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Abstract

We estimate the decay width difference ∆Γd/Γd in the Bd system including 1/mb

contributions and next-to-leading order QCD corrections, and find it to be around
0.3%. We explicitly show that the time measurements of an untagged Bd decaying to
a single final state isotropically can only be sensitive to quadratic terms in ∆Γd/Γd,
and hence the use of at least two different final states is desired. We discuss such pairs
of candidate decay channels for the final states and explore the feasibility of a ∆Γd/Γd
measurement through them. With tagged decays to CP eigenstates, it is possible
to have measurements sensitive to linear terms in ∆Γd/Γd with only one final state.
The measurement of this width difference is essential for an accurate measurement of
sin(2β) at the LHC. The nonzero width difference may also be used to resolve a twofold
discrete ambiguity in the Bd–B̄d mixing phase, and hence its measurement is crucial
for identifying new physics effects in the mixing. We also derive an upper bound on
the value of ∆Γd/Γd in the presence of new physics, and point out some differences in
the phenomenology of width differences in the Bs and Bd systems.
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1 Introduction

Within the standard model (SM), the difference in the decay widths of Bd mesons is CKM-

suppressed with respect to that in the Bs system. A rough estimate leads to

∆Γd
Γd
∼ ∆Γs

Γs
· λ2 ≈ 0.5% , (1)

where λ = 0.225 is the sine of Cabibbo angle, and we have taken ∆Γs/Γs ≈ 15% [1, 2, 3].

Here Γd(s) = (ΓL + ΓH)/2 is the average decay width of the light and heavy Bd(s) mesons

(BL and BH respectively). We denote these decay widths by ΓL,ΓH respectively, and define

∆Γd(s) ≡ ΓL − ΓH . No experimental measurement of ∆Γd is currently available. Moreover,

no motivation for its measurement (other than just measuring another number to check

against the SM prediction) has been discussed, and hence the study of the lifetime difference

between Bd mesons has hitherto been neglected as compared to that in the Bs system. The

phenomenology of the lifetime difference between Bs mesons has been explored in detail in

[4, 5].

With the possibility of experiments with high time resolution and high statistics, it is

worthwhile to have a look at this quantity and make a realistic estimate of the possibility

of its measurement. At LHCb for example, the proper time resolution is expected to be as

good as ∆τ ≈ 0.03 ps. This indeed is a very small fraction of the Bd lifetime (τBd
≈ 1.5

ps [6]), so the time resolution is not a limiting factor in the accuracy of the measurement,

the statistical error plays the dominant role. Taking into account the estimated number of

Bd produced — for example the number of reconstructed Bd → J/ψKS events at the LHC

is expected to be 5 × 105 ([7] table 3) — the measurement of the lifetime difference does

not look too hard at first glance. Naively, one may infer that if the number of relevant

events with the proper time of decay measured with the precision ∆τ is N , then the value of

∆Γd/Γd is measured with an accuracy of 1/
√
N . With a sufficiently large number of events

N , it should be possible to reach the accuracy of 0.5% or better.

The measurement of ∆Γd/Γd is in reality harder than what the above naive expectation

may suggest, since most of the quantities that involve the lifetime difference are quadratic

in the small quantity ∆Γd/Γd. In fact, as we shall explicitly show in this paper, the time

measurements in the decays of an untagged Bd to a single final state are sensitive only to

(∆Γd/Γd)
2. This implies that in order to discern two different lifetimes, the measurements

need to have an accuracy of (∆Γd/Γd)
2 ∼ 2.5 × 10−5, which is beyond the reach of the

currently planned experiments.

However, the combination of lifetimes measured in two different untagged decay chan-

nels may be sensitive to linear terms in ∆Γd/Γd. We explore three pairs of such untagged

measurements in this paper: (i) lifetime measurements through decays to self-tagging (e.g.

semileptonic) final states and to CP eigenstates, (ii) CP even and odd components in the
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decay mode Bd → J/ψK∗(Ksπ
0), and (iii) time-dependent untagged asymmetry between

Bd → J/ψKS and Bd → J/ψKL.

The conventional “gold-plated” decays for β measurement, J/ψKS and J/ψKL, neglect

the lifetime difference while determining sin(2β). For an accurate determination of β, the

systematic errors due to ∆Γd/Γd need to be taken into account. Moreover, if the lifetime

difference is neglected, the ambiguity β ↔ (π/2−β) remains unresolved. We show that mea-

surable quantities that are sensitive to the lifetime difference resolve this discrete ambiguity.

This is indeed a strong motivation for the measurement of the small lifetime difference ∆Γd.

In order to resolve this ambiguity in the Bd–B̄d mixing phase, the theoretical uncertain-

ties on ∆Γd need to be minimized. Therefore, we start by presenting in Sec. 2 a detailed

calculation of ∆Γd, including 1/mb contributions and next-to-leading order (NLO) QCD

corrections. The NLO precision in the width difference ∆Γd is also essential for obtaining

a proper matching of the Wilson coefficients to the matrix elements of local operators from

the lattice gauge theory.

The rest of the paper is organized as follows. In Sec. 3 we explicitly demonstrate the

quadratic dependence on ∆Γd/Γd of quantities measurable through untagged B decays to a

single final state. We explore the combinations of decay modes that can measure quantities

linear in ∆Γd/Γd and can help resolving the discrete ambiguity in β. We calculate the

corrections due to ∆Γd as well as the CP violation in K–K̄ mixing to the measurement of

sin(2β) through Bd → J/ψKS, and also indicate the possibility of the ∆Γd measurement

through tagged decays to CP eigenstates. In Sec. 4, we point out important differences in

the upper bounds on ∆Γs and ∆Γd in the presence of new physics, and elaborate on the

possibility of resolution of the discrete ambiguities in the mixing phases through them. We

summarize our findings in Sec. 5.

2 Next-to-leading order estimation of ∆Γd

2.1 Basic definitions

We briefly recall the basic definitions: in the Wigner–Weisskopf approximation the oscillation

and the decay of a general linear combination of the neutral flavour eigenstates Bd and B̄d,

a|Bd〉+ b|B̄d〉, is described by the time-dependent Schrödinger equation

i
d

dt

(
a
b

)
=
(
M− i

2
Γ
)(

a
b

)
. (2)

Here M and Γ are 2 × 2 Hermitean matrices. CPT invariance leads to the conditions

M11 = M22 and Γ11 = Γ22. Exact CP invariance would imply M21 = M12 and Γ21 = Γ12

(a phase choice, namely CP|Bd〉 = −|B̄d〉, CP|B̄d〉 = −|Bd〉 is made). Independent of the

choice of the unphysical phases, CP invariance (in mixing) would imply Im(M∗
21Γ21) = 0.
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The mass eigenstates, the light BL and the heavy BH , are given by

|BL,H〉 = p|Bd〉 ± q|B̄d〉 (3)

with the normalization condition |q|2 + |p|2 = 1. Only the magnitude |q/p| is measurable,

the phase of this quantity is unphysical and can be fixed arbitrarily by convention.

The mass difference and the width difference between the physical states are defined by

∆m = MH −ML, ∆Γ = ΓL − ΓH , (4)

such that ∆m > 0,∆Γd > 0 in the SM. The real and imaginary parts of the eigenvalue

equations are the following:

(∆m)2 − 1

4
(∆Γ)2 = (4|M21|2 − |Γ21|2), (5)

∆m∆Γ = −4Re(M∗
21Γ21). (6)

With the help of the CP-violating parameter δ

δ ≡ −2 Im(M∗
21Γ21)

(∆m)2 + |Γ21|2 = |p|2 − |q|2 = 〈BL|BH〉, (7)

The effect of CP violation due to mixing on the mass difference ∆m and on the lifetime

difference ∆Γ may be explicitly shown:

(∆m)2 =
4|M21|2 − δ2|Γ21|2

1 + δ2
(8)

(∆Γ)2 =
4|Γ21|2 − 16δ2|M21|2

1 + δ2
. (9)

In the limit of exact CP invariance (δ = 0) the mass eigenstates coincide with the CP

eigenstates, CP|BH〉 = −|BH〉 and CP|BL〉 = +|BL〉 and the mass difference and width

difference are given by ∆m = 2|M21|,∆Γ = 2|Γ21|. However, even with a non-zero δ,

taking into account that δ is constrained by the upper bound |δ| ≤ |Γ21|/(2|M21|) and

Γ21/M21 = O(m2
b/m

2
t ), we can write

∆m = 2|M21|
[
1 +O

(
m4
b

m4
t

)]
, ∆Γ = −2Re(M∗

21Γ21)

|M21|
[
1 +O

(
m4
b

m4
t

)]
. (10)

We shall neglect the terms of O(m4
b/m

4
t ) ∼ 10−6 in our calculations.

2.2 Method of calculation

In the following we consider the two off-diagonal elements M21 and Γ21, which correspond

respectively to the dispersive and the absorptive part of the transition amplitude from Bd
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Figure 1: Schematic representation of Feynman diagrams for M12 = M∗
21 and Γ12 = Γ∗21.

to B̄d. We follow the method of [2, 3] which was used there in the Bs–B̄s system (see also

[8, 9]).

Within the SM the well-known box diagram is the starting point of the calculations. M21

is related to the real part of this diagram (see Fig. 1). The important QCD corrections are

most easily implemented with the help of the standard operator product expansion. Because

of the dominance of the top quark contribution, M21 can be described by a local ∆B = 2

Hamiltonian below the mW scale:

M21 =
1

2MBd

〈B̄d|H∆B=2
eff |Bd〉

[
1 +O

(
m2
b

m2
W

)]
, (11)

H∆B=2
eff =

G2
F

16π2
(V ∗

tbVtd)
2CQ(mt, mW , µ)Q(µ) + H.c. , (12)

Q = (bidi)V−A(b̄jdj)V−A . (13)

The Wilson coefficient CQ contains the short-distance physics. It is known up to NLO

precision [10]. The hadronic matrix element 〈B̄d|Q(µ ≈ mb)|Bd〉 will be discussed below.

