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chose p+-strips on n-bulk detectors, the combination of fast electronics and
trapping demands suÆcient over-depletion for these detectors to operate eÆ-
ciently. Detailed prior knowledge of the full depletion voltage (VFD) changes
with irradiation is therefore of uttermost importance for proper design and
operation of these detector systems.

A vast amount of data has been accumulated during recent years and consider-
able insight gained in understanding and even controlling radiation damage in
silicon [4]. Considerable less has been, however, done to explore the inuence
of conditions under which the detectors at the LHC will be irradiated and
operated. Fully biasing the detectors during and after irradiation was shown
[5] to nearly double VFD near the minimum between annealing and reverse an-
nealing. The annealing of this bias-induced damage was studied in [6] where a
�rst attempt to parameterize the e�ect was made. This enabled a prediction
of the additional bias needed to operate the detectors irradiated and annealed
under LHC conditions. Part of the bias-induced damage was found to exhibit
a bistable behavior upon bias re-application.

In this paper the study in [6] has been extended with an update of annealing
of the bias-induced damage. The emphasis is, however, given to a detailed
study of the bistable part of the damage. Predictions for the additional bias
for the ATLAS SCT are also provided.

2 Samples and experimental procedure

For the study 14 p+ � n� n+ pad detectors were used, their size in the range
0:25�1 cm2, thickness of 300 �5 �m, all having guard rings. Substrates were
high resistivity standard FZ silicon with initial V 0

FD < 60 V resulting from
resistivities in excess of 5 k
cm. Individual sample properties are summarized
in Table 1.

Neutron irradiations were performed at the TRIGA research reactor of the
Jo�zef Stefan Institute in Ljubljana. Samples were irradiated in a tube at the
outer radius of the reactor core, providing a uniform equivalent neutron ux
up to 2 � 1012 n=cm2s, tunable with reactor power down to 2 � 109 n=cm2s.
Details on the reactor neutron spectrum and uence monitoring are given
elsewhere [7,8] and on the irradiation procedure in [6]. The systematic error
on the equivalent uence values is estimated to be about 10 %.

Pion irradiation was done at the Paul Scherrer Institut with 200 MeV �+.
Damage factor of these pions amounts to 1.14 [9]. The ux obtained was
� 109 �+cm�2s�1 and it took 10 hours to reach the equivalent uence of
0:47� 1014 n=cm2. Details on the irradiation are given in [6].
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Table 1
Properties of diodes used: sample label, manufacturer, initial VFD, irradiation tem-
perature, particles, equivalent ux and uence, and bias during/after irradiation.

Sample Processing V 0
FD T Part. �eq �eq Vbias

[V] [ÆC] type [cm�2s�1] [1014cm�2] [V]

S3A Micron 32 15 n 1.9�109 0.45 200/0

S3B Micron 34 15 n 1.9�109 0.45 0/200

UO6B Sintef 35 20 n 1.8�1011 1.7 1000/600

UO6S Sintef 35 20 n 1.8�1011 1.7 0

BA2B Sintef 44 15 n 2.1�1011 1.0 500

BA2S Sintef 44 15 n 2.1�1011 1.0 0

BA4B Sintef 40 20 n 2.1�1011 1.0 600

BA4S Sintef 36 20 n 2.1�1011 1.0 0

BAA Sintef 37 20 n 4.2�1011 1.0 600

BAB Sintef 42 20 n 4.2�1011 1.0 600

BAC Sintef 44 20 n 4.2�1011 1.0 600

BAU Sintef 41 20 n 4.2�1011 1.0 0

PIB Sintef 29 22 �+ 1.25�109 0.47 350

PIU Sintef 27 22 �+ 1.25�109 0.47 0

All the samples were annealed under controlled temperature and bias condi-
tions in a stabilized refrigerator. VFD was measured in regular intervals with
the C � V method, its estimate taken from the \kink" in 1=C2 � V plot at
10 kHz and 5ÆC, except for samples of the BA type annealed at 20ÆC which
were measured at their annealing temperature.

