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tions decrease the branching ratio by about 3.6% for a light Higgs boson, very close
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1. Introduction

The Standard Model (SM) calculation of the branching ratio for the inclusive radia-

tive decay B → Xsγ — BRγ in the following — has reached a high degree of sophis-

tication (see [1] for a complete list of references and an up-to-date analysis). Besides

Leading Logarithmic O(αnsL
n) (L = lnmb/MW ) and Next-to-Leading Logarithmic

(NLO) O(αnsL
n−1) QCD corrections and non-perturbative Heavy Quark Effective

Theory contributions, electroweak effects are known to play a non-negligible role [2]–

[6]. In a previous work [2], we have considered in detail the electroweak corrections

to this process, devoting special attention to the interplay between QCD and elec-

troweak effects. Photonic interactions generate logarithmically enhanced contribu-

tions which are suppressed by a factor α/αs with respect to the QCD ones. The lead-

ing QED effects are therefore O(ααn−1s L
n) and are known completely [6], while gen-

uine electroweak corrections involving Z0 andW bosons start at the next order in the

resummed logarithmic expansion. Ideally, one would like to have all these O(ααnsL
n)

corrections under control. Since the O(α) contributions to the coefficients of the four

quark operators are all known [2, 7], this would entail the following steps [2, 8]:

(i) the calculation of the two-loop O(α) matching conditions for the magnetic

operators Qγ7 and Qg8 at a scale O(MW );

(ii) the QED-QCD evolution of the Wilson coefficients down to the B mass scale,

including the calculation of the two and three-loop O(ααs) anomalous dimen-

sion matrix;

(iii) the calculation of the one-loop and two-loop QED matrix elements of the vari-

ous operators as well as of some yet unknown two-loop QCD matrix elements.
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Our analysis in [2] was based on the simplifying assumption that terms vanishing

as sW ≡ sin θW → 0 can be neglected, unless they are enhanced by powers of the top

mass Mt. In this case, introducing the SU(2)L coupling g and αW = g2/4π, all elec-

troweak corrections are in fact O(αWα
n
sL
n) or O(αM2t /M

2
Wα

n
sL
n) and are included

by step (i) only. Moreover, the calculation of the Wilson coefficients simplifies con-

siderably. Although reasonable, this assumption should be verified — keep in mind

that s2W ≈ 0.23. In particular, Z0 boson corrections to the one-loop b→ sγ magnetic

penguin diagrams give rise to O(s2
W

) terms which are not formally suppressed by an

electric charge factor Q2d = 1/9 or Qu|Qd| = 2/9, unlike the purely QED corrections

of steps (ii) and (iii). This happens, for instance, because of the mass difference

between Z0 and W bosons. Such O(s2
W

) terms originate at the electroweak scale and

affect only step (i).

In this note we extend our calculation [2] and compute the full O(α) contribution

to the Wilson coefficients of the b→ s magnetic operators, thus completing step (i).

The main difference (and technical hurdle) with respect to [2] is due to the presence of

virtual photons in the two-loop SM diagrams. The resulting infrared (IR) divergences

are removed in the matching with the effective low-energy theory of quarks, photons

and gluons. Several subtleties arise in the calculation, mostly linked to the presence

of unphysical operators. This is explained in detail in section 2, while section 3 deals

with the QED-QCD evolution of the coefficients and illustrates how O(ααnsL
n) effects

should be taken into account in the calculation of BRγ. We also include all dominant

O(α) matrix elements and conclude reconsidering the SM prediction of BRγ.

2. The O(α) matching

Let us briefly recall the formalism. We work in the framework of an effective low-

energy theory with five active quarks, photons and gluons, obtained by integrating

out heavy degrees of freedom characterized by a mass scale M ≥ MW . In the leading

order of the operator product expansion the effective off-shell hamiltonian relevant

for the b→ sγ and b→ sg transition at a scale µ is given by

Heff = −GF√
2
V ∗tsVtb

[
16∑
i=1

Ci(µ)Qi + C
γ
7 (µ)Qγ7 + Cg8 (µ)Qg8

]
. (2.1)

Here Vij are the CKM matrix elements and Ci(µ), Cγ7 (µ) and Cg8 (µ) denote the
Wilson coefficients of the following set of gauge invariant operators [6, 9, 10, 11]

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL) , Q2 = (s̄LγµcL)(c̄Lγ
µbL) ,

Q3 = (s̄LγµbL)
∑
q(q̄γ

µq) , Q4 = (s̄LγµT
abL)

∑
q(q̄γ

µT aq) ,

Q5 = (s̄LγµγνγρbL)
∑
q(q̄γ

µγνγρq) , Q6 = (s̄LγµγνγρT
abL)

∑
q(q̄γ

µγνγρT aq) ,

Q7 = (s̄LγµbL)
∑
qQq(q̄γ

µq) , Q8 = (s̄LγµT
abL)

∑
qQq(q̄γ

µT aq) ,
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Q9 = (s̄LγµγνγρbL)
∑
qQq(q̄γ

µγνγρq) , Q10 = (s̄LγµγνγρT
abL)

∑
qQq(q̄γ

µγνγρT aq) ,

Qγ7 =
e

16π2
mb(s̄Lσ

µνbR)Fµν , Qg8 =
gs
16π2

mb(s̄Lσ
µνT abR)G

a
µν ,

Q11 =
1

e
s̄Lγ

µbL∂
νFµν +Q7 , Q12 =

1

gs
s̄Lγ

µT abLD
νGaµν +Q4 ,

Q13 =
ie

16π2

[
s̄L
←
D/ σµνbLFµν − Fµν s̄LσµνD/ bL

]
+Qγ7 , Q15 =

1

16π2
mbs̄LD/ D/ bR ,

Q14 =
igs
16π2

[
s̄L
←
D/ σµνT abLG

a
µν −Gaµν s̄LT aσµνD/ bL

]
+Qg8 , Q16 =

i

16π2
s̄LD/ D/ D/ bL ,

(2.2)

where e (gs) is the electromagnetic (strong) coupling constant, qL,R are the chiral

quark fields, Fµν (Gaµν) is the electromagnetic (gluonic) field strength tensor, Dµ is the

covariant derivative of the gauge group SU(3)C×U(1)Q and T a are the colour matri-

ces, normalized so that Tr(T aT b) = δab/2. The s-quark mass is neglected in eq. (2.2)

and in the following. Notice that at the order we are going to work it is not necessary

to consider the analogues of Q1 and Q2 involving the u-quark instead of the c-quark.

