
1

 Available on CMS information server CMS NOTE 2001/026

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

CMS Note
April 30, 2001

The Reification of Patterns in the Design of Description-
Driven Systems

J.-M. Le Goff, Z. Kovacs

CERN, Geneva, Switzerland

R. McClatchey, F Estrella

Centre for Complex Cooperative Systems, Univ. West of England, Frenchay, Bristol BS16 1QY UK

Abstract

To address the issues of reusability and evolvability in designing self-describing systems, this paper proposes a
pattern-based, object-oriented, description-driven system architecture. The proposed architecture embodies four
pillars - first, the adoption of a multi-layered meta-modeling architecture and reflective meta-level architecture,
second, the identification of four data modeling relationships that must be made explicit such that they can be
examined and modified dynamically, third, the identification of five design patterns which have emerged from
practice and have proved essential in providing reusable building blocks for data management, and fourth, the
encoding of the structural properties of the five design patterns by means of one pattern, the Graph pattern. The
CRISTAL research project served as the basis onto which the pattern-based meta-object approach has been
applied. The proposed architecture allows the realization of reusability and adaptability, and is fundamental in
the specification of self-describing data management components.

Keywords: Patterns, Description-Driven Systems, Multi-Layer Architectures, Meta-Objects

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25320099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Reflection in Description-Driven Systems
The promotion of implicit system descriptions to become explicit objects is referred to as reification. Reification
means to take an abstract concept and regard it as a concrete entity [1]. System descriptions that are represented
as objects, can be treated and manipulated as objects. The advantage of reifying system descriptions as objects is
that operations can be carried on them, like composing and editing, storing and retrieving, organizing and
reading. Since these meta-objects represent system descriptions, their manipulation can result in change in system
behavior. As such, reified system descriptions are mechanisms which lead to dynamically modifiable systems.

For reifying language descriptions like class, attribute and association, which themselves act as classes, what is
needed is a mechanism for defining the class of a class. In OO programming, the class of a class object is a meta-
class. Meta-objects, therefore, are implemented as meta-classes. Object models used in most class-based
programming language are fixed and closed. These object models do not allow the introduction and extension of
modeling primitives to cater for specific application needs. The concept of meta-classes is a key design technique
in improving the reusability and extensibility of these languages.

Figure 1: Graph of Objects, Classes and Meta-classes

VODAK [2], Prometheus [3], ADAM [4] and OM [5] are some of the next generation DBMSs which have
adopted the meta-class approach for tailoring the data model to adapt to evolving specifications. A meta-class
may, typically, define properties about object creation, encapsulation, inheritance rules, message passing and the
like. A sample meta-class environment (taken from [6]) is shown in Figure 1. In such an environment, every
object has a class and every class is an object. Thus object Object1 has class C1 as its class. C1 is also an object,
and its class is the meta-class Class. This creates a graph of objects, classes and meta-classes.

A Description-Driven System (DDS) [7] architecture is an example of a reflective meta-layer (i.e. meta-level and
multi-layered) architecture, sometimes called a self-describing system. It makes use of meta-objects to store
domain-specific system descriptions, which control and manage the life cycles of meta-object instances i.e.
domain objects. The separation of descriptions from their instances allows them to be specified and managed and
to evolve independently and asynchronously. This separation is essential in handling the complexity issues facing
many computing applications and allows the realization of inter-operability, reusability and system evolution as it
gives a clear boundary between the application’s basic functionalities from its representations and controls. As
objects, reified system descriptions of DDSs can be organized into libraries or frameworks dedicated to the
modeling of languages in general, and to customizing its use for specific domains in particular.

Reflective techniques have been used by [8] to open up the CORBA architecture. Although the merits of the
CORBA architecture have been reaped by many quarters, it is still restrictive and inflexible to future evolutions
as its implementation is fixed. The OpenCorba is a reflective open broker which allows users to configure and
change the implementation and execution policies of the software bus to cater for their own specific needs. This
reflective open broker makes use of meta-classes to reify CORBA semantics and a Meta-Object Protocol (MOP)
to allow the dynamic change of run-time behavior. As such, OpenCorba is a clear manifestation of the power of
reflection in computing. The OpenCorba initiative is in line with the design of the next generation of middleware,
so-called reflective middleware[9]. These middleware are expected to be more re-configurable, and reflection is
recognized as the principled approach to provide such re-configurability.

