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1. Introduction

There is currently much interest in the possibility that extra dimensions may ap-

pear at distance scales that are large relative to the inverse of the Planck length

1/MP ∼ 10−33 cm or the Grand Unification scale 1/MGUT ∼ 10−30 cm, and possibly
at scales accessible to experiments. It is therefore important to understand what

∗Work supported in part by the National Science Foundation under Grant Number PHY-9802510.
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gauge groups and what matter representations are possible in various dimensions

and what restrictions on the underlying “Theory of Everything” may be provided by

some variant of eleven-dimensional M theory.

One particular scenario for extra dimensions is the original proposal that eleven-

dimensional M theory might be compactified on some Calabi-Yau manifold down to

five dimensions [1]. The fifth dimension would then be just a few orders of magnitude

larger than the Planck length or the GUT scale, and five-dimensional supergravity

would be the appropriate effective low-energy field theory over this range of scales. In

this scenario, the SU(3)×SU(2)×U(1) gauge fields of the Standard Model would be
restricted to a brane at one end of the fifth dimension, and there would be another

“hidden” gauge group restricted to another brane at its other end. Subsequently,

elaborations with other gauge groups appearing on intermediate branes have also

been studied [2].

In all this class of scenarios, a good characterization of the options available in

the effective intermediate five-dimensional theory [3, 4] that governs the dynamics in

the bulk between the branes is essential. For example, this effective theory frequently

plays an essential rôle in mediating supersymmetry breaking between the brane on

which it originates and the brane where the Standard Model is localized [5].

Analyses of this class of scenarios have been in the context of five-dimensional

supergravity with only abelian gaugings [4]. This assumption was motivated by the

fact that the Hořava-Witten scenario [1] yields a gauging of an abelian isometry of

the universal hypermoduli space, which originates from the non-vanishing G flux

in the underlying eleven-dimensional theory [4, 6]. Supplementary motivation came

from the more general expectation that the Standard Model gauge group would be

localized on one brane.

Calabi-Yau manifolds generically do not possess continuous non-abelian global

symmetries that are candidates for gauging the five-dimensional supergravity theory.

On the other hand, such symmetries may appear at singular points in the moduli

space of Calabi-Yau manifolds, leading to the possible appearance of enhanced gauge

symmetries [7]. Moreover, non-perturbative M-theory dynamics may favour some

alternatives to Calabi-Yau compactification possessing global symmetries that might

be gauged.

One should also remain open to the possibility that the SU(3)× SU(2) × U(1)
gauge group of the Standard Model might not be restricted to a four-dimensional

brane in this higher-dimensional space. A strong argument against the latter pos-

sibility seems to be provided by the excellent agreement of the values of the gauge

couplings measured at low energies with the predictions of supersymmetric gauge

theories in four dimensions [8]. However, it has been observed that gauge-coupling

unification is also possible [9], in some approximation, even if the Standard Model

gauge group extends into a fifth dimension. Therefore the possibility of such an

extension cannot, perhaps, be rejected absolutely.
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For all these reasons, we think it important to characterize what gauge groups

may be possible in five-dimensional supergravity, and at what price in terms of

restrictions on the scalar manifold associated (presumably) with the compactification

from higher dimensions, in particular its global symmetries.

Previous analyses have focussed on five-dimensional supergravity theories with

scalar manifolds in particular symmetry classes. In this paper, we attempt a sys-

tematic classification of all the options for the five-dimensional gauge group, noting

in each case the appropriate conditions on the corresponding scalar manifolds. As

a special case, we mention how the SU(3)× SU(2)× U(1) gauge group of the Stan-
dard Model may be obtained in a suitable five-dimensional supergravity theory, not

that we recommend it for any particular phenomenological reasons, but simply as an

interesting exercise illustrating our general results.

The outline of this paper is as follows: In section 2, we recall the relevant proper-

ties of ungauged N = 2 supergravity theories in five dimensions. Our emphasis is on
the global symmetry groups, G, of these theories and their “gaugeable” subgroups

K ⊂ G. As shown, the least trivial part of a classification of admissible gauge groups

lies in the classification of the gaugeable isometries of the vector multiplet moduli

space. In section 3, which constitutes the main part of this paper, we give such a

classification. To be precise, we classify all those theories that admit the gauging

of a compact group K that is either abelian or semi-simple or a direct product of

a semi-simple and an abelian group. We illustrate our results with the example

of SU(3) × SU(2) × U(1) in section 4, and summarize and draw some conclusions
from our results in section 5. Finally, appendix A contains a few explicit examples

illustrating our general discussion.

2. Ungauged five-dimensional N = 2 supergravity and its pos-
sible gaugings

Gauged supergravity theories are supergravity theories in which some vector fields

AIµ are coupled to matter fields Φ
A via gauge covariant derivatives of the form

DµΦ
A ≡ ∇µΦA + gAIµ(TI)ABΦB . (2.1)

Here, ∇µ denotes the ordinary space-time-covariant derivative, g is some coupling
constant, and the (TI)

A
B are the representation matrices for the matter fields Φ

A.

If the gauge group is non abelian, there are, in addition, self-couplings among the

vector fields AIµ. A supergravity theory without such “gauge” couplings is generally

termed “ungauged”.1

1The terms “gauged” and “ungauged” supergravity are only used for theories in which the

supergravity sector and the gauge sector show a certain degree of entanglement. This typically

happens when the supergravity multiplet contains vector fields that are candidates for gauge fields.
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Typically, the local gauge symmetry of a gauged supergravity theory reduces to a

global, i.e. rigid, symmetry of an underlying ungauged supergravity theory when the

gauge coupling g is turned off. In these cases, one can iteratively construct the gauged

supergravity theories from their ungauged relatives via the Noether procedure. To

this end, one first selects a “gaugeable” subgroup, K, of the total global symmetry

group, G, of the underlying ungauged lagrangian. One then covariantizes the relevant

derivatives à la (2.1), so as to turn the former global symmetry group K into a local

gauge symmetry. This typically breaks supersymmetry, but, if the gauge group K

was appropriately chosen, supersymmetry can be restored by adding a few additional

terms to the lagrangian and the transformation laws.

In this section we recall the appropriate criteria for a group K ⊂ G to be

gaugeable in the context of five-dimensional N = 2 supergravity theories. In the
remainder of this paper we then look for solutions to these constraints.

2.1 General formalism

The minimal amount of supersymmetry in five space-time dimensions corresponds to

eight real supercharges, and is generally referred to asN = 2 supersymmetry. The R-
symmetry group of the underlying Poincaré superalgebra is USp(2)R ∼= SU(2)R. The
five-dimensional N = 2 supergravity multiplet can be coupled to vector multiplets,
self-dual tensor multiplets and hypermultiplets. The field contents of these multiplets

are as follows.2

• The supergravity multiplet (
emµ , ψ

i
µ, Aµ

)
contains the fünfbein emµ , an SU(2)R doublet of gravitini ψ

i
µ: i = 1, 2 and a

vector field Aµ.

• A vector multiplet (
Aµ, λ

i, ϕ
)

consists of a vector field Aµ, an SU(2)R doublet of spin-1/2 gaugino fermions

λi: i = 1, 2 and one real scalar field ϕ.

A prominent example for which this is not the case is four-dimensional N = 1 supergravity coupled
to N = 1 super-Yang-Mills theory with or without chiral matter multiplets, as in the minimally
supersymmetric extension of the Standard Model. In four and five dimensions, one needs at least

eight supercharges for the supergravity multiplet to contain at least one vector field, so that the

term “gauged supergravity” is commonly used in these dimensions only for theories with N ≥ 2
supersymmetry.
2Our space-time conventions coincide with those of [10]–[13], i.e. all fermions are symplectic

Majorana spinors, the metric signature is (−,+,+,+,+), and µ, ν, . . . and m,n, . . . denote curved
and flat space-time indices, respectively.
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• A tensor multiplet has the same field content as a vector multiplet, but with
the vector field Aµ replaced by a two-form field Bµν satisfying odd-dimensional

self-duality as explained below.

