
CERN-IT-2001-011
September 18th 2001

Object Persistency for HEP data using an Object-Relational
Database

Marcin Nowak, Dirk Düllmann, Dirk Geppert, Peter Kunszt, Stefano Paoli
CERN, IT Database Group, Geneva, Switzerland (http://cern.ch/db)

Abstract

We present an initial study of the object features of Oracle 9i – the first of the market-leading
object-relational database systems that supports a true object model on the server side as well
as an ODMG-style C++ language binding on the client side. We discuss how these features can
be used to provide persistent object storage in the HEP environment.

Keywords: LHC, persistency, C++ language binding, object, database, VLDB

1. Introduction
For a number of years the former RD45 project at CERN and the IT-DB group has been investigating
solutions to the problem of providing object persistency for the complex data models used by HEP
experiments. Two important factors make this a very challenging task: firstly, high data volumes and
throughput translate to a requirement for highly scalable and performing solutions; secondly, complex
object models, that need to be exposed to many physicists, require a simple and robust navigational
access from popular OO programming languages such as C++ and Java. These requirements and a
study of available alternatives initially led to the proposal of a solution based on an Object Database
Management System (ODBMS), coupled to a Mass Storage System (MSS). Since then several HEP
experiments have implemented software frameworks using an ODBMS – Objectivity/DB – as the main
persistency mechanism. In these cases the database has been used to manage the entire set of data,
including raw data, derived data, “statistical” data, such as histograms and detector-related data, e.g.
calibrations. The experience gained during the deployment and operation of these systems – up to the
level of 300TB in the case of Babar – have confirmed that databases are a viable solution for providing
persistency for HEP data.
In the early stages of the RD45 project’s investigation of the database technologies, the difference
between object and relational databases was clearly visible. Object database products appeared to
provide the required features and in combination with the general expectation that the object database
market would grow significantly – even eclipsing the relational database market according to the most
extreme predictions, the project focused most of its attention on this particular solution. Since the time
of the first evaluations, however, relational databases have been continuously evolving, eventually
becoming object-relational hybrids. The major relational database vendors, including Oracle and IBM,
started to address issues relevant to HEP data management, progressively adding support for Very
Large Databases (VLDB) as well as support for user-defined data types and finally objects and OO
language bindings. We believe that addition of object-oriented features to an already existing very
strong relational basis makes object-relational database management systems (ORDBMS) an
interesting candidate for HEP data storage.
The first ORDBMS to provide a nearly complete set of object-oriented features was Oracle 9i database.
Oracle supports user defined object types, including inheritance, polymorphism and abstract types.
Objects are understood by the database internally and can be queried with the SQL statements. The
C++ language binding is provided by the Oracle C++ Call Interface (OCCI), similar to the ODMG
standard used by the object databases. Navigational access to objects is possible through both SQL and
OCCI. Mapping between SQL and C++ classes is done automatically by Oracle Type Translator
(OTT).
Oracle 9i supports also a set of features that are useful in VLDB applications, i.e. partitioned tables,
locally managed tablespaces and read-only and offline tablespaces, all of which are discussed in more
detail below.
In this contribution we describe the new features and present the results of a preliminary evaluation,
focusing on issues most relevant for the needs of HEP data management.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25320354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Object Modelling With SQL:1999
The SQL:1999 standard [2] introduced object-oriented extensions into the structured query language.
Some reviewers even proclaim that the ‘relational model is dead’ [3]. SQL:1999 specifies several data
types that were until now in the domain of object-oriented database systems. In particular, the standard
now defines references, arrays and user defined types (UDT) along with subtypes. These features have
been studied using the implementation provided in the Oracle 9i release, which claims to have
implemented this version of the SQL standard. Oracle is also the only major vendor that provides a
C++ interface to its DBMS, the Oracle C++ Call Interface. However, there is one potentially important
area where Oracle deviates from the standard, which is in its support for numeric data types. SQL:1999
defines a range of data types, from SMALLINT to DOUBLE PRECISION, whereas Oracle 9i supports
a single numeric type: Oracle NUMBER, to which all the numeric types are converted.

