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Abstract— The paper presents a method using Radial
Basis Function (RBF) neural networks to speed up deter-
ministic search algorithms used for the optimization of su-
perconducting magnets for the LHC accelerator project at
CERN. The optimization of the iron yoke of the main LHC
dipoles requires a number of numerical field computations
per trial solution as the field quality depends on the exci-
tation and local iron saturation in the yoke. This results in
computation times of about 30 minutes for each objective
function evaluation (on DEC-Alpha 600/333). In this pa-
per we present a method for constructing an RBF neural
network for a local approximation of the objective function.
The computational time required for such a construction
is negligible compared to the deterministic function eval-
uation, and thus yields a speed-up of the overall search
process. The effectiveness of this method is demonstrated
by means of two- and three-parametric optimization exam-
ples. The achieved speed-up of the search routine is up to
30 %.

I. Introduction

The LHC accelerator project at CERN requires high
field superconducting magnets with an extremely uni-
form field distribution in the aperture. For the optimiza-
tion of these magnets deterministic search algorithms are
used in combination with the BEM-FEM coupling method
[1]. Since the gradient of the objective function can-
not be calculated in the closed form, the algorithm EX-
TREM, a non-gradient algorithm proposed by Jacob [2],
is used. Since the field in the magnet aperture depends
non-linearly on the excitation (saturation effects in the
iron yoke), the field quality has to be calculated over a
large excitation range from injection field level of 0.53 T
to the nominal field level of 8.33 T. This yields compu-
tation times of about 30 minutes per objective function
evaluation on a DEC-Alpha 600/333.

In recent years RBF approximations were applied to
the design optimization in computational electromagnet-
ics. For global optimization, multiquadratic expansions
were studied in the combination with simulated anneal-
ing [3] as well as with genetic algorithms [4]. Radial basis
functions were applied to global optimization in connec-
tion with local deterministic procedures [5]. The appli-
cation of RBF neural networks in optimization that we
introduced in [6], concerns the speed-up of local optimiza-
tion algorithms. The method is based on the observation
that the search algorithm steps into regions of the search
domain that have already been “visited” in previous iter-
ations. For a search point which is generated in a region
where a reliable RBF neural network can be constructed

an expensive function evaluation can be replaced by an
RBF approximation. In this paper, the method intro-
duced in [6] is further developed and the number of user-
defined parameters is reduced. A new strategy of choosing
the ridge parameter λ, as well as a figure of merit mea-
suring whether our evaluation point is well surrounded by
data points, are proposed.

II. Radial Basis Function Neural Networks

Radial basis function neural networks [7] are two layer
feed-forward networks with radial basis functions as acti-
vation functions in the hidden units, and linear activation
functions in the output units. The network is fully con-
nected and all connections from the hidden to the output
units are weighted. Let us consider the RBF network with
p inputs, one output and n Gaussian hidden units

φi(x) = exp
(−||ci − x||2/(2r2

i )
)

(i = 1, . . . , n),

where ci ∈ R
p are centers and ri are the widths of the

RBFs. For our design vector x ∈ R
p, the output of the

network is a linear combination of the basis functions

O(x) =
n∑

i=0

wiφi(x). (1)

This model is analyzed in detail in [7] and it is motivated
by the interpolation capabilities of RBF expansions [8].
Generally, as it was shown in [9], Gaussian RBF networks
can approximate any continuous mapping f : R

p → R,
and hence can be used to model the continuous objective
function in the optimization process

min f(~x).

In practice, the approximation problem is given in a form
of a set of n argument-value pairs Z = {xk, tk}nk=1, i.e.,
by n conditions f(xk) = tk, (k = 1, . . . , n). If an RBF
neural network is used to model the mapping f , conditions
f(xk) = O(xk) are requested. Under the assumption that
the centers ci and widths ri are known, the problem of
establishing weights of the network reads in matrix form
as

Φw = t, (2)

where t = [t1, . . . , tn]T ∈ R
n, Φ = [φi(xk)]i,k=1,...,n ∈

R
n×n and w = [w1, . . . , wn]T ∈ R

n is the vector of the
final layer weights which are computed.
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A learning algorithm of the RBF neural network in our
application has two stages. In the first stage, the centers
and widths of the RBFs are determined using only inputs
xk. In the speed-up scheme presented below this stage is
limited to assigning centers of RBFs to as many points
from the training set as possible. The used procedure
prevents setting two centers on points lying too close to
each other. Hence the columns in matrix Φ are linearly
independent [8] and the numerical rank (cf. [10]) of this
matrix is increased. The widths ri can be set arbitrarily
to a fraction of the diameter of the training set, though
rather broad widths are required to achieve a good gen-
eralization of the data. Here a width equal to the half of
the diameter of the training set has been chosen.