• A hypermultiplet (
ζA, qX

)
comprises two spin-1/2 fermions (hyperini) ζA: A = 1, 2, and four real scalar

fields qX : X = 1, . . . , 4. The hyperini are inert under SU(2)R, which is why we

have not used the SU(2)R doublet index i for these fields.

When the theory is ungauged, vector and tensor fields can always be dualized

into each other and are physically equivalent, so one does not have to distinguish

between vector and tensor multiplets at the level of the ungauged theory. However,

this equivalence between vector and tensor multiplets does not hold for certain gauged

theories, as we discuss in more detail below.

The ungauged coupling of n vector and m hypermultiplets to supergravity was

worked out in [10, 14]. The bosonic sector of such a theory consists of

• the fünfbein emµ ,

• (n + 1) vector fields AĨµ: Ĩ , J̃ , . . . = 0, 1, . . . , n, where we have combined the
graviphoton with the n vector fields from the n vector multiplets to form a

single (n+ 1)-plet of vector fields,

• n scalar fields ϕx: x, y, . . . = 1, . . . , n from the n vector multiplets,

• 4m scalar fields qX : X, Y, . . . = 1, . . . , 4m from the m hypermultiplets,

The (n+4m) scalar fields {ϕx, qX} parametrize a Riemannian manifoldM of (real)
dimension (n+ 4m), which was found to factorize [14]:

M =MV S ×MQ , (2.2)

where MV S is an n-dimensional real manifold [10], which is “very special” in a

sense defined below and parametrized by the scalar fields ϕx, and MQ denotes a

quaternionic manifold of real dimension 4m parametrized by the hyperscalars qX [15].

Introducing the Maxwell-type field strengths F Ĩµν ≡ 2∂[µAĨν], the bosonic part of
the lagrangian reads [10, 14]

e−1Lbosonic = −1
2
R− 1

4

◦
aĨ J̃F

Ĩ
µνF

µνJ̃ − 1
2
gx̃ỹ
(
∂µϕ

x̃
) (
∂µϕỹ

)−
− 1
2
hXY
(
∂µq

X
) (
∂µqY

)
+

e−1

6
√
6
CĨJ̃K̃ε

µνρσλF ĨµνF
J̃
ρσA

K̃
λ . (2.3)
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Here, e ≡ det(emµ ), whereas gxy(ϕ) and hXY (q) denote, respectively, the metrics on
the scalar manifoldsMV S andMQ.The quantity

◦
aĨJ̃(ϕ) is symmetric in its indices

and depends on the scalar fields ϕx. The completely symmetric tensor CĨ J̃K̃ , by

contrast, is constant, i.e. it does not depend on any of the scalar fields. Because of

this, the lagrangian is invariant under the Maxwell-type transformations

AĨµ −→ AĨµ + ∂µΛ
Ĩ (2.4)

even though AĨµ appears explicitly in the F ∧ F ∧ A term in (2.3). Despite this
invariance, the above theories are still referred to as “ungauged”, as we discussed at

the beginning of this section.

The tensor CĨJ̃K̃ turns out to determine completely the part of the lagrangian

that is due to the supergravity and the vector multiplets [10]. In particular, it

completely determines the metric of the “very special” manifoldMV S. To be more

explicit, the CĨJ̃K̃ define a cubic polynomial

N(h) := CĨJ̃K̃h
ĨhJ̃hK̃ (2.5)

in (n+ 1) real variables hĨ : Ĩ = 0, . . . , n, which endows R(n+1) with the metric

aĨ J̃(h) := −
1

3

∂

∂hĨ
∂

∂hJ̃
lnN(h) . (2.6)

The n-dimensional “very special” manifold MV S can then be represented as the

hypersurface [10]

N(h) = CĨ J̃K̃h
ĨhJ̃hK̃ = 1 (2.7)

with the metric gxy on MV S being the induced metric of this hypersurface in the

“ambient” space with the metric (2.6), and furthermore we have
◦
aĨ J̃(ϕ) = aĨ J̃ |N=1.

2.2 The global symmetries and their possible gaugings

In this subsection we give a general overview of the different types of global symme-

tries of the ungauged lagrangian (2.3), and give a pre-classification of the possible

types of gaugings.

2.2.1 Case I: no hypermultiplets

We first consider theories without hypermultiplets, which we also describe as

“Maxwell-Einstein supergravity theories” (MESGTs). In these cases, the CĨJ̃K̃ de-

termine the entire theory, and any (infinitesimal) linear transformation

hĨ −→ M Ĩ
J̃
hJ̃ , (2.8)

AĨµ −→ M Ĩ
J̃
AJ̃µ (2.9)

6
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that leaves the CĨ J̃K̃ invariant:

M Ĩ′
(Ĩ
CJ̃K̃)Ĩ′ = 0 , (2.10)

extends to a global symmetry of the entire lagrangian. We call GV S the group

generated by all these symmetry transformations, i.e. the invariance group of the

cubic polynomial N(h). The group GV S has to be a subgroup of the isometry group,

Iso(MV S), of the scalar manifoldMV S, which becomes manifest if one rewrites the

kinetic term of the scalar fields as [10, 18]

−1
2
gxy(∂µϕ

x)(∂µϕy) =
3

2
CĨ J̃K̃h

Ĩ∂µh
J̃∂µhK̃ |N=1 .

In most cases, GV S and Iso(MV S) are the same, but there are some counterexam-

ples [18, 19] in which some isometries ofMV S do not extend to global symmetries of

the full lagrangian, i.e. to symmetries of the CĨ J̃K̃ . In such cases, it is then necessary

to distinguish between the invariance group of the pure scalar sector, Iso(MV S),

and the symmetry group of the entire lagrangian, GV S, because only the latter can

be gauged.

Regardless of the possible existence of this geometric symmetry group GV S (for

generic CĨJ̃K̃ , GV S might very well be trivial), every MESGT is in any case invariant

under global transformations of the R-symmetry group SU(2)R. As mentioned at the

beginning of this section, SU(2)R acts only on the indices i of the fermions, not on

the “geometric” indices (Ĩ , x). As a consequence, the total global symmetry group

of a MESGT factorizes:

Global invariance group of a MESGT = GV S × SU(2)R .

On quite general grounds, one thus obtains the following list of conceivable types of

gauge groups [11, 12, 17]:

• U(1)R ⊂ SU(2)R,
• K ⊂ GV S,

• U(1)R ×K,
• SU(2)R ×K with K ⊃ SU(2).
Here, K denotes some “gaugeable” subgroup of GV S (see below). The gauging

of U(1)R turns out to be a necessary prerequisite for obtaining Anti-de Sitter ground

states [11, 12, 16]. On the other hand, the gauging of U(1)R does not interfere with

the gauging of a subgroupK of GV S [12].
3 This is no longer true if one wants to gauge

3We should point out one subtle point in this regard. The gauge field of U(1)R must be a linear

combination of those vector fields that are singlets of K.

7
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the entire R-symmetry group SU(2)R, which requires the simultaneous gauging of a

subgroup K ⊂ GV S that itself contains an SU(2) subgroup SU(2) ⊂ K [17]. From

this it follows that the non-trivial part of a more explicit gauge group classification

lies in the classification of the possible gauge groups K ⊂ GV S.

