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Abstract

The reactions e+e− → e+e−π0 X and e+e− → e+e−K0
S X are studied using

data collected at LEP with the L3 detector at centre-of-mass energies between 189
and 202 GeV. Inclusive differential cross sections are measured as a function of the
particle transverse momentum pt and the pseudo-rapidity. For pt ≤ 1.5 GeV, the
π0 and K0

S differential cross sections are described by an exponential, typical of
soft hadronic processes. For pt ≥ 1.5 GeV, the cross sections show the presence of
perturbative QCD processes, described by a power-law. The data are compared to
Monte Carlo predictions and to NLO QCD calculations.
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1 Introduction

Two-photon collisions are the main source of hadron production in the high-energy regime of
LEP via the process e+e− → e+e−γ∗γ∗ → e+e−hadrons. In the Vector Dominance Model, each
photon can transform into a vector meson with the same quantum numbers, thus initiating
a strong interaction process with characteristics similar to hadron-hadron interactions. This
process dominates in the “soft” interaction region, where hadrons are produced with a low
transverse momentum pt. Hadrons with high pt are produced by the direct QED process
γ∗γ∗ → qq̄ or by QCD processes originating from the partonic content of the photon. QCD
calculations are available for single particle inclusive production in two-photon interactions at
next-to-leading order (NLO) [1, 2].

In this letter, inclusive π0 and K0
S production from quasi-real photons is studied for a centre-

of-mass energy of the two interacting photons, Wγγ , greater than 5 GeV. The π0’s are measured
in the transverse momentum range 0.2 ≤ pt ≤ 20 GeV and in the pseudo-rapidity1) interval
|η| ≤ 4.3. The K0

S’s are measured in the range 0.4 ≤ pt ≤ 4 GeV and |η| ≤ 1.5.
The data used for this analysis were collected by the L3 detector [3] at centre-of-mass

energies from
√

s = 189 GeV to 202 GeV, with a luminosity weighted average value of
√

s =
194 GeV. The integrated luminosity is 414 pb−1. Previous measurements of inclusive charged
hadron and K0

S production were performed at LEP [4] at
√

s = 161 − 172 GeV.

2 Monte Carlo simulation

The process e+e− → e+e−hadrons is modelled with the PHOJET [5] and PYTHIA [6] event
generators with respectively 2 and 3 times more luminosity than the data. The following
generators are used to simulate background processes: PYTHIA and KK2f [7] for e+e−→ qq̄ (γ);
KORALZ [8] for e+e−→ τ+τ−(γ); KORALW [9] for e+e−→ W+W− and DIAG36 [10] for e+e−→
e+e−τ+τ−. The events are simulated in the L3 detector using the GEANT [11] and GEISHA [12]
programs and passed through the same reconstruction program as the data. Time dependent
detector inefficiencies, as monitored during the data taking period, are also simulated.

3 Event selection

The selection of e+e− → e+e−hadrons events is based on information from the central track-
ing detectors and from the electromagnetic (BGO) and hadronic calorimeters [13]. In order
to restrict the Q2 interval, we exclude events with a cluster in the small-angle calorimeter
with energy greater than 30 GeV. About 2 million hadronic events are selected. The level of
background is less than 1% and is mainly due to the e+e− → qq̄ (γ) and e+e−→ e+e−τ+τ−

processes.
The particle identification proceeds from charged tracks and electromagnetic clusters. The

inner tracking detector extends up to |η| = 1.64. The electromagnetic calorimeters extend up
to |η| ≤ 0.96 for the barrel, and cover 1.15 ≤ |η| ≤ 2.25 for the endcaps and 3.37 ≤ |η| ≤ 4.38
for the small-angle detector. A track must have a transverse momentum above 100 MeV and
a distance of closest approach to the primary vertex in the transverse plane below 10 mm.
An electromagnetic cluster must have an energy greater than 100 MeV formed by the energy
deposited in at least 2 neighbouring BGO crystals. There should be no charged track within an

1)η = − ln tan(θ/2), where θ is the polar angle of the particle relative to the beam axis.
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angle of 200 mrad and the associated energy in the hadron calorimeter must be less than 20%
of the electromagnetic energy. Clusters in the small-angle detector must have an energy greater
than 2 GeV and restrictions on the energy profile in each cluster are applied to distinguish well
reconstructed photons from those at the edges of the detector or from residual hadrons.

