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Abstract

Recently HERMES has observed an azimuthal asymmetry AUL in electro-production
of neutral pions in semi-inclusive deep-inelastic scattering of unpolarized positrons off
longitudinally polarized protons. This asymmetry (like those observed in the produc-
tion of charged pions) is well reproduced theoretically by using the non-perturbative
calculation of the proton transversity distribution ha

1 in the effective chiral quark-soliton
model combined with experimental DELPHI-data on the new T-odd Collins fragmen-
tation function H⊥

1 . There are no free, adjustable parameters in the analysis. Using
the z-dependence of the HERMES azimuthal asymmetry and the calculated transver-
sity distributions the z-dependence of the Collins fragmentation function is obtained.
The value obtained from HERMES data is consistent with the DELPHI result, even
though these results refer to different scales.

1 Introduction

Recently a large azimuthal asymmetry has been observed by HERMES in the electro-
production of neutral pions in semi inclusive deep-inelastic scattering (SIDIS) of unpolarized
positrons off longitudinally polarized protons [1]. A similarly large azimuthal asymmetry
in the production of π+ has been observed before, while no such azimuthal asymmetry was
found in the production of π− [2]. Azimuthal asymmetries were also observed in SIDIS
off transversely polarized protons at SMC [3]. These asymmetries contain information on
the proton transversity distributions the ha

1(x) and on the Collins fragmentation function
H⊥a

1 (zh)
1. The transversity distribution function ha

1(x) describes the distribution of trans-
versely polarized quarks of flavour a in the nucleon [4]. The T-odd fragmentation function
H⊥a

1 (zh) describes the left-right asymmetry in fragmentation of transversely polarized quarks
of flavour a into a hadron [5, 6, 7, 9, 10] (the so-called ”Collins asymmetry”). Both H⊥a

1 (zh)
and ha

1(x) are twist-2, chirally odd, and not known experimentally. Only in the last years
experimental indications to the T-odd fragmentation function H⊥a

1 (zh) in e+e−-annihilation
have appeared [11, 12], while the HERMES and SMC experiments [1, 2, 3] can be viewed as
the very first experimental indications to ha

1(x).

∗Partially supported by RFBR grant 00-02-16696 and INTAS grant 01-587.
1We use the notation of the ref. [5, 6, 7].
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Here we will explain the azimuthal asymmetry in π0 production [1] by using informa-
tion on H⊥

1 from DELPHI [11, 12] and the predictions from the chiral quark-soliton model
(χQSM) for the transversity distribution ha

1(x) [13]. Our analysis is free of any adjustable
parameters. In this way the azimuthal asymmetries for π± [2, 3] have been explained in Ref.
[14]. We recalculate it using a bit more exact experimental cuts.

In order to use information from DELPHI on H⊥
1 , we have to assume that 〈H⊥

1 〉/〈D1〉, the
ratio of the T-odd to the usual fragmentation function (averaged over zh and over flavours),
varies little with scale. We will investigate whether this assumption is justified. For that
we will use the prediction of ha

1(x) from χQSM to extract H⊥
1 (z) from z-dependence of

HERMES data. We will show that the results for 〈H⊥
1 〉/〈D1〉 from HERMES [1, 2], SMC

[3] and DELPHI [11, 12] are consistent with each other.

2 Ingredients for analysis: h1 and H⊥
1
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Figure 1: The chiral quark-soliton
model prediction for the proton
xha

1(x) vs. x at the scale Q2 =
4 GeV2. The u-quark dominates the
proton transversity distribution.