What are the constraints on such gauge groupsK? According to (2.9), the (n+1)

vector fields AĨµ transform in a (not necessarily irreducible) (n+1)-dimensional repre-

sentation of the global invariance group GV S. The minimal consistency requirement

for a subgroup K ⊂ GV S to be gaugeable is therefore that this (n+ 1)-dimensional

representation contains the adjoint of K as a subrepresentation. In the most general

case, one therefore has the decomposition:4

(n+ 1)GV S −→ adj(K)⊕ singlets(K)⊕ non-singlets(K) . (2.11)

Two cases have to be distinguished:

(i) When the above decomposition contains no non singlets of K beyond the

adjoint, it was shown in [11] that the gauging can always be performed and that

the resulting theory has no scalar potential, unless one also gauges U(1)R [12] or

SU(2)R [17] in addition to K.

(ii) If, on the other hand, non singlets beyond the adjoint do occur, the corre-

sponding non-singlet vector fields have to be converted to self-dual tensor fields Bµν
in order for the gauging to be compatible with supersymmetry [12]. At the linearized

level, these tensor fields fulfill a first-order field equation of the form [20]

dB = im ∗B , (2.12)

where ∗ denotes the Hodge dual, m is a massive parameter proportional to the gauge
coupling g, and all internal indices have been suppressed for simplicity. Because of

this equation, the two-form fields Bµν are no longer equivalent to vector fields when

the gauge coupling is non zero.

For later reference, we split the index Ĩ according to

Ĩ = (I,M) , (2.13)

where I, J,K, . . . = 1, . . . , nV collectively denote the vector fields in the adjoint as

well as the K-singlets, and the M,N, P, . . . = 1, . . . , nT refer to the non singlets of

K, i.e. the tensor fields.

The presence of self-dual tensor fields introduces two important new features

into the theory:

• Consistency with supersymmetry now requires the existence of a non-vanishing
scalar potential, P (T ), which can be written in the form [12]

P (T ) =
3

4
gxyK

x
IK

y
Jh
IhJ , (2.14)

4For K abelian the adjoint of K and the K-singlets should be identified.
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where theKxJ denote the Killing vectors onMV S corresponding to the subgroup

K ⊂ GV S ⊂ Iso(MV S) of its isometry group.
5 This potential is manifestly

positive definite and hence can not lead to AdS ground states, unless one also

gauges U(1)R [16].

• The presence of the tensor fields implies several new restrictions on the CĨ J̃K̃
and the admissible gauge groups K ⊂ GV S [12]. Supersymmetry now demands

that the coefficients of the type CMNP and CIJM have to vanish:

CMNP = CIJM = 0 . (2.15)

Furthermore, the transformation matrices ΛMIN of the non singlets have to be

ΛNIM =
2√
6
ΩNPCMPI ⇐⇒ ΩNPΛPIM =

2√
6
CMNI , (2.16)

where ΩMN and Ω
MN are antisymmetric and inverse to each other:

ΩPNΩ
NM = δMP .

For the inverse ΩMN to exist, nT obviously has to be even. The symmetry of

the CIMN and eq. (2.16) further imply

ΛPINΩPM + ΩNPΛ
P
IM = 0 , or ΛTI · Ω + Ω · ΛI = 0 , (2.17)

i.e. the non singlets have to transform in a symplectic representation of the

gauge group K [12].

In section 3, we exploit these restrictions and classify those CĨJ̃K̃ that meet all

these requirements. Having physical applications in mind, however, we only consider

compact gauge groups K that are either

(i) abelian or

(ii) semi-simple or

(iii) a direct product of an abelian and a semi-simple group.

2.2.2 Case II: the general case with hypermultiplets

When hypermultiplets are present [13, 14], there is an additional global symmetry

group, Iso(MQ), the isometry group of the quaternionic target space MQ of the

hyperscalars [15]. However, as the hypermultiplets do not contain any vector fields

themselves, any gauging of the quaternionic isometries has to be “external”, i.e. it

has to be done with the vector fields AIµ of the supergravity and/or vector multiplets.

Two cases should be distinguished (see also [6, 13, 22]).
5As mentioned earlier, and contrary to what happens in four dimensions [21, 22], this potential

vanishes when no tensor fields are present. This can be seen directly from (2.14), taking into account

the fact that the very special geomety ofMV S implies [11] that K
x
Ĩ
hĨ = 0 when the summation

goes over the full set of indices Ĩ.

9
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(i) If one wants to gauge an abelian subgroup K ⊂ Iso(MQ), one needs at least

dim(K) vector fields, i.e. nV = (dim(K) − 1) vector multiplets. No other
restriction has to be satisfied in the vector multiplet sector.

(ii) If K ⊂ Iso(MQ) is non abelian, one needs at least nV = dim(K) vector mul-

tiplets, but now one also needs the gauge fields to transform in the adjoint of

K. This means that, just as in the case without hypermultiplets, K now also

has to be a gaugeable subgroup of GV S.

To summarize, the gauging of a given non-trivial group of quaternionic isometries

imposes the same constraints on the gaugeable subgroups of GV S as in the case

without the hypermultiplets. We therefore focus on a classification of the gaugeable

isometries of the very special geometry. Having solved that problem, the classification

of the gaugeable quaternionic isometries is then equivalent to a classification of all

isometry groups of all possible quaternionic manifolds.6 A deeper understanding of

this problem would also provide information on the possible matter representations

in five-dimensional gauged supergravities, which is also important for the reasons

mentioned in the introduction. However, this lies beyond the scope of this paper:

for some recent results, see [24].

3. Very special manifolds with gaugeable compact isometries

Our goal is to classify the cubic polynomials

N(h) = CĨ J̃K̃h
ĨhJ̃hK̃

that have a non-trivial invariance group, GV S, with a gaugeable compact subgroup

K ⊂ GV S.

Our classification is constructive, in that we write down the possible building

blocks of such polynomials, i.e. of the underlying coefficients CĨ J̃K̃ . Besides the

restrictions imposed by the gauging, these building blocks have to satisfy one addi-

tional constraint, which is already present in the ungauged theory. This constraint

has to do with the fact that a given set of CĨJ̃K̃ uniquely determines the tensor
◦
aĨ J̃

in the kinetic term of the vector fields as well as the metric gxy of the very spe-

cial manifold MV S. Both
◦
aĨ J̃ and gxy have to be positive definite in order to be

physically meaningful.

In general, it appears difficult to see when this is the case, because of the

complicated expressions one usually gets when evaluating (2.6) on the hypersurface

N(h) = 1. Fortunately, however, there is a basis of the ambient space R(n+1) ⊃MV S,

6The homogeneous quaternionic manifolds were classified in [23].
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the “canonical basis” [10], in which these positivity properties become manifest. In

this canonical basis, the CĨ J̃K̃ take the form

C000 = 1 , C00i = 0 ,

C0ij = −1
2
δij , Cijk = arbitrary (3.1)

with i, j, k, . . . = 1, . . . , n. As indicated, the coefficients of the type Cijk may be

chosen at will, i.e. they parametrize the remaining freedom one has in deforming the

manifoldMV S without spoiling the positivity properties of gxy and
◦
aĨ J̃ .