This paper describes an investigation of reified design patterns carried out in the context of the CRISTAL project
at CERN, Geneva. This project is not described in detail here but its purpose is to track the workflow processes
(and their outcomes) during the highly distributed construction of complex high-energy physics detectors over
extended timescales (see [10], [11], [12]) The next section establishes how semantic relationships in description-
driven systems can be reified using a set of meta-objects that cater for Aggregation, Generalization, Description,

Object Class
Meta-class

Class

C1

C2

Object1

Object2

Object3

Object4

Object5
Is an instance of

Is an instance of

Is an instance of

3

Dependency and Relationships. In section 3 of this paper the reification of the Graph Pattern is discussed and
section 4 investigates the use of this pattern in a three-layer reflective architecture.

2. Reifying Semantic Relationships
Objects and classes in OO systems are semantically related. The relationships represent the physical or
conceptual connections among the objects involved. Unfortunately, many class-based programming languages
have weak or insufficient support for relationships and their inherent semantics [13] & [14]. Most of these
languages treat relationships, typically called associations, as second-class objects and let the programmers take
the responsibility of implementing them manually. Most often, associations are represented as object pointers.
Object pointers are ad-hoc structures without any meaning attached to them. Moreover, the use of object pointers
to represent associations distributes the information about the relations among the objects being related, rather
than having a single object which can be manipulated as a unit. Thus, object pointers are insufficient in modeling
a relationship.

In response to the need to treat associations on an equal footing with classes, a number of published papers have
suggested the promotion of the relationship construct as a first-class object. A first-class object is an object which
can be created at run-time, can be passed as an actual parameter to methods, can be returned as a result of a
function and can be stored in a variable [15]. Reification is used in this paper to promote associations to the same
level as classes, thus giving them the same status and features as classes. Consequently, associations become
fully-fledged objects with their own attributes to represent their states, and their own methods to alter their
behavior.

Different types of relationships representing the many ways inter-dependent objects are related can be reified.
The proper specification of the types of relationships that exist among them is essential in managing the
relationships and the propagation of operations to the objects they associate. This greatly improves system design
and implementation as the burden for handling dependency behavior emerging from relationships is localized to
the relationship object. Instead of providing domain specific solutions to handling domain-related dependencies,
the relationship objects handle inter-object communication and domain consistency implicitly and automatically.

The next sections discuss four types of relationships, as shown in Figure 2. The relationship classification is
divided into two types - structural relationship and behavioral relationship. A structural relationship is a type of
relationship which deals with the structural or static aspects of a domain. The Aggregation and the Generalization
relationships are examples of this type. A behavioral relationship, as the name implies, deals with the behavioral
or dynamic aspects of a domain. Two types of behavioral relationships are explored in this work - the Describes
and Dependency relationships.

Figure 2: Relationship classification

This paper does not provide an exhaustive discussion of all types of relationships, nor does it provide a minimal
list of types of associations. Those which are covered are the links which have proved essential and have emerged
from a set of five design patterns: the Type Object Pattern, the Tree Pattern, the Graph Pattern, the Publisher-
Subscriber Pattern and the Mediator Pattern [16]. Refer to [17], [18] & [19] for a more complete discussion about
the taxonomy of semantic relationships.

Relationship

Structural Relationship Behavioral Relationship

Aggregation Generalization Describes Dependency

4

2.1 The Aggregation Meta-Object

Aggregation is a structural relationship between an object whole using other objects as its parts. The most
common example of this type of relationship is the bill-of-materials or parts explosion tree [20], representing
part-whole hierarchies of objects. The familiar Tree Pattern [13] models the Aggregation relationship and the
objects it relates. Aggregated objects are very common, and application developers keep re-implementing the tree
semantics for managing part-whole hierarchies. Reifying the Tree pattern provides developers with the Tree
pattern meta-object, consequently giving applications with a reusable construct. An essential requirement in the
reification of the Tree pattern is the reification of the Aggregation relationship linking the nodes of the tree. For
this, aggregation semantics must first be defined.