For pt < 5 GeV, the inclusive π0 production is measured via the decay of the π0 into two
photons associated to two electromagnetic clusters. The distribution of the effective mass of
the reconstructed γγ system shows a clear π0 peak in all the detector regions. Examples for
the central region and the small-angle detector are given in Figures 1a and 1b, respectively.
Over the entire range of |η| and pt, the resolution varies between 6.6 and 13.5 MeV, and is well
reproduced by Monte Carlo simulation. For pt > 4 GeV and |η| < 0.5, the two final photons
are unresolved and the π0 is associated to a single electromagnetic cluster. To avoid double-
counting in the region 4 < pt < 5 GeV and |η| < 0.5, where both methods are applied, only
clusters which do not contribute to combinations in a 3-σ mass band around the π0 peak are
taken into account. In this region, we have checked that the two methods applied separately
agree within errors.

Inclusive K0
S production is measured using the decay K0

S → π+ π− that produces two oppo-
sitely charged tracks. The K0

S’s are selected by reconstructing the secondary decay vertex. The
projected distance, in the transverse plane, between the secondary vertex and the primary e+e−

interaction point is required to be greater than 3 mm. The angle between the projected flight
direction of the K0

S candidate and the total transverse momentum vector of the two outgoing
tracks must be less than 75 mrad. After these cuts, about 5 × 105 events are selected. The
distribution of the effective mass of the reconstructed π+ π− system shows a clear K0

S peak.
Examples for different pt bins are given in Figures 1c and 1d. The resolution varies from 8 MeV
for pt < 1 GeV to 10 MeV around 4 GeV, and is well reproduced by Monte Carlo simulation.

4 Differential cross sections

Differential cross sections as a function of the transverse momentum pt and of the absolute
pseudorapidity |η| are calculated using the number of π0 and K0

S candidates and the overall
efficiency for each bin of pt or |η|. The overall efficiency includes reconstruction and trigger effi-
ciencies and takes into account the branching fraction of the K0

S into π+π−. The reconstruction
efficiency includes the effects of the acceptance and selection cuts and is calculated with the
Monte Carlo generators PHOJET and PYTHIA. As both generators reproduce well the shapes
of the experimental distributions of hadronic two-photon production [13], their average is used.

Two-photon events are collected predominantly by the track triggers [14]. The trigger
efficiency is derived from each year’s data sample by comparing the number of events accepted
by the independent track and calorimetric energy [15] triggers. The efficiencies of higher level
triggers are measured using prescaled events. For the π0, it varies from 80% at low pt to 100%
at high pt. For the K0

S, it is 85% independently of pt.
The cross sections are calculated for Wγγ ≥ 5 GeV and a photon virtuality Q2 ≤ 8 GeV2.

The overall efficiency does not depend on the Q2 cutoff.

4.1 e+e−
→ e+e−

π
0 X analysis

To evaluate the number of π0’s when the two photons are well separated in the detector, fits
are made to the γγ mass distribution in the interval 50 < Mγγ < 200 MeV using a Gaussian
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to describe the signal and a third degree Chebyshev polynomial for the background. All the
parameters, including mass and width of the peak, are left free.

When single clusters are identified as a π0, the contamination coming from the decays of
other mesons (η, ω, η′,...) is on average 15.1 ± 1.2 % over the entire pt and |η| ranges. Single
photon production (γq → γq, qq̄ → γg, gq → γq) is predicted to be more than one order
of magnitude below our measurements [16]. In addition, a study of the energy profile of each
cluster reveals no significant background from this source. The background due to annihilation
events increases with pt up to a maximum of 11 %.

The reconstruction efficiency varies between 15% and 50% in the different pt and |η| ranges.
The efficiency increases from pt ≃ 0.2 GeV, where a low energy photon can go undetected, up
to pt ≃ 2 GeV. In the region 2 < pt < 4 GeV, the efficiency decreases due to the increasing
percentage of events in which the two photons merge. For pt > 4 GeV, the addition of the
single-cluster analysis gives a higher efficiency. The efficiency decreases with polar angle due
to the acceptance of the calorimeters.