Transversity distribution function h1. We will take
the predictions of the chiral quark-soliton model (χQSM)
as input for ha

1(x) [13].
The χQSM is a quantum field-theoretical relativistic

model with explicit quark and antiquark degrees of free-
dom. This allows an unambiguous identification of quark
as well as antiquark distributions in the nucleon. Due to
its field-theoretical nature the quark and antiquark distri-
bution functions obtained in this model satisfy all general
QCD requirements: positivity, sum rules, inequalities, etc
[15]. The model results for the unpolarized quark and anti-
quark distribution function fa

1 (x) and for the helicity quark
distribution function ga

1(x) agree within (10 - 20)% with
phenomenological parameterizations. This encourages con-
fidence in the model predictions for h1(x). In Fig. 1 the
results of the model are shown at the average Q2 = 4 GeV2

close to the HERMES experiment.
The application of the model results has yet another

advantage. When using the model results for twist-2 parton distributions it is consequent
to neglect systematically twist-3 distributions for the following reason. The χQSM has been
derived from the instanton model of the QCD vacuum, and in the latter nucleon matrix
elements of twist-3 operators are suppressed with respect to the leading twist-2 [16]. In the
case of the twist-3 distribution h̃L(x) this has been shown explicitely in Ref. [17].

The T-odd fragmentation function H⊥
1 . The Collins fragmentation function H⊥

1 (zh,k
2
⊥)

describes a left–right asymmetry in the fragmentation of a transversely polarized quark with
spin σ and momentum k = (kL, k⊥) into a hadron with momentum Ph = zhk: the rel-
evant structure is H⊥

1 (zh,k
2
⊥) σ(k × P⊥h)/(|k|〈P⊥h〉). Here 〈P⊥h〉 is the average transverse

momentum of the final hadron2.

2Notice the different normalization factor compared to [5, 6, 7], 〈Ph⊥〉 instead of Mh.
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This fragmentation function is responsible for a specific azimuthal asymmetry of a hadron
in a jet around the axis in direction of the second hadron in the opposite jet. This asymmetry
was measured using the DELPHI data collection [11]. For the leading particles in each jet of

two-jet events, averaged over quark flavors (assuming H⊥
1 =

∑
h H

⊥ q/h
1 is flavor independent),

the most reliable value of the analyzing power is given by∣∣∣∣∣〈H
⊥
1 〉

〈D1〉

∣∣∣∣∣ = (6.3± 2.0)% (1)

with presumably large systematic errors3. The result Eq.(1) refers to the scale M2
Z and to

an average over k⊥ and over zh with 〈zh〉 ' 0.4 [11].

3 The HERMES experiment for AUL
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Figure 2: Kinematics of the process lp →
l′πX in the lab frame. In the HERMES
experiment the lepton l is a positron.

In the HERMES experiment [1] the cross section for
lp → l′π0X was measured in dependence of the az-
imuthal angle φh, which is the angle between lepton
scattering plane and the plane defined by momentum
q of virtual photon and momentum Ph of produced
pion, see Fig. 2.

Denoting momentum of the target proton by P ,
momentum of the incoming lepton by l and momen-
tum of the outgoing lepton by l′, the relevant kinemat-
ical variables – center of mass energy square s, four
momentum transfer q, invariant mass of the photon-
proton system W , x, y and zh – are defined as

s := (P + l)2 , q := l − l′ , Q2 := −q2 ,

W 2 := (P + q)2 = s(1− x)y + M2
N

x :=
Q2

2Pq
, y :=

2Pq

s
and zh :=

PPh

Pq
. (2)

In this notation the azimuthal asymmetry Asin φh
UL (x)

measured by HERMES reads

Asin φh
UL (x) =

∫
dy dzh dφh sin φh

(
1

S+

d4σ+

dx dy dzhdφh
− 1

S−
d4σ−

dx dy dzhdφh

)

1

2

∫
dy dzhdφh

(
d4σ+

dx dy dzhdφh

+
d4σ−

dx dy dzhdφh

) . (3)

The subscript “U” reminds of the unpolarized beam, and “L” reminds of the longitudinally
(with respect to the beam direction) polarized proton target. S± denotes the proton spin,
where “+” means polarization opposite to the beam direction. When integrating over y and
zh one has to consider the experimental cuts

W 2 > W 2
min = 4 GeV2, Q2 > Q2

min = 1 GeV2, 0.2 < y < 0.85, 0.2 < zh < 0.7 . (4)