Typically, operations applied to whole objects are by default propagated to their aggregates. This is a very
powerful mechanism as it allows the implicit handling of the management of interrelated objects by the objects
themselves through the manner in which they are linked together. By reifying the Aggregation relationship, the
three aggregation properties of transitivity, anti-symmetry and propagation of operations can be made part of the
Aggregation meta-object attributes and can be enforced by the Aggregation meta-object methods. Thus, the state
of the Aggregation relationship and the operations related to maintaining the links among the objects it aggregates
are localized to the link itself. Operations like copy, delete and move can now be handled implicitly,
automatically and generically by the domain objects irrespective of domain structure.

In addition, the Aggregation meta-object deals with version management among the objects it relates. The
versioning strategy can be set (by default) to Propagate, or set to other domain-specific values like No
Propagation or Shallow. Setting the version strategy to Propagate means that versioning the whole object
automatically versions all its compositions. Setting the version strategy to No Propagation implies that versioning
the whole object does not propagate to its compositions. A Shallow version strategy indicates that the whole
object and the Aggregation object are versioned, while its compositions remain the same. Another advantage of
the Aggregation meta-object is its handling of complexity. Complexity is reduced not only because a group of
objects is treated as a single composition object, but also the effect on the root of composition is automatically
triggered onto its components without further user action or intervention.

Figure 3: The Tree Pattern with Reified Aggregation Relationship

Figure 3 illustrates the inclusion of the reified Aggregation relationship in the Tree pattern. In the diagram, the
reified Aggregation relationship is called Aggregation, and is the link between the nodes of the tree. The
Aggregation meta-object manages and controls the link between the tree nodes, and enforces the propagation of
operations from parent nodes to their children. Consequently, operations applied to branch nodes are by default
automatically propagated to their compositions.

2.2 The Generalization Meta-Object

Generalization is a structural relationship between a superclass and its subclasses. The semantics of
generalization revolve around inheritance, type-checking and reuse, where subclasses inherit the attributes and
methods defined by their superclass. The subclasses can alter the inherited features and add their own. This
results in a class hierarchy organized according to similarities and differences. The graph of meta-classes, classes
and object shown in Figure 1 is an example of a class hierarchy.

Unlike the Aggregation relationship, the generalization semantics are known and implemented by most
programming languages, as built-in constructs integrated into the language semantics. This paper advocates
extending the programming language semantics by reifying the Generalization relationship as a meta-object.
Consequently, programmers can access the generalization relation as an object, giving them the capability of
manipulating superclass-subclass pairs at run-time. As a result, application programs can utilize mechanisms for
dynamically creating and altering the class hierarchy, which commonly require re-compilation for many
languages.

Tree Node

Leaf Branch

0..1
0..n

root child

0..1
parent

Tree Node

Leaf Branch

0..1
0..n

root child

0..1
parent

Aggregation

5

Similar to the Aggregation relationship, generalization exhibits the transitivity property in the implicit
propagation of attributes and methods from a superclass to its subclasses. The transitivity property can also be
applied to the propagation of versioning between objects related by the Generalization relationship. Figure 4
illustrates the Tree pattern with the Generalization and Aggregation relationships between the tree nodes reified.

Figure 4: Reification of the Generalization and Aggregation Relationships

2.3 The Describes Meta-Object

The Type Object pattern of [21] illustrates an important type of relationship. In essence the Type Object pattern
has three elements, the object, its type and the Describes relationship which relates the object to its type. The
Type Object pattern illustrates the link between meta-data and data and the Describes relationship that relates the
two. Consequently, this pattern links layers of multi-level systems. The upper meta-level meta-objects manage
the next lower layer’s objects. The meta-data that these meta-objects hold describe the data the lower level
objects contain. The Type Object pattern is a very useful and powerful tool for run-time specification of domain
types.

The reification of the Describes relationship as a meta-object provides a mechanism for explicitly linking object
types to objects. This strategy is similar to the approach taken for the Aggregation and Generalization
relationships. The Describes meta-object provides developers with an explicit tool to dynamically create and alter
domain types, and to modify domain behavior through run-time type-object alteration.

Unlike the Aggregation relationship and the Generalization relationship, the Describes relationship does not
exhibit the transitivity property. This implies that the propagation of some operations is not the default behavior
as it cannot be inferred for the objects and their types. For example, versioning a type does not necessarily mean
that objects of that type need to be versioned as well. In this particular case, it is the domain which decides
whether the versioning should be propagated or not. Thus, the Describes meta-object should include a mechanism
for specifying propagation behaviour. Consequently, programmers can either accept the default relationship
behaviour or override it to implement domain-specific requirements.

