as the default
method, against which the Monte Carlo re-
sults will be compared. Method (b) is still
needed, as it provides the corrected pulse
height spectra that can be fitted for the sig-
nal loss estimates. It also provides a useful
systematic cross check.

5.6.4 Fitting Spectra

The pulse height correction method re-
moves the cross talk distortion from the
pulse height spectra, and therefore allows
us to fit them with the function described
in section 5.3.2. Successful fits to spectra of
one pixel from each tube on the Cherenkov
ring are shown figure 5.28, together with the
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Figure 5.27: Spectra before and after cross
talk correction with method (b), in tube 4.
The parameters P1, P2, P3 are defined as
in figure 5.26. The signal from tube 4, and
in particular the cross talk, is much larger,
and method (b) is not so reliable.
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fit results for the gain at the first dynode
and the mean number of photoelectrons.
Not all fits are successful however. An ex-
ample for a spectrum that cannot be fitted,
because it is still distorted after the pulse
height correction, is shown in figure 5.27.

In order to minimise the sensitivity to resid-
ual cross talk distortions, only Cherenkov
data are used for the fits. Results for one
pixel from each tube on the Cherenkov ring
are shown in figure 5.28.

The values obtained for the gain at the first
dynode are compatible with that presented
in [RIC00]. That the spectra can be de-
scribed by the fit function indicates, that
the full dynamical range of the MaPMT
output can be captured within the 25 ns
available for the readout.

Signal Loss

From the fits to the spectra, the fraction of
photoelectrons that remain undetected can
be estimated.

There are two sources of signal loss: the flow
of photoelectrons terminates at some stage
in the dynode chain, due to the probability
of e−gi that an electron arriving at dynode
i with gain gi produces 0 secondaries. This
signal loss is dominated by the probability
that a single photoelectron arriving at the
first dynode does not produce any secon-
daries, e−g1 . The second source of signal
loss is the loss due the pulse height being
below the threshold cut. g1 is a parame-
ter of the fit, and the number of hits lost
below the threshold cut can also be esti-
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Figure 5.28: Fitted pulse height spectra for each tube on the Cherenkov ring. From 6000
events taking Cherenkov data without lenses. Shown are successful fits to spectra from
pixels on the ring. The signal loss figures inside the plots do not include the loss at the
first dynode. (From run number 2610).
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mated from the shape of the signal distri-
bution that can be obtained from the fit.
Both types of signal loss can therefore be
estimated separately.

In order to obtain a figure that is indepen-
dent of the number of photoelectrons per
event in the particular run that is used for
the estimates, it is the loss of single pho-
toelectron events that is calculated, rather
than the total loss. The loss of multiple
photo electron events can be neglected.

A sufficient number of hits is needed to
determine the signal shape, therefore only
spectra from pixels with at least 0.05 pho-
toelectrons per event are selected. Only fits
with a χ2/ndf of less than 2 are used in the
signal loss estimates. The signal loss esti-
mates from all successful fits are averaged
tube by tube.

Table 5.7 shows the result of the signal loss
estimates. These signal loss estimates are
used to correct the simulation. The uncer-
tainty in the signal loss introduces an error
on the Monte Carlo result for the photon
count per ring of ∼ 3%. This estimate is
obtained assuming the same number of hits
in all tubes except tube 5, and calculating
the error on the mean total loss for each
tube by dividing the RMS of the fit-results
by the square–root of the number of pixels
that contribute to that result.

Table 5.7: Signal loss estimates. Shown
are the mean and the RMS of all successful
fits to pulse height spectra from pixels with
more then 0.05 p.e./event, from two runs,
one with and one without lens.