The above set of operators closes off-shell under QCD and QED renormalization,

up to non-physical (evanescent) operators that vanish in four dimensions [9, 11]. It

consists of the current-current operators Q1–Q2, the QCD penguin operators Q3–Q6,

the electroweak penguin operators Q7–Q10 and the magnetic moment type operators

Qγ7 and Qg8. It is the QED renormalization that forces us to introduce the operators

Q7–Q10, in which the sum of the quark flavors is weighted by the electric charges

Qq. The remaining six operators Q11–Q16, characteristic of the process b → sγ (g),

were chosen in such a way that they vanish on-shell up to total derivatives. Only

operators of dimension five or six are retained. Higher dimension operators are

suppressed by at least one power of m2b/M
2
W , while those of lower dimensionality can

be removed by choosing suitable renormalization conditions in the full theory [12]. In

the present case this is achieved by requiring that all flavor off-diagonal quark two-

point functions which appear at the one-loop level in the full theory vanish when

the equations of motion (EOM) are applied, i.e. by using LSZ on-shell conditions on

the external quark lines. We also use these renormalization conditions for internal

virtual quarks in the full SM calculation and implement in this way a gauge invariant

O(α) definition of the CKM matrix [13].

In order to obtain the Wilson coefficients of the magnetic operator Qγ7 , we calcu-

late the off-shell amplitude b→ sγ in the full SM and in the effective theory at O(α)

and match the two results. Retaining only the leading terms in 1/M2W the off-shell

amplitude in the full theory can be written in the following form1

Afull = −GF√
2
V ∗tsVtb

∑
i

Ai 〈sγ |Qi| b〉(0) , (2.3)

1In eqs. (2.3) and (2.8), the sum runs over Q1–Q16, Q
γ
7 , Q

g
8 and, as we will explain later on,

some evanescent operators.
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where 〈sγ|Qi|b〉(0) are the tree-level matrix elements of the operators in eq. (2.2).

The perturbative expansion of the coefficients Ai reads

Ai = A
(0)
i +

α

4π
A
(1)
i,e . (2.4)

We calculate analytically the relevant one and two-loop amplitudes starting from the

diagrams generated by FeynArts 2.2 [14] and retaining only terms which project on

Qγ7 after use of the EOM. All ultraviolet (UV) divergences in A
γ(1)
7,e are removed by

electroweak renormalization. We follow closely the procedure outlined in [2, 15]. The

only additional ingredients not explicitly given in those papers are the right-handed

down quark wave function renormalization (c2
W

= 1− s2
W

)

δ(ZRd )ij =
g2

16π2
Q2ds

4
W

c2
W

δij

[
1

ε
− 1

2
− ln

M2Z
µ2

]
, (2.5)

and the complete b-quark on-shell mass counterterm (xt =M
2

t/M
2
W

)

δmb

mb
=
g2

16π2

(
µ̄2

M
2

t

)ε [
1

8ε
(3xt − 2)− 2 + 9xt − 5x2t

16(xt − 1)
− 2− 7xt + 2x2t

8(xt − 1)2
ln xt+

+
1

c2W

(
1

16
− 5

12
s2
W

+
5

18
s4
W

+

+

(
1

8
+
s2
W

2
− s

4
W

3

)(
ln
M2
Z

M
2

t

− 1

ε

))]
, (2.6)

which had not been given in [2, 15]. Notice that eqs. (2.5) and (2.6) do not include

the photon contribution, for a reason that will become clear in a moment. The top

mass M t is renormalized on-shell as far as electroweak effects are concerned, while

we use an MS definition at a scale µ for the QCD renormalization.

We work in the background field gauge (BFG) [16]. This reduces the number of

diagrams to be considered. Moreover, if the electric charge is normalized at q2 = 0,

as it is natural to do [3], its counterterm cancels identically against the background

photon wave function renormalization factor, due to the BFG Ward identity [17]. The

same holds in the case of an external gluon in the MS scheme. The regularization

problems related to the definition of γ5 in n = 4 − 2ε dimensions are avoided as

described in [2] and we employ the naive dimensional regularization scheme with

anticommuting γ5 (NDR) throughout the paper.

For what concerns the regularization of the IR divergences, we have adopted

two different methods and found identical results for the Wilson coefficients. In

the first method the IR divergences are regulated by quark masses (see [10]), while

the second method consists in using dimensional regularization for both UV and IR

divergences [11].
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Figure 1: Subdiagrams involving the coupling of quantum photons γ to the W and

its corresponding Goldstone boson (left-hand side) contribute to gauge variant operators

(right-hand side), as explained in the text. γ̂ denotes a background photon.

A second step involves the calculation of the off-shell amplitude in the QED effec-

tive theory. In general, we need effective vertices with both background and quantum

photons. Interestingly, the latter introduce some gauge variant operators at O(α).

In fact, on the full theory side there are heavy particle subdiagrams (see figure 1)

that are coupled to quantum photons and contribute to gauge variant operators not

included in the operator basis of eq. (2.2). This is due to the Rξ gauge coupling of

quantum photons with W and Goldstone bosons and is different from what happens

in the case of the off-shell O(αs) matching [10, 11]. Indeed, at O(αs) only quark-gluon

couplings and trilinear quantum-quantum-background gluon couplings are relevant

and no gauge variant operator is induced. The appearance of gauge variant operators

in the SM amplitudes is not surprising [18] (see [19] for an example).