Figure 5 illustrates the transformation of the Type Object pattern with the use of a reified Describes relationship.
The object pointer (in Figure 5a) is dropped as it is insufficient to represent the semantics of the link relating
objects and their types. Instead, the Describes meta-object (in Figure 5b) is used to manage and control the Type
Object pattern relationship.

Figure 5: The Type Object Pattern with Reified Describes Relationship

Tree Node

Leaf Branch

0..1
0..n

root child

Aggregation

Generalization

0..1
parent

(b)(a)

object pointer

ItemDescriptionClass

ItemClass

ItemDescriptionClass

ItemClass

Describes

6

2.4 The Dependency Meta-Object

The Publisher-Subscriber pattern models the dependency among related objects. Summarizing this pattern,
subscribers are automatically informed of any change in the state of its publishers. Thus, the association between
the publisher and the subscriber manages and controls the communication and transfer of information between
the two.

Most application programs implement mechanisms to deal with domain consistency and propagation of change.
Reifying the Publisher-Subscriber dependency association (from hereafter referred to as Dependency
association), these mechanisms can be generically implemented and automatically enforced by the Dependency
meta-object itself and taken out of the application code. This represents a significant breakthrough in the
simplification of application codes and in the promotion of code reuse.

The reification of the Dependency relationship is significant in that it provides an explicit mechanism for
handling change management and consistency control of data. The Dependency meta-object can be applied to
base objects, to classes and types, to components of distributed systems and even to meta-objects and meta-
classes. This leads to an homogeneous mechanism for handling inter-object dependencies within and between
layers of multi-layered architectures.

The Event Channel of the Publisher-Subscriber pattern [22] and the Mediator of the Mediator pattern are
realizations of the Dependency relationship. The Event Channel, is an intervening object which captures the
implicit invocation protocol between publishers and subscribes. The Mediator encapsulates how a set of objects
interact by defining a common communication interface. By utilizing the Describes relationship, an explicit
mechanism can be used to store and manage inter-object communication protocols. Figure 6 illustrates the use of
reified Dependency meta-object in the Publisher-Subscriber pattern (a) and the Mediator pattern (b).

Figure 6: The Event Channel and the Mediator as Reified Dependency

2.5 The Reified Relationship Meta-Object Protocol

The relationship MOP defines the set of methods for querying information about the relationship and for
manipulating the relationship meta-objects [6]. It is the relationship MOP, which controls and manages the
relationship meta-object and its object instances. As the relationship semantics involve both the structural and
dynamic aspects of a domain, the relationship meta-objects and their MOPs are mechanisms for defining and
configuring system behaviour.

Before proceeding to the relationship MOP specification, it is essential that the basic set of relationship attributes
be defined first. The relationship is a link between parent nodes and children nodes, as shown in Figure 7.

The figure shows the cardinality of the relationship with respect to its parents and its children. The Aggregation,
Generalization, Describes and Dependency relationships are restricted to having one parent node. Having a single
parent node for the Aggregation relationship is defined by its semantics. With regards to Generalization,
Describes and Dependency links, the cardinality of one for the parent is a design decision which simplifies the
relationship model. Allowing many superclasses in the Generalization link results in multiple inheritance,
allowing many types in the Describes link creates a multi-typed object, and allowing many publishers in the

Object1 Object2

Object3 Object4

Object1 Object2 Object3 Object4

Mediator/Describes

(a)

Subscriber

Publisher

subscribe

change

notification

Subscriber Subscriber Subscriber Subscriber

Event Channel/
Describes

Subscriber Subscriber Subscriber

Publisher Publisher Publisher Publisher

(b)

7

Dependency link implies that subscribers get data from many subjects. Multiple inheritance, multi-typed object
and multiple publisher specifications require further research with regards to compatibility, composability and
conflict resolution, and are beyond the scope of this paper.

Reifying relationships as meta-objects is a fundamental step in the reification of design patterns. The four
relationship meta-objects discussed manifest the links that exist among the objects participating in the five design
patterns listed in the introduction to this section. With the use of reified relationships, these five patterns can be
modeled as a single graph, using the Graph pattern. Consequently, the five design patterns are structurally reified
as a Graph pattern with the appropriate relationship meta-object to represent the semantics relating the pattern
objects.