In the above basis, the invariance condition (2.10)

M Ĩ′
(Ĩ
CJ̃K̃)Ĩ′ = 0 (3.2)

restricts the transformation matrices M Ĩ′
Ĩ
to be of the form (see also [23]):

M0
0 = 0 ,

M i
0 = M0

i ,

M i
j = Sij + Aij , (3.3)

where Sij is symmetric in i and j, and Aij is antisymmetric. The matrix Sij is

given by

Sij =M
k
0Ckij , (3.4)

whereas Aij is subject to the constraint

Cl(ijAk)l =M
m
0

[
Clm(iCjk)l − 1

2
δm(iδjk)

]
. (3.5)

We are only interested in compact symmetries of the CĨ J̃K̃ . These are generated by

the antisymmetric part of M Ĩ
J̃
, i.e. we have to set M i

0 =M
0
i = 0 and are left with

M Ĩ
J̃
=

(
0 0

0 Aij

)
(3.6)

with

Aij = −Aji ⇐⇒ Aij ∈ so(n) ,
Cl(ijAk)l = 0 . (3.7)

Hence, a compact symmetry group of the cubic polynomial N(h) is given by the

subgroup of the SO(n) rotations of the hi that also leave the coefficients Cijk invari-

ant.7 All we have to do then is to classify the possible Cijk that preserve gaugeable

subgroups K of this SO(n).
7This also implies that the action of a compact gauge group K ⊂ GV S ⊂ Iso(MV S) has always

at least one fixed point on MV S , namely the “base point” [10] h
Ĩ
c = (1, 0, . . . , 0) ∈ M ⊂ Rn+1,

which is left invariant under the action of SO(n) ⊃ K. This in turn guarantees the existence of at
least one critical point of the potential P (T ) related to the tensor fields, because KxI = 0 at this

point — see (2.14). Obviously, this critical point corresponds to a Minkowski ground state of the

theory (unless U(1)R is also gauged [16]), and it can be shown that this ground state is N = 2
supersymmetric.
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3.1 The most symmetric case: Cijk = 0

We start this classification with the simplest case

Cijk = 0 (3.8)

for all i, j, k, . . . = 1, . . . , n. In this most symmetric case, the polynomial N(h)

is obviously invariant under the full SO(n). In fact, it is easy to see that (3.8)

automatically implies M0
i = M i

0 = 0 via the constraint (3.5), i.e. there are no non-

compact symmetries, and SO(n) is the full symmetry group of N(h). It is interesting

to note that the manifolds based on (3.8) are in general not homogeneous, i.e. they

are not contained in the classification of homogeneous very special manifolds given

in [23]. Their peculiar geometry can best be seen by introducing the following “radial

coordinate” for the scalar manifold

r2 =
3

2

n∑
i=1

hihi .

The hypersurface condition then takes the form

N = h0
[(
h0
)2 − r2] = 1 ,

which can be rewritten in terms of the “lightcone” coordinates r± = 1
2
(h0 ± r) as

r+r−(r+ + r−) = 4 .

This hypersurface has two disconnected components . The topology of each con-

nected component of the full hypersurface is of the form

MV S = ℵ × Sn−1 ,

where ℵ is the surface in the (h0, r) plane given by N = 1.
We now turn to the gaugeable subgroups of GV S = SO(n). The components

hi transform in the n of SO(n). Any gaugeable compact subgroup K ⊂ GV S must

therefore be a subgroup of SO(n) such that the adjoint representation of K is con-

tained in the n of SO(n). However, the adjoint of any compact group K is always

embeddable in the defining representation of any SO(n) with n ≥ dim (K), because
the positive-definite Cartan-Killing form κab provides an invariant metric for the ad-

joint of K. Hence, any compact group K with dim (K) ≤ n can be gauged if (3.8)

holds. If n− dim (K) =: r > 0, one has (r + 1) spectator vector fields, one of them
being A0µ, which can be identified with the graviphoton. By construction, the other

dim (K) vector fields transform in the adjoint of K and act as K-gauge fields. The

spectator vector fields can in principle be used to gauge also U(1)R and/or abelian

isometries of the hyperscalar manifoldMQ, if they exist.
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Note that the gaugings described above do not introduce any tensor fields. The

only way to obtain a theory with tensor fields in the above model is by gauging

an SO(2) subgroup of SO(n): n ≥ 2, with A0µ being the SO(2) gauge field. This
follows because the transformation matrices ΛMIN of such tensor fields would have to

be related to some CIMN via (2.16). In the case at hand, i.e. with Cijk = 0, such

coefficients could only come from the C0ij with I = 0 — see (3.1). Thus A
0
µ would

be the only vector field that could couple to such tensor fields, and the latter can

only be charged with respect to a single SO(2) subgroup of SO(n).

We discuss such abelian gaugings with tensor fields in a slightly more general

context in section 3.3.

We now consider cubic polynomials N(h) with non-trivial Cijk. These poly-

nomials can be viewed as deformations of the simplest case (3.8). Since there are

no completely symmetric invariant tensors of rank three in the n of SO(n), such

deformations will in general break SO(n) to a subgroup. We are only interested

in the case where this surviving symmetry group (or a subgroup thereof) can be

gauged. As usual, we refer to this gaugeable subgroup of SO(n) as K. Note also

that, whereas the case Cijk = 0 does not in general lead to homogeneous spaces,

some of the deformations with Cijk 6= 0 do.

3.2 Non-trivial Cijk without tensor fields

We first consider the case where the gauging of K does not involve tensor fields. In

this case, the n of SO(n) decomposes according to

n = adjoint(K)⊕ singlets(K) .
Assuming the above decomposition, an abelian factor of K could not act non trivially

on anything. Thus, when no tensor fields are present, a compact gauge group K ⊂
GV S has to be semi-simple.

8

We split the indices i = 1, . . . , n as follows:

i = (a, α) , (3.9)

where a, b, . . . = 1, . . . , p ≡ dim (K) correspond to the adjoint of K, and α, β, . . . =
1, . . . , r label the r singlets, where p+ r = n.

Before we proceed, we note that the term of the form

C0ijh
0hihj = −1

2
h0δijh

ihj

appearing in the canonical basis (3.1) now reads

C0ijh
0hihj = −1

2
h0
(
δabh

ahb + δαβh
αhβ
)
. (3.10)

8Of course, one could still gauge U(1)R and/or an abelian subgroup of Iso(MQ) in addition to

K ⊂ GV S .
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Our goal is to find all possible deformations of the relation Cijk = 0 (3.8) that

are consistent with the invariance under K. Clearly, coefficients of the form Caαβ
transform in the adjoint of K and can therefore never be invariant under K transfor-

mations when K is semi-simple. Indeed, any such non-trivial Caαβ would correspond

to an abelian ideal ofK, in contradiction to the assumption of semi-simplicity. Hence,

we have

Caαβ = 0 . (3.11)

It remains to discuss the coefficients of the following forms.

(i) Cαβγ :

Since the hα are K-singlets, any Cαβγ are consistent with K invariance.

(ii) Cαab:

In order to be invariant under K, Cαab has to be an invariant symmetric tensor

of rank 2 of the adjoint representation of K. The only such object is the

Cartan-Killing form κab of K. However, in order for the δab term in (3.10) to

be invariant under K, one has to work in a basis where κab = δab, so that any

term Cαab must be of the form

Cαab = cαδab

with some arbitrary constants cα.

(iii) Cabc:

In order for this term to be invariant under the action ofK, it has to be equal to

a completely symmetric invariant tensor of rank 3 of the adjoint representation

of K. As was already emphasized in [12], such tensors exist only for the groups

SU(N) with N ≥ 3 (or products thereof), where they are given by the Gell-
Mann d symbols:

dabc = Tr(Ta{Tb, Tc})
with the Ta being the generators of SU(N). Hence, if K = SU(N): N ≥ 3, or
if K is a product of such SU(N) factors, a term Cabc = dabc can be introduced

without spoiling the K invariance of the cubic polynomial N(h). As an inter-

esting side remark, we note that an SU(N) gauging with Cabc = dabc leads to a

quantization condition for the gauge coupling constant of K [25], whereas an

SU(N) gauging with Cabc = 0 does not. The reason for this difference is the

non triviality of the Chern-Simons term in the case Cabc = dabc: see [25] for

further details.