In the standard model, Γ21 is related to the imaginary part of the box diagram. Via the

optical theorem it is fixed by the real intermediate states. Therefore, only the box diagrams

with internal c and u quarks contribute (see Fig. 1). In contrast to the Bs–B̄s case where

the intermediate cc̄ contribution is the dominating one, because of its CKM factor (V ∗
cbVcs)

2,

over the uū, the cū and the uc̄ contribution (see Sec. 4.1), in the Bd–B̄d all four contributions

have to be taken into account. In the effective theory where we integrate out the W boson,

Γ21 is given by:

Γ21 =
1

2MBd

〈B̄d|Im i
∫
d4x T H∆B=1

eff (x) H∆B=1
eff (0)|Bd〉 , (14)

where

H∆B=1
eff =

GF√
2
(V ∗

ubVud
∑
i=1,2

CiQ
uu
i + V ∗

cbVud
∑
i=1,2

CiQ
cu
i + V ∗

ubVcd
∑
i=1,2

CiQ
uc
i +

+ V ∗
cbVcd

∑
i=1,2

CiQ
cc
i − V ∗

tbVtd
6∑
i=3

CiQi). (15)
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The operators are (i, j denote color indices)

Qqq′
1 = (biqj)V−A(q̄′jdi)V−A, Qqq′

2 = (biqi)V−A(q̄′jdj)V−A, (16)

Q3 = (bidi)V−A(q̄jqj)V−A, Q4 = (bidj)V−A(q̄jqi)V−A, (17)

Q5 = (bidi)V−A(q̄jqj)V+A, Q6 = (bidj)V−A(q̄jqi)V+A. (18)

The penguin operators Q3 – Q6 have small Wilson coefficients and are therefore suppressed

with respect to the four-quark operators – which all have the same two Wilson coefficients

C1 and C2. In the leading logarithmic approximation we have:

C± = C2 ± C1, C±(µ) =

(
α(MW )

α(µ)

)γ
(0)
±

2β0

C±(MW ), C±(MW ) = 1 , (19)

where β0 = (11N−2f)/3 = 23/3 and γ
(0)
± = ±6(1±N)/N . The coefficients to NLO precision

can be found in [11].

Because there is another short-distance scale, the bottom quark mass, the operator prod-

uct of two ∆B = 1 operators can be expanded in inverse powers of the bottom quark mass

scale in terms of local ∆B = 2 operators:

Γ21 =
1

2MBd

〈B̄d|Im i
∫
d4xTH∆B=1

eff (x)H∆B=1
eff (0)|Bd〉 (20)

=
∑
n

En
mn
b

〈B̄d|O∆B=2
n (0)|Bd〉 . (21)

These matching equations fix the values of the ∆B = 2 Wilson coefficients En. The corre-

sponding four quark operators On are the following: The operators Q and QS,

Q = (bidi)V−A(bjdj)V−A, (22)

QS = (bidi)S−P (bjdj)S−P , (23)

represent the leading order contributions. Their matrix elements are given in terms of the

bag parameters, B and BS, the mass of the Bd meson MBd
, and its decay constant fBd

:

〈B̄d|Q|Bd〉 = f 2
Bd
M2

Bd
2
N + 1

N
B, (24)

〈B̄d|QS|Bd〉 = −f 2
Bd
M2

Bd

M2
Bd

(m̄b + m̄d)2

2N − 1

N
BS . (25)

In the naive factorization approximation, B and BS are fixed by B = BS = 1. Reliable

lattice calculations for B and BS are already available [12]. We note that to NLO precision

one has to distinguish between the pole mass mb and the running quantity

m̄b(µ) = mb

[
1− αs

π

(
ln
µ2

m2
b

+
4

3

)]
(26)
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using the MS scheme.

The 1/mb corrections are given by the operators

R1 =
md

mb
(b̄idi)S−P (b̄jdj)S+P , (27)

R2 =
1

m2
b

(b̄i
←−
Dργ

µ(1− γ5)D
ρdi)(b̄jγµ(1− γ5)dj), (28)

R3 =
1

m2
b

(b̄i
←−
Dρ(1− γ5)D

ρdi)(b̄j(1− γ5)dj), (29)

R4 =
1

mb
(b̄i(1− γ5)iDµdi)(b̄jγ

µ(1− γ5)dj), (30)

R0 = QS +
1

2
Q+ Q̃S, (31)

where Q̃S has the “interchanged” color structure as compared to QS. There are also “color-

interchanged” operators R̃i and Q̃ corresponding to Ri and Q. We note that these 1/mb

operators are not independent, the relations between them are in fact the equations of

motion.

The matrix elements of these operators within the Bs–B̄s system were estimated in [2]

using naive factorization, which means that all the corresponding bag factors were set to 1.

For the Bd–B̄d system the analogous results are:

〈B̄d|R0|Bd〉 = f 2
Bd
M2

Bd

(
N + 1

N

)(
1− M2

Bd

m2
b

)
, (32)

〈B̄d|R1|Bd〉 = f 2
Bd
M2

Bd

md

mb

2N + 1

N
= 0 , (33)

〈B̄d|R̃1|Bd〉 = f 2
Bd
M2

Bd

md

mb

N + 2

N
= 0 , (34)

〈B̄d|R2|Bd〉 = f 2
Bd
M2

Bd

(
M2

Bd

m2
b

− 1

)
1−N
N

= −〈B̄d|R̃2|Bd〉 , (35)

〈B̄d|R3|Bd〉 = f 2
Bd
M2

Bd

(
M2

Bd

m2
b

− 1

)
2N + 1

2N
, (36)

〈B̄d|R̃3|Bd〉 = f 2
Bd
M2

Bd

(
M2

Bd

m2
b

− 1

)
N + 2

2N
, (37)

〈B̄d|R4|Bd〉 = −f 2
Bd
M2

Bd

(
M2

Bd

m2
b

− 1

)
, (38)

〈B̄d|R̃4|Bd〉 = −f 2
Bd
M2

Bd

(
M2

Bd

m2
b

− 1

)
1

N
. (39)

Henceforth we shall neglect terms proportional to md/mb; the other terms proportional to

(M2
Bd
/m2

b)− 1 are of order ΛQCD/mb.

In the matrix elements 〈Ri〉 (eqs. (32)–(39)), we use the pole mass mb. There is a

subtlety involved here: as discussed in [3], there are terms of order αs and of leading power
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in mb in the matrix element of R0 to NLO precision. In view of the relation (31), it is not

surprising that there are such terms. In the scheme – which was used in [3] and which is also

used here – these terms are subtracted in the matrix element 〈R0〉 while taking into account

the leading NLO contribution. Then the 〈R0〉 matrix element is still of a subleading nature.

The specific subtraction scheme for the factorized matrix elements 〈Ri〉 corresponds to the

use of the pole mass in eqs. (32)–(39). Of course this specific choice for the matrix elements

has to be taken into account if the NLO results are combined with a lattice calculation of

the 〈Ri〉.
There is an additional remark in order. We estimate Γ21 by the cut of the partonic

diagrams. The underlying assumption of local quark-hadron duality can be verified in the

Bs–B̄s system, in the simultaneous limit of large N and of small velocity [1], therefore one

expects no large duality violations. In the Bd–B̄d system the small velocity argument fails

since the uū, uc̄ and cū intermediate states contribute significantly, and the larger number

of light intermediate states leads to a larger energy release. We follow ref. [2] and make the

assumption that the duality violations in the Bd − B̄d system are also not larger than 10%.

In order to test this assumption one should include all corrections up to that accuracy.

2.3 Analytical results

In this section, we present an analytic expression for Γ21 including 1/mb, penguin and NLO

corrections. If one takes into account the error inherent in the naive factorization approach to

the matrix elements of the subleading operators R, it seems to be a reasonable approximation

to keep at least all terms up to an accuracy of 10−2 Γleading21 . We keep also higher order terms

in order to check the accuracy of our approximation.

In the effective theory of the ∆B = 2 transitions the matrix elements of the 1/mb op-

erators (R) are formally suppressed by a factor of the order of 0.1 with respect to those of

the leading operators Q and QS. The natural variable z = m2
c/m

2
b also formally introduces

a suppression factor of approximately 0.1. The NLO contribution has formally an extra

suppression factor (αs/4π) of order 0.01. Within the effective theory of the ∆B = 1 Hamil-

tonian, the combination K ′ = CpengCdom and K ′′ = CpengCpeng are suppressed by almost a

factor 0.01 and 10−4 respectively, with respect to the combination K = CdomCdom, where

Cpeng denotes the Wilson coefficients of the penguin operators Q3...Q6 and Cdom that of the

dominating operators Qqq′
1 (2). The contribution due to K ′′ therefore can be safely neglected.

Schematically our analytical result for Γ21 has the following form:

Γ21 = K 〈Q〉 (40)

+ K 〈R〉 (O(1) +O(z) +O(z2) + {O(z3)}) (41)

+ K ′ 〈Q〉 (O(1) +O(z) + {O(z2)}) (42)

+ K ′ 〈R〉 (O(1) + {O(z2)} (43)
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+ αs/(4π) K 〈Q〉O(1) , (44)

where Q represents the leading order operators Q and QS. The terms inside the curly

brackets are the ones that we calculate only to estimate the errors. In the presentation of

the results the following combinations of the Wilson coefficients are used:

K1 = 3C2
1 + 2C1C2, K2 = C2

2 , K3 = C2
1 , K4 = C1C2 (45)

K ′
1 = 2(3C1C3 + C1C4 + C2C3), K ′

2 = 2C2C4, (46)

K ′
3 = 2(3C1C5 + C1C6 + C2C5 + C2C6), (47)

and the common factor of [−G2
Fm

2
b/(24πMBd

)] is implicit in the following equations (48),

(49), (51), (53).

In the leading log approximation we calculate the Qqq′
1 and the Qqq′

2 contributions to Γ21.