T
ub

e

N
o

of
pi

xe
ls

single
p.e. loss
below
cut (%)

Gain 1st
dyn

Total
single
p.e. loss
(%)

1 3 8± 4 3.2± 0.5 13± 7
2 5 12± 5 3.9± 0.4 14± 6
3 3 14± 2 3.2± 0.4 18± 4
4 2 5± 2 4.0± 0.4 7± 2
5 0
6 10 7± 3 3.8± 0.8 10± 7
7 4 14± 4 3.2± 0.4 17± 6
8 14 11± 3 3.4± 0.5 15± 5
9 2 11± 3 3.7± 0.7 14± 5

5.6.5 Further Corrections

Dead and Noisy Pixels

An LED run is used to identify dead chan-
nels. Laboratory scans of the tubes show
that these dead channels are in the elec-
tronic read–out and not the tubes. Also,
noisy channels which contain a very large
number of hits after the cross talk correc-
tion are identified; these are mostly due to a
failed fit to the pedestal, giving too small a
pedestal mean. Both dead and noisy chan-
nels are ignored in the photon counts, in the
data as well as in the Monte-Carlo simula-
tion. Altogether 37 channels are removed;
only 5 and 7 of these correspond to pix-
els on the Cherenkov ring with and without
lenses, respectively.
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Figure 5.29: Masked Pixels.The plot shows
the pixels at their position on the detector
plane. The gaps between the active areas of
the tubes are not shown. All channels that
are read out are displayed, including those in
the bottom 8 rows that are not connected to a
photodetector.
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Background

The sources of background were described
in chapter 4. Two of the three types of
background described there, are negligible
in this analysis:

• For a 5σ cut, electronic noise is negli-
gible

• Pedestal runs show, that non-
Gaussian, beam–independent back-
ground is very small.

The remaining background is estimated as-
suming a flat distribution on the detector
surface and averaging, tube by tube, over all
pixels that lie outside the Cherenkov ring.

5.6.6 Photon Counts in Data
and Monte Carlo

Figures 5.31 and 5.33 show the photon
counts for each pixel, integrated over 6000
events, for the case with and without
lenses respectively, for cross talk correction
method (a). Figures 5.32 and 5.34 show the
data display for the corresponding Monte
Carlo simulation, for ten times as many
events. The data display before cross talk
correction for the run with lenses is shown
in figure 5.30.

A complete summary of photon counting re-
sults for the 3×3 array is given in table 5.8.
The photoelectron counts and background
estimates for the case with and without
lenses are given, in the case with lenses for
both cross talk correction methods.

The photon counts in all figures are given
in terms of

N5σ pe = Neventsλ
′
5σ

as defined in equations 5.39 and 5.40, i.e.
the number of photoelectrons above the 5σ
cut, corrected for multiple photoelectron
events. The results are compared to the re-
sults from the Monte Carlo simulation. The
same set of pixels is masked in data and the
simulation.

5.6.7 Error Estimates

The large number of events (6000 per run)
leads to the statistical errors being negligi-
ble. Systematic errors have been estimated
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Figure 5.30: Photon counts, integrated over 6k events, for the run with lenses, without
cross talk correction. The total photon count is 88 489. The pixels are shown in their
position on the detector plane, as seen from the mirror. The bottom 8 rows of pixels correspond
to channels that are not connected to a photodetector. The total photon count given in this
caption includes those rows, while the final results given in table 5.8 do not. The photon counts
per pixel, and, in larger figures, per tube are given. The gaps between the active areas of the
tubes are not shown. The run number is 2634
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Figure 5.31: Photon counts, integrated over 6k events, for a run with lenses, with cross
talk correction (a). The photon count is 40 668. The pixels are shown in their position on
the detector plane, as seen from the mirror. The bottom 8 rows of pixels correspond to channels
that are not connected to a photodetector. The total photo count given in this caption includes
those rows, while the final results given in table 5.8 do not. The photon counts per pixel are
given, and, in larger figures, the photon counts per tube. The run number is 2634.
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5.6. PHOTON COUNTING 191