3A similar value was also obtained from the pion asymmetry in inclusive pp-scattering [19].
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The azimuthal asymmetry. The cross sections entering the asymmetry Asin φh
UL Eq. ( 3)

have been computed in Ref. [8] at tree-level up to order 1/Q. The denominator in Eq. ( 3) is
the cross section for pion production from scattering of unpolarized positrons on unpolarized
target protons

1

2

(
d3σ+

dx dy dφh
+

d3σ−

dx dy dφh

)
=

d3σUU

dx dy dφh
. (5)

The numerator in Eq. ( 3) consists of two parts – a longitudinal and a transverse part with
respect to the photon momentum q

1

S+

d3σ+

dx dy dφh

− 1

S−
d3σ−

dx dy dφh

=
2

S

d3σUL

dx dy dφh

+
2

S

d3σUT

dx dy dφh

. (6)

The cross sections are given by

d4σUU

dx dy dzhdφh
=

α2s

Q4

(
1 + (1− y)2

)∑
a

e2
a xfa

1 (x) Da
1(zh)

d4σUL

dx dy dzhdφh
= sin φh SL

α2s

Q4

MN

Q

8(2− y)
√

1− y

〈zh〉
√

1 + 〈P2
⊥N
〉/〈k2

⊥〉
∑
a

e2
a x3

1∫
x

dξ

ξ2
ha

1(ξ) H⊥a
1 (zh)

d4σUT

dx dy dzhdφh
= sin φh ST

α2s

Q4

2(1− y)

〈zh〉
√

1 + 〈P2
⊥N
〉/〈k2

⊥〉
∑
a

e2
axha

1(x) H⊥a
1 (zh) . (7)

In Eq. ( 7) terms have been omitted which vanish after the (weighted) integration over
φh, and pure twist-3 contributions have been systematically neglected for reasons mentioned

above so that for hL entering σUL the Wandzura-Wilczek type relation hL(x) = 2x
1∫
x

dξ h1(ξ)
ξ2

is hold (see Ref. [8] and Appendix). A term proportional to H̃⊥
1 (zh) is also neglected,

even though it contains a twist two contribution due to H̃⊥
1 (zh) = zh

d
dzh

H⊥
1 (zh)+ twist-3.

However the contribution of this term to σUL is very small, see the Appendix. 〈P2
⊥N
〉 and

〈k2
⊥〉 = 〈P2

⊥h〉/〈z2
h〉 are the mean square transverse momenta of quarks in the distribution and

fragmentation functions, respectively. SL is the longitudinal, ST is the transverse component
of target spin S with respect to the 3-momentum of the virtual photon

SL = S cos θγ ' S

(
1− 2M2

N
x(1− y)

sy

)
, ST = S sin θγ ' S

√√√√4M2
N
x(1− y)

sy
, (8)

where θγ is the angle of virtual photon with respect to incoming beam. Assuming isospin
symmetry and favored fragmentation the following relations hold

D
u/π+

1 = D
d̄/π+

1 = D
d/π−
1 = D

ū/π−
1 � D

d/π+

1 = D
ū/π+

1 = D
u/π−
1 = D

d̄/π−
1 ' 0

D
u/π0

1 = D
ū/π0

1 = D
d/π0

1 = D
d̄/π0

1 and D
u/π+

1 = D
d/π−
1 =

1

2
D

u/π0

1
def.
= D1 , (9)

where the arguments zh are omitted. The same relations hold for H⊥
1 . Inserting Eq. ( 7)

and (9) into Eq. ( 3) for the azimuthal asymmetry Asin φh
UL yields for the production of the
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pion π

Asin φ
UL (x, π) =

1

〈zh〉
√

1 + 〈P2
⊥N
〉/〈k2

⊥〉
〈H⊥

1 〉
〈D1〉

×
(
BL(x)

∑π
a e2

a x2
∫ 1
x dξ ha

1(ξ)/ξ
2∑π

a′ e
2
a′ f

a′
1 (x)

+ BT (x)

∑π
a e2

a ha
1(x)∑π

a′ e
2
a′ f

a′
1 (x)

)
, (10)

where
∑π

a means summation only over those flavours which contribute to the favoured frag-
mentation into the specific pion asymmetry, i.e. in the π0 case e.g.