3 Annealing of Bias-Induced Damage

As reported in [5,6], the samples irradiated and annealed under bias exhibit
about twice higher VFD at the minimum after bene�cial annealing than the
unbiased ones. Such an increase in VFD would be disastrous for trackers at the
LHC. Taking note that out of operation detectors can be left without bias, the
key question is what happens to bias-induced additional damage without the
presence of electric �eld. Therefore we have undertaken a long-term annealing
study at temperatures typical for operation (-7ÆC) and maintenance (20ÆC)
of the ATLAS SCT, with an additional point at 5ÆC. Diodes were irradiated
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and annealed in pairs with one of them under bias and the other unbiased.
First results of this study were reported in [6], here the study is extended by
another sample pair (S3A/S3B). Annealing is �tted with �jNeff j=�eq to get
introduction rates of components. The time range for BAA, BAB, BAC and
BAU is extended to 4000 hours. The �t for annealing at 20ÆC now contains
three exponentials and a constant term wherever data exist for an annealing
period longer than 1500 hours.

All sample pairs were annealed near to the minimum in VFD and then the bias
on the diode biased until this point was switched o�. jNeff j=�eq di�erence
was calculated by subtracting a function, �tting the time behavior of the
unbiased sample of the same pair. In this way uctuations of measurements
of the unbiased diode were e�ectively �ltered out. For samples S3B and UO6S
a constant plus a 2nd order reverse annealing term NY � [1 � 1=(1 + t=t1=2)]
was used. To �t BAU, the unbiased reference to BAA, BAB and BAC, one
exponential decay term was added to account for the still present annealing at
the switch-o� time of these samples. Since data for the pion irradiated sample
PIU exist only up to 500 hours, a linear function �tted the data well enough.
The same was true for BA4S due to the lower annealing temperature (5ÆC).
For BA2S, annealed at �7ÆC, a constant level was adequate.

The annealing of the jNeff j=�eq di�erence for samples S3B, UO6B, BAA, BAB
and BAC was �tted with a constant and three exponential terms

�jNeff j

�eq

(t) = g0 + g1e
�t=�1 + g2e

�t=�2 + g3e
�t=�3 (1)

where t is the time from bias disconnection, g's are the introduction rates
of the components and � 's the respective decay times. An example of the �t
is shown in �g. 1. Absolute errors of individual measurements were adjusted
so as to get a normalized chisquare of the �t close to one. As will be shown
later, statistical errors on �t parameters anyway represent a minor part of the
overall error.

For the pion irradiated sample pair PIB/PIU absence of data above 500 hours
after bias disconnection required dropping of the third exponential in the �t.
Data for the BA4 pair at 5ÆC (�g. 2) exist up to 10000 hours. The expected
increase of time constants from 20ÆC is of order ten for an activation energy
about 1 eV. Thus the interval seemed to short to �t the longest annealing
component. On the other hand, the measured �3 of about 1000 hours at 20

ÆC
still allows for a considerable inuence of this component. As a compromise,
the time interval for a two decay component �t was taken at 3500 hours.

Annealing of the BA2 pair at �7ÆC should have prolongated time constants
from 20ÆC by two orders of magnitude, so the inuence of the longest annealing
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Fig. 1. a) VFD time development for the pair BAA/BAU at 20ÆC. After 240 hours
of annealing, bias on BAA was switched o�. The line represents a �t to BAU as
described in text. b) Annealing of �jNeff j=�eq after bias disconnection. The line
represents a �t according to eq. 1 up to 3750 hours.

component is expected to be moderate even in the complete time interval of
11000 hours. Annealing results are shown in �g. 3.

Table 2
Results of �ts to annealing of bias-induced damage. Errors given by the �t are
quoted for individual samples. Variance of distributions is quoted as error on the
averages.