We have explicitly verified that it is not necessary to take any gauge variant

operator into account on the effective theory side. This follows from well-known

theorems on the renormalization of gauge invariant operators2 [18, 21]: gauge variant

operators that mix with gauge invariant operators can be chosen so that they are all

BRST-exact, i.e. they can be written as the BRST-variation of some other operators,

modulo terms vanishing by the EOM. Therefore, while gauge invariant operators

2The theorems apply to Yang-Mills theories, but extend to the full SM after imposing the anti-

ghost equation [20].
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generally mix into gauge variant operators,3 the opposite is not true. Since we are

eventually interested in the matrix elements of physical operators only, we do not

need to include gauge variant effective operators in our basis. Of course this holds

only as long as the regularization respects the symmetries, like it is in our case.

In a similar way and because of the same theorems, the operators that vanish

by EOM in the basis (2.2) do not mix into the physical operators of the same basis,

and the renormalization mixing matrix is block triangular. This property drastically

simplifies the computation at hand, as we will see in a moment. In particular, the

renormalization mixing matrix Ẑ is such that Zij = 0 when Qi is EOM-vanishing

and Qj is a physical operator.

We have seen that effective vertices involving quantum photons are induced in

the calculation. Even though contributions to gauge variant operators turn out to be

irrelevant, the distinction is important in the case that the calculation is performed

using quark masses to regularize IR divergences. For example, it turns out that

the gauge invariant part of the off-shell b→ sγ effective vertex depends on whether

the external photon is quantum or background. This can be explained by noting

that the operators involving only background fields are combinations of truly gauge

invariant operators and of operators containing also quantum gauge fields. This

follows, e.g. from a decomposition of the kind D̂/ = D/ + ieQqQ/ , where we used a hat

to denote covariant background derivative, Qµ for the quantum photon field, and Qq
for the electric charge. The operators containing quantum gauge bosons eventually

decouple from the calculation, as they are not gauge invariant. Because of the above

decomposition, the coefficients of the operators involving only background fields are

related to the coefficients of the operators in (2.2), as can be seen using Slavnov-

Taylor identities of the kind used in [22].

The effective theory calculation depends crucially on the IR regularization. The

first method mentioned above (quark masses as regulator) can be applied at the

diagrammatic level [10]. The effective theory diagrams are obtained by replacing

hard (heavy mass) subdiagrams in the two-loop SM amplitudes with their Tay-

lor expansions with respect to their external momenta. In principle, this method

does not require a discussion of the effective operators. On the other hand, it is

relatively complicated to implement. Here, we limit our discussion to the second

method only, following [11]. In order to get the renormalized off-shell amplitude

on the effective theory side, we need to reexpress eq. (2.1) in terms of renormalized

quantities. The relations between the bare and the QED renormalized quantities are

as follows

e0 = Zee , mb,0 = Zmbmb , Aµ0 = Z−1e A
µ ,

q0 = Z1/2q q , Ci,0 =
∑
j

CjZji , (2.7)

3At O(α) the operators in our basis do not actually mix into gauge variant operators.
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with Ze, Zmb , Zq and Zij the renormalization constant of the charge, the b-quark

mass, the quark fields and the Wilson coefficients, respectively. The relation be-

tween the renormalization of the gauge field and of the electric charge is a direct

consequence of the QED Ward identity.

After renormalization the off-shell amplitude in the effective theory is given by

Aeff = −GF√
2
V ∗tsVtb

∑
i,j

CjZjiZ̃i 〈sγ |Qi| b〉 , (2.8)

where Z̃i denotes a product of Ze, Zm and Zq depending on the particular structure

of the operator Qi and the Wilson coefficients may be expanded in powers of α

as follows

Ci(µ) = C
(0)
i (µ) +

α

4π
C
(1)
i,e (µ) . (2.9)

As long as we are only interested in the Wilson coefficient of the magnetic pho-

ton penguin operator, it is sufficient to keep only terms proportional to 〈sγ|Qγ7 |b〉
in eq. (2.8). Using the short hand notation 〈Qγ7〉 ≡ 〈sγ|Qγ7 |b〉, the part of the

off-shell amplitude in the effective theory needed for the matching of Cγ7 is then

written as

Aeff ∼ −GF√
2
V ∗tsVtb

[
ZqZmb

∑
j

CjZj,7γ + Zq(Zmb − 1)
∑
j

CjZj,13

]
〈Qγ7〉 , (2.10)

where the second term proportional to Zj,13 originates from the renormalization of

the operator Q13.

Notice that the QED quark field renormalization on the effective side can be

avoided as it cancels in the matching against the photon contribution to the corre-

sponding term in the SM. The same applies to the renormalization of the b-quark

mass, which is retained only up to linear terms. Consequently, after checking the

cancellation of the UV divergences in (2.4) we have omitted the photon contributions

in eqs. (2.5) and (2.6) and simultaneously set Zmb and Zq to unity in the effective

theory. This simplifies the following considerations.

Adopting the MS scheme for the operator renormalization the corresponding

renormalization constants can be written as

Zij = δij +
α

4π

1

ε
Z
(1)
ij + Z

(0)
ij . (2.11)

The renormalization constants Z
(1)
ij are found by calculating the UV divergent parts

of Feynman diagrams in the effective theory. Within the scope of this computation, it

is essential to carefully distinguish UV from IR singularities. As explained in ref. [23],

this can be done most easily by introducing a common mass parameter into all the

propagator denominators including the photon ones. All renormalization constants in

7
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the effective theory up to two loops are known from previous anomalous dimension

calculations [5, 6]. As we shall see later on, only five entries of the anomalous

dimension matrix are relevant in the present computation and we have recalculated

these elements to check the results mentioned above. Our results are in full agreement

with refs. [5, 6] and we will give the numerical values of the required renormalization

constants below eqs. (2.13) and (2.16).