∑π0

a e2
a ha

1(x)∑π0

a′ e2
a′ f

a′
1 (x)

=
(4hu

1 + 4hū
1 + hd

1 + hd̄
1)(x)

(4fu
1 + 4f ū

1 + fd
1 + f d̄

1 )(x)
.

The prefactors BL(x), BT (x) introduced in Eq. ( 10) are given by

BL(x) =

∫
dy 8(2− y)

√
1− y cos θγMN/Q5∫

dy (1 + (1− y)2) / Q4
and BT (x) =

∫
dy 2(1− y) sin θγ/Q

4∫
dy (1 + (1− y)2) /Q4

. (11)

When integrating over y ∈ [y1(x), y2(x)] one has to keep in mind that Q, sin θγ and cos θγ

are functions of x and y, according to Eq. ( 2) and Eq. ( 8). The x-dependent integration
range of variable y is due to the experimental cuts Eq. ( 4)

y1(x) := max

(
0.2,

Q2
min

sx
,

W 2
min −M2

N

s(1− x)

)
≤ y ≤ y2(x) := 0.85 . (12)

The implicit dependence of ha
1, fa

1 , H⊥a
1 and Da

1 on y through Q is neglected. The distribu-
tions will be taken at the average value Q2

av = 4 GeV2 close to the HERMES experiment.

Results. In the HERMES experiment 〈P2
⊥N〉 ' 〈P2

⊥h〉 = 〈z2
h〉 〈k2

⊥〉 and 〈zh〉 = 0.41. Ap-
proximating 〈z2

h〉 ' 〈zh〉2 and using the result Eq. ( 1), the overall prefactor in Eq. ( 10)
is

1

〈zh〉
√

1 + 〈P2
⊥N
〉/〈k2

⊥〉
〈H⊥

1 〉
〈D1〉 = 0.12± 0.04 . (13)

The error is due to the experimental error of the analyzing power 〈H⊥
1 〉/〈D1〉 Eq. ( 1), of

which only the modulus is known. Here we have chosen the positive sign, for which the
analysis of azimuthal asymmetries for π± gave evidence for [14]. When using the DELPHI
result Eq. ( 1) to explain the HERMES experiment, we assume a weak scale dependence
of the analyzing power. For ha

1(x) we take the results of the chiral quark-soliton model [13]
and for fa

1 (x) the parameterization from Ref. [18], both LO-evolved to the average scale
Q2

av = 4 GeV2. It is instructive to investigate how much the longitudinal spin (twist-3)
part and the transverse spin (twist-2) part contribute to the total azimuthal asymmetry
Asin φ

UL (x). Comparing the x-dependent prefactors BL(x) and BT (x) Eq. ( 11), we note that
BL(x) � BT (x), see Fig. 3a. This is due to the fact that cos θγ ' 1 appears in BL(x), while
in BT (x) we have sin θγ = O(MN/

√
s) which is very small. However this effect is partially

canceled by the fact that x2
∫ 1
x dy ha

1(y)/y2, which contributes to the longitudinal (twist-3)
part, is much smaller than ha

1(x), which contributes to the transverse (twist-2) part. The
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Figure 3: a. The prefactors BL(x) (dashed) and BT (x) (dotted line) – as defined in Eq. ( 11) – vs. x.

Clearly BL(x) � BT (x) for HERMES kinematics.

Figure 3: b. x3
∫ 1

x dξhu
1 (ξ)/ξ2 (dashed) and xhu

1 (x) (dotted line) at Q2 = 4 GeV2 vs. x. One observes that

xhu
1 (x) � x3

∫ 1

x
dξhu

1 (ξ)/ξ2. The situation is similar for other flavours.