By extracting the absorptive parts of the cc̄, uc̄, cū and uū intermediate states, we can find

the off-diagonal element. For this leading contribution (40), after replacing V ∗
ubVud by the

unitarity relation, we get to all orders in z:

Γleading21 = (V ∗
tbVtd)

2
[(
K1 +

1

2
K2

)
〈Q〉+ (K1 −K2)〈QS〉

]

+ (V ∗
cbVcd)(V

∗
tbVtd)

[
(3z(K1 +K2)− 3z2K2 − z3(K1 −K2))〈Q〉

+(6z2(K1 −K2)− 4z3(K1 −K2))〈QS〉
]

+ (V ∗
cbVcd)

2
{√

1− 4z
[(
K1 +

1

2
K2

)
− z(K1 + 2K2)

]
〈Q〉

+
√

1− 4z(1 + 2z)(K1 −K2)〈Qs〉
+
(
(1− z)2 [−(2K1 +K2) + z(K2 −K1)] +

[
K1 +

1

2
K2

])
〈Q〉

+
[
(1− z)2(2 + 4z)(K2 −K1)− (K2 −K1)

]
〈QS〉

}
. (48)

The 1/mb corrections to the operators Qqq′
1 and Qqq′

2 give [see the term (41)]

Γ
1/mb
21 = (V ∗

tbVtd)
2
[
−2

(
K1 − 1

2
K2

)
〈R2〉 − 2K1〈R1〉+ 2K2〈R4〉

]

+ (V ∗
cbVcd)(V

∗
tbVtd)

[
−12z2K1(〈R1〉 − 2〈R3〉)
+ 6z2K2(〈R2〉+ 4〈R3〉+ 2〈R4〉)

]
+

{
K〈R〉O(z3)

}
. (49)

The term in curly brackets in (49) can be written as

{...} = (V ∗
cbVcd)(V

∗
tbVtd)×

[4z3K1(2〈R1〉 − 〈R2〉 − 6〈R3〉)− 4z3K2(〈R2〉+ 6〈R3〉+ 2〈R4〉)]
+ (V ∗

cbVcd)
2 ×

[12z3K1(2〈R1〉 − 〈R2〉 − 6〈R3〉)− 12z3K2(〈R2〉+ 6〈R3〉+ 2〈R4〉)] (50)
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The penguin contributions [terms (42), (43)] are

Γpeng21 = (V ∗
tbVtd)

2
[(
K ′

1 +
1

2
K ′

2

)
〈Q〉+ (K ′

1 −K ′
2)〈QS〉

+ (−2〈R2〉 − 2〈R1〉)K ′
1 + (〈R2〉+ 2〈R4〉)K ′

2

]
+ (V ∗

cbVcd)(V
∗
tbVtd)(3zK

′
1 + 3zK ′

2 − 3zK ′
3)〈Q〉

+{K ′ 〈Q〉O(z2) + K ′ 〈R〉O(z)} , (51)

where the terms in curly brackets (and the lower order ones) may be written as

{...} = (V ∗
cbVcd)(V

∗
tbVtd)×

[4z3K1(2〈R1〉 − 〈R2〉 − 6〈R3〉)− 4z3K2(〈R2〉+ 6〈R3〉+ 2〈R4〉)]
+ (V ∗

cbVcd)
2 ×

[12z3K1(2〈R1〉 − 〈R2〉 − 6〈R3〉)− 12z3K2(〈R2〉+ 6〈R3〉+ 2〈R4〉)] . (52)

The NLO QCD correction ΓNLO21 = αs/(4π) K 〈Q〉 [term (44)] is found from [3] by taking

the limit z → 0 of their results5:

ΓNLO21 =
αs(mb)

4π
(V ∗

tbVtd)
2
{[109

6
K3 − 254

9
K4 −

(
π2

3
+

115

18

)
K2

]
〈Q〉

+
[(

10K3 +
20

3
K4 +

8

3
K2

)
ln
(
µ2

mb

)
− (34K4 + 10K2)ln

(
µ1

mb

)]
〈Q〉

−
[
40

3
K3 +

272

9
K4 −

(
8π2

3
− 152

9

)
K2

]
〈QS〉

+
[(

32K3 − 64

3
K4 +

32

3
K2

)
ln
(
µ2

mb

)
− (16K4 + 16K2)ln

(
µ1

mb

)]
〈QS〉

−
[

2

27
+

2

9
ln
(
µ1

mb

)
+

1

3

C8

C2

]
K2(〈Q〉 − 8〈QS〉)

}
. (53)

The explicit µ1 and µ2 dependence in (53) cancels against the µ dependence of the Wilson

coefficients of the hamiltonian H∆B=1
eff (15) and the µ dependence of the matrix elements of

the ∆B = 2 operators at the order in αs we take into account. For a proper matching with

lattice evaluations of these matrix elements it is important to note that the results in (53)

are based on the NDR scheme, with the choice of γ5 and the evanescent operators as given

in eqs. (13)–(15) of [3].

The net Γ21 is

Γ21 = Γleading21 + Γ
1/mb
21 + Γpeng21 + ΓNLO21 , (54)

with the implicit multiplicative factor of [−G2
Fm

2
b/(24πMBd

)].

5We add only the leading contribution of the NLO QCD corrections for the term (V ∗
tbVtd)2. The lead-

ing terms of the contributions for the terms (V ∗
cbVcd)(V ∗

tdVtd) and (V ∗
cbVcd)2 cancel out through the GIM

mechanism.
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2.4 Numerical results

Let us now calculate the numerical value of ∆Γd. From eq. (10), ∆Γd can be approximately

written as

∆Γd ≈ −2|M21|Re
Γ21

M21
= −∆m Re

Γ21

M21
. (55)

where M21 [see eq. (11)] is given by

M21 =
G2
FM

2
W ηB

(4π)2(2MBd
)
(V ∗

tbVtd)
2S0(xt)〈Q〉. (56)

Here xt = m̄2
t/M

2
W , ηB is the QCD correction factor and S0 is the Inami–Lim function:

S0(x) = x

(
1

4
+

9

4(1− x) −
3

2(1− x)2

)
− 3

2

(
x

1− x
)3

log x . (57)

Using the results obtained in the previous section, we can write down the width difference

(normalized to the average width) in the form

(
∆Γ

Γ

)
Bd

=
(

∆m

Γ

)
d
K ×

[
Gtt +

5

8

BS M
2
Bd

B m̄2
b

Gtt
S +

3

8

1

B
Gtt

1/m

+Re

(
VcdV

∗
cb

VtdV ∗
tb

)
·
(
Gct +

5

8

BS M
2
Bd

B m̄2
b

Gct
S +

3

8

1

B
{Gct

1/m}
)

+ Re

(
VcdV

∗
cb

VtdV
∗
tb

)2

·
(
Gcc +

5

8

BS M
2
Bd

B m̄2
b

Gcc
S

)
 . (58)

The superscripts {tt, ct, cc} correspond to the terms in the expression for ∆Γd (54) that

involve the CKM factors {(VtdV ∗
tb)

2, (VcdV
∗
cb)(VtdV

∗
tb), (VcdV

∗
cb)

2} respectively. The subscript S

denotes the contribution from the operator QS, and the subscript 1/m denotes the terms

that give the 1/mb corrections. The normalizing factor K ≡ (4πm2
b)/(3M

2
WηBS0(xt)) and

the value of (∆m/Γ)d may be taken from experiments: xd ≡ (∆m/Γ)d = 0.73 ± 0.03 [6].

The form of eq. (58) can bring out important features of the dependence of ∆Γd on various

parameters, as we shall see below. In contrast to the Bs system, this representation is

preferable, because within the leading term the CKM dependence cancels out and the value

of (∆m/Γ)d may be taken from experiments: xd ≡ (∆m/Γ)d = 0.73± 0.03 [6].

A remark about the penguin contributions is in order. We only include the interference

of the penguin operators C3...C6 with the leading operators C1 and C2. At the NLO, this

approximation can be made consistent (in the sense of scheme independence) by counting

the Wilson coefficients C3...C6 as of order αs. These Wilson coefficients are modified at NLO

through the mixing of C1 and C2 into C3...C6. For C1 and C2 we use the complete NLO

11



values. Since the contribution due to C8 starts only at the NLO level, we only have to use

the LO value for that Wilson coefficient. We stress that if one uses the consistent NLO

approximation just described, the corresponding LO approximation includes no penguin

contributions and uses the LO values for C1 and C2.

The choice of the b-quark mass at LO is ambiguous (it may be taken to be the pole mass

or the running mass at one or two loop level); we take it to be the running mass in the MS

scheme to leading order in mb.

We use the following values of parameters to estimate ∆Γd:

MBd
= 5.28 GeV , mb = 4.8 GeV , mc = 1.4 GeV ,

m̄b(mb) = 4.4 GeV , m̄t(mb) = 167 GeV . (59)

To the NLO precision [we use here the NDR scheme to get ηB(mb) = 0.846 and include

the NLO Wilson coefficients [13] and the corrections computed in eqs. (49),(51)], we get (in

units of 10−3)

(
∆Γ

Γ

)
Bd

= 1.00 + 5.15
BS

B
− 1.38

1

B

−cos β

Rt

(
1.07 + 0.29

BS

B
+ 0.02

1

B
+
{
0.005− 0.021

BS

B
+ 0.003

1

B

})

+
cos 2β

R2
t

(
0.02− 0.06

BS

B
+
{
−0.01

1

B

})
. (60)

Let us perform a conservative estimate of the error on the value of ∆Γd/Γd that we obtain

here. The errors arise from the uncertainties in the values of the CKM parameters, the bag

parameters and the mass of the b quark. There are also errors from the scale dependence,

the breaking of the naive factorization approximation, and the neglected higher order terms

in the z expansion.

In the SM, we have

cos β/Rt = 1.03± 0.08 , cos 2β/R2
t = 0.87± 0.15 , (61)

where we have taken the values of the CKM parameters from the global fit [14]. The leading

term on the first line in (60) is independent of the CKM elements. The quantity cos β/Rt

is known to an accuracy of about 10% and appears in (60) with a coefficient ∼ 0.2 relative

to the leading term. The quantity cos 2β/R2
t , although known to only about 20%, appears

with a very small coefficient (∼ 10−2) as compared to the leading term in (60). The net

error due to the uncertainty in the CKM elements is thus approximately only 2%, i.e. about

±0.06× 10−3.