3.3 Non-trivial Cijk with tensor fields

Before we start with the classification of the possible Cijk, we first prove the following

Observation: If tensor fields are present, a compact gauge group K has to have

at least one abelian factor.
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Proof: We first recall that a compact group K ⊂ GV S can act non trivially only on

the hi: i = 1, . . . , n, i.e. h0 has to be inert under K. Hence, all the tensor field indices

M,N, . . . = 1, . . . , 2m ≡ nT must be among the i, j, . . . = 1, . . . , n. We therefore split

the index i as follows

i = (I ′,M) ,

where the indices I ′, J ′, . . . = 1, . . . , (n− 2m) label the vector fields Aiµ that are not
dualized to tensor fields. The total set of vector fields that survive the tensor field

dualization AMµ → BMµν is thus given by

AIµ =
(
A0µ, A

I′
µ

)
.

We recall that the hM transform as follows (cf. (2.8)) under K:

hM 7−→ ΛMINhN ,

with

ΛNIM =
2√
6
ΩNPCIMP . (3.12)

being the K transformation matrices of the tensor fields BMµν . Furthermore, we note

that the term

C0ijh
0hihj = −1

2
h0δijh

ihj

appearing in the canonical basis (3.1) contains the term

C0MNh
0hMhN = −1

2
h0δMNh

MhN . (3.13)

The presence of this term has two important consequences:

(i) There is always a non-vanishing matrix ΛN0M given by (3.12), which, in the case

at hand, becomes

Λ0 = − 1√
6
Ω−1 . (3.14)

(ii) Since h0 is inert under K, the K invariance of the term (3.13) requires the

matrices ΛNIM to be orthogonal:

ΛTI + ΛI = 0 . (3.15)

Recalling that the ΛNIM also have to be symplectic (2.17):

ΛTI · Ω + Ω · ΛI = 0 , (3.16)
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we have

Ω · [Λ0,ΛI ] · Ω (3.14)= − 1√
6
[ΛI · Ω− Ω · ΛI ]

(3.15)
=

1√
6

[
ΛTI · Ω + Ω · ΛI

]
(3.16)
= 0 ,

i.e. the (non-trivial) matrix Λ0 commutes with all the ΛI , and K has to have at least

one abelian factor, which acts non trivially on the tensor fields via ΛM0N . Q.E.D.

As a corollary of (3.15) and (3.16), we note that, choosing Ω = iσ2 ⊗ 1m, each
matrix ΛI has to be of the form

Λ =

(
X Y

−Y X

)
, with

{
X = −XT ,
Y = Y T ,

(3.17)

where X and Y are real (m×m)-matrices. Obviously, X + iY is anti-hermitean, i.e.
an element of u(m) (the above is nothing but the standard embedding of u(m) into

sp(2m,R) or so(2m)). This already shows that the allowed representation matrices

ΛNIM , and hence the allowed coefficients CIMN , are in one-to-one correspondence with

unitary m-dimensional representations of the compact gauge group K.

We now return to our classification of the possible coefficients Cijk in the presence

of tensor fields. Due to the above Observation, K has to have at least one abelian

factor. We first cover the case when K = K ′ × U(1) with K ′ semi-simple, and then
the case when K = U(1)l is purely abelian. The most general case is then obtained

by rather obvious combinations.

3.3.1 K = K ′ × U(1)
We first assume K = K ′ × U(1) with K ′ semi-simple and with both factors acting
non trivially on the same set of tensor fields. The n of SO(n) then decomposes with

respect to K ′ as

n = adjoint(K ′)⊕ singlets(K ′)⊕ non-singlets(K ′) ,
where, by assumption, the U(1) factor acts non trivially only on the non singlets of

K ′. Consequently, we split the index i = 1, . . . , n into three subsets of indices:

i = (a, α,M) , (3.18)

where, a, b, . . . = 1, . . . , p ≡ dim (K ′) correspond to the adjoint of K ′; α, β, . . . =
1, . . . , r label the r singlets; and M,N, . . . = 1, . . . , 2m refer to the 2m non singlets:

p + r + 2m = n.

As explained in section 2.2.1, the presence of the non-singlets hM requires the

conversion of the corresponding vector fields AMµ to antisymmetric tensor fields B
M
µν .

For consistency, the coefficients of the form CIJM and CMNP then have to vanish
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(see (2.15)). Recalling that, in our current notation, the index I comprises the indices

(0, a, α), the set of possibly non-vanishing coefficients Cijk therefore shrinks to

Cαβγ , Cαab , Cαβa , Cabc , CaMN , CαMN .

The allowed Cijk are constrained by the requirement that they be invariant under K.

The coefficients of the type Cαβa are U(1) singlets, but they transform in the adjoint

of K ′ and can therefore never contain any singlets of K ′ when K ′ is semi-simple (see
above). Hence,

Cαβa = 0 ,

and we are left with the following.

(i) Cαβγ :

Any coefficient of this type would automatically be inert under K, and can

therefore have any arbitrary value.

(ii) Cαab:

This term is a U(1) singlet. As explained in our discussion of the corresponding

term for the case without tensor fields, the only possible form of this term

consistent with invariance under K ′ is

Cαab = cαδab ,

with arbitrary constants cα.

(iii) Cabc
As explained earlier, this term can be either zero or equal to the d symbols of

SU(N), if K ′ = SU(N): N ≥ 3, or if K ′ is a product of such SU(N) factors.
(iv) CaMN :

We first note that, in general, any term of the form CIMN with I ∈ {0, a, α}
is automatically invariant under K. In fact, under a K transformation, it

transforms as

CIMN 7−→ fKJICKMN + Λ
P
JMCIPN + Λ

P
JNCIMP ,

which vanishes automatically because of relation (3.12) and the fact that the

ΛNIM generate a representation of K:

[ΛI ,ΛJ ] = ΛKf
K
IJ . (3.19)

The CaMN are uniquely determined by the Λ
N
aM via (3.12). All we have to

do then is to classify the possible K ′ representation matrices ΛNaM . From our
discussion around (3.17), however, it follows that the possible ΛNaM are in one-
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to-one correspondence withm-dimensional unitary representations ofK ′. Since
K ′ is compact, any representation of K ′ can be chosen to be unitary, and any
such unitary representation can be embedded into (2m× 2m) matrices of the
form (3.17) to form a possible set of ΛNaM or, equivalently, a possible set of CaMN .

(v) CαMN :

The CαMN also give rise to transformation matrices Λ
N
αM via (3.12). Since,

by assumption, our gauge group is K = K ′ × U(1), and the ΛNaM already
generate K ′, the ΛNαM are either zero or they correspond to the U(1) factor.
However, we already know that the (non-vanishing) matrix ΛN0M generates this

U(1) factor — see the proof at the beginning of this subsection. Since we

assumed only one U(1) factor, the ΛNαM can be at most proportional to Λ
N
0M ,

otherwise they would give rise to another, independent, abelian factor in the

gauge group K. For the CαMN this means that they can be at most (remember

that C0MN = −(1/2)δMN)
CαMN = dαδMN

for some constants dα. In that case, the U(1) gauge field would be the linear

combination

Aµ[U(1)] =

[
−1
2
A0µ + dαA

α
µ

]
.

3.3.2 K = U(1)l

We now come to the case when K = U(1)l is purely abelian. We assume for simplicity

that all the U(1) factors act on the same set of tensor fields. If there were abelian

groups acting on mutually disjoint sets of tensor fields, the cubic polynomial would

simply decompose into several subpieces of the type to be described below.

Assuming now the above gauge group structure, the n of SO(n) decomposes

as follows:

n = singlets(K)⊕ non-singlets(K) .
We denote the singlets ofK by α, β, . . . = 1, . . . , r and the non singlets byM,N, . . . =

1, . . . , 2m, i.e. we split

i = (α,M) .

The possible non-vanishing Cijk are now the following.