Figure 5.32: MC-simulated photon counts, for the case with lenses, integrated over 60k
events, ten times as many as for the data. The total photon count is 389 772. The pixels
are shown in their position on the detector plane, as seen from the mirror. The photon counts
per pixel are given, and, in larger figures, the photon counts per tube.
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Figure 5.33: Photon counts, integrated over 6k events, for the run without lenses, with
cross talk correction (a). The total photon count is 28 153. The pixels are shown in their
position on the detector plane, as seen from the mirror. The bottom 8 rows of pixels correspond
to channels that are not connected to a photodetector. The total photon count given in this
caption includes those rows, while the final results given in table 5.8 do not. The photon counts
per pixel, and, in larger figures, per tube are given. The gaps between the active areas of the
tubes are not shown. The run number is 2610.
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5.6. PHOTON COUNTING 193

Figure 5.34: MC-simulated photon counts, for the case without lenses, integrated over
60k events, ten times as many as for the data. The total photon count is 241 792. The
pixels are shown in their position on the detector plane, as seen from the mirror. The photon
counts per pixel and, in larger figures, per tube are given. The gaps between the active areas
of the tubes are not shown.
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Table 5.9: Systematic Cross Check: Com-
paring background-corrected photon counts
for different data runs, with the same spec-
ifications.

With lenses
run 2634 run 2662

0.59 1.09 0.66
1.00 0.00 1.13
0.60 0.83 0.61

total sg 6.52

0.57 1.06 0.65
1.01 0.00 1.09
0.63 0.79 0.64

total sg 6.44

Without lenses
run 2631 run 2610

0.39 0.83 0.37
0.85 0.00 0.92
0.20 0.66 0.26

total sg 4.48

0.39 0.80 0.37
0.86 0.00 0.93
0.20 0.64 0.30

total sg 4.49

from several sources. The comparison be-
tween the two different cross talk correc-
tion methods leads to an error of 4.5%,
where tube 4 has been ignored, as cross
talk method (b) fails here for known rea-
sons. The error due to the assumption of
p(x > y) = 1

2
is estimated by trying differ-

ent values and is found to be ∼ 1%. Com-
paring the photon counts for the same set-
ups but different runs gives an error esti-
mate of ∼ 1.2%, as seen in table 5.9. All
these error contributions yield a total sys-
tematic error on the photon count for the
whole ring of 5%.

With this systematic error, the agreement
between data and Monte Carlo for the case
with lenses is very good. For the case
without lenses, data and Monte Carlo still
show reasonable agreement, with the Monte
Carlo estimating a photon yield of 10% less
than found in the data.

Figure 5.35: Gaining photons in a tilted
lens array by shifting the lenses relative to
the MaPMTs.

Se
ns

iti
ve

 a
re

a

5.6.8 Varying the Angle of In-
cidence

The final LHCb RICH design may have a
geometry where the Cherenkov light is not
normally incident on the photo–detector
plane. Therefore, the performance of the
array with lenses is tested for the case where
the photons do not arrive at normal inci-
dence, but at an angle α relative to the
normal on the detector plane. LED runs
are used for these tests.

Here, the data are not corrected for mul-
tiple photoelectron events, and all results
are given in terms of pixel hits, i.e. events
above 5σ, after cross talk correction. For a
homogeneous illumination with ∼ 0.06 hits
per pixel, there is a difference of ∼ 6% be-
tween the number of hits and the number
of photo electrons. This is adequate for the
purpose of this study, where only relative
photon counts are considered.

Tilting the array by an angle α leads to a
reduction in effective area; the cross–section
of the cathode relative to the photon direc-
tion is proportional to cosα. The number
of detected photons is also reduced by in-



196 CHAPTER 5. MAPMTS AS PHOTO DETECTORS FOR THE LHCB RICH

Table 5.10: Hits/event/tube at different an-
gles, with the MaPMT shifted to recover as
much of the image as possible. Observed
values are compared with values expected
from the 0◦ case.