The last term in eq. (2.11) implies a finite renormalization of Qi at zeroth order.

Indeed, in situations where evanescent operators are present, the standard practice

is to extend the MS scheme and to allow for a finite operator renormalization. The

finite terms Z
(0)
ij differ from zero when Qi is an evanescent operator and Qj is not, and

their values are fixed by requiring that renormalized matrix elements of evanescent

operators vanish in n = 4 dimensions [24, 25]. This requirement also ensures that

evanescent operators do not mix into physical ones [24]. Furthermore, in the case

of the b → sγ calculation, it is well known [26] that some four quark operators can

mix into the magnetic operators through one-loop diagrams at zeroth order in α and

αs. Thus, not only we have finite terms in eq. (2.11), but they appear at the lowest

order in the coupling constant.

The computation of the necessary matrix elements on the effective side is trivial,

as we can set all the light particles masses to zero.4 Accordingly, all loop diagrams

on the effective side vanish in dimensional regularization, because of the cancellation

between UV and IR divergences. Therefore only the tree-level matrix elements 〈Qi〉(0)
are different from zero and higher order matrix elements do not play any role in the

matching. Notice that due to the cancellation of UV and IR singularities the UV

counterterms present in the tree-level matrix elements reproduce precisely the IR

divergences in the effective theory. Furthermore, the IR divergence on the effective

side has to be equal to the IR singularity on the SM side, to guarantee that the

final results of the Wilson coefficients are free of IR poles. Eventually, all 1/ε poles

cancel out in Cγ7 , if the full and the effective theory are matched in the correct

way.

Bearing all this in mind, we are now able to extract from eq. (2.10) those terms

which are actually needed to calculate the O(α) correction to the Wilson coefficient

of the magnetic operator. First of all, we have to perform the tree-level matching by

computing the relevant diagrams for the various operator insertions. Only C2, C
γ
7 ,

Cg8 and C11–C16 are found to be non vanishing at leading order. However, due to

the triangularity of the mixing matrix the coefficients C11–C16 do not contribute to

the first term in eq. (2.10) and therefore will not affect the matching conditions at

the next order. Furthermore, as we set Zmb equal to one also the term proportional

to (Zmb − 1) in eq. (2.10) does not contribute to Cγ7 at O(α). Using Zq = 1 we

4We include only terms that are linear in the b-quark mass. They originate from use of the

EOM only.
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thus obtain

Aeff ∼ −GF√
2
V ∗tsVtb

(
C
γ(0)
7 +

α

4π

[
C
γ(1)
7,e +

1

ε

(
Z
(1)
2,7γC

(0)
2 + Z

(1)
7γ,7γC

γ(0)
7

)
+

+
∑
i

Z
(0)
Ei,7γ
C
E,(1)
i,e

])
〈Qγ7〉(0) . (2.12)

It is quite remarkable that, with the exception of the last term, only physical oper-

ators play a role in this expression, even though the calculation has been performed

off-shell.

The matching procedure between the full and the effective theory establishes

the initial conditions for the Wilson coefficients a scale µW = O(MW ). Comparing

eqs. (2.3), (2.4) and (2.12), the matching condition Afull(µW ) = Aeff(µW ) translates

into the following identities

C
γ(0)
7 (µW ) = A

γ(0)
7 (µW ) ,

C
γ(1)
7,e (µW ) = A

γ(1)
7,e (µW )− 1

ε

(
Z
(1)
2,7γC

(0)
2 (µW ) + Z

(1)
7γ,7γC

γ(0)
7 (µW )

)
−

−
∑
i

Z
(0)
Ei,7γ
C
E(1)
i,e (µW ) , (2.13)

from which the Wilson coefficient of the magnetic operator up to O(α) can be calcu-

lated. The leading order initial condition for the Wilson coefficient of Q2 is simply

C
(0)
2 (µW ) = 1 and the elements of the mixing matrix needed for the next leading order

matching of Cγ7 are Z
(1)
2,7γ = −58/243 and Z

(1)
7γ,7γ = 8/9. Note that the renormaliza-

tion constant Z
(1)
2,7γ, related to the mixing of the operators Q2 and Qγ7 , is obtained

from a two-loop calculation, as opposed to Z
(1)
7γ,7γ which only involves a one-loop cal-

culation. Whereas Z
(1)
7γ,7γ is regularization and renormalization scheme independent,

Z
(1)
2,7γ is scheme dependent. The value for Z

(1)
2,7γ given above corresponds to the NDR

scheme — see [7]. Notice also that in eq. (2.13) the O(ε) terms of C
γ(0)
7 yield a finite

contribution when combined with the 1/ε pole proportional to Z
(1)
7γ,7γ . Indeed, the

leading order matching needs to be performed up to O(ε). Explicit formulas for the

initial condition of C
γ(0)
7 including O(ε) terms can be found in [27, 28].

For what concerns the last term in eq. (2.13), it is necessary to introduce the

following evanescent operators

QE1 = (s̄LγµbL)
∑

q
(q̄Lγ

µqL) + (1 + a1ε)

(
1

3
Q3 − 1

12
Q5

)
,

QE2 = (s̄LγµbL)
∑

q
Qq(q̄Lγ

µqL) + (1 + a2ε)

(
1

3
Q7 − 1

12
Q9

)
,

QE3 = (s̄LγµbL)
∑

q
Qq(q̄Rγ

µqR)− (1 + a3ε)

(
4

3
Q7 − 1

12
Q9

)
, (2.14)
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where ai are arbitrary constants. In NDR inserting these operators into the one-loop

b → sγ penguin diagrams yields ZE1,7γ = 4/9, ZE2,7γ = −4/27 and ZE3,7γ = 4/27.