Figure 7: The cardinality of Relationship

3. The Reified Graph Pattern
The graph and tree data structures are natural models to represent relationships among objects and classes. As the
graph model is a generalization of the tree model, the tree semantics are subsumed by the graph model.
Consequently, the graph specification is applicable to tree representations. The compositional organization of
objects using the Aggregation relationship forms a graph. Similarly, the class hierarchy using the Generalization
relationship creates a graph. These two types of relationships are pervasive in computing, and the use of the
Graph pattern to model both semantics provides a reusable solution for managing and controlling data
compositions and class hierarchies.

The way dependent objects are organized using the Dependency association also forms a graph. A dependency
graph is a representation of how interrelated objects are organized. Dependency graphs are commonly maintained
by application programs, and their implementations are often buried in them. The reification of the Dependency
meta-object objectifies the dependency graph and creates an explicit Publisher-Subscriber pattern. Consequently,
the dependency graph is treated as an object, and can be accessed and manipulated like an object. The same
argument applies to the Describes relationship found in the Type Object pattern. The link between objects and
their type creates a graph. Reifying the Describes relationship results in the reification of the Type Object pattern.
With the reification of the Type Object pattern, the resulting graph object allows the dynamic management of
object-type pairs. This capability is essential for environments with unknown or dynamically changing user
requirements.

The UML diagram of the Graph meta-object is shown in Figure 8. The Node class represents the entities of the
domain - objects, classes, data, meta-data or components. The Relationship is the reification of the link between
the Nodes. The aggregated links between the Node and the Relationship are bidirectional. Two roles are defined
for the two aggregated associations - that of the parent, and that of the child. A relationship has at most one
parent node, and a parent node can have zero or more relationships. From the child nodes’ point of view, a
relationship can have at least one child, and a node is a child of zero or more relationships. The parent
aggregation, symbolized by the shaded diamond, implies that the lifecycle of the relationship is dependent on the
lifecycle of the parent node. Analogously, the child aggregation behaves in the same manner.

Figure 8: UML Diagram of the Graph Meta-Object

The use of reflection in making the Graph pattern explicit brings a number of advantages. First of all, it provides
a reusable solution to data management. The reified Graph meta-object manages static data using Aggregation
and Generalization meta-object relationships, and it makes persistent data dependencies using Describes and

Children

Parent

Relationship

Aggregates

Whole

Aggregation

Subclasses

Superclass

Generalization

Objects

Type

Describes

Subscribers

Publisher

Dependency

8

Dependency relationships. As graph structures are pervasive in many domains, the capture of the graph semantics
in a pattern and objectifying them results in a reusable mechanism for system designers and developers. This
makes the Graph meta-object a useful guideline applicable to many situations and domains. Another benefit of
having a single mechanism to represent compositions and dependencies is its provision for inter-operability. With
a single framework sitting on top of the persistent data, clients and components communicate with a single
known interface. This greatly simplifies the overall system design and architecture, thus improving system
maintainability. Moreover, clients and components can be easily added as long as they comply with the graph
interface.

Complexity is likewise managed as related objects are treated singly and uniformly. Firstly, the semantic
grouping of related objects brings transparency to clients’ code. Secondly, the data structures provided by the
Graph meta-object organize data into atomic units which can be manipulated as single objects. Objectifying
graph relationships allows the implicit and automatic propagation of operations throughout a single grouping.
Another benefit in the use of the reified graph model is its reification of the link between meta-data and data. As
a consequence, the Graph meta-object does not only provide a reusable solution for managing domain semantic
groupings, but can also be reused to manage and control the links between layers of meta-level architectures.

4. Patterns, Relationships and Descriptions
This paper proposes that the reified Graph pattern provides the necessary building block in managing data in any
DDS architecture. Figure 9 illustrates the proposed description-driven architecture. The architecture on the left
hand side is typical of layered systems such as the multi-layered architecture specification of the OMG [24]. The
relationship between the layers is Instance-of. The instance layer contains data which are instances of the domain
model in the model layer. Similarly, the model layer is an instance of the meta-model layer. On the right hand
side of the diagram is another instance of model abstraction. It shows the increasing abstraction of information
from meta-data to model meta-data, where the relationship between the two is also Instance-of. These two
architectures provide layering and hierarchy based on abstraction of data and information models.