0◦ 20◦ 30◦

O
bs

er
ve

d

E
xp

ec
te

d

O
bs

er
ve

d

E
xp

ec
te

d

O
bs

er
ve

d
Black 4.05 3.68 3.55 2.93 2.98

Diffuse 3.64 3.31 3.42 2.64 2.98

creased reflection losses and a shift in the
image produced by the lens array on the
MaPMT cathode. As long as the image
is not outside the lens, which has opaque
sides, the loss due to the shift can be com-
pletely recovered by displacing the lens ar-
ray relative to the MaPMTs, as illustrated
in Figure 5.35.

Figure 5.36 shows the results in terms of
the average number of hits per pixel, ex-
cluding dead pixels, depending on which
column the pixel is in. The column num-
bering is such that columns 1 and 8 corre-
spond to the left and right respectively in
figure 5.35. Some of the lenses have black-
ened sides, while others have diffuse sides
separated with white paper. Those lenses
with diffuse sides at the left or right edge of
the 3× 3 array are ignored in this analysis.
Table 5.10 shows the results for the case
that the tubes are displaced with respect
to the lenses such that as much of the im-
age is recovered as possible (“ideal shift”).
The results are given separately for lenses
with blackened sides and lenses with diffuse
sides. These measurments are further com-

pared with the expectation from the 0◦ case,
considering all the contributions to the loss
of photons mentioned above.

For the 20◦ case, the loss is dominated by
the reduction in effective area, while for the
30◦ case, a significant fraction of the lens
image is outside the lens. The disagreement
between expected and measured values for
30◦ with diffuse sides is interpreted as some
of the light hitting the side of the lens be-
ing reflected back onto the photo–cathode
surface. This light is considered lost when
calculating the expected value.

5.6.9 Single MaPMT

Initially, single tubes read–out with the CA-
MAC based electronics were tested to eval-
uate the performance of MaPMTs and, for
the first time, their performance with the
lenses.

The readout chain of CAMAC amplifiers
and ADCs that is used is very similar to
that of the HPD tests. Some adaptations
for the increased signal size had to be made.
This is described in detail in [A+98].

Air is used as a radiator, at atmospheric
pressure (n − 1 = 3.3 · 10−4), producing
ring-segments on the tube’s surface, and
at very low pressure (49 mbar, n − 1 =
1.6 · 10−6), such that a whole Cherenkov
ring from a 120 GeV pion fits on a single
tube. Several configurations were tested:
with and without lenses, with and without
a pyrex filter in front of the tube and with
and without the quartz window that sepa-
rates the radiator gas from the photodetec-
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Table 5.11: Single MaPMT photon counts. Given are the number of photo electrons per
event above a 5σ cut, in terms of the parameter λ′5σ, integrated over the tube. The background
is estimated by averaging over pixels that are clearly outside the ring.

Full ring, tube 1, with/without lenses
With lens
(15k events)

Without lens
(15k events)

50
100
150
200
250
300
350
400
450

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

50

100

150

200

250

300

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

Backg. 0.022 0.014
Signal 0.259 0.274

Ratio without/with: 1.06 (expect: 1.09)

Full ring, tube 2, with/without pyrex filter
With filter
(15.7k events)

without filter
(15.4k events)

20
40
60
80
100
120
140
160
180

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

0

50

100

150

200

250

300

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

Backg. 0.016 0.016
Signal 0.16 0.26

Ratio with/without: 0.62 (expect 0.56)

Ring segment, tube 1, with/without lens, with/without quartz window
with lens & window
(20.7k events)

no lens, with window
(33.8k events)

no lens, no window
(30.4k events)

500

1000

1500

2000

2500

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

250
500
750
1000
1250
1500
1750
2000
2250

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

250
500
750
1000
1250
1500
1750
2000
2250

57

1

49

2

41

3

33

4

25

5

17

6

9

7
1

8

Backg. 0.0239 0.0269 0.0560
Signal 1.00 0.753 0.816
ratio 1.33 ≡ 1 1.08

expect 1.31 ≡ 1 1.09
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Figure 5.36: Average number of hits per pixel depending on left-right position for light
incident from the right (column 8) at different angles. Results are shown from four tubes
with blackened sides, and two tubes with diffuse sides.
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Figure 5.37: Arrangement of lenses with
black and diffuse sides