Sources of systematic uncertainties on the cross-section measurements are selection criteria,
Monte Carlo modelling, background subtraction and accuracy of the trigger efficiency measure-
ment. The uncertainty due to selection criteria is dominated by hadron selection, estimated to
be 7.5 % [13]. The Monte Carlo modelling uncertainty, taken as half the relative difference be-
tween PHOJET and PYTHIA, increases with pt from 1% to 24%. The background uncertainty
varies from 5% to 15% for pt < 5 GeV. It is estimated using different background parametri-
sations during the fitting procedure. In the high pt region, the uncertainty on the annihilation
background subtraction is taken as half the difference between PYTHIA and KK2f and varies
from 0.1% to 5%. The uncertainty on the trigger efficiency varies from 0.1% to 1.1% due to
the statistical accuracy of its determination.

The overall efficiencies and differential cross sections dσ/dpt and dσ/d|η| are given in Tables 1
and 2. The π0 multiplicity in the range 0.2 < pt < 20 GeV and |η| < 0.5 is 0.275 ± 0.001 ± 0.025
per e+e− → e+e−hadrons event, in agreement with Monte Carlo predictions, 0.281 for PHOJET
and 0.285 for PYTHIA.

4.2 e+e−
→ e+e−K0

S
X analysis

The number of K0
S is evaluated by means of a fit to the π+π− mass distribution in the interval

400 < Mπ+π− < 600 MeV. A Gaussian describes the signal and a third degree Chebyshev
polynomial the background. All parameters, including the mass and width of the peak, are left
free.

The reconstruction efficiency is of the order of 20 %. Systematic uncertainties, estimated
as in the π0 case, are selection criteria (7.5%), Monte Carlo modelling (1−6%), background
subtraction (1−7%) and trigger efficiency measurement accuracy (2%). In addition, a 2.5 %
uncertainty arises from the K0

S selection criteria.
The overall efficiencies and differential cross sections dσ/dpt and dσ/d|η| are given in Tables 3

and 4. The multiplicity of K0
S in the range 0.4 < pt < 4 GeV and |η| < 1.5 is 0.060±0.006±0.003

per e+e− → e+e−hadrons event, in agreement with Monte Carlo predictions, 0.067 for PHOJET
and 0.056 for PYTHIA.
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5 Results

Differential cross sections of π0 and K0
S production with respect to pt and |η| are shown in

Figures 2, 3 and 4.
The behaviour of dσ/dpt in the range 0.2 < pt < 1.5 GeV for π0 and 0.6 < pt < 1.5 GeV for

K0
S is described by an exponential of the form Ae−pt/〈pt〉 with a mean value of 〈pt〉 ≃ 230 MeV for

the π0 and 〈pt〉 ≃ 290 MeV for the K0
S. This behaviour is characteristic of hadrons produced by

soft interactions and is similar to that obtained in hadron-hadron and photon-hadron collisions
[17]. Due to the direct γγ → qq̄ process and to hard QCD interactions, two-photon collisions
exhibit a cross section higher than the expected exponential behaviour at high pt values. For
pt ≥ 1.5 GeV, the differential cross sections are better represented by a power law function
Ap−B

t . The value of the power B is compatible with 4 for both π0 and K0
S. In the framework

of Reference [18], this value is expected in the case of 2 → 2 hard scattering processes at the
parton level.

The differential cross sections are also compared to Monte Carlo predictions in Figure 2. In
the π0 case, the high pt region is not reproduced by PYTHIA nor by PHOJET. We verify that
the shapes of the |η| distributions of π0 and K0

S are well reproduced by both models.
In Figures 3a and 3b the data are compared to analytical NLO QCD predictions [19].