Sample Ta g0 g1 �1 g2 �2 g3 �3

pair ÆC 10�3 cm�1 10�3 cm�1 h 10�3 cm�1 h 10�3 cm�1 h

S3B/A 20 �2:0� 0:7 3:3� 0:6 3:8� 1:5 6:8� 1:0 99� 28 3:3� 0:5 1050 � 710

UO6B/S 20 2:4� 1:1 3:0� 0:5 3:3� 1:3 4:9� 0:4 71� 18 4:1� 0:8 1010 � 750

PIB/U 20 �1:5� 0:1 6:2� 0:3 2:8� 0:4 7:6� 0:2 65� 4 - -

BAA/U 20 1:0� 0:1 6:0� 0:4 6:0� 0:6 8:0� 0:3 46� 2 5:5� 0:1 930 � 30

BAB/U 20 �0:7� 0:1 6:2� 0:3 8:6� 0:9 8:6� 0:2 95� 4 4:2� 0:1 1380 � 110

BAC/U 20 3:3� 0:1 4:4� 0:3 6:7� 0:9 8:4� 0:2 100� 4 3:0� 0:1 1060 � 90

average 20ÆC 0:4� 2:2 4:9� 1:5 5:2� 2:3 7:4� 1:4 79� 22 4:0� 1:0 1080 � 170

BA4B/S 5 7:1� 0:2 5:6� 0:3 31� 6 8:4� 0:2 760 � 80 - -

BA2B/S -7 4:4� 0:2 4:6� 0:3 137 � 23 9:8� 0:2 3550 � 230 - -

overall average - 4:9� 1:3 - 7:8� 1:5 - - -

The results on bias-induced damage annealing are summarized in Table 2. For
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Fig. 2. a) VFD time development for the pair BA4B/BA4S at 5ÆC. After 400 hours
of annealing, bias on BA4B was switched o�. The line represents a linear �t to
BA4S. b) Annealing of �jNeff j=�eq after bias disconnection. The line represents a
�t with two decay terms plus a constant up to 3500 hours.

the average, all results were taken with equal weights, and the variance of
parameters taken as the error of the average. In this way the inuence of the
rather arbitrary error estimate of the individual measurements was avoided.
The variance is expected to cover systematic errors such as inadequacy of
the model used, uence uctuations and sample-to-sample systematic uc-
tuations. As the constant term at lower annealing temperatures is bound to
include also the longest decay term, g0 was averaged over the samples annealed
at 20ÆC only.

While the systematic errors for the 20ÆC values are believed to be described
by the variance between samples, systematic errors on decay times �1 and �2
at lower temperatures were estimated by a variation of the �t time interval.
At 5ÆC the �t interval was varied by 1500 hours, so that at the lower limit it
still allowed a 95 % decay of the second decay component. Such time interval
variation resulted in decay time variations of �10 hours for �1 and �220 hours
for �2. At �7

ÆC the complete 11000 hour �t interval is already at the 3�2 limit,
so the interval was decreased by �2 to 7500 hours, reducing �1 by 45 and �2
by 1000 hours. These changes were taken symmetrically as an estimate of
systematic errors.
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Fig. 3. a) VFD time development for the pair BA2B/BA2S at �7ÆC. After 600 hours
of annealing, bias on BA2B was switched o�. After 4000 hours of annealing, bias
was applied to the previously unbiased sample BA2S. The line represents a constant
�t to BA2S up to bias application. Two accidental warm-ups to room temperature
were corrected by an appropriate extension of the time scale. After 12000 hours
samples were switched to room temperature. b) Annealing of �jNeff j=�eq after
bias disconnection. The line represents a �t with two decay terms plus a constant
up to 11000 hours.

Systematic errors are clearly dominant and were added in quadrature to the
�t errors. The �nal results on annealing time constants �1 and �2 are given in
Table 3.

Table 3
Results on annealing time constants
�1 and �2 including their overall er-
ror estimate at the three tempera-
tures.

Ta �1 �2

ÆC h h

20 5:2� 2:3 79� 22

5 31� 11 760 � 230

-7 137 � 50 3550 � 1000

The values of �1 and �2 at the three temperatures were �tted with the Arrhe-
nius relation

�(T ) = �0 � e
Ea
kBT (2)
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where �0 represents the in�nite temperature decay time, Ea the activation
energy and kB is the Boltzmann constant. The results of the �t, depicted in
�g. 4, are

Ea(�1) = 0:81� 0:15 eV and Ea(�2) = 0:95� 0:10 eV.