1 2 3

4 5 (6)

(7) 8 (9)

Lenses 1 to 4 have
black, 5 to 9 have
diffuse sides (sepa-
rated with white pa-
per). Lenses 6,
7, 9 are excluded
from the angle-of-
incidence analysis.

tors. The results are given in Table 5.11.

The expected values for the ratios of the
photon counts with and without lens are
calculated from purely geometrical consid-
erations, and the assumption of 8% light
loss due to reflection at the lens surfaces.

The with/without ratio for the quartz win-
dow also assumes 4% light loss at each sur-
face; for the pyrex filter, the expected value
given is the ratio of the integrated photon
yields calculated from the measured quan-

tum efficiency, the transmission of the pyrex
filters and the reflectivity of the mirror, as
shown in figures 5.3, 4.9 and 5.2 respec-
tively.

The single MaPMT tests show, independent
from Monte Carlo simulations, that the op-
tical properties of the quartz window, the
pyrex filter, and the lenses, are in accor-
dance with expectation.

5.7 Conclusion

The test–beam results have shown that
the MaPMTs, singly and within an array,
perform largely according to expectation.
The lens–system was tested with Cherenkov
light, and with LED light coming from dif-
ferent directions. The lens system per-
formed well, and doubled the active area of
the tubes at the cost of ∼ 8% reflection loss.
This loss could be avoided in a final design
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with optical contact between the lenses and
the tubes.

For the first time in a test–beam envi-
ronment, photodetectors suitable for the
LHCb RICH have been read out within
the LHC-bunch-crossing interval of 25 ns.
The pipelined readout system, with a data-
capture rate of 20 MHz, performed well,
apart from problems associated with cross
talk.

The origin of the cross talk could be traced
to specific parts of the readout chain, none
of which are intended to be used in the fi-
nal detector design. Future MaPMT tests
would have readout electronics specifically
designed to fulfil the LHCb-RICH require-
ments. The tubes themselves are cross-talk
free.

The photon counting results, using two dif-
ferent methods for cross talk correction,
agree well with each other, and with expec-
tation from Monte Carlo simulation.

The success of these test–beam studies
played an important part in the LHCb-
RICH Photodetector Panel’s conclusion in
November 2000 that the MaPMT is a vi-
able and safe photodetector option for the
LHCb RICH, and should be kept as a back-
up solution in case problems arise in the
final stages of the development of the less
expensive Pixel HPD.



200 CHAPTER 5. MAPMTS AS PHOTO DETECTORS FOR THE LHCB RICH



Chapter 6

Conclusion

When LHCb starts data taking in 2006,
CP violation in the B0

d system is expected
to be a well-established phenomenon, and
the B0

d mixing phase φmix will be precisely
measured. Evidence for New Physics is in
principle possible, for example in the case
that φmix turns out to be near zero. How-
ever, meaningful constraints on the Stan-
dard Model from γ measurements are not
expected.

LHCb will make use of the huge number of
bb pairs created at the LHC to perform a
comprehensive B–physics programme, that
includes precision measurements of γ in a
variety of decay channels. One of the key–
features that facilitate this programme is
the LHCb–RICH system.