Figure 3: c. The contribution of longitudinal (L, dashed) and transverse (T, dotted) spin part to the total

(tot, solid line) azimuthal π0 asymmetry Asin φ
UL (x) and data from [1] vs. x.
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Figure 4: Azimuthal asymmetries A
W (φ)
UL (x, π) weighted by W (φ) = sin φ and sin 2φ, respectively, for π0

(a), π+ (b) and π− (c) as function of x. The rhombs denote data on Asin φ
UL (x, π), the squares data on

Asin 2φ
UL (x, π) from Ref. [1, 2]. The enclosed areas correspond to the azimuthal asymmetries evaluated using

the prediction of the chiral quark-soliton model for ha
1(x) and the DELPHI result for the analyzing power

〈H⊥
1 〉/〈D1〉 = (6.3± 2.0)% [11], and take into account the statistical error of the analyzing power.

results of the chiral quark-soliton model for ha
1(x) satisfy x2

∫ 1
x dy ha

1(y)/y2 < 0.1 ha
1(x) in the

whole x region. In Fig. 3b this is demonstrated for the u quark. As a result the longitudinal
and the transverse part give – with increasing x – comparably large contributions to the
total Asin φ

UL (x). However, the longitudinal part gives the major contribution in the whole x
region, see Fig. 3c. The results shown in Fig. 3c correspond to the central value of the
numerical prefactor, Eq. ( 13). For comparison data from Ref. [1] are included in Fig. 3c.

Repeating the same steps for charged pions, we obtain the results shown in Fig. 4. In
this figure we compare the HERMES data on Asinφh

UL (x) (and for Asin 2φh
UL (x)) for π0, π+ and
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Asymmetry χQSM [13] + DELPHI [11] HERMES exp. [1, 2]

Asinφ
UL

π0

π+

π−

0.017± 0.005
0.024± 0.008

−0.0046± 0.0015

0.019± 0.007± 0.003
0.022± 0.005± 0.003

−0.002± 0.006± 0.004

Asin 2φ
UL

π0

π+

π−

0.0044± 0.0014
0.0063± 0.0020

−0.0011± 0.0003

0.006± 0.007± 0.003
−0.002± 0.005± 0.010
−0.005± 0.006± 0.005

Table 1: The integrated azimuthal asymmetries Asin φ
UL and Asin 2φ

UL for π+, π0 and π−. 2nd column: Results
obtained with the chiral quark-soliton model prediction for proton transversity distribution ha

1(x) [13] and
the DELPHI result for H⊥

1 [11]. The error is due to the statistical error of the DELPHI result, Eq. ( 1).
3rd column: Experimental data from HERMES [1, 2].

π− [1, 2] with the results which follow from our analysis. The results shown here differ
slightly from those obtained previously in Ref. [14] since there the lower y-cut was taken to
be y > 0, instead of y > 0.2, see Eq. ( 4).

Finally, integrating the azimuthal asymmetries (numerator and denominator separately)
over the x-region covered by the HERMES experiment, 0.023 ≤ x ≤ 0.4, we obtain the
results for Asin φh

UL and Asin 2φh
UL for π0 and π± production which are summerized in Table 1.

We conclude that the azimuthal asymmetries obtained with the chiral quark-soliton model
prediction for ha

1(x) [13] combined with the DELPHI result for the analyzing power [11] are
consistent with experiment.

4 Determining H⊥
1 (zh)

We used the DELPHI result for the analyzing power 〈H⊥
1 〉/〈D1〉, Eq. ( 1), in order to

explain the HERMES experiment. When doing so we presumed that the analyzing power
varies weakly with scale. This assumption can be questioned. Therefore let us reverse the
logic here, and use the HERMES results for the π0 and π+ azimuthal asymmetries to estimate
H⊥

1 (zh)/D1(zh). For that we will use the chiral-quark soliton model prediction for ha
1(x), and

this will introduce a model dependence. However, since the results of the model for known
distribution functions agree within (10 – 20)% with parameterizations, we expect a similar
“accuracy” for the model prediction for h1(x). With this in mind, the model dependence
can be viewed as an additional systematic error, which however is “under control” and of
order (10 - 20)%.