Figure 9: A Three-layer Reflective DDS Architecture

This paper proposes an alternative view by associating data and meta-data through description. The Type Object
pattern makes this possible. The Type Object pattern is a mechanism for relating data to information describing
data. The link between meta-data and data using the Describes relationship promotes the dynamic creation and
specification of object types. The same argument applies to the model meta-data and its description of the domain
model through the Describes relationship. These two horizontal dependencies result in an horizontal meta-level
architecture where the upper meta-level describes the lower level. The combination of a multi-layered
architecture based on the Instance-of relationship and that of a meta-level architecture based on the Describes
relationship results in what is referred to as a DDS architecture.

The reified Graph pattern provides a reusable mechanism for managing and controlling data compositions and
dependencies. The graph model defines how domain models are created. Similarly, the graph model defines how
meta-data are instantiated. By reifying the semantic grouping of objects, the Graph meta-object can be reused to
hold and manage compositions and dependencies within and between layers of a DDS (see figure 10). The meta-
level meta data are organized as a meta-level graph. The base-level data are organized as a base-level graph.

Horizontal Abstraction

V
er

tic
al

 A
bs

tr
ac

tio
n

Is described by

Is described by

Is an instance of

Instance

Model

Meta-Model Layer

Is an instance-of

Is an instance of

Meta-Data

Model Meta-Data

Data

Is an instance of

Meta-Data

M
eta-Level

B
ase Level

9

Relating these two graphs forms another graph, with the nodes related by the Describes relationship. These
graphs indicate the reuse of the Graph pattern to model relationships in a DDS architecture.

Figure 10: The Reuse of the Reified Graph Pattern in a DDS

5. Conclusions
As shown in figure 11, he reified Graph pattern and the reified relationships enrich the meta-model layer by
giving it the capability of creating and managing groups of related objects [25], [26]. The extension of the meta-
model layer to include constructs for specifying domain semantic groupings is the proposition of this paper. The
meta-model layer defines concepts used in describing information in lower layers. The core OMG/UML meta-
model constructs include Class, Attribute, Association, Operation and Component meta-objects. The inclusion of
the Graph meta-object in the meta-model improves and enhances its modeling capability by providing an explicit
mechanism for managing compositions and dependencies throughout the architecture. As a result, the reified
Graph pattern provides an explicit homogeneous mechanism for specifying and managing data compositions and
dependencies in a DDS architecture.

Figure 11: Extending the UML Meta-Model using a Reified Graph Pattern.

This paper has shown how reflection can be utilized in reifying design patterns. Reified design patterns provide
explicit reusable constructs for managing domain semantic groupings. These pattern meta-objects are then used
as building blocks for describing compositions and dependencies in a three-layer reflective architecture - the DDS
architecture. The judicious use and application of the concepts of reflection, design patterns and layered models
create a dynamically modifiable system which promotes reuse of code and design, which is adaptable to evolving
requirements, and which can cope with system complexity. In conclusion, it is interesting to note that the OMG
has recently announced the so-called Model Driven Architecture as the basis of future systems integration [27].
Such a philosophy is directly equivalent to that expounded in this and earlier papers on the CRISTAL description-
driven architecture.

Meta-Data AggregationMeta-Level Graph

Data AggregationBase-Level Graph

Describes

Horizontal Abstraction

V
er

tic
al

 A
bs

tr
ac

tio
n

Is described by

Is described by

Is an instance of

Instance

Model

UML Meta-Model + Reified Graph Pattern + Reified Relationships

Is an instance-of

Is an instance of

Meta-Data

Model Meta-Data

Data

Is an instance of

Meta-Data

10

Acknowledgments
The authors take this opportunity to acknowledge the support of their home institutes. N. Baker, A. Bazan, P.
Brooks, G. Chevenier, T. Le Flour, C. Koch, S. Lieunard, S. Murray, L. Varga, G. Organtini and N. Toth are
thanked for their assistance in developing the CRISTAL prototype.

References

1. J. Rumbaugh, “Let There Be Objects: A Short Guide to Reification”, Journal of Object-Oriented Programming (JOOP),
November-December 1992.

2. W. Klas, et. al., “Database Integration using the Open Object-Oriented Database System VODAK”, In O. Bukhres and
A. Elmagarmid (Eds.), Object Oriented Multidatabase Systems: A Solution for Advanced Applications, Chapter14,
Prentice Hall, 1995.