2.1 User Defined Types
SQL:1999 allows to create User Defined Types (UDTs) and supports single inheritance. The resulting
object model is very similar to Java. Persistent objects are stored as rows in typed database tables. A
given table may be filled with instances of a base type and any of its subtypes. In this sense, an object
table may also be seen as a polymorph container.

2.2 Arrays
Although already implemented by many commercial database vendors, the array concept is new to the
SQL standard. This enables the user to break the first normal form of the relational model (prohibiting
repeating of groups) explicitly. Oracle also implements embedded tables, which is similar to an array of
a UDT but with additional query capabilities.

2.3 References
The reference type enables navigational access to the data, i.e. lookup of associated objects without
having to perform a table JOIN. In object-oriented programming, applications model their data as a set
of inter-related objects forming graphs. References (REFs) can be used in a natural way to implement
these relationships between objects.

3. The Oracle Type Translator for C++
Oracle provides a type translator utility, OTT, which generates C and C++ bindings to persistent
classes. OTT translates schema information about Oracle object types into client-side language
bindings. It generates C++ class representations of database object types, preserving inheritance
hierarchy and provides default implementations for methods to read and write object data to and from
the database. The user may inherit from the OTT-generated classes and thus extend the class behavior.
However, the user-defined classes will not be direct subclasses of each other (see Figure 1).

4. The Oracle C++ binding
The Oracle C++ Call Interface OCCI
[4] is an Application Program Interface
(API), build on top of the lower level C
binding (OCI), that has existed in
Oracle for many years. OCCI provides
C++ applications with both associative
and navigational access to the data and
with C++ language binding to the
objects stored in the database.
In associative access, data is accessed
and manipulated by executing SQL
statements and PL/SQL (Procedural
Language) procedures. OCCI provides C++ methods to submit the statements and to process the
results. In addition, so-called Stored Procedures, i.e. methods that are part of the object type definition,
may manipulate data on the server side without incurring the cost of transporting the data to the client.
In this type of access, OCCI is similar to its predecessor, OCI.
Navigational access refers to accessing objects by navigating through object references. Typically, an
application first retrieves one or more objects from the server by issuing a SQL query, and from then
on it may use references contained in these initial objects to traverse the entire object tree.
OCCI applications use client-side object cache to speed up repeated access to the same object. The first
time an object used, its content data is retrieved from the server and converted into the transient C++
object. As with most ODBMS bindings smart pointers are used to access objects in cache memory and

Figure 1: Inheritance in Oracle’s C++ binding. All persistent
classes inherit from PObject. SkyObject_O and Star_O
classes are generated by OTT from their SQL equivalents.
SkyObject and Star are both user-defined classes. The dashed
arrow shows the inheritance as defined on the SQL side, while
the solid arrows show the actual C++ data model after OTT
conversion.

SkyObject

Star

SkyObject_O

Star_O

PObjectSkyObject

Star

SkyObject_O

Star_O

PObject

to automatically release objects from the cache that are not referenced anymore. Any modification to
cache objects is applied also to the database if the enclosing transaction is committed.
OCCI integrates the ANSI/ISO C++ Standard including Standard Template Library (STL). For
example object collections, which on the database side are represented as variable length arrays
(ordered collections) or nested tables (unordered collections), are both mapped to STL vectors.

5. VLDB Features
HEP experiments collect large amounts of data. In particular, each of the upcoming LHC experiments
at CERN expects to store around 1PB of raw and processed data per year. In order to consider a
database system as the persistency mechanism for the HEP data, it is necessary to evaluate the VLDB
(Very Large Database) features provided by the given product.

5.4 Tablespaces
In general, the implementation of the VLDB support is closely related to the database architecture and
its storage technology. In Oracle the main independent storage unit is a tablespace. All logical database
entities, like tables and indices, are stored in tablespaces, which in turn map to the operating system
files and raw devices. Each tablespace can be manipulated independently and placed in different states.