From the HERMES data on Asin φh
UL (z) for π0 and π+ we obtain the results shown in Fig.
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Figure 5: a. H⊥
1 (zh)/D⊥

1 (zh) vs. zh, as extracted from HERMES data [1, 2] on the azimuthal asymmetries

Asin φ
UL (zh) for π+ and π0 production using the prediction of the chiral quark-soliton model for ha

1(x) [13].

The error-bars are due to the statistical error of the data.

Figure 5: b. The same as Fig. 5a with data points from π+ and π0 combined. The line plotted in both

figures is the best fit to the form H⊥
1 (zh)/D⊥

1 (zh) = a zh with a = 0.15.

5. The data can be described by the fit H⊥
1 (zh)/D1(zh) = a zh with

H⊥
1 (zh) = a zh D1(zh) with a = const = 0.15± 0.03 . (14)

The error is the statistical error of the HERMES data. One should keep in mind that there
is also a systematical error of the HERMES data (which varies with zh), and a systematical
error due to the uncertainty of the theoretical calculation of ha

1(x).
Averaging over zh we obtain

〈H⊥
1 〉

〈D1〉 =




(5.8± 1.3± 0.8)% from HERMES π+ data
(7.1± 2.6± 0.8)% from HERMES π0 data
(6.1± 0.9± 0.8)% combined HERMES result.

(15)

Here the statistical and the systematical errors of the HERMES data are considered. Again
one should keep in mind an additional error of (10 - 20)% due to the uncertainty of theoretical
prediction for ha

1(x).
Note that from the SMC data for the azimuthal asymmetry in the production of charged

hadrons in SIDIS off transversely polarized protons [3], we obtain in this way the value

〈H⊥
1 〉

〈D1〉 = (10± 5)% from SMC data. (16)

The results for the analyzing power from HERMES Eq. ( 15), SMC Eq. ( 16) and DELPHI
Eq. ( 1) are all consistent with each other. This indicates that the scale dependence of
〈H⊥

1 〉/〈D1〉 might be indeed weak.
The observation that H⊥

1 (zh) ∝ zh D1(zh) – if it will be confirmed by future and more
accurate data – is physically very appealing. The smaller the momentum fraction trans-
ferred from the parent parton to the hadron, the less the produced hadron knows about the
polarization of the parton.
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A Azimuthal asymmetries

Unpolarized cross section σUU. The unpolarized differential cross section follows from Eq.
( 113) of Ref. [8]

d5σUU

dxdy dzhd2P⊥h
=

4πα2s

Q4

∑
a,ā

e2
a

{
1 + (1− y)2

2
xfa

1 (x)Da
1(zh) + . . .

}
G(Q⊥, R)

z2
h

. (17)

The dots denote terms which cancel out after the integration over φh. Q⊥ = |q⊥| and q⊥ =
−(P⊥h/zh). The dependence of the distribution and fragmentation functions on transverse quark
momenta is assumed to be

G(Q⊥, R) =
R2

π
exp

(
−Q2

⊥R2
)

with
∫

d2P⊥h
G(Q⊥, R)

z2
h

= 1 . (18)

After the integration over transverse momenta d|P⊥h| |P⊥h|, we obtain the spin averaged cross
section Eq. ( 7)

d3σUU

dxdy dφh
=

α2s

Q4

(
1 + (1− y)2

) ∑
a,ā

e2
a xfa

1 (x) 〈Da
1(zh)〉 .