We estimate the effect of the uncertainties in the bag factors by computing (60) with

three sets of values of the bag parameters. The numerical results are as shown in Table 1.
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LO A B C
B 1.0 0.90 0.83 1.0
BS 1.0 0.75 0.84 1.0

∆Γd/Γd 6.3× 10−3 2.4× 10−3 3.1× 10−3 3.3× 10−3

Table 1: The numerical value of ∆Γd/Γ for different values of the bag parameters. The
column LO (C) shows the leading (next-to-leading) order result with factorization, i.e. B =
BS = 1. The values of the bag factors in column A are taken from [3] and the ones in
column B from the (preliminary) results in an unquenched (Nf = 2) lattice calculation by
the JLQCD collaboration [12].

From the table, and using the uncertainties on the values of the bag parameters as given in

[15], we conservatively estimate the corresponding uncertainty in the value of ∆Γd/Γd due to

bag factors to be approximately ±0.4×10−3. The uncertainty in the value of m̄b = 4.4±0.2

also leads to an error of ±0.5 × 10−3. The uncertainty due to the scale µ1 dependence is

estimated to be +0.4
−1.0×10−3 (where µ1 is varied between 2mb and mb/2 following the common

convention). The error due to the input value of xd is 0.1× 10−3.

The errors due to the breaking of the naive factorization assumption (which was made in

the calculation of the matrix elements of the 1/mb operators) are hard to quantify. Assuming

an error of 30% in the R matrix elements (as in [15]), we estimate the error due to this source

to be ±0.3× 10−3.

Table 1 also gives the LO value of ∆Γd/Γd in the factorization approximation. We observe

that the NLO corrections significantly decrease the value of ∆Γd/Γd as computed at LO,

and that there effectively is no real αs/4π suppression of the NLO contribution, as one

naively expects. Therefore higher-order terms in the z expansion become important. While

we estimate the error due the z expansion in the 1/mb and the penguin contributions from

the terms in curly brackets in (60) to be less than ±0.05 × 10−3, the issue of higher order

terms in the NLO contribution (53) is more subtle. Here in (53) we have only calculated

the coefficient of (V ∗
tbVtd)

2, which includes all the terms of the order z0. We do not know

anything a priori about the contribution of the z1 terms – a complete NLO calculation is

necessary for that. However, we may estimate the error due to the z1 terms by looking at

the corresponding expansion in the Bs system. In Bs system, the magnitude of the z1 terms

is as much as 40% of the magnitude of the z1 terms. We note that the uncertainty due to

the z1 term is even higher in one of the terms within the Bs system. Thus, a complete NLO

calculation is definitely desirable in order to reduce this error and give a reliable value of

∆Γd/Γd. We then conservatively take the error in the NLO contribution due to the terms of

z1 and higher order to be 50%, which results in the estimation of the net error in ∆Γd/Γd

due to these terms to be ±0.6× 10−3.
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Our net estimation for the width difference (with conservative error estimates) is

(
∆Γd
Γd

)
Bd

= (3.1+1.0
−1.4)× 10−3 . (62)

We have taken the central value to be the one obtained from the latest preliminary (un-

quenched) results from lattice calculations [12]. The dominating theoretical errors are the

scale dependence and the terms in ΓNLO21 that are of the order of z1 or higher.

3 Measurement of ∆Γd/Γd

It is not possible to find a final state to which the decay of Bd involves only one of the decay

widths ΓL and ΓH . Indeed, since the Bd–B̄d mixing phase (2β) is large, the CP eigenstates

are appreciably different from the lifetime eigenstates. The decay rate to a CP eigenstate

therefore involves both the lifetimes. The semileptonic decays are flavor-tagging, and hence

also involve both the lifetimes in equal proportion.

We start by concentrating on the untagged measurements, i.e. the measurements in which

the (∆mt) oscillations are cancelled out. When the production asymmetry between Bd and

B̄d is zero (as is the case at the B factories), this corresponds to not having to determine

whether the decaying meson was Bd or B̄d. Restricting ourselves to untagged measurements

is a way of getting rid of tagging inefficiencies and mistagging problems.

In this section, we show that the time measurements of the decay of an untagged Bd to a

single final state can only be sensitive to quadratic terms in ∆Γd/Γd. This would imply that,

for determining ∆Γd/Γd using only one final state, the accuracy of the measurement needs

to be (∆Γd/Γd)
2 ∼ 10−5. This indicates the necessity of combining measurements from two

different final states to be sensitive to a quantity linear in ∆Γd/Γd ∼ 0.3× 10−2. We discuss

three pairs of candidate channels for achieving this task. We also indicate how these can

resolve the discrete ambiguity in β. Finally, we point out the extent of systematic error in

the conventional measurement of β due to the neglect of the width difference, and show how

the tagged Bd → J/ψKS mode can also measure ∆Γd/Γd by itself.

3.1 Quadratic sensitivity to ∆Γd/Γd of untagged measurements

The non-oscillating part of the proper time distribution of the decay of Bd can be written

in the most general form as

f(t) =
1

2

[
(1 + b)e−ΓLt + (1− b)e−ΓH t

]
. (63)

The non-oscillating part can also be looked upon as the untagged measurement.
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For an isotropic decay, the only information available from the experiment is the time t.

This information may be completely encoded in terms of the (infinitely many) time moments

〈tn〉 ≡
∫
tnf(t)dt∫
f(t)dt

. (64)

Expanding in powers of ∆Γd/Γd, we get

〈tn〉 =
n!

(Γd)n

[
1− n b

2

∆Γd
Γd

+O
[
(∆Γd/Γd)

2
]]

. (65)

Defining the effective untagged lifetime as τb ≡ 1
Γd

(
1− b

2
∆Γd

Γd

)
, all the available information

(64) is encoded in

〈tn〉 = n!(τb)
n
[
1 +O

[
(∆Γd/Γd)

2
]]

. (66)

Thus, when the accuracy of the lifetime measurement is less than (∆Γd/Γd)
2, only the com-

bination τb of Γd,∆Γd and b may be measured through a single final state. This measurement

is insensitive to b (to this order) and hence incapable of even discerning the presence of two

distinct lifetimes (b = 0 and b = 1 would correspond to the presence of only a single lifetime

involved in the decay.) In particular, in order to determine ∆Γd/Γd, the lifetime measure-

ment through the semileptonic decay needs to be more accurate than (∆Γd/Γd)
2 ∼ 10−5.

This task is beyond the capacity of the currently planned experiments.

Combining time measurements from two different final states, however, can enable us to

measure quantities linear in ∆Γd/Γd. Indeed, for two final states with different values b (say

b1 and b2), we can measure

τb1
τb2

= 1 +
b2 − b1

2

∆Γd
Γd

+O
[
(∆Γd/Γd)

2
]
. (67)

In the next subsections, we discuss pairs of decay channels that can measure this quantity

(67) that is linear in ∆Γd/Γd.

3.2 Decay widths in semileptonic and CP-specific channels

Let us first develop the formalism that will be applicable for all the decays that we shall

consider below. When the width difference is taken into account, the decay rate of an initial

Bd to a final state f is given as follows. Let Af ≡ 〈f |Bd〉, Āf ≡ 〈f |B̄d〉, and

λf ≡ q

p

Āf
Af

, (68)

where p and q are as defined in (3). Using the CP-violating parameter δd as defined in (7),

we get ∣∣∣∣∣qp
∣∣∣∣∣ =

√
1− δd
1 + δd

≈ 1− δd . (69)
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The approximation here is valid since we have |δd| ∼ |∆Γd/∆md| <∼ 10−2. Henceforth, we

shall only consider terms linear in δd.

The decay rate of an initial tagged Bd or B̄d to a final state f is given by [5]:

Γ(Bd(t)→ f) = Nf |Af |2 1 + |λf |2
2

e−Γdt ×[
cosh

∆Γd t

2
+ Adir

CP cos(∆mt) +A∆Γ sinh
∆Γd t

2
+Amix

CP sin (∆mt)
]
,(70)

Γ(B̄d(t)→ f) = Nf |Āf |2 1 + |λf |2
2

e−Γdt ×[
cosh

∆Γd t

2
−Adir

CP cos(∆mt) +A∆Γ sinh
∆Γd t

2
−Amix

CP sin(∆mt)
]
. (71)

where the CP asymmetries are defined as

Adir
CP =

1− |λf |2
1 + |λf |2

, Amix
CP = − 2 Imλf

1 + |λf |2
and A∆Γ = − 2 Reλf

1 + |λf |2
, (72)

and Nf is a time-independent normalization factor.

In the case of semileptonic decays, f ≡ {D`+ν}, so that Āf = 0 and hence λf = 0. The

time evolution (70) then becomes

Γ(Bd(t)→ f) ∝ e−Γdt
[
cosh

∆Γd t

2
+ cos(∆mt)

]
, (73)

∝ e−ΓLt + e−ΓHt + oscillating terms , (74)

so that for semileptonic decays, we have bSL = 0. Note that b = 0 is true for all self-tagging

modes, so that all the arguments below for semileptonic modes hold true also for all the

self-tagging decay modes.

For the decays to CP eigenstates that proceed only through tree processes (and have zero

or negligible penguin contribution), we have λf = ±(1 − δd)e−2iβ (the two signs “+” and

“−” correspond to CP-even and CP-odd final states respectively). Then (70) gives

Γ(Bd(t)→ f) ∝ e−Γdt
[
cosh

∆Γd t

2
∓ cos(2β) sinh

∆Γd t

2
± sin(2β) sin (∆mt)

]
, (75)

∝ e−ΓLt(1± cos(2β)) + e−ΓH t(1∓ cos(2β)) + oscillating terms , (76)

where we have neglected the small corrections due to δd. Thus, for CP eigenstates, we have

bCP+ = + cos(2β) and bCP− = − cos(2β).