Notice that the last term in eq. (2.13) does not depend on the special choice of

evanescent operators adopted above, but it does depend on the choice of physical

operators. For instance, in the operator basis of [7], all evanescent operators that

project onQγ7 have vanishing Wilson coefficients, both at O(α) and O(αs). Therefore,

in this basis evanescent operators do not affect the matching equations and is it not

necessary to introduce them in eq. (2.11). Curiously, in the operators basis of eq. (2.2)

the same holds only at O(αs).

We have verified that all 1/ε poles cancel in eq. (2.13), and that the result for

C
γ(1)
7,e coincides with the one obtained using quark masses for the IR regularization.

In the latter case evanescent operators do not play any role in the matching, as their

contribution to the matrix elements cancels against a corresponding term stemming

from the finite renormalization Z
(0)
Ei,7γ

.

Let us now turn to the matching for the Wilson coefficient of the chromomag-

netic penguin operator Qg8. The calculation for the b → s gluon off-shell amplitude

proceeds in the same way as above. Adopting the notation 〈Qg8〉 ≡ 〈sg|Qg8|b〉, we see

that the analogue of eq. (2.12) is

Aeff ∼ −GF√
2
V ∗tsVtb

(
C
g(0)
8 +

α

4π

[
C
g(1)
8,e +

1

ε

(
Z
(1)
2,8gC

(0)
2 + Z

(1)
7γ,8gC

γ(0)
7 + Z

(1)
8g,8gC

g(0)
8

)
+

+
∑
i

Z
(0)
Ei,8g
C
E(1)
i,e

])
〈Qg8〉(0) , (2.15)

from which we obtain

C
g(0)
8 (µW ) = A

g(0)
8 (µW ) ,

C
g(1)
8,e (µW ) = A

g(1)
8,e (µW )− 1

ε

(
Z
(1)
2,8gC

(0)
2 (µW ) + Z

(1)
7γ,8gC

γ(0)
7 (µW ) + Z

(1)
8g,8gC

g(0)
8 (µW )

)
−

−
∑
i

Z
(0)
Ei,8g
C
E(1)
i,e (µW ) , (2.16)

where Z
(1)
2,8g = −23/81, Z

(1)
7γ,8g = −4/3 and Z

(1)
8g,8g = 4/9. The renormalization con-

stants which describe the mixing of evanescent operators into physical ones read

ZE1,8g = −4/3, ZE2,8g = 4/9 and ZE3,8g = −4/9. Again, all IR poles cancel in C
g(1)
8,e

and the result coincides with the one obtained with the other method.

We now recall that the relevant quantity entering the calculation of BRγ is not

Cγ7 (µb) with µb = O(mb) but a combination Cγ,eff7 (µb) of this Wilson coefficient and

of the coefficients of the four quark operators. This combination is the coefficient

of 〈Qγ7〉(0) calculated on-shell. It follows from this definition that, unlike Cγ7 , the

effective coefficient is regularization scheme independent at LO [26] and does not
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depend on the basis of physical operators. In NDR the two combinations relevant

for B → Xsγ and B → Xsg are [6]

Cγ,eff7 (µ) = Cγ7 (µ) +

10∑
i=1

yiCi(µ) ,

Cg,eff8 (µ) = Cg8 (µ) +
10∑
i=1

zi Ci(µ) , (2.17)

where y = (0, 0,−1/3,−4/9,−20/3,−80/9, 1/9, 4/27, 20/9, 80/27) and z = (0, 0, 1,

−1/6, 20,−10/3,−1/3, 1/18,−20/3, 10/9). The O(α) contributions to the Wilson

coefficients at µ =MW in our operator basis eq. (2.2) can be found from those in the

operator basis of [7] after a basis transformation which in four dimensions is simply

~C(µ) = R̂T ~C ′(µ) , (2.18)

where ~C ′ are the Wilson coefficients in the basis of [7]. They are given in eqs. (8.111)–

(8.117) of that review. The matrix R̂ is the extension of the same matrix of [29] and

is needed only for the physical operators Q1–Q10, Q
γ
7 and Qg8:

R̂ =



2 1
3

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1
3

0 1
12

0 0 0 0 0 0 0

0 0 −1
9
−2
3

1
36

1
6

0 0 0 0 0 0

0 0 4
3

0 − 1
12

0 0 0 0 0 0 0

0 0 4
9

8
3
− 1
36
−1
6

0 0 0 0 0 0

0 0 0 0 0 0 2 0 −1
8

0 0 0

0 0 0 0 0 0 2
3

4 − 1
24
−1
4

0 0

0 0 0 0 0 0 −1
2

0 1
8

0 0 0

0 0 0 0 0 0 −1
6
−1 1

24
1
4

0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



. (2.19)

In fact, beyond the leading order, the operator basis must be supplemented by a

definition of the evanescent operators. This definition corresponds to a choice of

scheme and it is different, for instance, in the standard basis of [7] and in the oper-

ator basis of [6, 29, 30]. On the other hand, a change of scheme can be in general

accommodated by an additional non-linear term in the transformation eq. (2.18)

~C(µ) =

(
1 +
αs(µ)