Longitudinal part σUL. The part of σUL which is proportional to sinφh is given by Eq. (
115) of Ref. [8]

d5σsin φh
UL

dxdy dzhd2P⊥h
= sin(φh)SL

4πα2s

Q4
2(2− y)

√
1− y

Q⊥
Q

∑
a

e2
a

×
{

R6

MN〈P⊥h〉R4
NR4

h

[
R2

h −R2
N

R2
−Q2

⊥R2
h

]
xh⊥a

1L (x)H⊥a
1 (zh)

+
MN R2

〈P⊥h〉R2
h

x2h̃a
L(x)H⊥a

1 (zh)

− M2
hR2

MN〈P⊥h〉R2
N

xh⊥a
1L (x)

H̃a(zh)
zh

}
G(Q⊥;R)

z2
h

. (19)

Here R2 = R2
NR2

h/(R2
N + R2

h). Note the different normalization

H⊥
1

Mh

∣∣∣∣∣
Ref. [8]

=
H⊥

1

〈P⊥h〉

∣∣∣∣∣
here, Ref. [14]

. (20)

Let us decompose σsinφh
UL = σsinφh

UL [H⊥
1 ] + σsin φh

UL [H̃] and compute first the part σsinφh
UL [H⊥

1 ] ∝ H⊥
1 in

Eq. ( 19). Using the Wandzura–Wilczek type relation, Eq. ( C11) in Ref. [8]

hL(x,P2
⊥N) = −P2

⊥N

M2
N

h⊥1L(x,P2
⊥N

)
x

+ h̃L(x,P2
⊥N) +O(mq/MN) ,

9



and neglecting quark mass terms, we arrive at the relation

P2
⊥N h⊥1L(x,P2

⊥N) = M2
N x

(
h̃L(x,P2

⊥N)− hL(x,P2
⊥N)

)
. (21)

We have to reconsider the integration over the transverse quark momenta in the target nucleon.
According to Eq. ( D7) in Ref. [8] the term containing h⊥a

1L(x) in Eq. ( 19) arises from the
convolution

I
[
(ĥP⊥N) (P⊥N)2 h⊥1LH⊥

1

]
=

QT R6

R4
NR4

h

[
R2

h −R2
N

R2
−Q2

⊥R2
h

]
I[h⊥1LH⊥

1 ]

where I[h⊥1LH⊥
1 ] ≡ h⊥a

1L (x)H⊥a
1 (zh)

G(Q⊥;R)
z2
h

. (22)

If we insert the relation Eq. ( 21) into the above convolution Eq. ( 22) we obtain

I
[
(ĥP⊥N) (P⊥N)2 h⊥1LH⊥

1

]
=

M2
NQT R2

R2
h

x
(
hL(x)− h̃L(x)

)
H⊥a

1 (zh)
G(Q⊥;R)

z2
h

, (23)

due to Eq. ( D5) in Ref. [8]. The result Eq. ( 23) we insert into the cross section Eq. ( 19) and
observe that the contribution of h̃a

L(x) cancels out exactly

d5σsin φh
UL [H⊥

1 ]
dxdy dzhd2P⊥h

= sin(φh)
4πα2sSL

Q4
2(2 − y)

√
1− y

∑
a

e2
a x2ha

L(x)H⊥a
1 (zh)

× Q⊥
Q

MNR2

〈P⊥h〉R2
h

G(Q⊥;R)
z2
h

. (24)

By means of Eq. ( C19) in Ref. [8] we relate hL(x) to h1(x) as follows

hL(x) = 2x
1∫

x

dξ
h1(ξ)

ξ2
+O(h̃L) +O(mq/MN) , (25)

and neglect systematically current quark mass terms and the twist-3 contribution h̃L.
In the next step we integrate Eq. ( 24) over |P⊥h|d|P⊥h|. This yields

d4σsin φh
UL [H⊥

1 ]
dxdy dzhdφh

= sin(φh)
4πα2sSL

Q4
2(2 − y)

√
1− y I1

∑
a

e2
a x2ha

L(x)H⊥a
1 (zh) , (26)

where

I1 ≡
∫

d|P⊥h| |P⊥h| Q⊥
Q

MNR2

〈P⊥h〉R2
h

G(Q⊥;R)
z2
h

=
MN

2π Q〈zh〉
1√

1 + 〈P2
⊥N
〉/〈P⊥2

h /z2
h〉

. (27)