• Read-only tablespaces – A tablespace can be marked as read only. This state guarantees that
the database will prevent modifications to the data and may be useful for raw data storage.
Read-only tablespace can also be copied without shutting down the database instance or they
can be moved offline.

• Offline tablespaces – Parts of the database can be made offline, which makes them
inaccessible until made online again. Offline tablespaces may be moved to a different location
to release disk space on the server. This feature allows implementing an interface between the
database and tertiary storage.

• Transportable tablespaces – Tablespaces themselves contain only data, while the data
structure definitions, i.e. database schema, are grouped together in a central location. Oracle
provides means to extract the schema corresponding to a given tablespace. The tablespace
together with the schema describing its data structure is called a transportable tablespace and
can be moved and attached to a different database. The main advantage of this approach over
the standard import/export database functionality comes from the fact that it does not put any
unnecessary load on the database server. Data copying can be performed with the system
commands without interfering with the database operations. The disadvantage of the method
is that it does not allow transferring data between servers of different system architecture.

• Locally managed tablespaces – A tablespace can be set up to automatically and
independently adapt its size to the volume of data that is stored in it. Decentralization of the
space management promises better scalability, and automatic adjustments remove the need of
administrator’s interventions.

5.5 Partitioned tables
Table partitioning is an important Oracle VLDB feature that allows creating and managing single tables
of very large size. A single logical table can be divided into physically separate partitions based on the
value of one key attribute. For example, all data from a single run may be stored separately. Indices
created on such tables may be partitioned as well. Queries that are constrained on the same attribute
that was used for partitioning will be automatically optimized by the database to access only the
relevant partitions.

5.6 Storage overhead
Database storage usually introduces different types of space usage overheads. When storing persistent
objects, this overhead may be caused by object identifier (OID) stored with each object or by the object
attribute conversion to a different data representation. The impact of the OID overhead may be
minimised by collecting smaller objects into VArrays, but the attribute conversion is difficult to avoid.
In scientific applications, the most visible overhead is generated by the NUMBER type, which is used
to store all numerical data. Discussions are being held with Oracle regarding efficient storage of
numeric data in a future release of their product, possibly the next major release (Oracle 10i), or even
before.

5.7 Real Application Clusters
With a database technology based on centralized servers, it is necessary to insure that the server does
not become a CPU or I/O bottleneck. As single systems have limited scaling capability and often high
prices, clusters of commodity computers are frequently used as an alternative. Oracle provides an
architecture called Real Application Clusters (RAC) that utilises cluster technology. The RAC database

instances run on all nodes of the cluster and share the database files. All instances have a common
distributed cache that is kept consistent using the cluster interconnect. Adding new nodes to the cluster
– particularly in the case of read-mostly data, where cache conflicts are largely avoided – may increase
the system performance at a constant price.

6. Conclusions
Object features have been added both to the SQL standard and to commercial implementations from
the major database vendors. In addition, these vendors have added many performance enhancements
and features oriented at the very large database community. The availability of such systems –
particularly when coupled to the navigational C++ binding that is provided with Oracle 9i, are
potentially of great interest to the HEP community. Further work is clearly needed to understand
whether these products provide the required functionality, performance and scalability, but their
emergence does much to allay fears about the relatively small size of the purely object database
vendors.

7. References
[1] Oracle Corporation, http://www.oracle.com

[2] The SQL:1999 Standard, ISO/IEC 9075:1999

[3] Whitemarsh Information System Corp, talk at DAMA, http://www.wiscorp.com/sql/Sql99_p1.zip

[4] ‘Oracle C++ Call Interface – A better OCI’, Oracle Technical White Paper, April 2001

[5] ‘Object-Relational Dbmss: Tracking the Next Great Wave’, Morgan Kaufmann Publishers, 1998,
by Michael Stonebraker, Dorothy Moore

