
Robustness of Resonance Free Lattices against Gradient Errors

F. Schmidt, A. Verdier (CERN–SL Division),
D. Kaltchev (TRIUMF)

Abstract

Resonance–free lattices make it possible to cancel the ef-
fect of non–linear resonances due to systematic multipoles
in an alternating gradient circular machine. These lattices
are made of identical cells with specified phase advances. It
is therefore mandatory to examine to what extent the prop-
erty remains valid in presence of gradient errors. In the
case of LHC, three times the nominal gradient errors are
acceptable from the point of view of both a3 and b4 com-
ponents.

1 INTRODUCTION

In AG machines the problem of non–linear resonances
excited by systematic multipole components can be solved
to a certain extent by using resonance–free lattices [1].

Such a lattice is useful for the LHC at CERN to over-
come problems at injection energy associated with unex-
pected large systematic multipole component in a given
fabrication line of the main dipoles. Its efficiency has been
demonstrated for the LHC without linear optics errors [2].

The resonance–free condition imposes the phase ad-
vances per cell. We report here to which extent gradi-
ent errors may destroy this condition. The selected LHC
resonance–free lattice has phase advances in the arcs of
7
25 × 2π, 6

25 × 2π in the horizontal and vertical plane re-
spectively. This is associated with the number of 25 cells
in the arcs (23 regular cells plus two special ones for the
dispersion suppression). All systematic resonances up to
sixth order are cancelled except for the resonance Qy+3 Qx
which is fully excited instead.

2 EVALUATION OF ACCEPTABLE
GRADIENT ERRORS

If the phase advance per cell is changed by gradient er-
rors the resonance terms reappear. However, the benefits of
the resonance–free lattice remain valid as long as these res-
onances are not more important than those due to the ran-
dom multipole errors. Indeed, in the case of LHC, the ran-
dom multipoles contribute much less to the dynamic aper-
ture than the systematic multipoles [3]. To compare the res-
onance driving terms of an arc due to systematic and ran-
dom components of the same order of magnitude, one has
to merely compare the so–called amplification factor [1].

This factor is the ratio of the driving term of an arc to
that of a cell. For a pure horizontal resonance of ordern it

is given by: √
1 − cos(Ncnµx,c)
1 − cos(nµx,c)

,

We setµx,c = 7
25×2π+ε, whereε is the difference in phase

advance compared to the ideal resonance–free condition.
Expanding the amplification factor to first order inε, we
obtain1.9Ncnε, Nc being the number of cells per arc.

On the other hand, for a random set of multipole errors
the amplification factor is defined as

√
Nc/6, i.e. the in-

coherent sum of the excitation terms associated with the
dipoles in one arc.

These two amplification factors are equal if1.9Ncnε =√
Nc/6. For our case, withn = 4 and Nc = 25, we

obtainε = 0.01 = 0.0016 × 2π. This phase advance cor-
responds to a systematic b2 of about 6.2 units (unit =10−4

at a reference radius of 17mm). The expected value of the
systematic b2 is –1.4 units and the uncertainty (systematic
per arc) is 0.85 unit. The sum of both absolute values is
2.25×10−4.

Thus we can probably multiply the present b2 errors by
a factor of value 6.2/2.25=2.7 without destroying the ef-
fect of the resonance–free scheme for the b4 component in
LHC.

3 SKEW SEXTUPOLE COMPONENT IN
THE MAIN DIPOLES

The systematic skew sextupole component a3 in the
main dipoles can create a large second derivative of the
tunes with respect to momentum Q”. As explained in
Ref. [4], this is a resonant effect. As such it can be cured
by the use of a resonance–free lattice.

A large Q” can make a large variation of the chromatic-
ities when the beam energy is changed via a change of the
RF frequency, e.g. for a chromaticity measurement. A neg-
ative chromaticity Q’ may lead to beam loss due to the
head-tail instability. In order to prevent the Q’ of one unit to
become negative for a relative momentum change of 0.001
the value of Q” has to be maintained below 1000.

We have used normal form analysis (“STATIC” com-
mand in the MAD program [5]) to compute the second
derivatives of tunes with respect to momentum Q1” and
Q2”. We use the standard LHC error table 9901 [6].

The values of the gradient errors from this table have
been multiplied by factors between –3 and +3 and applied
to the main dipoles and quadrupoles.

For a given multiplication factor we have used 10 real-
izations of distributions of the systematic a3 errors per arc
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of the main dipoles with a maximum value of 0.9 units. For
each realization we applied 10 random distributions of the
gradient errors, such that a total of 100 distributions, called
seeds in the following, have been treated.

By treating both polarities of the gradient errors the re-
sults apply for both rings since the gradients change sign
from one ring to the other.

Figure 1: Comparison between the Q” associated with a3 and
gradient errors for the nominal and the resonance–free lattices.
The 100 seeds of combined errors refer to 10 seeds of systematic
a3 and 10 seeds gradient errors. The figures show average (top)
and maximum (bottom) of these 100 seeds.

The tune shifts associated with the gradient errors were
corrected as in operation by means of the two families
of trim quadrupoles which are placed at the end of each
arc [7]. It has been checked that a more rigorous correction
by means of a rematching of the insertions does not bring
any benefits.