When performing the integral I1 we made use of the definitions

〈Q⊥〉 ≡
∫

d2Q⊥ |Q⊥| G(Q⊥;Rh) =
√

π

2Rh
, 〈Q2

⊥〉 =
∫

d2Q⊥ Q2
⊥ G(Q⊥;Rh) =

1
R2

h

, (28)

and analog 〈P⊥
N 〉 and 〈P⊥2

N 〉. We finally arrive at

d4σsinφh
UL [H⊥

1 ]
dxdy dzhdφh

= sin(φh)SL
α2s

Q4

MN

Q

8(2 − y)
√

1− y

〈zh〉
√

1 + 〈P2
⊥N
〉/〈P⊥2

h /z2
h〉
∑
a

e2
a x3

1∫
x

dξ
h1(ξ)

ξ2
H⊥a

1 (zh) .

(29)

10



Next we turn to the contribution σUL[H̃] ∝ H̃. Note that H̃ is normalized analogously to Eq.
( 20). After integration over |P⊥h|d|P⊥h| we obtain

d4σsin φh
UL [H̃]

dxdy dzhdφh
= − sin(φh)SL

4πα2s

Q4
2(2− y)

√
1− y I2

∑
a

e2
a xh⊥a

1L (x)
H̃a(zh)

zh

G(Q⊥;R)
z2
h

, (30)

where

I2 =
∫

d|P⊥h| |P⊥h| Q⊥M2
h R2

QMNR2
N〈P⊥h〉 =

M2
h〈zh〉〈P2

⊥N
〉

8 QMN〈P⊥h〉2
1√

1 + 〈P2
⊥N
〉/〈P2

⊥h/z2
h〉

. (31)

From Ref. [8], Eq. ( C.15) and (C.19), we obtain the relation

h⊥a
1L (x) = − M2

N

〈P2
⊥N 〉

x


2x

1∫
x

dξ
ha

1(ξ)
ξ2

+ . . .


 , (32)

where the dots denote twist-3 terms and contributions proportional to current quark masses, which
we neglect. We also use the relation

H̃a(zh)
zh

=
d

dzh

(
zhH⊥a

1 (zh)

)
+ . . . , (33)

where we neglect consistently a twist-3 contribution, and obtain finally

d4σsin φh
UL [H̃]

dxdy dzhdφh
= sin(φh)SL

4πα2s

Q4
(2− y)

√
1− y

MNM2
h〈zh〉

2Q〈P⊥h〉2

× 1√
1 + 〈P2

⊥N 〉/〈P2
⊥h/z2

h〉
∑
a

e2
a x3

1∫
x

dξ
ha

1(ξ)
ξ2

d
dzh

(
zhH⊥a

1 (zh)

)
. (34)

Thus we have the relation

d4σsin φh
UL [H̃]

dxdy dzhdφh
=

d4σsin φh
UL [H⊥

1 ]
dxdy dzhdφh

· πM2
h〈zh〉2

4〈P⊥h〉2
d

dzh
(zhH⊥

1 (zh))

H⊥
1 (zh)

� d4σsin φh
UL [H⊥

1 ]
dxdy dzhdφh

, (35)

if we assume a “reasonable” zh–behaviour of the function H⊥
1 (zh).

Transverse part σUT . According to Eq. ( 116) in Ref. [8] the only term which is non-zero
after the (sin φh-weighted) integration over φh reads

d5σsin φh
UT

dxdy dzhd2P⊥h
= − sin(φh + φs)ST

4πα2s

Q4
(1− y)

Q⊥R2

〈P⊥h〉R2
h

∑
a

xha
1(x)H⊥a

1 (zh)
G(Q⊥;R)

z2
h

, (36)

with φs = −π for a longitudinally polarized target in the HERMES experiment. After the integra-
tion over transverse momenta we obtain the result quoted in Eq. ( 7)

d4σsin φh
UT

dxdy dzhdφh
= sinφhST

α2s

Q4

2(1 − y)

〈zh〉
√

1 + 〈z2
h〉〈P2

⊥N
〉/〈P2

⊥h〉
∑
a

xha
1(x)H⊥a

1 (zh) . (37)
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