The ratio between the two lifetimes τCP± and τSL is then

τSL
τCP±

= 1± cos(2β)

2

∆Γd
Γd

+O
[
(∆Γd/Γd)

2
]
. (77)

The measurement of these two lifetimes should be able to give us a value of ∆Γd, since

| cos(2β)| will already be known to a good accuracy by that time.
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Note that it is also possible to measure the ratio of the lifetimes τCP− and τCP+:

τCP−
τCP+

= 1 + cos(2β)
∆Γd
Γd

+O
[
(∆Γd/Γd)

2
]
. (78)

Although the deviation of the ratio from 1.0 in this case is larger by a factor of 2, using the

effective semileptonic lifetime instead of one of the CP eigenstates would still be the favoured

method. This is because the CP specific decay modes of Bd (e.g. J/ψKS(L), D
+D−) have

smaller branching ratios than the semileptonic modes. In addition, the “semileptonic” data

sample may be enhanced by including the self-tagging decay modes (e.g. D(∗)+
s D(∗)−) that

also have large branching ratios. After 5 years of LHC, we should have about 5× 105 events

of J/ψKS, whereas the number of semileptonic decays at LHCb alone that will be directly

useful in the lifetime measurements is expected to be more than 106 per year, even with

conservative estimates of efficiencies.

The accurate measurement of the ratio of lifetimes also resolves the discrete ambiguity

β ↔ π/2− β that stays when β is determined through the measurement of sin(2β). This is

explained in detail in Sec. 4.2.

3.3 Transversity angle distribution in Bd → J/ψK∗

The decays Bd → V V (where V V is a flavour-blind final state consisting of two vector

mesons) take place both through CP-even and CP-odd channels. Since the angular informa-

tion is available here in addition to the time information, these decay modes are not subject

to the constraints of the theorem in Sec. 3.1, and quantities sensitive linearly to ∆Γd/Γd can

be obtained through a single final state. This cancels out many systematic uncertainties,

and hence these modes can be extremely useful as long as the direct CP violation is negli-

gible, and we can disentangle the CP-even and CP-odd final states from each other. This

separation can indeed be achieved through the transversity angle distribution ([16]–[18]).

We illustrate the procedure with the example of Bd → J/ψ(`+`−)K∗(KSπ
0). The most

general amplitude for the decay B → J/ψK∗ is given in terms of the polarizations εJ/ψ, εK∗

of the two vector mesons:

A(Bd → J/ψK∗) = A0

(
mK∗

EK∗

)
ε∗LJ/ψε

∗L
K∗ − A‖√

2
ε∗TJ/ψ · ε∗TK∗ − iA⊥√

2
ε∗J/ψ × ε∗K∗ · p̂ , (79)

where EK∗ is the energy of the K∗ and p̂ the unit vector in the direction of K∗ in the J/ψ

rest frame. The superscripts L and T represent the longitudinal and transverse components

respectively. Since the direct CP violation in this mode is negligible, the amplitudes A0 and

A‖ are CP-even, whereas A⊥ is CP-odd. Let us define the angles as follows. Let the x axis

be the direction of K∗ in the J/ψ rest frame, and the z axis be perpendicular to the decay

plane of K∗ → KSπ
0, with the positive y direction chosen such that py(KS) ≥ 0. Then we
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define (θ, ϕ) as the decay direction of `+ in the J/ψ rest frame and ψ as the angle made by

KS with the x axis in the K∗ rest frame.

Here θ is the transversity angle, i.e. the angular distribution in θ can separate CP-even

and CP-odd components of the final state. The angular distribution is given by [19]

dΓ[Bd → J/ψ(`+`−)K∗(KSπ
0)]

d cos θ
=

3

8
|A+(t)|2(1 + cos2 θ) +

3

4
|A−(t)|2 sin2 θ (80)

where |A+(t)|2 ≡ |A0(t)|2 + |A‖(t)|2 is the CP-even component and |A−(t)|2 ≡ |A⊥(t)|2 the

CP-odd one. These two components can be separated from the angular distribution (80)

through a likelihood fit or through the method of angular moments [19, 20]6.

The time evolutions of the CP-even and CP-odd components are given by

|A+(t)|2 = |A+(0)|2
[
cos2 β e−ΓLt + sin2 β e−ΓH t + e−Γdt sin(∆Mdt) sin(2β)

]
, (81)

|A−(t)|2 = |A−(0)|2
[
sin2 β e−ΓLt + cos2 β e−ΓH t − e−Γdt sin(∆Mdt) sin(2β)

]
. (82)

These are the same as the time evolutions in (76). The difference in the untagged lifetimes

of the two components,

τCP−
τCP+

= 1 + cos(2β)
∆Γd
Γd

+O
[
(∆Γd/Γd)

2
]
, (83)

is linear in the lifetime difference ∆Γd. In addition to the measurement of ∆Γd/Γd, this

channel can also resolve the discrete ambiguity in β (see Sec. 4.2).

The disentanglement of the CP-even and CP-odd components from the angular distribu-

tion is a statistically efficient process [20]. In fact, in the Bs system, the angular distribution

of Bs → J/ψ(`+`−)φ(K+K−) can be used for determining the lifetime difference ∆Γs, and

is the preferred mode for measuring this quantity.

The mode J/ψK∗ suffers from the presence of a π0 in the final state, which may be missed

by the detector, thus introducing a source of systematic error that needs to be minimized.

3.4 Untagged asymmetry between B → J/ψKS and J/ψKL

Two of the decay modes of Bd that have been well explored experimentally (because of

their usefulness in measuring β) are B → J/ψKS and J/ψKL. Here we show that the

time-dependent asymmetry between the decay rates of these modes is a quantity linear in

∆Γd/Γd, and therefore within the domain of experimental feasibility.

6In [18] we suggested to use the CP-odd–CP-even interference in the decay B → J/ψK∗ to disentangle
measure the value of ∆Γd/Γd. However, it involves tagged measurements in addition to two- or three-angle
distributions, and hence is not as attractive as the untagged measurements described here. We show the
analysis explicitly in the appendix A where we also discuss the resolution of the discrete ambiguity in β
through this mode.
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Let us define

A(Bd → J/ψKS) = AS, A(B̄d → J/ψKS) = ĀS,

A(Bd → J/ψKL) = AL, A(B̄d → J/ψKL) = ĀL,

so that using

|KS〉 = (1 + ε)|K0〉+ (1− ε)|K̄0〉 , |KL〉 = (1 + ε)|K0〉 − (1− ε)|K̄0〉 , (84)

we can write (with the phase convention Arg(q/p) = 0)

AS = AL = Aeiβ(1 + ape
iθei∆γ)(1 + ε) ,

ĀS = −ĀL = Ae−iβ(1 + ape
iθe−i∆γ)(1− ε) , (85)

where ape
iθei∆γ is the ratio of contributions that involve the CKM factors V ∗

cbVcs and V ∗
tbVtd

respectively. The latter contribution (penguin) is highly suppressed with respect to the

former one (tree): the value of ap is less than a percent. Here θ is the strong phase and

∆γ ≡ Arg(V ∗
tbVts/V

∗
cbVcd) ≈ −0.015 in the SM. From (68), (69) and (85), we get

λS = −λL ≈ −(1− δd)e−2iβ(1− 2ε− 2i sin ∆γ ape
iθ) ≈ −e−2iβ(1− 2ε̄) , (86)

where 2ε̄ ≡ 2ε+ δd (here δd is as defined in (7)). The term involving ap is neglected since it

is proportional to the product of two small quantities, ap and sin ∆γ.

When the production asymmetry between Bd and B̄d is zero (as is the case at the B

factories), the untagged rate of decay is

Γ[Bun → J/ψKS(KL)] ≈ N|AS|2(1− 2Re(ε̄))e−Γdt ×[
cosh

(
∆Γdt

2

)
+A∆Γd

sinh
(

∆Γdt

2

)]
. (87)

The only difference between the decay to KS and that to KL is the sign of A∆Γ:

A∆Γ(KS) = −A∆Γ(KL) = cos(2β)− 2 Im(ε̄) sin(2β) . (88)

The untagged time-dependent asymmetry between Bun → J/ψKS and KL is

A(KL, KS) ≡ Γ(Bun(t)→ J/ψKS)− Γ(Bun(t)→ J/ψKL)

Γ(Bun(t)→ J/ψKS) + Γ(Bun(t)→ J/ψKL)
(89)

= cos(2β) tanh
(

∆Γdt

2

)
[1− 2 Im(ε̄) tan(2β)] (90)

≈ cos(2β) tanh
(

∆Γdt

2

)
. (91)

Thus, the measurement of this asymmetry will enable us to determine ∆Γd, given sufficient

statistics and a measurement of sin 2β.
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The factor limiting the accuracy of the above asymmetry is the measurement of Γ(Bun(t)→
J/ψKL). The determination of this quantity requires the knowledge of the decay widths of

KS and KL, in at least one of their decay channels. Although the width of KS is known

to 0.1%, the current accuracy in the width of KL is only about 0.8%. The statistical error

may decrease by a factor of 3–4 when the complete set of KTeV data is analysed, but the

systematic errors are expected to dominate and one may have to wait for future kaon exper-

iments to give us a measurement of ∆Γd through these channels. This is an example where

the accurate measurement in the B system is dependent on an accurate measurement in the

K system.

This B → J/ψKS(L) analysis can also be applied for B → φKS(L), although the branching

ratio, and hence the number of events, in the case of B → φKS(L) would be much smaller.

3.5 Effect on the measurement of sin(2β)

The time-dependent CP asymmetry measured through the “gold-plated” modeBd → J/ψKS

is [21, 22]

ACP =
Γ[B̄d(t)→ J/ψKS]− Γ[Bd(t)→ J/ψKS]

Γ[B̄d(t)→ J/ψKS] + Γ[Bd(t)→ J/ψKS]
(92)

≈ sin(∆mdt) sin(2β) , (93)

which is valid when the lifetime difference, the direct CP violation, and the mixing in the

neutral K mesons is neglected. As the accuracy of this measurement increases, the correc-

tions due to these factors will need to be taken into account. Keeping only linear terms in

the small quantities ε̄, ap,∆γ,∆Γ, we get

ACP = sin(∆mt) sin(2β)
[
1− sinh

(
∆Γdt

2

)
cos(2β)

]
(94)

+2Re(ε̄)
[
−1 + sin2(2β) sin2(∆mt)− cos(∆mt)

]
(95)

+2Im(ε̄) cos(2β) sin(∆mt) . (96)

The first term in (94) represents the standard approximation used (93) and the correction

due to the lifetime difference ∆Γd. The rest of the terms [(95) and (96)] are corrections due

to the CP violation in B–B̄ and K–K̄ mixings. Note that the corrections due to the direct

CP violation in the decay of Bd → J/ψKS (those involving ap) are absent to this leading

order.