The second stage is the calculation of the weights w.
Because all RBF centers are different, matrix Φ is non-
singular [8]. Generally, however, Φ is very ill-conditioned,
and the weights w obtained via matrix inversion from (2)
yield a mapping O(x) that exhibits oscillatory behaviour
in between data points.

To resolve this problem we use the Tikhonov regular-
ization technique [10]. The method replaces equation (2)
by the regularized least squares problem. Its solution is a
function of the regularization parameter λ :

wλ ≡ min
w
{||Φw− t||2 + λ2||w||2}. (3)

In this formulation λ controls the norm of the solution.
In statistics this method is called the ridge regression.
For a prescribed value of the ridge parameter λ, the opti-
mal weight vector is the solution of the regularized normal
equations :

(ΦT Φ + λ2I)w = ΦT .

In practice, however, this equation system – in case of
Gaussian RBFs – is still very ill-conditioned and to calcu-
late a regularized solution wλ, regularized singular value
decomposition (SVD) of the matrix Φ has to be used [10].
The weight vector is expressed by the regularized pseudo-
inverse obtained from SVD of Φ as

wλ = Φ†t = VΩ−1
λ UT t,

where Ω−1
λ = diag(σ1/(σ2

1 + λ2), . . . , σn/(σ2
n + λ2))

is the regularized inverse of the singular value matrix
diag(σ1, . . . , σn) where σ1 ≥ · · · ≥ σn. Then the vector
wλ can be expressed as an expansion of the form

wλ =
n∑

i=1

σi

σ2
i + λ2

(uT
i t)vi, (4)

where the ui and vi are right and left singular vectors
corresponding to the i-th singular value of matrix Φ. The
aim of the regularization is to filter out big contributions
of the vectors vi corresponding to small singular values.
The inversion of a small singular value, such as in the case
of an ill-conditioned matrix, amplifies oscillations of the

approximation (1). If λ > σi the contribution of vectors
vi,vi+1, . . . ,vn in expansion (4) is damped since

σl

σ2
l + λ2

� 1
σl

(i < l ≤ n).

The parameter λ can be chosen by means of the Gener-
alized Cross-Validation method [11] which is a method,
designed for the estimation of λ for mapping noisy data
when the data set is big. For field calculation problems,
however, statistical errors are negligible, and the data set
is rather small. Hence a new method for choosing the
ridge parameter λ is presented in the next section.

The advantage of this two-stage learning algorithm, in
which parameters of RBFs are treated as hyperparame-
ters, is that it is more efficient than the back-propagation
method which iteratively optimizes parameters of RBFs
and weights of the network (cf. [12]).

III. The Speed-up Scheme for Deterministic

Search Algorithms

The RBF neural network approximation method has
been implemented into the standard optimization routine
of the field computation program [1] according to the fol-
lowing flowchart:

1. Perform some prescribed number of initial steps in the
search algorithm.
2. Generate the j-th search point x(j) by the search algo-
rithm.
3. Generate a training set Z for point x(j).
4. Judge if a reliable RBF approximator can be built:
(a) If point x(j) is in the reliable region of the search do-

main then train the network on the set Z for point x(j). If
the RBF network was successfully trained, then evaluate the
approximation f̃(x(j)) and substitute f(x(j))← f̃(x(j)).
(b) If point x(j) is not in the reliable region, or the net-

work cannot be trained successfully, then evaluate f(x(j))
by means of a numerical field computation.
5. Increment j and go to 2.
The process is stopped when a local minimum of the
objective function is found.

The speed-up is obtained by replacing the time con-
suming numerical calculations of the objective function
value by neural network approximations that require only
negligible time for construction and evaluation.