Fig. 4. Arrhenius plot of bias-induced damage annealing decay times �1 and �2. The
lines represent a �t to the Arrhenius relation.

To estimate the activation energy of the longest decay time �3 data at 5
ÆC were

�tted over the complete 10000 hour annealing interval according to eq. 1. The
rather short time interval induced a large correlation between the constant
term and the long decay component. The �t was unstable unless the constant
was �xed. Fixing it at zero gave values of the parameters

g1 = (5:5� 0:4)� 10�3 cm�1 �1 = 31� 6 h

g2 = (7:6� 0:3)� 10�3 cm�1 �2 = 700� 90 h

g3 = (8:0� 0:3)� 10�3 cm�1 �3 = 22500� 2500 h

consistent with results of the reduced time-interval �t in Table 2. The sys-
tematic error on �3 was estimated by varying the �xed constant term by
2 � 10�3 cm�1, that being its variance at 20ÆC. This variation moved the
value of �3 by 8000 hours, the �nal results on �3 thus reading

�3(5
ÆC) = 22500� 8400 h and �3(20

ÆC) = 1080� 170 h.

The systematic error at 20ÆC is again believed to be covered by the variance.
A �t to the Arrhenius relation, based on the two data points only, yielded a
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value of Ea(�3) = 1:4�0:2 eV for the activation energy of the longest annealing
time.

4 Bistable Damage

As exhibited in �g. 5 an increase of VFD is observed on irradiated samples
upon application of bias (200 V for S3A/S3B). This e�ect was observed in
diodes irradiated under bias as S3B or UO6B after the bias-induced damage
had been annealed out, as well as in S3A and BA2S (�g. 3) which were never
biased before. Data in �g. 5 also show this damage annealing out in a short
time after bias disconnection. Hence this part of damage is bistable upon bias
application. To characterize the bistable damage a linear �t to the sample's

Fig. 5. VFD time development of the S3A/S3B pair. After 400 hours of annealing,
voltage on the previously biased sample S3B was switched o� and 2200 hours later
switched back on. After 2200 hours of annealing bias on the previously unbiased
sample S3A was switched on.

own reverse annealing around bias (re)-application was subtracted. Then the
di�erence was �tted by

�jNeff j

�eq

(t) = gb � (1� e
�
t�ton
�b ) (3)

with gb the introduction rate and �b the activation time of the bistable damage.
The results of the four bistable damage activation �ts of S3A, S3B and UO6B
at 20ÆC as well as BA2S at �7ÆC are shown in �g. 6. The �ts are reasonable
although there is a hint to a second component with a shorter activation time,
especially in the �7ÆC data.
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Fig. 6. Activation of bistable damage in S3A, S3B and UO6B at 20ÆC and in BA2S
at �7ÆC. Lines represent results of �ts according to eq. 3 and the weakly printed
straight lines the subtracted linear �ts to reverse annealing. The other diode in the
sample pair is depicted in open circles.

Annealing of the bistable damage was followed on S3A only. A �t to

�jNeff j

�eq
(t) = gb � e

�
t�toff
�a (4)

is depicted in �g. 7.

The �tted parameter values of bistable damage activation and annealing are
summarized in Table 4. We notice that the value of gb of S3B and UO6B
agrees well with the values of g1 for the same diodes in Table 2. Agreement is
also found between g1 of BA2B and gb of BA2S. Finally the annealing time �a
coincides well with �1. Therefore we conclude that the bistable defect under
bias is the same as the fast annealing component of the bias-induced damage.

From measurements of activation time �a at 20
ÆC and �7ÆC, Arrhenius rela-

tion yields Ea(�b) = 0:96 � 0:15 eV as the corresponding activation energy.
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Fig. 7. Annealing of the bistable
damage in S3A at 20ÆC. After 2800
hours of annealing, of which the last
700 h were under bias, the voltage
on the sample was switched o�. The
line represents the result of the �t
according to eq. 4 and the weakly
printed straight line the subtracted
linear �t to reverse annealing.