In the future experiments that aim to measure β to an accuracy of 0.005 [7], the correction

terms need to be taken into account. With ε̄ ≈ 2× 10−3 and ∆Γdt ∼ ∆Γd/Γd ≈ 3 × 10−3,

the corrections due to ∆Γd will form a major part of the systematic error, which can be

taken care of by a simultaneous fit to sin(2β),∆Γd and ε̄. The BaBar collaboration tries to

measure the coefficient of cos(∆mt) in (95), while neglecting the other correction terms [23].
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When the measurements are accurate enough to measure the cos(∆mt) term, the rest of the

terms would also have come within the domain of measurability.

3.6 Tagged measurements

Until now, we have discussed only the untagged measurements. Taking into account the

oscillating part of the time evolution of the decay rate, we have the decay rate in general as

g(t) = f(t) + Ce−Γdt sin(∆mt+ Φ) , (97)

where f(t) is the untagged decay rate as defined in (63), C a constant and Φ a phase. The

lifetime of the oscillating part is an additional lifetime measurement, which opens up the

possibility of being able to determine ∆Γd/Γd through only one final state (and without

angular distributions as in Sec. 3.3).

In the case of the semileptonic decays, this strategy fails since the semileptonic width

measured with the untagged sample is

ΓSL =
(ΓL + ΓH)ΓLΓH
(ΓL)2 + (ΓH)2

= Γd
1− 1

4

(
∆Γd

Γd

)2

1 + 1
4

(
∆Γd

Γd

)2 (98)

so that

ΓSL/Γd = 1 +O
[
(∆Γd/Γd)

2
]
. (99)

Thus the semileptonic decays provide sensitivity only to quadratic terms in ∆Γd/Γd.

However, the untagged lifetime measured through the decay to a CP eigenstate is

τCP± ≈ 1

Γd

(
1∓ cos(2β)

2

∆Γd
Γd

)
, (100)

so that it differs from the lifetime of the oscillating part (τd ≡ 1/Γd) by terms linear in

∆Γd/Γd. Thus, the tagged measurements of a CP-even or CP-odd final state (D+D−,

J/ψKS, J/ψKL, etc.) can measure ∆Γd/Γd by themselves.

The mistag fraction is the main limiting factor on the accuracy of this measurement, and

the tagging efficiency limits the number of events available. It is indeed possible that the τd

measurement through the semileptonic decays will be more accurate than that through the

oscillating part of the CP-specific final state. This then reduces to the method suggested in

Sec. 3.2. For further experimental details on a tagged measurement of ∆Γd/Γd we refer the

reader to reference [24].

4 Lifetime differences in Bs and Bd systems

The calculations of the lifetime difference in Bd (as performed here) and in the Bs system

(as in [2, 3]) run along similar lines. However, there are some subtle differences involved, due
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to the values of the different CKM elements involved, which have significant consequences.

In particular, whereas the upper bound on the value of ∆Γs (including the effects of new

physics) is the value of ∆Γs(SM) [25], the upper bound on ∆Γd involves a multiplicative

factor in addition to ∆Γd(SM). Also, whereas the difference in lifetimes of CP-specific final

states in the Bs system cannot resolve the discrete ambiguity in the Bs–B̄s mixing phase,

the corresponding measurement in the Bd system can resolve the discrete ambiguity in the

Bd–B̄d mixing phase. Let us elaborate on these two differences in this section.

4.1 Upper bounds on ∆Γd(s) in the presence of new physics

For convenience, let us define Θq ≡ Arg(Γ21)q,Φq ≡ Arg(M21)q, where q ∈ {d, s}. Then we

can write

∆Γq = −2|Γ21|q cos(Θq − Φq) . (101)

Since the contribution to Γ21 comes only from tree diagrams, we expect the effect of new

physics on this quantity to be very small and we neglect it. We therefore take |Γ21|q and Θq

to be unaffected by new physics. On the other hand, the mixing phase Φq appears from loop

diagrams and can therefore be very sensitive to new physics.

Let us first consider the Bs system. Here Γ21 may be written in the form

Γ21(Bs) = −N [(V ∗
cbVcs)

2f(z, z) + 2(V ∗
cbVcs)(V

∗
ubVus)f(z, 0) + (V ∗

ubVus)
2f(0, 0)] (102)

where N is a positive normalization constant and f(x, y) are the hadronic factors that do

not depend on the CKM matrix elements. In the limit z ≡ m2
c/m

2
b → 0, we get f(z, z) =

f(z, 0) = f(0, 0). Since the f ’s are smooth functions of z and z ≈ 0.1, the actual values of

all f ’s involved in (102) are well approximated by f(0, 0) to an accuracy of about 30% (this

may be seen explicitly by computing the f ’s numerically). Thus, all the f ’s have similar

magnitude. On the other hand, the CKM elements involved in (102) obey the hierarchy

(V ∗
cbVcs)

2 ∼ λ4 , (V ∗
cbVcs)(V

∗
ubVus) ∼ λ6 , (V ∗

ubVus)
2 ∼ λ8. The term involving (V ∗

cbVcs)
2 then

dominates in (102), and we can write

Γ21(Bs) = −N (V ∗
cbVcs)

2f(z, z)[1 +O(λ2)] . (103)

Since the f ’s are real positive functions, we have Θs ≈ π + Arg(V ∗
cbVcs)

2. Then,

∆Γs = 2|Γ21|s cos[Arg(V ∗
cbVcs)

2 − Φs] . (104)

In SM, Φs = Arg(V ∗
tbVts)

2, therefore the argument of the cosine term in (104) is given by

Arg[(V ∗
cbVcs)

2/(V ∗
tbVts)

2] = −2∆γ ≈ 0.03. Thus in SM, we have

∆Γs(SM) = 2|Γ21|s cos(2∆γ) . (105)
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The effect of new physics on ∆Γs can then be bounded by giving an upper bound on ∆Γs:

∆Γs ≤ ∆Γs(SM)

cos(2∆γ)
≈ ∆Γs(SM) . (106)

Thus, the value of ∆Γs can only decrease in the presence of new physics [25].

In the case of the Bd system, the situation is slightly different. As in the Bs case, we can

write

Γ21(Bd) = −N [(V ∗
cbVcd)

2f(z, z) + 2(V ∗
cbVcd)(V

∗
ubVud)f(z, 0) + (V ∗

ubVud)
2f(0, 0)] (107)

where the normalizing factor N and the hadronic factors f are the same as in the Bs case

in the limit of the U-spin symmetry (see [26]). U-spin breaking is known to be at the 15%

level, which is sufficiently small for our purpose. All the f ’s are thus of similar magnitude.

The CKM elements involved in (107) do not obey a hierarchy similar to the Bs case: we have

(V ∗
cbVcd)

2 ∼ (V ∗
cbVcd)(V

∗
ubVud) ∼ (V ∗

ubVud)
2 ∼ λ6. Then no single term in (107) can dominate.

We can, however, use the unitarity of the CKM matrix7 to rearrange (107) in the form

Γ21(Bd) = −N
[
(V ∗

cbVcd)
2[f(z, z) − 2f(z, 0) + f(0, 0)]

+2(V ∗
cbVcd)(V

∗
tbVtd)[f(0, 0)− f(z, 0)] + (V ∗

tbVtd)
2f(0, 0)

]
. (108)

Note that in the limit of z → 0, all the factors f are identical and hence the coefficients

of (V ∗
cbVcd)

2 and (V ∗
cbVcd)(V

∗
tbVtd) vanish. The last term in (108) is then left over as the

dominating one, and we get

Γ21(Bd) ≈ −N (V ∗
tbVtd)

2f(0, 0) . (109)

The finite value of z ≈ 0.1 may give corrections of more than 30% to this value. Numer-

ically we get Fct ≡ 2[f(0, 0) − f(z, 0)]/f(0, 0) ≈ 0.2–0.3 and Fcc ≡ [f(z, z) − 2f(z, 0) +

f(0, 0)]/f(0, 0) ≈ 0.01–0.02. We therefore neglect the Fcc term to write

Γ21(Bd) ≈ −N (V ∗
tbVtd)

2f(0, 0)

[
1 + FctV

∗
cbVcd
V ∗
tbVtd

]
. (110)

Defining δf ≡ Fct(V ∗
cbVcd)/(V

∗
tbVtd), we get Θd = π+Arg(V ∗

tbVtd)
2 +Arg(1+δf). Using (101),

we then have

∆Γd ≈ 2|Γ21|d cos[Arg(V ∗
tbVtd)

2 − Φd + Arg(1 + δf)] . (111)

7We note that this assumption of the unitarity for a three-generation CKM matrix is quite general,
because most popular new physics models, including supersymmetric models, preserve the three-generation
CKM unitarity. The present CKM values, constrained from various experiments, are completely consistent
with the unitarity for the three-generation CKM matrix. Moreover, one can show that the non-unitary effects
within the three-generation CKM, which can stem from the fourth generation or E(6)-inspired models with
one singlet down-type quark, are <∼ λ4, once we assume a Wolfenstein-type hierarchical structure for the
extended CKM matrix.
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Figure 2: The geometrical proof of |Arg(1 + δf)| ≤ sin−1(|δf |)

In SM, Φd = Arg(V ∗
tbVtd)

2, so that

∆Γd(SM) ≈ 2|Γ21|d cos[Arg(1 + δf)] . (112)

Using the fit obtained in [14], we have |(V ∗
cbVcd)/(V

∗
tbVtd)| < 1.35 (95% C.L.). Then |δf | < 0.4

and we can use the geometrical relation (see Fig. 2):

|Arg(1 + δf)| ≤ sin−1(|δf |) (113)

to get |Arg(1 + δf)| < 0.4.

In the same spirit as in the Bs case, we can put an upper bound on ∆Γd in the presence

of new physics:

∆Γd ≤ ∆Γd(SM)

cos[|Arg(1 + δf)|] ≤ 1.1 ∆Γd(SM) . (114)

Thus, in the case of the Bd system also, we have an upper bound (which may go down with

more accurate information about the CKM elements) analogous to the one in the Bs system.