(i) Cαβγ :

These coefficients are automatically singlets of K, and can therefore be cho-

sen arbitrarily.

(ii) CαMN :

Via (3.12), these coefficients are related to theK-transformation matrices ΛNαM ,

which are again of the form (3.17). The maximal abelian subgroup of U(m) is

m dimensional, so that K can be at most U(1)m. In the special case K = U(1),

18
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the same arguments that were used in the case K = K ′ ×U(1) apply, and the
CαMN could be at most

CαMN = dαδMN

for some constants dα. In this case, the U(1) gauge field would again be the

linear combination

Aµ[U(1)] =

[
−1
2
A0µ + dαA

α
µ

]
.

It is now rather straightforward to construct more general cubic polynomials by

various combinations of the above basic building blocks.

We close this subsection with a comment on the nature of the tensor fields. As

we have seen, a compact gauge groupK ⊂ GV S has to be semi-simple when no tensor

fields are introduced. Conversely, when tensor fields are present, a compact gauge

group K ⊂ GV S can never be semi-simple; it has to contain at least one abelian

factor. This suggests the following interpretation.

If a compact group K ⊂ GV S is gauged, and tensor fields have to be introduced,

one has at least one N = 2 supersymmetric Minkowski ground state of the potential
P (T ) (see the footnote on page 11). The tensor multiplets should therefore admit an

interpretation as N = 2 Poincaré supermultiplets, at least for compact K. Since the
tensor fields satisfy a massive field equation, such a multiplet would necessarily have

to be massive. This is consistent with the form of the scalar potential P (T ) in (2.14),

which can be easily shown to be quadratic in the hM . Due to their K transformation

properties, the hM have a natural interpretation as parametrizing the scalar fields

in the tensor multiplets. Thus, P (T ) can be interpreted as providing the mass terms

for the massive scalars in the (massive) tensor multiplets. Such a massive tensor

multiplet would have to be a centrally-charged BPS multiplet in order to have the

same number of degrees of freedom as the massless vector multiplet from which it

emerged. Indeed, the five-dimensional N = 2 Poincaré superalgebra with central
charges has precisely one such BPS multiplet with exactly the right field content

(see, e.g., [20, 26]). It is then tempting to identify the U(1) factor in the (compact)

gauge group K with the (necessarily gauged) central charge of the corresponding

Poincaré superalgebra.

Note that the whole situation changes when one gauges U(1)R as well as K. As

shown in [16], this kind of gauging typically leads to a N = 2 supersymmetric AdS
ground state, and the tensor multiplets would then have a natural interpretation as

the self-dual tensor multiplets of the N = 2 AdS superalgebra described in [27].

4. An illustrative exercise: the standard model gauge group

As an illustration of the general analysis of section 3, we now demonstrate how

to obtain the Standard Model gauge group KSM = SU(3) × SU(2) × U(1) within
five-dimensional supergravity.
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Since the dimension of the Standard Model gauge group is dim(KSM) = 12, we

need at least twelve vector fields, i.e. at least eleven vector multiplets in addition to

the supergravity multiplet. In addition to this minimal field content, there might be

additional vector multiplets and/or some tensor multiplets. We first discuss the case

without any tensor multiplets.

4.1 Case 1: no tensor multiplets

When there are no tensor multiplets, all the vector fields have to transform in the

adjoint representation of KSM, or they must be singlets under the gauge group, as

discussed in section 2.2.1. Since the adjoint of the U(1) factor of KSM is trivial, this

U(1) factor has to act trivially on all the vector fields. In order to obtain fields charged

under the U(1) factor without introducing tensor fields, one would therefore have to

gauge a U(1)R subgroup of the R-symmetry group and/or an abelian isometry of

the hypermultiplet scalar manifoldMQ (provided such an isometry exists). Neither

of these abelian gaugings interferes with the classification of the admissible very

special manifoldsMV S. We can thus, as in section 3.2, restrict our attention to the

semi-simple part of KSM.

Working in the canonical basis, the (n+ 1) vector fields AĨµ are split into

AĨµ =
(
A0µ, A

i
µ

)
with i = 1, . . . , n (n ≥ 11), and the CĨ J̃K̃ are of the form

C000 = 1 ,

C00i = 0 ,

C0ij = −1
2
δij ,

Cijk = not yet fixed . (4.1)

A compact symmetry group acts trivially on A0µ, so that the adjoint vector fields of

SU(2) and SU(3) have to be recruited from the Aiµ, which we therefore split into

Aiµ =
(
Aâµ, A

ā
µ, A

α
µ

)
,

where Aâµ and A
ā
µ denote the adjoint vector fields of SU(2) and SU(3), respectively,

whereas the Aαµ stand for additional KSM singlets (which may or may not be present).

As described in section 3.2, the coefficients Cijk are now restricted by their

SU(2)× SU(3) invariance to take the following forms:

Cαβγ = arbitrary ,

Cαβâ = 0 ,

Cαβā = 0 ,
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Cαâb̂ = cαδâb̂ ,

Cαāb̄ = dαδāb̄ ,

Cαâb̄ = 0 ,

Câb̂ĉ = 0 ,

Câb̂c̄ = 0 ,

Câb̄c̄ = 0 ,

Cāb̄c̄ = bdāb̄c̄ , (4.2)

where Cαβγ , cα, dα and b denote some arbitrary coefficients, and the dāb̄c̄ are the d

symbols of SU(3). As mentioned earlier, there is no such term for the SU(2) factor

— see (4.2). A number of remarks are now relevant.

Remark 1: A linear combination of the SU(2)× SU(3) singlets A0µ and Aαµ could
always be used to gauge U(1)R and/or an abelian isometry of the hyperscalar mani-

foldMV S. Similarly, the SU(2) and the SU(3) gauge fields A
â
µ and A

ā
µ could always

be used to gauge SU(2) and SU(3) subgroups of Iso(MQ), provided such subgroups

exist. Depending on the particular quaternionic manifold one considers, one would

then get hypermultiplets transforming in certain representations of KSM (if this is

what wants to have).

Remark 2: As mentioned in section 3.2, a non-zero value for b would lead to a

quantization condition for the SU(3) coupling constant in the sense described in [25].

Remark 3: If n satisfies its lower bound n = 11, i.e. if there are no Aαµ, and A
0
µ is

the only KSM singlet, one has two options:

(i) b = 0:

corresponding to the simple case Cijk = 0 described in section 3.1,

(ii) b 6= 0:
leading to a quantization condition for the SU(3) coupling constant — see

Remark 2 above.

Thus, the minimal case n = 11 is fairly restrictive and allows only for a one-parameter

family of scalar manifoldsMV S. The price one has to pay for this rigidity is that the

U(1) factor of the Standard Model gauge group would have to be gauged with the

only remaining vector field A0µ, so that all the vector fields would have to participate

in the gauging, including the graviphoton. If, for some reason, one does not want

the graviphoton to be part of the Standard Model gauge fields, one would need at

least n = 12, which then introduces more arbitrariness into the theory via the new

undetermined coefficients Cαβγ , cα, dα.
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Remark 4: None of the “minimal” cases with n = 11, described in Remark 3,

corresponds to a symmetric spaceMV S. In order to implement the Standard Model

gauge group in a model based on a symmetric spaceMV S, one needs n ≥ 12, i.e. at
least one additional singlet Aαµ. The corresponding values for Cαβγ, cα, dα and b can

be read off from eqs. (A.1) and (A.2) in the appendix.

Remark 5: If there are at least three Aαµ, and if the Cαβγ , cα, dα are chosen ap-

propriately, i.e. as described in section 3.2, one could introduce further non-abelian

gauge factors. Similarly — if this is desired — one could consider embedding KSM
into larger gauge groups like SU(5), SO(10) etc. and write out the resulting restric-

tions on the CĨ J̃K̃ . We leave these extensions as exercises.