The comparison between the nominal and the
resonance–free lattice is shown in Fig. 1.

b2× −3 −1 0 1 3
min ave min ave min ave min ave min ave

Nominal 5.7 9.6 7.8 9.9 8.1 10 8.1 9.9 7.8 9.6
Res. free 9.7 12 10.8 13.3 11.4 14 10.9 13.4 9.5 11.8

Table 1: Minimum and average dynamic aperture (units inσ; 10 5–turns;x0 = y0) of the nominal and resonance–free
lattice for a series of 30 field error distributions. The errors are taken from table 9901 except for the uncertainty (systematic
per arc) octupole components which have been set tob 4 = 1, a4 = 1.6. Also the gradient errors have been multiplied by
the factor given in the first row.

The top plot shows the average and the bottom plot the
maximum absolute value of the 100 values of Q1”and Q2”.
In the case of the resonance–free lattice the maximum al-
lowed value of 1000 for Q” is never exceed for gradient
errors up to three times the nominal values.

4 OCTUPOLE COMPONENT IN THE
MAIN DIPOLES

A large octupole component in the main dipoles may
lead to a reduction of the dynamic aperture at injection.
In has been shown in Ref. [2] that a substantial reduction
of this effect can be obtained by using a resonance–free
lattice.

4.1 Dynamic aperture

We have performed a tracking study with SixTrack [8] to
compare the long term dynamic aperture of the two lattices
in presence of increased octupole and gradient errors.

The field errors have been generated using the same er-
ror table 9901 and a procedure similar to the one described
in the previous section, with two modifications. First, the
systematic per arc octupole components have been set to
larger than the table values, namely tob4 = 1 anda4 = 1.6
(these are the values used for the study in Ref. [2]). Sec-
ondly, the total number of considered cases is reduced to
save computing time. The gradient (b2) error of the table is
multiplied by factors−3,−1, 0, 1 and3 (factors±2 omit-
ted) and for each factor and lattice case, 30 (instead of 100)
seeds are generated and applied to the main dipoles and
quadrupoles.

Table 1 shows the average and minimum dynamic aper-
ture for105 turns. The trajectories start with identical ini-
tial conditions in both planesx0 = y0 and zero values for
x′

0 = y′
0. The horizontal and verticalβ–functions at the

starting point are18 m andα–functions are zero.
For a b2–factor equal to zero, the averaged dynamic

aperture should be directly compared with the one in
Ref. [2]. The slight deviation of∼ 0.5 σ is due to the
smaller number of error distributions treated.

From the tolerance on the minimum dynamic aperture,
we see that a multiplication of the gradient errors by three
is acceptable for the resonance free lattice even for such
large systematic octupole errors.
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4.2 Resonance driving terms

Although the dynamic aperture is only weakly correlated
with the resonance driving terms, it is still instructive to
study their build–up in presence of gradient errors.

The driving termshijkl of fourth order nonlinear reso-
nances, generated by skew octupole errors, have been com-
puted to first order with the code SODD [9]. We have
concentrated on the skew component since there is a spool
piece correction system to compensate the normal octupole
component.

b2× −3 −2 −1 0 1 2 3
Nom. 12.7 7.2 2.1 5.7 5.1 4.8 4.6
Res.free 1.1 1.0 0.7 0.4 1.0 0.6 1.2

Table 2: Maximum of theh1012 driving term due to skew
octupoles in units of102

.

We know from previous studies [2] that the most impor-
tant of the eight diving terms generated bya4 (h3010, h3001,
h2110, h2101, h1030, h1021, h1012, h1003), is the termh1012.

Figure 2: Build up of the driving termh1012 along the LHC
ring for seed 12

For this term, at zero gradient errors, both the average
and maximum values (10 seeds) are one order of magnitude
smaller for the Resonance free lattice (see Table 2). This
remains true even in the presence of gradient error factors.

The build up of this resonance driving term of a partic-
ular seed along the LHC ring is depicted in Fig. 2 for both

lattices, without (top graph) and with (lower graph) gradi-
ent errors. In the resonance–free scheme we find theex-
pected cancellation pattern over each LHC arc while for
the nominal lattice the driving term grows on average. This
pattern persists in the presence of gradients errors up to
three times the nominal values.

As expected, the maximum value of the termh1030 is
larger for the resonance–free lattice than for the nominal
lattice.

5 CONCLUSION

We show in this paper that threefold larger gradient
errors than nominal do not destroy the benefits of the
resonance–free lattice for the LHC with the error table
9901.

For the case of a3, it has been demonstrated that the
resonance–free lattice makes it possible to tolerate the
nominal a3 error without the a3 correction system even in
presence of gradient errors three times as large than nomi-
nal.

In the case of b4 and a4 we used 3 and 10 times larger
values than their nominal uncertainties and did not take ad-
vantage of the b4 correction system. We find that in a win-
dow of±3 times the nominal gradient errors the dynamic
aperture of the resonance–free lattice is larger than that of
the nominal lattice by at least 2σ, allowing to stay at least
above 9.5σ.
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