The reasons behind the existence of these two upper bounds differ, however. Whereas in

the Bs case it is due to the hierarchy in the CKM elements, in the Bd case it is due to the

smallness of the hadronic terms Fct and Fcc. Note that whereas unitarity was not needed in

the Bs case, the assumption that (Γ21)q is unaffected by new physics is required in both the

cases.

In the limit z → 0, from (103) and (109), we have

∆Γd
∆Γs

≈
∣∣∣∣∣V

∗
tbVtd
V ∗
cbVcs

∣∣∣∣∣
2

. (115)

This is modified because of the finite value of z, the numerical value being approximately

0.03.
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4.2 Discrete ambiguity in the mixing phase

The Bd–B̄d mixing phase Φd is efficiently measured through the decay modes J/ψKs and

J/ψKL. If we take the new physics effects into account, the time-dependent asymmetry

(92) is ACP = sin(∆Mdt) sin(Φd), which reduces to (93) in the SM, where Φd = 2β. The

measurement of sin(Φd) still allows for a discrete ambiguity Φd ↔ π − Φd. Whenever a

discrete ambiguity in β is referred to (β ↔ π/2 − β) in this paper (or in the literature),

strictly speaking we are talking about the discrete ambiguity Φd ↔ π − Φd. In this section,

we shall use the notation Φd instead of 2β in order to illustrate the comparison with the

corresponding quantities in the Bs system.

Getting rid of the above discrete ambiguity is a way of uncovering a possible signal of

new physics8. Ways to get rid of this ambiguity have been suggested in literature, using

the comparison of CP asymmetries in J/ψKS and ππ [28], time dependent CP asymmetries

in Bs → ρKS [29] and in Bs → πK, KK [30], angular distributions and U-spin symmetry

arguments [31], or cascade decays B → D → K [32]. The measurement of Φd through the

measurements involving ∆Γd is unique in the sense that it uses only untagged measurements.

In Sections 3.2 and 3.3, we have seen that the ratio of two effective lifetimes can enable

us to measure the quantity ∆Γobs(d) ≡ cos(2β)∆Γd/Γ. In the presence of new physics, this

quantity is in fact (see eq. 101)

∆Γobs(d) = −2(|Γ21|d/Γd) cos(Φd) cos(Θd − Φd) . (116)

Solving (116) gives two solutions for Φd ∈ [0, π] in general: Φ1d and Φ2d such that tan(Φ1d)+

tan(Φ2d) = tan(Θd). As long as tan(Θd) 6= 0 (as is the case in the Bd system), sin(Φ1d) 6=
sin(Φ2d). Therefore, only one of the solutions will correspond to the value of sin(Φd) obtained

through ACP (J/ψKs) and will give the actual value of Φd. Combining the measurements of

ACP (J/ψKs) and ∆Γobs(d) thus gets rid of the discrete ambiguity in principle. In practice,

this means knowing |Γ21|d theoretically to a high precision and having to measure ∆Γobs(d)

to sufficient accuracy to be able to distinguish between Φ1d and Φ2d. A complete NLO

calculation is needed for the former. The latter may be achieved at the LHC using the

effective lifetimes of decays to semileptonic final states and to J/ψKs.

Let us contrast this case with that in the Bs system. The corresponding time-dependent

asymmetry is measured through the modes J/ψφ or J/ψη(′), which give the value of sin(Φs),

and therefore leave the discrete ambiguity Φs ↔ π−Φs unresolved. The ratio of two effective

lifetimes in the Bs system can enable us to measure the quantity

∆Γobs(s) ≡ cos(Φs)∆Γs/Γ

= −2|Γ21|s/Γs cos(Φs) cos(Θs − Φs) . (117)
8In SM, the value of Φd must match with the phase of the b → d penguin. However, the direct mea-

surement of the latter phase is not theoretically clean [27], so the preferred way is to compare the measured
value of Φd with the value of 2β determined through a fit for all the CKM parameters [14].

25



Since Θs ≈ π + Arg(V ∗
cbVcs)

2 ≈ π, we have

∆Γobs(s) ≈ 2|Γ21|s/Γs cos2(Φs) . (118)

This measurement thus still has the same discrete ambiguity Φs ↔ π − Φs as in the J/ψφ

(or J/ψη(′)) case, and the discrete ambiguity in the Bs system is not resolved.

5 Summary and conclusions

It has been known for many years that the Bd system is a particularly good place to test the

standard model explanation of CP violation through the unitary CKM matrix. The phase

2β involved in the Bd − B̄d mixing is large, and hence the CP violation is expected to be

larger in the Bd system in general, as compared to the K or the Bs system. This feature

has already been exploited in various methods for extracting α, β and γ, the angles of the

unitarity triangle, by measuring CP-violating rate asymmetries in the decays of neutral Bd

mesons to a variety of final states. In particular, the precise measurement of sin(2β) from

the theoretically clean decay modes Bd(t)→ J/ψKS(KL) is a test of the SM, as well as the

opportunity to search for the presence of physics beyond the standard model.

The two mass eigenstates of the neutral Bd system — BH and BL — have slightly

different lifetimes: the lifetime difference is less than a percent. At the present accuracy of

measurements, this lifetime difference ∆Γd can well be ignored. As a result, the measurement

and the phenomenology of ∆Γd has been neglected so far, as compared to the lifetime

difference in the Bs system for example. However, with the possibility of experiments with

high time resolution and high statistics, such as the electronic asymmetric B factories of

BaBar, BELLE, and hadronic B factories of CDF, LHC and BTeV, this quantity starts

becoming more and more relevant.

Taking the effect of ∆Γd into account is important in two aspects. On one hand, it affects

the accurate measurements of crucial quantities like the CKM phase β and therefore must

be measured in order to estimate and correct the error due to it. On the other hand, the

nonzero value of ∆Γd can resolve the discrete ambiguity in the measurement of β, which stays

unresolved through Bd(t) → J/ψKS(KL) if ∆Γd is ignored. Thus in addition to being the

measurement of a well-defined physical quantity which can be compared with the theoretical

prediction, the value of ∆Γd is crucial for getting a firm grip on our understanding of CP

violation. It is therefore worthwhile to have a look at this quantity and make a realistic

estimation of the possibility of its measurement, as we do in this paper.

We estimate ∆Γd/Γd including 1/mb contributions and next-to-leading order QCD cor-

rections. We keep terms upto an accuracy of 1% of the leading order contribution, and upto

z0 terms in the NLO contribution. We find that adding these corrections decreases the value

of ∆Γd/Γd computed at the leading order by almost a factor of two. We get the final result as
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∆Γd/Γd = (3.1+1.0
−1.4)× 10−3, where for the central value we have used the preliminary values

for the bag factors from the JLQCD collaboration. A conservative error estimation gives the

approximate errors due to the uncertainties in the values of parameters as ±0.06×10−3 from

the CKM parameters, ±0.4×10−3 from the bag parameters, ±0.5×10−3 from the mass of the

b quark, and ±0.1×10−3 from the measured value of xd. The breaking of naive factorization

contributes an error of approximately ±0.3× 10−3, and the error due to the z-expansion in

the 1/mb and penguin contributions is ±0.05 × 10−3. The major sources of error are the

scale dependence (+0.4
−1.0 × 10−3) and the z1 and higher order terms in the NLO contribution

(±0.6× 10−3). The last error is more subtle, and we have used the corresponding expansion

in the Bs system to estimate it. This error can be reduced significantly if a complete NLO

calculation is performed.

The most obvious way of trying to measure the lifetime difference is through the semilep-

tonic decays, however it runs into major difficulties. If only the non-oscillating (untagged)

part of the time evolution of the decay is considered, we indeed have a combination of two

exponential decays with different lifetimes. However, as we show in this paper, there is no

observable quantity here that is linear in ∆Γd/Γd. The time measurements allow us to de-

termine the quantity τSL ≡ (1/Γd)[1 +O(∆Γd/Γd)
2]. This decay mode is thus sensitive only

to quantities quandratic in ∆Γd/Γd. So this method would involve measuring a quantity as

small as (∆Γd/Γd)
2 ∼ 10−5, which is not practical. The lifetime of the oscillating part is

also 1/Γd, so adding the information from the oscillating part of the time evolution does not

help at all. This problem arises for all self-tagging decays. Therefore, though self-tagging

decays of Bd have significant branching ratios, they cannot by themselves be expected to

give a measurement of ∆Γd/Γd.

The time evolutions of Bd decaying into CP eigenstates also involve both the lifetimes,

since the Bd − B̄d mixing phase (2β) is large, which implies that the CP eigenstates are

appreciably different from the lifetime eigenstates. As a result, it is not possible to find a

final state to which the decay of Bd involves only one of the decay widths ΓL and ΓH . The

non-oscillating part of the time evolution of decays to CP eigenstates gives a quantity τCP± ≡
(1/Γd)[1 ± (cos(2β)/2)∆Γd/Γd + O(∆Γd/Γd)

2], but the quantities Γd and ∆Γd cannot be

separately determined through this measurement, and sensitivity to (∆Γd/Γd)
2 is necessary.

(Indeed, we explicitly prove a general theorem that shows that, for isotropic decays of Bd to

any final state, the untagged measurements can only be sensitive to (∆Γd/Γd)
2.)

The oscillating part of the time evolution to CP eigenstates has a lifetime 1/Γd (to

an accuracy of O(∆Γd/Γd)
2). Therefore, if this lifetime is measured accurately, it can be

combined with the measurement of τCP± through the untagged part to get a measurement

linear in ∆Γd/Γd. However, the need for tagging, and consequent mistagging errors, reduce

the efficiency of this method.

A viable option, perhaps the most efficient among the ones considered here, is to compare
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the measurements of the untagged lifetimes τSL and τCP± . Since τSL is in fact the lifetime

for all self-tagging decays, and the branching ratios for self-tagging decays of Bd are much

larger than the decays to CP eigenstates, we expect that the most useful combination will be

the measurement of τSL through self-tagging decays and that of τCP+ through Bd → J/ψKS.