An important aspect in the construction of
the RICH is the choice of suitable photo
detectors, that have to be precise, sensi-
tive, and fast. One photo detector op-
tion, the commercially available MaPMT,
has been shown to fulfil the LHCb RICH
requirements. A full-scale RICH 2 proto-
type using HPD technology was tested in
the CERN X7 beam line. It worked accord-
ing to expectation, in particular in the two
key-aspects that define the performance of

Table 6.1: Selected channels that are sensi-
tive to γ. It is indicated whether they are
likely to be affected by New Physics (NP) or
not (SM). A estimate of the error on γ after
one year of data taking is given. (From this
thesis, [B+00] and [TP98]).
Channel SM NP σγ after 1 year

B0
d → D∗±π∓

√
∼ 7◦

B0
s → D±s K∓

√
3◦ − 13◦

B0
d → ρπ

√
∼ 3◦

B0
d → π+π−

B0
s → K+K−

}
√

4◦ − 8◦

B0
d → D+

d D−d
B0

s → D+
s D−s

}
√

∼ 3◦

a RICH detector, the photon yield and the
Cherenkov angle resolution.

These results give confidence that the
model of the RICH used in the simulation
studies for the RICH Technical Design Re-
port is accurate, and the results are mean-
ingful. These studies demonstrate useful
K/π separation for momenta ranging from
∼ 1 GeV to beyond 100 GeV.

Table 6.1 gives a few examples for decay
channels that measure the CKM angle γ.
Most of the measurements listed in this ta-

201
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ble would be impossible without the K/π
separation provided by the RICH. The fig-
ures given in the table are approximate val-
ues for the expected precision on γ after one
year of data taking, and are subject to dif-
ferent assumptions for certain physics pa-
rameters, especially on the frequency of the
flavour–oscillation the B0

s system.

The last five channels shown in the table are
expected to have strong penguin contribu-
tions and are therefore susceptible to New
Physics. For the channels B0

d → DdDd and
B0

s → DsDs the angle γ actually enters only
via the penguin contributions.

In complete contrast to this are the chan-
nels B0

d → D∗±π∓ and B0
s → D±s K∓ where γ

enters at tree level, and there are no pen-
guin contributions. When compared with
the former cases this will provide a very
sensitive test of New Physics. It has been
demonstrated in this thesis that enough
B0

d → D∗±π∓ decays can be reconstructed
at LHCb to measure γ to a precision of a
few degrees.

Further improvements in the results are
expected from extending the analysis to
similar channels, for example B0

d → D∗a1,
which has a higher branching fraction than
B0

d → D∗π. The same inclusive reconstruc-
tion method can be used. The extraction
of γ is equally possible, albeit slightly more
involved since it requires an angular analy-
sis to de-convolute the different parities of
the two–vector final state.



Appendix A

FORTRAN Routine to Calculate
P (kn)

*

SUBROUTINE DYNODE_CHAIN(OUT, MAX, LAMBDA, DYNODES)

IMPLICIT NONE

* This program takes as its input the maximum number of electrons at

* the end of the dynode chain, for which it should calculate P(k_n),

* MAX, the average number of photo-electrons hitting the first

* dynode, LAMBDA(1), the gains at each dynode, LAMBDA(2),

* ... LAMBDA(DYNODES) and the dimension of the array LAMBDA:

* DYNODES. It calls the routine MAKE_P_RATIO, which is listed at the

* end of this file.

*

* The output is put into the array OUT(MAX), where the probability

* to find k_n < MAX electrons at the end of the dynode chain is

* given by OUT(k_n).

*

* Written by Jonas Rademacker.

*

INTEGER MAX, DYNODES

DOUBLE PRECISION OUT(0:MAX), LAMBDA(DYNODES)

INTEGER ABS_MAX, MAX_DYN

PARAMETER(ABS_MAX=50001,MAX_DYN=13)

INTEGER IX,IY,M,I, K, J

* To avoid having to define a limit on the number k_n that can be

* calculated, one could create these arrays outside the program and

* pass them on.