A. Initial steps of the search algorithm

The number of function evaluations using the determin-
istic search algorithm needed to obtain the first training
set is determined by the prescribed number of neurons of
the RBF approximator to be used. Experience shows that
the number of neurons in this application is hardly de-
pendent on the number of optimization parameters. Here
n ∼ 30 was found to be best suited. The number of initial
steps was set to 2n.
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B. Construction of the training set

The number of points in the training set Z is deter-
mined by the number of RBF neurons of the network so
that each RBF center is assigned to one of the points. In
order to capture important information for the function
approximation in point x(j), we first include the n nearest
deterministically evaluated search points to the training
set. Choosing the n nearest points as RBF centers may
yield, however, an ill-conditioned matrix Φ since the ma-
trix Φ, will contain two nearly equal columns, if some
centers lie too close to each other. To avoid such a situ-
ation we seek the set of RBF centers for pairs of centers
that lie too close to each other. From such pairs one cen-
ter is excluded from the set of RBF centers and replaced
by the next closest deterministically evaluated point that
had not been included yet.

C. Reliability of the approximation

The crucial part of the above scheme is step 4. First it
requires a method of detecting whether point x(j) lies in
a region in which an accurate RBF approximation can be
constructed. We define the following figure of merit :

Sstat(x(j)) =
n∑

k=1,i<k

akiWki

/ n∑
k=1,i<k

Wki,

with aki = dki

(rk+ri)/2 and Wki = 1
rk+ri

, where dki = ||ck −
ci||2 and rk = ||x(j) − ck||2 (the name Sstat stands for
surrounding statistics). To compute Sstat(x(j)) the first
stage of RBF construction has to be finished, i.e. all RBF
centers have to be assigned. It can be seen that Sstat(x(j))
has the following properties: (a) its value is biggest if x(j)

lies in a region of the search domain that is surrounded by
RBF centers, (b) its value is affected most by centers that
are close to point x(j), (c) it is dimensionless and scalable
invariant.

From the above it follows that Sstat(x(j)) measures if
point x(j) is surrounded well by RBF centers. Its value
is within the range (0, 2]. The larger this number is the
better the RBF centers are distributed around point x(j).
In figure 1 the value of Sstat is plotted for a typical distri-
bution of RBF centers.

D. Building an RBF approximator

For building an RBF approximator, the ridge parame-
ter has to be chosen in a way that the mapping O(x) is as
smooth as possible in the vicinity of point x(j). Due to the
fact that the data in the set Z is non-noisy we can limit the
choice of the parameter λ to the lower part of the singular
value spectrum of the matrix Φ, e.g., λ ∈ [σn+1, σbn/2c].
Thus this range is scanned and RBF approximators are
generated for various values of λ. The SVD of the ma-
trix Φ, however, is computed only once. Then the weight
vector wλ is calculated by means of regularized singular
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Fig. 1. Contour plot of the value of Sstat([x, y]) > 1.2 for the first 50
neurons RBF approximator in a Rosenbrock function optimization
(cf. [6]). The maximal value is attained for domain regions well
surrounded by RBF centers.

vector expansion (4) for each λ. To determine the quality
of the constructed approximators we use two measures :
1. the Normalized Local Mean Square Error to asses the
fit quality:

NLMSEλ(x(j)) =
(∑n

k=1

[Oλ(xk)− tk]2

t2kr2
k

/∑n

k=1

1
r2
k

) 1
2
,

2. the Weighted Gradient Variance to judge the general-
ization ability:

WGVλ(x(j)) =
∑n

k=1

||∇Oλ(xk)− ~Mλ(x(j)||22
r2
k

/∑n

k=1

1
r2
k

,

where ~Mλ(x(j)) is the “mean gradient” in point x(j), de-
fined as

~Mλ(x(j)) =
∑n

k=1

∇Oλ(xk)
r2
k

/∑n

k=1

1
r2
k

.

Note, that due to the weighting by 1/r2
k all these quan-

tities have a ”local character”and depend on the posi-
tion of x(j). The value of λ is chosen in a way that the
corresponding approximator yields a fit quality less than
the user-supplied NLMSE threshold (NLMSEthr ∈
[10−4, 10−3]) and minimizes WGVλ(x(j)). If for x(j) the
network with NLMSEλ(x(j)) < NLMSEthr is not found
we assume that the RBF network cannot be trained for
this point (point 4b. of the scheme). This approach is
a kind of discrepancy principle method (cf. [10]). Con-
straining NLMSE guarantees a good local fit quality on
the training set, whereas finding the minimum of WGV
chooses the approximator which oscillates the least.