4.2 Case 2: the presence of tensor fields

We now consider the case with tensor fields. Self-dual tensor fields always have to

be charged under some gauge group [12]. In our case, this group could simply be

KSM itself, or some part of it. On the other hand, the tensor fields could also be

charged under some other gauge group factor which does not belong to the Standard

Model gauge group KSM. In order to keep the degree of complexity at a minimum,

we only consider the case when KSM is indeed the full gauge group, and the tensor

fields are charged under KSM = SU(3)× SU(2)×U(1). This is then exactly the case
we considered in section 3.3.1, and we can simply quote the results of that section.

As the tensor fields always come in pairs, we now need n ≥ 11 + 2 = 13.
We again work in the canonical basis, but now split the index i as follows

i = (â, ā, α,M) , (4.3)

where â and ā correspond to the adjoint of SU(2) and SU(3), respectively, whereas

α refers to the singlets and M to the non singlets (i.e. the tensor fields) of KSM.

The admissible Cijk are now given by (see section 3.3.1):

Cαβγ = arbitrary ,

Cαβâ = 0 ,

Cαβā = 0 ,

Cαâb̂ = cαδâb̂ ,

Cαāb̄ = dαδāb̄ ,

Cαâb̄ = 0 ,

Câb̂ĉ = 0 ,

Câb̂c̄ = 0 ,

Câb̄c̄ = 0 ,

Cāb̄c̄ = bdāb̄c̄ ,
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CMāb̄ = 0 = CMâb̂ = CMāb̂ = CMāα = CMâα = CMαβ ,

CâMN =

√
6

2
ΩMPΛ

P
âN ,

CāMN =

√
6

2
ΩMPΛ

P
āN ,

CαMN = eαδMN ,

CMNP = 0 . (4.4)

Here, Cαβγ , cα, dα, eα and b are again arbitrary coefficients, which might or might

not be zero, and dāb̄c̄ again stand for the SU(3) d symbols. The matrices Λ
P
âN and

ΛPāN are, respectively, the SU(2) and SU(3) transformation matrices of the tensor

fields. They can be related to (nT/2)-dimensional unitary representations of SU(2)

and SU(3) via (3.17), where nT denotes the (even) number of tensor fields. As for the

U(1) factor, the tensor fields would transform via the representation matrix Λ ∼ Ω−1
as in (3.14), with the corresponding U(1) gauge field being the linear combination

Aµ[U(1)] =

[
−1
2
A0µ + eαA

α
µ

]
.

(see the last item in section 3.3.1).

Once again, one finds that the minimal case n = 13 leads to a very small num-

ber of choices for MV S, and requires the graviphoton to be one of the Standard

Model gauge fields. To be more precise, the coefficients Cαβγ , cα, dα, eα have to

vanish, because there is no Aαµ, and the SU(2) and SU(3) transformation matrices

ΛPâN and Λ
P
āN would have to vanish because there is no non-trivial representation of

these groups of the form (3.17) for the minimal case nT = 2: any such representa-

tion would be related to one-dimensional (and hence trivial) unitary representations

of SU(2) and SU(3) via (3.17). Thus, in the minimal embedding of the Standard

Model gauge group with two tensor fields, the tensor fields form an U(1) ∼= SO(2)
doublet and are inert under SU(2)× SU(3), and the only free parameter is the coef-
ficient b.

Departure from the minimal value n = 13 then again introduces more arbitrari-

ness into the theory because of the new unconstrained coefficients Cαβγ , cα, dα, eα,

which, in the absence of any further selection principle, can have any value.

5. Summary and conclusions

We gave in the Introduction various motivations for considering the possible gaugings

of five-dimensional N = 2 supergravity. Whereas globally supersymmetric N = 2
Yang-Mills theories in five dimensions can be studied for any compact gauge group

without very stringent restrictions on the field content [28], it is not a priori clear
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what new restrictions are imposed by the non-linear structures introduced by a cou-

pling to supergravity. Since gravity plays an important rôle in the current interest

in five-dimensional theories, it is therefore important to analyze the constraints local

supersymmetry imposes on the gauge sector.

In general, this is a difficult geometrical problem, which helps explain why most

studies in the past focussed on theories with very peculiar classes of scalar manifolds.

In fact, almost all the known concrete examples involved symmetric [10, 11, 12, 18, 19]

or at least homogeneous spaces [12, 23]. However, thanks to the very special geometry

of the five-dimensional vector multiplet moduli space encoded in the coefficients

CĨ J̃K̃ , this geometrical problem can be reduced to a purely algebraic one. The entire

analysis boils down to a classification of the possible CĨ J̃K̃ that are consistent with

invariance under the gauge group K.

We have solved this algebraic classification problem for all compact gauge groups

that are semi-simple, or abelian, or a direct product of a semi-simple and an abelian

group. Our algebraic approach allowed us to go beyond the limitations set by the

restriction to homogeneous or symmetric spaces. In fact, from the viewpoint of

possible gauge symmetries, symmetric and homogeneous spaces are just particular

examples of much larger classes of possible scalar manifolds.

Our main results can be summarized as follows.

(i) K semi-simple:

Any compact semi-simple groupK can be gauged provided one respects certain

constraints on the field content and on the couplings encoded in the CĨ J̃K̃ .

These constraints can be found in section 3.1 and 3.2. The key results are

• One always needs at least n = dim(K) vector multiplets, i.e. there is
always at least one spectator vector field which can be identified with the

graviphoton. Note that this no longer holds true for non-compact gauge

groups. There, one can construct examples in which all the vector fields,

including the graviphoton, act as the gauge fields of K [11].

• In the minimal case n = dim(K), the scalar manifoldMV S is fixed when-

ever K does not contain an SU(N) factor with N ≥ 3. If, on the other
hand, K does contain SU(N) factors with N ≥ 3, each such SU(N) factor
gives rise to one undetermined parameter in the CĨJ̃K̃ and hence in the

resulting scalar manifold MV S, as is illustrated by the Standard Model

example discussed in section 4. The minimal case n = dim(K) does not

in general lead to symmetric spaces.

• IfK is purely semi-simple and compact, tensor fields are ruled out, because
they would need at least one U(1) factor in the gauge group. Again this

result no longer holds true for non-compact gauge groups, where one could

also have tensors for purely semi-simple K [11, 12].
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• As a by-product of the previous item, we found a natural interpretation of
the tensor multiplets in terms of massive BPS multiplets of the centrally-

extended Poincaré superalgebra, and also as self-dual tensor multiplets of

the corresponding AdS superalgebra. Which of these two interpretations

applies depends whether one also gauges U(1)R or not, as we discuss at

the end of section 3.

(ii) K abelian:

There are essentially two ways to implement an abelian gauge group K. If

the abelian gauge group is U(1)R and/or an abelian isometry of the hypermul-

tiplet moduli space MQ, no restriction on the very special geometry of the

vector multiplet sector is imposed: the very special geometry is blind towards

such gaugings.

The other possibility, which is the one we focused on in this paper, is when

the abelian gauge group acts non trivially on the very special manifoldMV S,

i.e. when one gauges an abelian isometry of MV S. This case always requires

tensor fields charged under K.

(iii) K = Ksemi−simple ×Kabelian:
This is essentially a combination of (i) and (ii), so, again, if the abelian factor

acts non trivially on MV S, one must have some tensor fields charged under

this abelian factor. The only new feature is now that the tensor fields can also

be charged with respect to the semi-simple part of the gauge group. This is an

interesting difference from the analogous N = 4 theories [29], where the tensor
fields can only be charged with respect to a one-dimensional abelian group. As

for the possible K representations of the tensor fields, we found that they are

in one-to-one corresponence with unitary representations of K.