DOUBLE PRECISION F(1:MAX_DYN) ! corrsponds to f^{star} in the text

DOUBLE PRECISION U(1:MAX_DYN,0:ABS_MAX),V(1:MAX_DYN,0:ABS_MAX)

DOUBLE PRECISION X(1:MAX_DYN)

DOUBLE PRECISION FASTNULL

PARAMETER (FASTNULL=1.d-300)

DOUBLE PRECISION MEAN

DOUBLE PRECISION P_ratio(ABS_MAX), F_FACTOR, U_FACTOR, V_FACTOR

INTEGER MAX_OLD

SAVE MAX_OLD

DATA MAX_OLD/-9999/

SAVE P_ratio

* -- Some initialisations and tests --

DO IX=1,MIN(ABS_MAX,MAX),+1

OUT(IX)=0.d0

ENDDO

IF(ABS_MAX.LT.MAX)THEN

RETURN

ENDIF

MEAN = 1.D0

DO IX=1,DYNODES,+1

MEAN = MEAN*LAMBDA(IX)

ENDDO

IF(MEAN.LE.0.d0)THEN

OUT(0)=1.d0

RETURN

ENDIF

* -- make and save the factors P_ratio(k)=(p_{k}/p_{k-1})^{k} --

IF(MAX.GT.MAX_OLD)THEN

MAX_OLD=MAX

CALL MAKE_P_RATIO(P_ratio,MAX)

ENDIF

* -- Calculate the probability to see zero electrons (k_n=0) --

F(DYNODES)=1.d0

U(DYNODES,0)=F(DYNODES)

V(DYNODES,0)=F(DYNODES)

DO IX=DYNODES-1,1,-1

X(IX) = LAMBDA(IX)*DEXP(-LAMBDA(IX+1))

F(IX) = DEXP(X(IX)*F(IX+1))

U(IX,0) = F(IX)

V(IX,0) = F(IX)

ENDDO

OUT(0)=DEXP(-LAMBDA(1))*F(1) ! <---- save the result

* -- Calculate the probabilities for k_n=1,...,MAX electrons --

DO K=1,MAX,+1

* . calculate f_n

IF(F(DYNODES).LT.FASTNULL)THEN

F(DYNODES)=0.d0

ELSE

F(DYNODES)=F(DYNODES) * LAMBDA(DYNODES)/DBLE(K)

ENDIF

U(DYNODES,K)=F(DYNODES)

V(DYNODES,K)=F(DYNODES)

* . re-calculate U and V from previous iteration:

DO J=0,K-1,+1

F_FACTOR=P_ratio(K)**(DBLE(J)/DBLE(K))

IF(K-1-J.GT.0)THEN

U_FACTOR=DSQRT(DBLE(K-1)/DBLE(K-1-J))*

& F_FACTOR

ELSE

U_FACTOR=F_FACTOR

ENDIF

V_FACTOR=DSQRT((DBLE(K-1)/DBLE(K-J)))*

& F_FACTOR

DO I=DYNODES,1,-1

U(I,J)=U(I,J)*U_FACTOR

V(I,J)=V(I,J)*V_FACTOR

ENDDO

ENDDO

* . apply the recursive formula to get f^{k}_i
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DO I=DYNODES-1, 1, -1

F(I)=0.d0

DO J=0,K-1

F(I)=F(I)+U(I,K-1-J)*X(I)*V(I+1,J+1)

ENDDO

U(I,K)=F(I)

V(I,K)=F(I)

ENDDO

* . calculate P(k):

OUT(K)=DEXP(-LAMBDA(1))*F(1) ! <---- save the result

ENDDO

RETURN

END

*__________________________________________________________________

SUBROUTINE MAKE_P_RATIO(P_ratio,MAX)

IMPLICIT NONE

INTEGER MAX

DOUBLE PRECISION P_ratio(MAX)

INTEGER N

DOUBLE PRECISION NFAC

DOUBLE PRECISION PI, E

PARAMETER(PI=3.1415927d0, E=2.718281828d0)

INTEGER APPROX_FROM

PARAMETER(APPROX_FROM=25)

NFAC=1.D0

P_ratio(1)=1.d0

DO N=2,MIN(APPROX_FROM-1,MAX),+1

NFAC=NFAC*DBLE(N-1)