For this calculation, the flux of quasi-real photons is obtained using the Equivalent Photon
Approximation, taking into account both transverse and longitudinal virtual photons. The
interacting particles can be photons or partons from the γ → qq̄, which evolves into quarks
and gluons. The NLO parton density functions of Reference [20] are used and all elementary
2 → 2 and 2 → 3 processes are considered. New NLO fragmentation functions (FF ) [21] are
used assuming that FF (π0) = (FF (π+) + FF (π−))/2. The renormalization, factorisation and
fragmentation scales are taken to be equal: µ = M = MF = ξpt [2]. The scale uncertainty
in the NLO calculation is estimated by varying the value of ξ from 0.5 to 2.0. The structure
in the pt spectrum for the K0

S calculation is due to the charm threshold in the fragmentation
function [2, 22]. The agreement with the data is satisfactory in the K0

S case, but it is poor for
the π0 case in the high-pt range.

The dσ/d|η| differential cross sections, are also compared to QCD calculations as shown in
Figure 4. The shape of the data, and in particular the measurement of the π0 production at
〈|η|〉 = 3.85, is reproduced by NLO QCD predictions.
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pt 〈pt〉 Efficiency dσ/dpt for Wγγ > 5 GeV dσ/dpt for Wγγ > 10 GeV
[GeV] [GeV] [%] [pb/GeV] [pb/GeV]

0.2−0.4 0.28 12.9 ± 1.2 (89 ± 1 ± 8) ×102 (62 ± 0.8 ± 6) ×102

0.4−0.6 0.48 24.3 ± 2.2 (44 ± 0.3 ± 4) ×102 (35 ± 0.3 ± 3) ×102

0.6−0.8 0.68 30.7 ± 2.8 (18 ± 0.1 ± 2) ×102 (15 ± 0.1 ± 1) ×102

0.8−1.0 0.88 35.4 ± 3.2 (73 ± 0.8 ± 7) ×101 (59 ± 0.7 ± 6) ×101

1.0−1.5 1.14 37.2 ± 3.4 (22 ± 0.3 ± 2) ×101 (18 ± 0.3 ± 2) ×101

1.5−2.0 1.68 37.4 ± 3.5 (46 ± 1 ± 4) (40 ± 1 ± 4)
2.0−3.0 2.31 35.8 ± 3.5 (11 ± 0.5 ± 1) (95 ± 5 ± 11) ×10−1

3.0−4.0 3.36 23.5 ± 4.1 (30 ± 6 ± 5) ×10−1

4.0−5.0 4.39 47.5 ± 8.5 (76 ± 14 ± 1) ×10−2

5.0−7.5 5.79 26.7 ± 3.0 (26 ± 4 ± 3) ×10−2

7.5−10.0 8.46 26.4 ± 3.7 (73 ± 18 ± 10) ×10−3

10.0−15.0 11.98 21.7 ± 3.9 (27 ± 9 ± 5) ×10−3

15.0−20.0 17.36 15.6 ± 3.8 (14 ± 8 ± 4) ×10−3

Table 1: The π0 overall efficiency and differential cross sections as a function of pt for |η| <
0.5. For pt < 4 GeV, the π0 is only reconstructed from its decay into two photons. Above 5
GeV, the π0 is only detected as a single cluster. In the 4 − 5 GeV bin, both methods are used
yielding a higher efficiency. The first uncertainty on cross sections is statistical and the second
one systematic. The cross sections are calculated for Wγγ > 5 GeV and Wγγ > 10 GeV and
coincide for pt > 3 GeV.

Detector |η| Number of π0 Efficiency [%] dσ/d|η| [pb]
0.0−0.2 8914 35.6 ± 4.0 303 ± 8 ± 33

Barrel 0.2−0.4 9263 36.7 ± 4.1 305 ± 8 ± 33
0.4−0.6 8965 34.2 ± 3.8 317 ± 8 ± 34
0.6−0.8 8094 31.7 ± 3.6 308 ± 8 ± 33
0.8−1.4 8688 12.4 ± 2.1 282 ± 10 ± 47
1.4−1.6 3443 16.6 ± 2.9 251 ± 15 ± 42

Endcap 1.6−1.8 3050 16.4 ± 3.0 225 ± 15 ± 37
1.8−2.0 2313 15.2 ± 2.8 184 ± 15 ± 31
2.0−2.2 2294 12.7 ± 2.5 217 ± 23 ± 36