4π
∆r̂Ts +

α

4π
∆r̂Te

)
R̂T ~C ′(µ) , (2.20)

where ∆r̂s and ∆r̂e are matrices that depend on the way the projection on the space

of physical operators is implemented in the effective theory calculation (which in turn

corresponds to a definition of evanescent operators). At the order we are interested

in, they affect only C1 and C2.
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In the following, for definiteness, we follow the convention of [29, 30], whose basis

of physical operators is a subset of eq. (2.2). Recalling that C
(1)
2,e (MW ) was obtained

in [2] in the standard basis, we have calculated the matrix ∆r̂e that connects the two

different schemes. As a result, the non-vanishing O(α) contributions to the Wilson

coefficients of the four quark operators and of the evanescent operators at µ = MW

are given by

C
(1)
2,e (MW ) = −22

9
+

4

3
ln
M2Z
M2
W

+
1

9
,

C
(1)
3,e (MW ) = − 1

s2
W

(
4

9
B0(xt) +

2

9
C0(xt)

)
,

C
(1)
5,e (MW ) =

1

s2
W

(
1

9
B0(xt) +

1

18
C0(xt)

)
,

C
(1)
7,e (MW ) = 4C0(xt) + D̃0(xt)− 1

s2W

(
10

3
B0(xt)− 4

3
C0(xt)

)
,

C
(1)
9,e (MW ) =

1

s2W

(
5

6
B0(xt)− 1

3
C0(xt)

)
,

C
E(1)
1,e (MW ) =

1

s2
W

(
4

3
B0(xt) +

2

3
C0(xt)

)
,

C
E(1)
2,e (MW ) = 4C0(xt) + D̃0(xt) +

1

s2W
(10B0(xt)− 4C0(xt)) ,

C
E(1)
3,e (MW ) = 4C0(xt) + D̃0(xt) , (2.21)

with

B0(xt) = − xt

4(xt − 1)
+

xt

4(xt − 1)2
ln xt ,

C0(xt) =
xt(xt − 6)

8(xt − 1)
+
xt(2 + 3xt)

8(xt − 1)2
ln xt ,

D̃0(xt) =
16− 48xt + 73x2t − 35x3t

36(xt − 1)3
+
−8 + 32xt − 54x2t + 30x3t − 3x4t

18(xt − 1)4
lnxt . (2.22)

Here we have left explicit the extra scheme dependent term 1/9 in C
(1)
2,e (MW ): it is

numerically very small.

The final results for C
γ(1)
7,e and C

g(1)
8,e are quite lengthy. We give instead two accu-

rate approximate formulas for the O(g2) contributions to Cγ,eff7 (MW ) and Cg,eff8 (MW ),

which are valid when the effective hamiltonian is normalized in terms of GF as

in eq. (2.1):

C
γ,eff(1)
7,e (µW ) =

1

s2
W

[
1.11− 1.15

(
1− M

2

t

1702

)
− 0.444 ln

MH

100
− 0.21 ln2

MH

100
−

− 0.513 ln
MH

100
ln
M t

170

]
+

(
8

9
C
γ(0)
7 − 104

243

)
ln
µ2
W

M2
W

,

12
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Figure 2: Electroweak corrections to the Wilson coefficients Cγ7 (MW ) and C
g
8 (MW ). The

dashed lines represent the results of [2] with their error estimates, the solid lines the com-

plete corrections to the Wilson coefficients at MW .

C
g,eff(1)
8,e (µW ) =

1

s2
W

[
−0.143 + 0.156

(
1− M

2

t

1702

)
− 0.129 ln

MH

100
− 0.0244 ln2

MH

100
−

− 0.037 ln
MH

100
ln
M t

170

]
+

(
4

9
C
g(0)
8 −4

3
C
γ(0)
7 − 58

81

)
ln
µ2W
M2W
. (2.23)

Here MH is the Higgs boson mass expressed, like M t in GeV. In eq. (2.9) we use

the coupling α(µW ) ≈ 1/128, while in general we employ s2W = 0.23, corresponding

to g2 = 4
√

2GFM
2
W

, MW = 80.45 GeV and MZ = 91.1875 GeV. Equations (2.23)

reproduce accurately (within 1.5%) the analytic results in the ranges 80 GeV <

MH < 300 GeV and 160 GeV < M t < 180 GeV. We stress that eqs. (2.23) are

independent of the choice of the scale µt in the QCD top mass definition: it is

sufficient to calculate M t(µt) and employ it in eqs. (2.23). Different choices of µt
lead to different NLO QCD corrections, but they are higher order effects as far as

the present calculation is concerned. The µW dependence of the effective coefficients

agrees with [3, 5, 6].

The size of the electroweak corrections to Cγ,eff7 and Cg,eff8 relative to the one-loop

results is shown in figure 2 as a function of the Higgs mass. To compare directly the

results in eq. (2.23) with the approximate ones in [2], we have used the same central

value M t = 175.5 GeV in the plots. First, notice that the Higgs mass dependence

is identical, as should be expected since all the diagrams involving the Higgs boson

also involve a charged boson. Therefore, these diagrams are not sensitive to the

Z-W mass difference or to O(s2
W

) couplings. Numerically, we see from figure 2 that

the difference is larger than estimated in [2]. Although an expansion of the results

in powers of s2
W

converges quickly, it turns out that its second term of O(s2
W

) is

larger than naively expected, and that the two-loop correction is very sensitive to

the MZ-MW difference.
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3. QED-QCD evolution and the decay B → Xsγ
The relevant quantity in the evaluation of BRγ is the effective Wilson coefficient

of the magnetic operator at a scale µb ≈ mb. In the resummation of QED and

QCD logarithms one usually keeps only terms linear in the electromagnetic cou-

pling α, whose running is also neglected. In this case, the general structure of the

evolution at O(ααnsL
n) is well known, see for instance [7, 8]. Using the notation

~CT = (C1, . . . , C10, C
γ,eff
7 , Cg,eff8 ) and restricting to the physical (on-shell) operators

in eq. (2.2), the coefficients at a scale µ are given in terms of the coefficients at the

scale MW by

~C(µ) = ~C(0)(µ) +
αs(µ)

4π
~C(1)s (µ) +

α

4π
~C(1)e (µ) = Û(µ,MW , α) ~C(MW ) , (3.1)

where

Û(µ,MW , α) = Û (0)(µ,MW )+Û (1)(µ,MW )+
α

4π

[
R̂(0)(µ,MW ) + R̂(1)(µ,MW )