P_ratio(N)=(NFAC**(1.d0/DBLE(N-1)))/DBLE(N)

ENDDO

DO N=APPROX_FROM,MAX,+1

P_ratio(N)=

& (2.D0*PI*DBLE(N-1))**(1.D0/(2.D0*DBLE(N-1)))*

& DBLE(N-1)/(E*DBLE(N))*

& (1.d0+1.d0/DBLE(12*(N-1))+

& 1.d0/DBLE(288*(N-1)**2)

& )**(1.D0/DBLE(N-1))

ENDDO

RETURN

END

*________________________________________________________________

*



Appendix B

Approximating λ5σ with λ′5σ

In chapter 5, the parameter λ′5σ was in-
troduced as an approximation to the mean
number of photoelectrons per event in a
given pixel, detected above a 5σ threshold
cut,λ5σ.

To evaluate this approximation, it is use-
ful to make the following definitions (all
numbers refer to photon counts in a single
pixel):

λp.e. Mean number of photoelectrons per
event generated in the cathode.

nhits Mean number of hits per event, count-
ing single and multiple photo electrons
as a single hit and assuming 100% pho-
toelectron detection efficiency. From
Poisson statistics, this is related to λp.e.

by λp.e. = − ln(1− nhits)

λ5σ Mean number of photoelectrons/event
detected above a 5σ cut.

n5σ Mean number of hits/event detected
above a 5σ cut.

λ′5σ The approximation to λ5σ used
throughout the text, defined by

λ′5σ ≡ − ln(1− n5σ) (B.1)

l1 Loss of single photoelectrons: The frac-
tion of single photo electrons generated
in the photo cathode, that are not de-
tected.

If the number of photoelectrons that are
detected above a 5σ cut were Poisson dis-
tributed, λ5σ could be calculated from the
mean number of hits above 5σ, n5σ, and
would be given by λ′5σ = − ln(1 − n5σ).
However, the distribution is not exactly
Poissonian, because the detection probabil-
ities of two or more photoelectrons gener-
ated in the same event are not uncorrelated.

Their pulse heights combine to one large
pulse height, and the probability that this
is below the threshold cut is smaller than
the probability that two individual photo
electrons both remain undetected. There-
fore, the probability of single photo electron
losses needs to be known in order to calcu-
late λ5σ.

Assuming that only single photoelectron
events are lost below the threshold cut,
the number of hits above the cut is given by

n5σ = 1− e−λp.e. − l1λp.e.e
−λp.e. , (B.2)
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and the mean number of photoelectrons
above the cut is

λ5σ = λp.e. − l1λp.e.e
−λp.e. . (B.3)

Expanding equation B.1 in terms of n5σ, in-
serting equation B.2 for n5σ and comparing
the result with equation B.3, shows that λ′5σ
under-estimates λ5σ by ∼ (1 − 1

2
l1)l1λ

2
p.e..

For the values of λp.e. and l1 found in the
test–beam, this corresponds to less than 3%
of the photon count in any given pixel for
the data presented in chapter 5.

It is interesting to note that λ′5σ is an
even better approximation to another
useful parameter, the mean number of
photoelectrons above the cut, for the limit
that all hits are single photoelectron events:

λsingle
5σ = (1− l1)λ5σ. (B.4)

The mean number of photoelectrons above
the cut, λ5σ, still has some weak dependence
on the particular RICH prototype setup in
which the photo detectors are tested, be-
cause the signal loss is different for mul-
tiple hits than it is for single hits. For
example a shorter distance between mirror
and detector–plane increases the fraction of
multiple hits. On the other hand, λsingle

5σ is
truly independent of the fraction of multi-
ple hits. The parameter λ′5σ over-estimates
λsingle

5σ by ∼ 1
2
(l1λp.e.)

2, which is less than
0.5% of the photon count in any given pixel,
for the values of λp.e. and l1 found in the
data presented in chapter 5.
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