Table 4
Results on bistable damage activation and annealing parameters.

Sample T gb �b gb �a

ÆC 10�3 cm�1 h 10�3 cm�1 h

S3A 20 3:5� 0:2 34� 8 3:4� 0:03 4:4� 1:2

S3B 20 3:7� 0:2 91� 14 - -

UO6B 20 3:7� 0:1 50� 14 - -

average 20ÆC 3:6� 0:1 58� 30 - -

BA2B/BA2S -7 4:0� 0:3 2730 � 500 - -

This result should be taken with some reservation as there are �a measure-
ments at two temperatures only and there is a hint that more than one defect
might be responsible for the bistable damage.

5 Predictions for ATLAS SCT

As a benchmark study for the extent of bias-related additional radiation dam-
age the example of the ATLAS SCT was taken. At inner radii detectors
will receive an equivalent uence of 2: � 1012 cm�2 per low-luminosity and
2:� 1013 cm�2 per high-luminosity year. The standard LHC scenario of 3 low
and 7 high-luminosity years was considered. When comparing with conven-
tional damage projections, one should care, that damage estimates sometimes
include a safety factor of 1.5, which was not applied in this estimate.

The standard ATLAS yearly temperature and biasing scenario was applied
implying 100 days operation under bias at �7ÆC. Then the bias is switched
o� �rst for 100 days still at �7ÆC, followed by a 2 plus 14 days maintenance at
20 and 17ÆC, respectively. The remaining 150 days are spent again unbiased
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at the operational temperature of �7ÆC.

The bias-induced damage parameters were taken from Table 2. The constant
term g0 was discarded, but therefore the longest annealing component intro-
duction rate was increased to 6� 10�3 cm�1. The annealing times were scaled
with the respective activation energies according to eq. 2. In accordance with
�ndings of the previous section, the bistable damage introduction rate was set
equal to that of the bias-induced component with the shortest annealing time
g1 (4:9�10�3 cm�1). Defects available for activation were the ones created by
irradiation in previous years and annealed out in the idle period. The activa-
tion time under bias at �7ÆC is 100 days, so about 60 % of this damage are
re-activated. According to the single measurement at 20ÆC, complete anneal-
ing of the bistable part could be assumed during each year's high temperature
period.
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Fig. 8. Prediction of the inuence of bias-related damage to ATLAS SCT detectors
in 10 years of LHC operation: a) each of the components considered separately
and b) the total of the bias-related damage. For uences and temperature scenarios
applied see text.

The prediction for additional acceptor density and additional voltage needed
to fully deplete ATLAS SCT detectors resulting from bias-induced damage
is shown in �g. 8. Additional damage, corresponding to additional 25 V of
bias, is created during irradiation in each high-luminosity year. The relatively
short time constants �2 and �2 allow for a complete annealing of the respective
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damage during idle time. The longest annealing component exhibits a satu-
ration leading to an additional 30 V at end of operation, where re-activation
of previous years' bistable damage contributes another 30 V. All added up,
additional 80 V are predicted to be needed to fully deplete ATLAS SCT de-
tectors at end of operation. This is about half the expected contribution from
the introduction of stable acceptors by irradiation.

6 Conclusions

Inuence of the electric �eld on radiation damage in silicon now seems to
be an established phenomenon. Several defects present in detectors irradiated
and annealed under bias have been identi�ed and their annealing studied at
temperatures, representative for operation and maintenance of LHC detectors.
Activation energies of annealing components were deduced from data. Part of
the damage was found to be bistable under bias. Activation of this bistable
part was observed even on samples not biased previously. Time constants for
bistable damage activation and annealing were extracted. Bistability could be
associated with the annealing component of the bias-induced damage with the
shortest time constant.

Bias-related e�ects add an additional burden to be surmounted by detectors
at the LHC. Measurements reported in this paper have enabled a parameter-
ization of creation and annealing of the bias-induced and bistable damage. A
prediction for ATLAS SCT, based on parameters obtained this way, estimates
the additional voltage needed to fully bias detectors to 80 V at end of LHC
operation.
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