3. C. Raguenaud, J. Kennedy and P. Barclay, “The Prometheus Database Model”, Prometheus technical report 2, Napier
University, School of Computing, 1999.

4. N. Paton, “ADAM: An Object-Oriented Database System Implemented in Prolog”, In M.H.Williams (Ed.), Proceedings
of the 7th British National Conference On Databases (BNCOD), Cambridge University Press, 1989.

5. The Object Model (OM) and the Object Model System (OMS), URL http://www.globis.ethz.ch/research/oms/.
6. I. Forman and S. Danforth, “Putting Metaclasses to Work: A New Dimension in Object-Oriented Programming”,

Addison-Wesley, 1999
7. Z. Kovacs, “The Integration of Product Data with Workflow Management Systems”, PhD Thesis, University of West of

England, Bristol, England, April 1999.
8. T. Ledoux, “OpenCorba: A Reflective Open Broker”, Lecture Notes in Computer Science 1616, Proceedings of the

Second International Conference, Reflection 99, Saint-Malo, July 1999.
9. G. Blair, et.al., “On the Design of Reflective Middleware Platforms”, Workshop on Reflective Middleware (RM), Held

in conjunction with the IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware), New York, April 2000.

10. R. McClatchey, et. al., “The Integration of Product Data and Workflow Management Systems in a Large Scale
Engineering Database Application”, Proceedings of the 2nd IEEE International Database Engineering and Applications
Symposium, Cardiff, United Kingdom, July 1998.

11. F. Estrella et al., “Handling Evolving Data Through the Use of a Description Driven Systems Architecture”. Lecture
Notes in Computer Science Vol 1727, pp 1-11 ISBN 3-540-66653-2 Springer-Verlag, 1999

12. F. Estrella et al., “Meta-Objects as the Basis for System Evolution”. Accepted by the 2nd Web Age Information
Management (WAIM’2001) conference. Beijing China, June 2001.

13. M. Blaha, W. Premerlani, “Object-Oriented Modeling and Design for Database Applications”, Prentice Hall, 1998.
14. J. Rumbaugh, “Relations as Semantic Constructs in an Object-Oriented Language”, Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 1987.
15. F. Demers and J. Malenfant, “Reflection in Logic, Functional and Object-Oriented Programming: A Short Comparative

Study”, Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), Workshop on Reflection
and Metalevel Architectures and their Applications in AI, Montreal, August 1995.

16. F. Estrella, "Objects, Patterns and Descriptions in Data Management", PhD Thesis, University of the West of England,
Bristol, England, December 2000.

17. M. Blaha, “Aggregation of Parts of Parts of Parts”, Journal of Object-Oriented Programming (JOOP), September 1993.
18. J. Odell, “Six Kinds of Compositions”, Journal of Object-Oriented Programming (JOOP), January 1994.
19. J. Smith and D. Smith, “Database Abstractions: Aggregation and Generalization”, ACM Transactions on Database

Systems, June 1997.
20. M. Blaha, et.al., “Bill-of-Material Configuration Generation”, Proceedings of the Sixth International Conference on Data

Engineering (ICDE), Los Angeles, February 1990.
21. B. Woolf and R. Johnson, “The Type Object Pattern” in Pattern Languages of Program Design 3, Addison-Wesley,

1997. Originally presented at the Third Conference on Pattern Languages of Programs (PLoP), 1996.
22. F. Bushmann, et.al., “Pattern-Oriented Software Architecture: A System of Patterns”, John Wiley & Sons, 1996.
23. J. Rumbaugh, “Controlling Propagation of Operations using Attributes on Relations”, Proceedings of the Conference on

Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), September 1988.
24. The Object Management Group (OMG), URL http://www.omg.org.
25. G. Chevenier et al., “Models and Meta-Models for Application Description” Proc of the 4th IIIS World Multiconference

on Systemics, Cybernetics & Informatics. USA. July 2000.
26. C. Koch et al., “Explicit Modeling of the Semantics of Large Multi-layered Object-Oriented Databases” Lecture Notes in

Computer Science Vol 1920, pp 52-65 Springer-Verlag 2000
27. OMG Publications., “Model Driven Architectures - The Architecture of Choice for a Changing World”. See

http://www.omg.org/mda/index.htm