]
. (3.2)

The first two terms give the pure QCD evolution. The matrices Û (i) and R̂(i) are

determined by the anomalous dimension matrix of the operators in question and by

the QCD β function. Explicit expressions for Û (0), Û (1), and R̂(0) can be extracted

from [6, 23]. R̂(1) is presently unknown: it requires the evaluation of the two and

three-loop anomalous dimension matrix at O(ααs). From the point of view of the

expansion in αs in the renormalization group improved perturbation theory, Û (0)

and Û (1) are O(1) and O(αs), respectively. R̂(0) and R̂(1) are O(1/αs) and O(1),

respectively. Expanding in αs and α we obtain

~C(µ) = Û (0)(µ,MW )

[
~C(0) +

αs(MW )

4π
~C(1)s

]
+ Û (1)(µ,MW ) ~C(0) +

+
α

4π

[
Û (0)(µ,MW ) ~C(1)e + R̂(0)(µ,MW )

(
~C(0) +

αs(MW )

4π
~C(1)s

)
+

+ R̂(1)(µ,MW ) ~C(0)
]
. (3.3)

All the coefficients on the right-hand side are understood at the scale MW . The

first line results from pure QCD evolution. The second and third line mixes QED,

electroweak, and QCD effects. After the calculation of the two missing elements of
~C
(1)
e in section 2, the only unknown part of eq. (3.3) relevant for (chromo)magnetic

decays is the last term (third line).

Turning to the particular case of Cγ,eff7 and neglecting the unknown term R̂(1)(µ,

MW ) ~C(0), we see from eq. (3.3) and [6, 7] that the O(α) terms are given by

C
γ,eff(1)
7,e (µb) = Cγ,U7,e (µb) + Cγ,R7,e (µb) . (3.4)
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The first term on the right-hand side corresponds to Û (0)(µ,MW ) ~C
(1)
e in eq. (3.3) and

takes the form

Cγ,U7,e (µb) = η16/23C
γ,eff(1)
7,e (MW ) +

8

3

(
η14/23 − η16/23)Cg,eff(1)8,e (MW )−

− (0.448− 0.49 η)C
(1)
2,e (MW ) + (0.362− 0.454 η)C

(1)
3,e (MW ) +

+ (5.57− 5.86 η)C
(1)
5,e(MW ) + (0.321− 0.47 η)C

(1)
7,e (MW ) +

+ (1.588− 2.89 η)C
(1)
9,e (MW ) , (3.5)

where η = αs(MW )/αs(µb) ≈ 0.56 for µb = mb. Here we have given analytically

only the cofactors of Cγ,eff7 and Cg,eff8 . The other terms are more involved and are

given in an approximate form, valid within 1% for values of η between 0.5 and 0.6.

However, they can all be easily determined from the anomalous dimension matrices

given in [6].5 The last four terms have been given in [2] in the operator basis of [7].

The second term in eq. (3.4) corresponds to R̂(0)(µ,MW )(~C(0) + αs(MW )/

(4π) ~C
(1)
s ) in eq. (3.3) and is given by

Cγ,R7,e (µb) =
4π

αs(µb)

[(
88

575
η16/23 − 40

69
η−7/23 +

32

75
η−9/23

)
×

×
(
C
γ,eff(0)
7 (MW ) +

αs(MW )

4π
C
γ,eff(1)
7,s (MW )

)
+

+

(
640

1449
η14/23 − 704

1725
η16/23 +

32

1449
η−7/23 − 32

575
η−9/23

)
×

×
(
C
g,eff(0)
8 (MW ) +

αs(MW )

4π
C
g,eff(1)
8,s (MW )

)
−

− 0.0449 + 0.2504η − 0.236η2
]

+

+ (0.15− 0.178 η) η C
(1)
1,s (MW )− (0.381− 0.556 η) η C

(1)
4,s (MW ) . (3.6)

The O(αs) coefficients C
(1)
i,s (MW ) can be found in [10, 28, 30]. The approximate

expressions are valid within 1% for 0.5 < η < 0.6.

We are now ready to give a numerical value for the O(α) Wilson coefficient at

µb = 4.7 GeV using eq. (3.6). Renormalizing the top mass at µt = M t = 165 GeV,

we find

C
γ,eff(1)
7,e (µb) = 4.172− 1.312 ln

MH

100
− 0.615 ln2

MH

100
+ 2.360 , (3.7)

where the first three terms correspond to Cγ,U7,e and the last one to Cγ,R7,e . Notice

that for a light Higgs boson the first term (formally O(ααnsL
n)) is twice the second

one (formally O(ααn−1s L
n)). We interpret this as evidence that purely electroweak

O(αW ) effects are dominant with respect to purely QED effects.

5Table 2 in [2] allows to change from the basis of [6] to that of [7].
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To see how electroweak corrections affect the calculation of BRγ it is sufficient to

recall that, for µb = mb, the perturbative QCD expression for the b → sγ(g) decay

is proportional to∣∣∣∣Cγ,eff7 (mb) + ~C(0)(mb) ·
(
αs(mb)

4π
~rs +

α

4π
~re

)∣∣∣∣2 +B(E0) , (3.8)

where E0 is the maximal photon energy in the b-quark frame and B(E0) originates

from bremsstrahlung diagrams. ~rs and ~re originate from the O(αs) and O(α) matrix

elements of the physical operators. ~rs has been computed in [31] with the exception

of r3,s, . . . , r10,s. It is easy to see from these papers that6

r1,e = −2

9
r2,s , r2,e = −1

6
r2,s , r7γ,e =

1

12
r7γ,s − 1

4
r8g,s , (3.9)

while r8g,e = 0. Numerically, the effect of r2,s and r7γ,s in the calculation of the

inclusive branching ratio is quite important. On the other hand, the O(αs) contri-

bution to B(E0) changes BRγ by less than 4% if 1 GeV < E0 < 2 GeV. We therefore

conclude that the only potentially relevant QED matrix elements are the virtual

corrections parameterized by r1,e, r2,e and r7γ,e. Hence, in our numerics we will ne-

glect the unknown last term in eq. (3.3), the unknown QCD matrix elements (which

are in any case suppressed by small Wilson coefficients), and the remaining real

and virtual QED contributions to the matrix elements. It has been observed in [1]

that splitting the charm and top quark contributions in eq. (3.8) and normalizing

them in an asymmetric way leads to an improved perturbative QCD expansion. In

the evaluation of the electroweak corrections, however, this would be an unneces-

sary complication.