In this paper, we have provided five-dimensional model-builders with a necessary

toolkit, enabling them to construct the most general theory with any given gauge

group. As an example of such a construction, we considered the Standard Model

gauge group as a toy model in section 4.

The matter content allowable in a general five-dimensional N = 2 supergravity
theory requires a further discussion of the hypermultiplet sector, which goes beyond

the scope of this paper. Another worthwhile extension of the present work would be

to consider the analogous classification problem for gaugings of six-dimensional su-

pergravity. There is increasing interest in six-dimensional models of particle physics:

see [30] and references therein. So far, phenomenological constructions have not in-

corporated explicitly the constraints that would be imposed by local supersymmetry

in six dimensions [31], which are even stronger than those in five dimensions.

We foresee a fruitful continuation of the dialogue between model-building and

explorations of the structures of higher-dimensional supergravity theories.
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A. Gauge theories in families of symmetric spaces

As an illustration of the more abstract discussion in section 3, we show in this

appendix how to recover some well-known examples in the language used in that

section. These examples correspond to the scalar manifolds

• MV S = SO(1, 1)× SO(n− 1, 1)/ SO(n− 1):
(the “generic Jordan family” [10])

• MV S = SO(n, 1)/ SO(n)

(the “generic non-Jordan family” [19])

• MV S = SL(3,C)/ SU(3),

which, apart from three additional cousins of the last one, exhaust all the very special

manifolds that are symmetric spaces [18, 19].

A.1 MV S = SO(1, 1)× SO(n− 1, 1)/ SO(n− 1)
In the canonical basis, the corresponding cubic polynomial is given by

N(h) =

[(
h0
)3 − 3

2
h0δijh

ihj − 1√
2

(
h1
)3
+
3√
2
h1
[(
h2
)2
+ · · ·+ (hn)2

]]
. (A.1)

In terms of the framework in section 3, this polynomial can be interpreted in different

ways, depending on which group K one chooses as the gauge group. Using indices

α = 1 ,

a = 2, . . . , n ,

for example, it could correspond to one of the theories where a semi-simple group

K ⊂ SO(n− 1) ⊂ SO(n) with adjoint(K) ⊂ (n− 1) ⊂ n can be gauged without the
introduction of tensor fields, as in section 3.2.

However, one can also interpret the indices {2, . . . , n} (or a subset thereof) as
tensor field indices M,N, . . .. This would then correspond to an SO(2) ⊂ SO(n)
gauging with tensor fields, with the SO(2) gauge field being proportional to the

linear combination [A0µ −
√
2A1µ], as in section 3.3.2.
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Other interpretations involving combinations of the above are of course also pos-

sible. This illustrates that, in general, for one and the same manifoldMV S, various

different types of gaugings are possible, and, conversely, that the CĨ J̃K̃ we constructed

in sections 3.2 and 3.3 might sometimes describe the same manifoldMV S.

We note finally that the transformation hĨ 7→ h̃Ĩ with

h̃0 =
1√
3

[
h0 −√2h1

]
,

h̃1 =
1√
3

[√
2h0 + h1

]
,

h̃Ĩ = hĨ , for Ĩ = 2, . . . , n

leads to the following simple form

N(h̃) =

(
3

2

)3/2(√
2h̃0
[(
h̃1
)2
−
(
h̃2
)2
− · · · −

(
h̃n
)2])

,

which is no longer in the canonical basis, but makes the full non-compact symmetry

Iso(MV S) = GV S = SO(1, 1)× SO(n− 1, 1) manifest.
A.2 MV S = SO(n, 1)/ SO(n)

In the canonical basis, the corresponding cubic polynomial reads

N(h) =

[(
h0
)3 − 3

2
h0δijh

ihj +
1√
2

(
h1
)3
+
3

2
√
2
h1
[(
h2
)2
+ · · ·+ (hn)2

]]
. (A.2)

This is, apart from two (important) prefactors, of the same form as the polynomials

of the generic Jordan family. Therefore, the discussion of the possible compact gauge

groups K is very similar and is not repeated here. Giving up the canonical basis,

the above polynomial can also be simplified by a coordinate transformation similar

to that described for the generic Jordan family. The definition

h̃0 =
1√
3

[
h0 +

√
2h1
]
,

h̃1 =
1√
3

[√
2h0 − h1

]
,

h̃Ĩ = hĨ for Ĩ = 2, . . . , n

leads to

N
(
h̃
)
=

(
3

2

)3/2(√
2h̃0
(
h̃1
)2
− h̃1

[(
h̃2
)2
+ · · ·+

(
h̃n
)2])

.

We note that not all isometries of the scalar manifolds MV S in this family are

symmetries of the full N = 2 supergravity [18]. As stressed earlier, only the subgroup

of the isometry group that leaves N(h̃) invariant gets extended to a symmetry group

of the full supergravity. In this case it turns out to be the (n − 1)-dimensional
euclidean subgroup of SO(n, 1).
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A.3 M = SL(3,C)/ SU(3)
In this model, which corresponds to the Jordan algebra, JC3 , of complex hermitean

(3 × 3) matrices [10], the index i runs from 1 to 8. We first decompose this index
according to i = (a, 4,M) with

a, b, . . . = 1, . . . , 3 ,

M,N, . . . = 5, . . . , 8 .

In the canonical basis, the underlying cubic polynomial can then be written as

N(h) =

[ (
h0
)3 − 3

2
h0δijh

ihj +
3√
2
h4
[
δabh

ahb − 1
2
δMNh

MhN
]
−

− 1√
2

(
h4
)3
+

(
3

2

)3/2
γaMNh

ahMhN

]
, (A.3)

where

γ1 = 12 ⊗ σ1 ,
γ2 = −σ2 ⊗ σ2 ,
γ3 = 12 ⊗ σ3 .

This form makes it easy to verify that one can gauge an SU(2)× U(1) group acting
non trivially on a set of four tensor fields BMµν , as in section 3.3.1.

The SU(2) vector fields are Aaµ, and the U(1) gauge field is proportional to the

linear combination [
√
2A0µ+A

4
µ]. This kind of gauging was examined in detail in [17].

On the other hand, the above polynomial can also be understood differently.

After some relabelling, one finds that the above polynomial is just

N(h) =

[(
h0
)3 − 3

2
h0δijh

ihj + dijkh
ihjhk

]
,

where i, j, . . . = 1, . . . , 8, with the dijk being the d symbols of SU(3). In this form,

it becomes obvious that one can also gauge SU(3) without introducing any tensor

fields, as in [11] and our discussion in section 3.2.

Finally, a somewhat more concise form of (A.3) is obtained via a transformation

to the new coordinates

h̃0 =
1√
3

(√
2h0 + h4

)
,

h̃4 =
1√
3

(
h0 −√2h4

)
,

h̃Ĩ = hĨ for Ĩ 6= 0, 4,
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which no longer correspond to the canonical basis. In terms of these,

N
(
h̃
)
=

(
3

2

)3/2 (√
2h̃4ηαβ h̃

αh̃β + γαMN h̃
αh̃M h̃N

)
, (A.4)

where

α, β, . . . = 0, 1, 2, 3 ,

ηαβ = diag(+,−,−,−) ,
γ0 = −14 .

This is the parametrization used in [10]. Indeed, it is now easy to verify that (A.4)

is nothing but the determinant of

h̃ =

(
3

2

)1/2
√
2h̃4 h̃5 − ih̃7 h̃6 − ih̃8

h̃5 + ih̃7 h̃0 + h̃3 h̃1 − ih̃2
h̃6 + ih̃8 h̃1 + ih̃2 h̃0 − h̃3


 ,

i.e. the determinant of an element h̃ of the Jordan algebra JC3 of complex hermitean

(3× 3)-matrices [10].
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