Small-angle 3.4−4.3 1410 16.4 ± 3.5 23 ± 2 ± 5

Table 2: The number of reconstructed π0, overall efficiency and differential cross section as a
function of pseudorapidity for pt > 1 GeV and Wγγ > 5 GeV. The first uncertainty on the cross
section is statistical and the second one systematic.
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pt 〈pt〉 Efficiency dσ/dpt for Wγγ > 5 GeV dσ/dpt for Wγγ > 10 GeV
[GeV] [GeV] [%] [pb/GeV] [pb/GeV]

0.4−0.6 0.49 13.6 ± 0.1 1522 ± 20 ± 81 1262 ± 21 ± 65
0.6−0.8 0.69 17.8 ± 0.2 947 ± 14 ± 53 786 ± 16 ± 40
0.8−1.0 0.89 20.0 ± 0.3 521 ± 11 ± 27 428 ± 12 ± 22
1.0−1.5 1.16 22.2 ± 0.4 180 ± 5 ± 9 151 ± 4 ± 8
1.5−2.0 1.67 22.4 ± 1.0 46 ± 3 ± 3 42 ± 2 ± 2
2.0−3.0 2.29 16.1 ± 1.3 10 ± 1 ± 0.6 11 ± 1 ± 0.6
3.0−4.0 3.35 14.8 ± 4.8 2.1 ± 0.8 ± 0.2 1 ± 0.5 ± 0.3

Table 3: The K0
S overall efficiency and differential cross sections as a function of pt for |η| < 1.5.

The first uncertainty on cross section is statistical and the second one systematic. The cross
section is calculated for Wγγ > 5 GeV and Wγγ > 10 GeV.

|η| Number of K0
S Efficiency [%] dσ/d|η|[pb]

0.0−0.3 744 23.3 ± 0.8 25.9 ± 2.0 ± 1.3
0.3−0.6 759 24.5 ± 0.8 25.1 ± 1.9 ± 1.2
0.6−1.5 1473 14.7 ± 1.2 27.1 ± 2.4 ± 3.2

Table 4: The number of reconstructed K0
S, overall efficiency and differential cross section as a

function of pseudorapidity for pt > 1.5 GeV and Wγγ > 5 GeV. The first uncertainty on the
cross section is statistical and the second one systematic.
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Figure 1: Two photon effective mass for a) 1 < pt < 1.5 GeV in the central region and
b) for pt > 0.2 GeV in the small angle detector. Two charged pion effective mass for c)
0.2 < pt < 0.4 GeV and d) 0.8 < pt < 1.0 GeV. The π0 and K0

S peaks are fitted with a
Gaussian and the background with a Chebyshev polynomial. Values of the π0 and K0

S masses
are also indicated.
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Figure 2: Inclusive differential cross section dσ/dpt compared to Monte Carlo predictions and
exponential and power law behaviour for: a) π0 production for |η| <0.5 and b) K0

S production
for |η| < 1.5. Ratio of the differential cross section dσ/dpt to Monte Carlo predictions for: c)
π0 production and d) K0

S production.
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Figure 3: Inclusive differential cross section dσ/dpt compared to NLO QCD predictions for: a) π0 production for |η| < 0.5 and b) K0
S

production for |η| < 1.5. The NLO calculations are given for the QCD scale equal to pt (full line) and for the scales 0.5 pt (upper
dashed line) and 2 pt (lower dashed line). The contribution of the direct QED process is indicated as a dashed dotted line. For the π0

case the estimation of the single photon production [16] is indicated as a dotted line. The structure at 3GeV in b) is due to the charm
threshold in the fragmentation function [2,22].
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Figure 4: Inclusive differential cross sections dσ/d|η| compared to NLO QCD predictions for: a) π0 production for pt > 1 GeV and
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14


	Introduction
	Monte Carlo simulation
	Event selection
	Differential cross sections
	{relax mathversion {bold}$ rm {e}^{+} rm {e}^{-} rightarrow rm {e}^{+} rm {e}^{-} ensuremath {ensuremath {pii }^0}$} X analysis
	{relax mathversion {bold}$ rm {e}^{+} rm {e}^{-} rightarrow rm {e}^{+} rm {e}^{-} ensuremath {rm {K_S^0}}$} X analysis

	Results