The untagged asymmetry between Bd → J/ψKS and Bd → J/ψKL is a particular case

of using the combination of measurements of τCP+ and τCP− , which we analyze in detail. The

effects of CP violation in the mixing and decay of Bd, as well as the indirect CP violation

in the K system has been taken into account. The limiting factor for the utility of this

method is the poorly known width of KL, which may be improved through the future kaon

experiments. This is one of the cases where the accurate measurement of a quantity in B

system is dependent on the accurate measurements of a quantity in K system.

Since the theorem referred to above — about a single untagged decay being sensitive

only to (∆Γd/Γd)
2 — applies only to isotropic decays, decays of the type B → V V can still

be used by themselves to determine quantities linear in ∆Γd/Γd. A promising example is

Bd → J/ψ(→ `+`−) K∗(→ Ksπ
0). The CP-odd and CP-even components in the final state

can be disentangled through the transversity angle distribution, and both τCP+ and τCP− can

be determined through the same decay. Since there is only one final state, many systematic

errors are reduced. The only undesirable feature of this decay mode is the presence of π0

in the final state, which may be missed, especially in the hadronic machines. The three

angle distribution of the same decay mode can also be used to obtain ∆Γd/Γd through the

interference between CP-even and CP-odd final states. The three angle method, described

in the appendix, is however not as efficient as the single angle distribution, since one has to

use tagged decays and more number of parameters need to be fitted.

We also point out the interlinked nature of the accurate measurements of β and ∆Γd/Γd

through the conventional gold-plated decay. In the future experiments that aim to measure

β to an accuracy of 0.005 or better, the corrections due to ∆Γd will form the major part of

the systematic error, which can be taken care of by a simultaneous fit to sin(2β),∆Γd and

ε̄, a combination of CP violation in mixing in the Bd and K system.

All the combinations of untagged decay modes discussed here involve measuring the

quantity (cos(2β)/2)∆Γd/Γd, wherein the value of ∆Γd/Γd also depends on β. The complete

dependence on β is of the form cos(2β) cos(Θd − 2β), where Θd is the phase of Γ21. This

form is not invariant under β ↔ π/2− β, so that the discrete ambiguity in β that stays in

its usual determination through sin(2β) is resolved. Note that this feature is unique to the

Bd system — in the Bs system for example, this ambiguity would still stay unresolved since

the corresponding value of Θs vanishes. In the three angle distribution in Bd → J/ψ(→
`+`−) K∗(→ Ksπ

0) as discussed in the appendix, the dependence on β has another form,

again not invariant under β ↔ π/2 − β, and hence the discrete ambiguity in β can be

resolved.
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It is known that, if (Γ21)s is unaffected by new physics, then the value of ∆Γs in the Bs

system is bounded from above by its value as calculated in the SM. In the Bd system, this

statement does not strictly hold true. However, if (Γ21)d is unaffected by new physics and

the unitarity of the 3×3 CKM matrix holds, then an upper bound on the value of ∆Γd may

be derived as ∆Γd ≤ 1.1∆Γd(SM).

With the high statistics and accurate time resolution of the upcoming experiments, the

measurement of ∆Γd seems to be in the domain of measurability. And given the rich phe-

nomenology that comes with it, it is certainly a worthwhile endeavor.
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A CP-odd–CP-even interference in B → J/ψK∗

For completeness, we also discuss some further opportunities to measure ∆Γd/Γd with the

help of the decay B → J/ψ(`+`−)K∗(KSπ
0) — in addition to the favoured one discussed

in Section 3.3. Here we use the tagged measurements and multiple-angle distributions. The

angular resolution at CDF as well as LHC is expected to be accurate enough so that the

efficiency of this method is limited mainly by tagging.

The complete angular distribution in the three physical angles θ, ϕ, ψ is given as [16, 19]:

d3Γ[Bd(t)→ J/ψ(→ l+l−)K∗(→ KSπ
0)]

d cos θ dϕ d cosψ
∝ 9

32π

[
2|A0(t)|2 cos2 ψ(1− sin2 θ cos2 ϕ)

+ sin2 ψ{|A‖(t)|2(1− sin2 θ sin2 ϕ) + |A⊥(t)|2 sin2 θ − Im (A∗
‖(t)A⊥(t)) sin 2θ sinϕ}

+
1√
2

sin 2ψ{ Re (A∗
0(t)A‖(t)) sin2 θ sin 2ϕ+ Im (A∗

0(t)A⊥(t)) sin 2θ cosϕ }
]
. (119)

The time evolutions of the coefficients of the six angular terms are

|A0(t)|2 = |A0(0)|2
[
cos2 β e−ΓLt + sin2 β e−ΓH t + e−Γdt sin(∆Mdt) sin(2β)

]
(120)
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|A‖(t)|2 = |A‖(0)|2
[
cos2 β e−ΓLt + sin2 β e−ΓH t + e−Γdt sin(∆Mdt) sin(2β)

]
(121)

|A⊥(t)|2 = |A⊥(0)|2
[
sin2 β e−ΓLt + cos2 β e−ΓH t − e−Γdt sin(∆Mdt) sin(2β)

]
(122)

Re{A∗
0(t)A‖(t)) = |A0(0)||A‖(0)| cos(δ2 − δ1)

[
cos2 β e−ΓLt + sin2 β e−ΓH t

+ e−Γdt sin(∆Mdt) sin(2β)
]

(123)

Im{A∗
‖(t)A⊥(t)} = |A‖(0)||A⊥(0)|

[
e−Γdt {sin δ1 cos(∆Mdt)− cos δ1 sin(∆Mdt) cos(2β)}
− 1

2

(
e−ΓH t − e−ΓLt

)
cos δ1 sin(2β)

]
, (124)

Im{A∗
0(t)A⊥(t)} = |A0(0)||A⊥(0)|

[
e−Γdt {sin δ2 cos(∆Mdt)− cos δ2 sin(∆Mdt) cos(2β)}
− 1

2

(
e−ΓH t − e−ΓLt

)
cos δ2 sin(2β)

]
, (125)

where δ1 = Arg(A∗
‖(0)A⊥(0)), and δ2 = Arg(A∗

0(0)A⊥(0)). Note that even before reaching the

precision to be able to separate ΓH and ΓL, the above can already measure the value of sin(2β)

through the time evolutions (120)–(122) and the value of sin δ1, sin δ2 through (123,124,125).

The discrete ambiguity β ↔ π/2− β would remain unresolved in the absence of the lifetime

separation, since the sign of cos δ1(2), and hence the sign of cos(2β), is undetermined. This

sign may be determined in the following manner. The non-oscillating parts of (124) and

(125) are

C1 ≡ [Im{A∗
‖(t)A⊥(t)}]NO = −1

2
|A‖(0)||A⊥(0)|

(
e−ΓH t − e−ΓLt

)
cos δ1 sin(2β) , (126)

C2 ≡ [Im{A∗
0(t)A⊥(t)}]NO = −1

2
|A0(0)||A⊥(0)|

(
e−ΓH t − e−ΓLt

)
cos δ2 sin(2β) , (127)

which are also the non-oscillating parts of the corresponding terms for the charge conjugate

decay B̄d → J/ψK∗(→ KSπ
0). The signs of the quantities C1(2) are the same as the sign

of cos δ1(2), since ΓL > ΓH and sin(2β) > 0. This in turn establishes the sign of cos(2β)

through (124), (125). Note that, in the absence of any Bd–B̄d production asymmetry, the

non-oscillating parts of (124,125) are exactly the quantities measured if the initial B meson

was not tagged. Then the determination of the signs of C1(2) would need neither tagging nor

time measurements.

Note that there is in principle no need to determine both C1 and C2. Moreover, since it

is sufficient to determine the sign of only one of cos δ1(2), the use of either (124) or (125) is

sufficient. In fact, let us show that under certain circumstances, the ambiguity in β may

be resolved without having to measure the angle ψ at all. We only need the two-angle

distribution [16]

d3Γ[Bd → (`+`−)J/ψ(KSπ
0)K∗ ]

d cos θ dϕ dt
=

3

8π
[|A0|2(1− sin2 θ cos2 ϕ) + |A‖|2(1− sin2 θ sin2 ϕ)

+ |A⊥|2 sin2 θ − Im (A∗
‖A⊥) sin 2θ sinϕ] , (128)
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Figure 3: The ambiguities in the solution of eq. (129). The solid (dashed) curve stands for
cos(2β) = +(−)0.8. The region inside the box corresponds to cos δ1 < 0. The intersections
of the horizontal line X = X0 with the curves represent the fourfold discrete ambiguity. If
δ1 is in the shaded region, the sign of cos δ1 determines the sign of cos(2β).

with the time evolutions of the terms given by eqs. (120)–(124). The first three equations

determine sin(2β), and the oscillating part of (124) further determines the value of δ1 upto

a fourfold discrete ambiguity in general, twofold due to the sign of cos(2β) and twofold due

to the oscillatory nature of the time evolution. This can be seen in Fig. 3, which shows two

curves

X = Γ̄ sin(δ1)−∆m cos(δ1) cos(2β) (129)

with different signs of cos(2β), and the corresponding four solutions for X = X0. The non-

oscillatory part of (124), i.e. the sign of C1, determines the sign of cos δ1, thus selecting the

region inside or outside the box in the figure. If both the solutions corresponding to this

sign of cos δ1 correspond to the same sign of cos(2β), then the sign of cos(2β) is determined

and the discrete ambiguity is resolved. This happens when the actual value of δ1 lies in the

shaded region of Fig. 3. This region corresponds to

π

2
≤ δ1 ≤ π

2
+ 2θ ,

3π

2
≤ δ1 ≤ 3π

2
+ 2θ , where θ = tan−1

(
∆m| cos(2β)|

Γ̄

)
. (130)

With ∆m/Γ̄ ≈ 0.7 and | cos(2β)| ≈ 0.8, the region covers a fraction 1/π ≈ 32% of the total

range of δ1. In the remaining parameter space, the complete three-angle distribution (119)

needs to be used.
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The additional use of (123), (125) makes sure that this discrete ambiguity is absent.

The three-angle distribution is thus a reliable way of getting the sign of cos(2β), and hence

resolving the discrete ambiguity in β. Using

∫
dt Ci ≈ −1

2
|AX(0)||A‖(0)|∆Γ

Γ2
d

cos δi sin(2β) , (131)

the value of ∆Γ can also be determined.
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