In such a way, objective function approximations with
relative errors less than 10−3 were obtained in the exam-
ples presented below.

IV. Results

In this paper we present two examples of optimization
problems showing the performance of the method. The
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description of the optimization problem in the design of
superconducting magnets for the LHC has been presented
in [6]. The geometry consists of a superconducting dipole
coil in a non-magnetic stainless steel collar within a fer-
romagnetic iron yoke. The design variables x1, x2, and
x3 denote the half axes of the ellipses defining the sur-
face between collar and iron yoke. In the tables below,
the performance of the proposed method is compared to
the “purely” deterministic search algorithm. The first row
corresponds to the purely deterministic optimization with
the EXTREM routine, the second one corresponds to the
combination of EXTREM with the RBF approximation
scheme. The last column in all tables shows the number
of deterministic steps plus the number of RBF approxi-
mations needed to converge.

The first problem was a 2-parametric optimization of
the short sample field in the CERN coil test facility
(CTF). The form of the objective function was given in [6].
The three user-supplied parameters were set to n = 30,
Sstat,thr = 1.25, NLMSEthr = 5 · 10−4. The achieved
speed-up is of the order of 30 % (see fig. 2 and table I).
As one can see in the table, exactly the same minima were
found in both optimizations.

TABLE I
Comparison of the EXTREM algorithm and the speed-up scheme on a
2-parametric optimization (started from [130.,80.]) CTF optimization.
Using the presented method (line 2), 31 neural-network approximations
have been performed.

Algorithm x1 x2 fobj No. f. eval.

EXTREM 68.53 75.87 -391.3003 167

RBF app. 68.57 75.86 -391.2974 111 (+31)

The 3-parametric example is an optimization of the half
axes of the elliptical inner surface of the iron yoke of the
LHC main dipole. For the LHC dipole magnets all field
harmonics apart from the dipole component have to van-
ish. Hence the objective function has been defined as the
sum of all ”low-order” field harmonics using appropriate
weighting factors. By minimizing this function an almost
”pure” dipole field was obtained. The setup of parameters
was n = 27, Sstat,thr = 1.41, NLMSEthr = 5 · 10−4. The
scheme converged to a point very close to the minimum
found by the deterministic search yielding a slightly better
objective function value. The achieved speed-up is of the
order of 30 % (see table II). As one can see, the scheme
allowed to save many deterministic function evaluations
that were performed in the vicinity of the minimum by
the deterministic search.

TABLE II
Comparison of the EXTREM algorithm and the speed-up scheme on a 3-para-
metric optimization (started from [88.0,105.0,79.0]) of the LHC main dipole.
Using the presented method (line 2), 45 neural-network approximations have
been performed.

Algorithm x1 x2 x3 fobj No. f. eval.

EXTREM 80.92 99.64 86.02 -23.941 301

RBF app. 80.70 99.40 85.74 -24.179 208 (+45)

V. Conclusions

An improved method using a Gaussian radial basis neu-
ral network to speed up search algorithms was presented.
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Fig. 2. The path of the 2-parametric doptimization. Started from
[130., 80.], the algorithm converged to the minimum of the objective
function [68.55, 75.87] after 111 deterministic function evaluations
(empty circles) and 31 RBF approximations (crossed circles). The
EXTREM algorithm without RBF approximation needed 167 func-
tion evaluations. The achieved speed-up is of the order of 30 %.

The method constructs an unbiased RBF approximator
using the Tikhonov regularization technique for each point
from the search path whose vicinity is sufficiently rich in
data points generated in previous iterations. Since the
time needed for the construction and evaluation of such an
approximator is negligible compared to the deterministic
objective function evaluation, a speed-up of the optimiza-
tion process is achieved. In the paper, figures of merit
to measure the local fit quality and the local oscillatory
behaviour of the fit were introduced. A method was pre-
sented that allows to judge whether a reliable approxima-
tion can be obtained. We demonstrated the performance
of the proposed scheme on two examples of magnet op-
timization. In both cases an absolute speed-up of about
30 % was achieved.
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