We stress that, as we neglect the last term in eq. (3.3) and some contributions to

the matrix elements, our evaluation of O(ααnsL
n) effects in B → Xsγ is incomplete,

although we are confident that it should provide a good approximation. Our numer-

ical result is valid in the NDR scheme supplemented by the definition of evanescent

operators of [29, 30]. An analysis of the way the scheme dependent terms recom-

bine can be found in [8]. The scheme dependence of our result is introduced in

eq. (2.21) and in the ri,e. The one from eq. (2.21) is numerically negligible (less

than 0.01% on BRγ). All the residual scheme dependent pieces would be cancelled

by corresponding terms in the anomalous dimension matrix at O(ααs), if it were

available.

Additional O(α) contributions are introduced by normalizing BRγ in terms of

the semileptonic branching ratio, as there are well-known QED corrections to the

semileptonic decay amplitude [32]. Unfortunately, only the leading logarithmic term

is known. The final O(α) contribution to the expression under absolute value in

6Because of the definition of B(E0) adopted in [1], we use here r7γ,s =
8
9 (4−π2) as given in [31].

This convention is different from the one of [30].
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eq. (3.8) is therefore [1]

εew =
α

4π

[
C
γ,eff(1)
7,e (mb) + r1,eC

(0)
1 (mb) + r2,eC

(0)
2 (mb) +

+ r7γ,eC
γ,eff(0)
7 (mb)− 4C

γ,eff(0)
7 (mb) ln

MZ

mb

]
. (3.10)

Using the reference value MH = 115 GeV and mc/mb = 0.22 as in [1], we find

numerically

εew = 0.0025 + 0.0014 + 0.0004 + 0.0028 = 0.0071 , (3.11)

which updates eq. (4.6) of [1]. Here the first and second terms correspond to the U

and R components of C
γ,eff(1)
7,e (µb) (in [1] they were 0.0035 and 0.0012, respectively).

The third term derives from the QED matrix elements and was not included in the

paper mentioned above. The last term, 0.0028, is due to the QED corrections to

the semileptonic decay amplitude and is the same as in [1]. Notice that the first

term, although formally suppressed with respect to the second one, is larger, as it

incorporates all purely electroweak contributions. The total effect of the QED and

electroweak corrections in εew on the branching ratio is a 3.6% reduction while the

O(ααnsL
n) contributions alone lead to a 1.6% reduction. As different contributions

accidentally compensate each other, εew is almost exactly the same that was used

in [1]. Incorporating all perturbative and non-perturbative QCD corrections and

using the same numerical inputs as in [1], we therefore obtain for different values of

the cutoff photon energy in the B̄ meson frame the following results, very close to

those given in that paper:

BR
[
B̄ −→ Xsγ

]
Eγ>mb/20

= (3.74± 0.30)× 10−4 ,

BR
[
B̄ −→ Xsγ

]
Eγ>1.6GeV

= (3.61± 0.30)× 10−4 . (3.12)

Here the errors are estimates of theoretical errors also based on the analysis of [1].

One can compare the first of these two results with the present experimental world

average BRγ = (3.23± 0.42)× 10−4 [33].

4. Conclusions

We have calculated the complete O(α) Wilson coefficients relevant for radiative weak

decays and described the implementation of O(ααnsL
n) effects in detail, including also

the dominant QED matrix elements. The final impact of these contributions on the

branching ratio of B → Xsγ is roughly 1.6% for a light Higgs mass MH ≈ 100 GeV,

and decreases slowly for larger values of MH .

We have discussed in detail the role played by unphysical operators in the cal-

culation. We have adopted two different methods to regulate the IR divergences and
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clarified the subtleties that arise in the two cases. In contrast to the off-shell O(αs)

calculation [10, 11], evanescent operators turn out to play a crucial role in the O(α)

computation. We have also explained the relevance of gauge variant operators in

our calculation.

Our results improve upon existent calculations [2, 3, 5, 6] and put electroweak

corrections to B → Xsγ on a firmer basis, although numerically the change is neg-

ligible. The dependence of Cγ,eff7 (µb) on heavy degrees of freedom is now com-

pletely known at O(α). We have also included the dominant O(α) matrix ele-

ments. Still, not all the O(ααnsL
n) contributions to radiative decays are under

control. The uncalculated corrections are related to the QED-QCD evolution (last

term in eq. (3.3)) and to some suppressed QED matrix elements. As the elec-

troweak contributions to QCD and electroweak penguin operators are relevant to

our discussion, some two-loop QCD matrix elements are also still missing. The in-

completeness of our calculation makes it scheme-dependent, but, as we have noted

above, the scheme dependence is remarkably small. On the other hand, the calcu-

lation of the missing contributions would require a significant effort. In the mean-

while, we note that: (i) the leading O(ααn−1s L
n) corrections affect the branching

ratio of B → Xsγ only in a minor way (−0.6%) and (ii) the QED matrix ele-

ments are very small, although formally of the same order of the matching cor-

rections. Therefore, one might expect the missing subleading QED effects to be

eventually small.
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