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1. Introduction

The euclidean expectation values of Wilson loops and their products are probably

the most natural quantities to consider in non-abelian gauge theories. They encode

much of the physical information in these theories, such as the particle spectrum,

for example, and the strength of the force between static colour sources. These pro-

perties can, however, only be extracted reliably if one is able to calculate the relevant

expectation values accurately over a significant range of loop sizes and distances.

In lattice gauge theory the computation of loop expectation values through nu-

merical simulation is in principle straightforward. The problem is that the signal-to-

noise ratio is exponentially decreasing for large loops, roughly proportionally to e−σA

in the confinement phase, where σ denotes the string tension and A the minimal

area spanned by the loop. According to this law (and if we set σ ' 1GeV/fm), an
increase in A by 1 fm2 at fixed relative errors requires the statistics to be multiplied

by about 3 × 104. Computers are rapidly becoming faster, but it is clear that a
brute-force approach will not pay under these conditions, i.e. progress in this field

has to come mainly from better algorithms and computational strategies.

A significant improvement is achieved, for example, by the “multihit” method [1],

where the gauge field variables in the Wilson loop are replaced by their average in

the background of all other field variables. This has no effect on the loop expectation

value, but the statistical errors are reduced by an exponential factor with exponent

proportional to the length of the loop. Link-blocking techniques [2, 3] and variational

methods [4, 5] are further improvements that are known to be effective in practice

and are widely used.

In spite of all these advances, it remains difficult to reach loop areas A greater

than about 1 fm2. Moreover, as is generally the case when applying variational tech-

niques, the calculation is biased to some extent by the choice of basis operators. In

the presence of matter fields, for example, string breaking is not observed unless

basis elements for both the string and the two-meson states are included [6]–[8].

In this paper we describe a multilevel simulation scheme that leads to an expo-

nential error reduction with exponent approximately proportional to the area A. The

algorithmic idea is essentially the same as in the multihit method [1] but is applied

to pairs of links instead of single links. It is then possible to iterate the procedure

according to a hierarchical scheme that builds up averages over increasingly large

sublattices. This is not as complicated as it sounds, and if use is made of recursive

functions (programs that call themselves), the algorithm is in fact easy to program.

2. Preliminaries

For clarity we shall only consider the case of the pure SU(3) gauge theory in this

paper, even though the techniques discussed later are expected to be more widely
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applicable. The theory is set up on a 4-dimensional hypercubic lattice with spacing

a, time-like extent T and spatial size L in the usual way. In particular, the gauge field

is represented by link variables U(x, µ) with values in SU(3). We impose periodic

boundary conditions in all directions and take the standard expression [9]

S[U ] =
1

g20

∑
x,µ,ν

tr
{
1− U(x, µ)U(x + aµ̂, ν)U(x+ aν̂, µ)−1U(x, ν)−1} (2.1)

for the lattice action, where g0 denotes the bare coupling and µ̂ the unit vector in

direction µ.

For any oriented closed curve C on the lattice, the associated Wilson loop

W (C) = tr{U(C)} (2.2)

is the trace of the ordered product U(C) of the link variables along the curve. In the
special case of a straight line that passes through the point x and winds once around

the lattice in the negative time direction, W (C) is referred to as a Polyakov loop and
is denoted by P (x).

The expectation value of any product O of Wilson loops is defined by

〈O〉 = 1Z
∫
D[U ]O e−S[U ] , D[U ] =

∏
x,µ

dU(x, µ) , (2.3)

where Z is a normalization factor such that 〈1〉 = 1 and dU(x, µ) the normalized
invariant measure on SU(3). To keep the discussion as transparent as possible,

our attention will be restricted, in the following, to the Polyakov loop correlation

function 〈P (x)∗P (y)〉 and to the expectation value of plane rectangular Wilson loops
at x2 = x3 = 0, with corners (0, 0), (t, 0), (t, r), (0, r) in the (x0, x1) plane.

3. Factorization of the functional integral

In this section we rewrite the Wilson loop expectation values in a partly factorized

form that is closely related to the transfer matrix representation. Tensor products

of pairs of link variables, the two-link operators, play an important rôle in this trans-

formation, and we thus introduce these first. The factorization reflects the local

structure of the theory and will lead us (in section 4) to the multilevel simulation

algorithm alluded to above.

3.1 Two-link operators

The expectation value of the rectangular loop defined at the end of the previous sec-

tion may be interpreted as a transition matrix element between states that describe
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Figure 1: The two-link operator T(x0) is equal to the tensor product of the time-like link

variables at x = (x0, 0, 0, 0) and x = (x0, r, 0, 0).

a pair of static colour charges separated by a distance r [9]. The charges are created

at time x0 = 0 and annihilated at x0 = t through the line operator

L(x0)αβ = {U(x, 1) · · ·U(x+ (r − a)1̂, 1)}αβ , x = (x0, 0, 0, 0) , (3.1)

and its complex conjugate respectively. Between these times the charge propagation

is represented by the two-link operators

T(x0)αβγδ = U(x, 0)
∗
αβU(x+ r1̂, 0)γδ (3.2)

(see figure 1). If we group the indices in pairs, (α, γ) and (β, δ), these operators

assume the form of complex 9× 9 matrices that act on colour tensors in the 3∗ ⊗ 3
representation of SU(3).

The multiplication of the time-like link variables in the Wilson loop corresponds

to the multiplication law

{T(x0)T(x0 + a)}αβγδ = T(x0)αλγεT(x0 + a)λβεδ (3.3)

for the two-link operators. Using this rule the factorized expression

W (C) = L(0)αγ {T(0)T(a) · · ·T(t− a)}αβγδ L(t)∗βδ (3.4)

is obtained, while in the case of a pair of Polyakov loops at distance r along the x1
axis, there are no line operators and the corresponding formula,

P (x)∗P (x+ r1̂) = {T(0)T(a) · · ·T(T − a)}ααγγ , (3.5)

assumes an even simpler form.

3.2 Sublattice expectation values

Averages over sublattices is the next topic that we need to discuss. In the present

context the relevant sublattices are time-slices of variable thickness. Such a time-slice

consists of all lattice points with time coordinates in a given interval [x0, y0] and its

boundary are the equal-time hyperplanes at times x0 and y0.

Lattice gauge theory on a time-slice can be studied independently of the sur-

rounding lattice if the spatial link variables at the boundaries are held fixed. This
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decoupling property is a consequence of the locality of the action (2.1) and more

precisely of the fact that the action involves plaquette loops only. The link variables

in the interior of the time-slice are then the dynamical degrees of freedom that are

to be integrated over when calculating sublattice expectation values. We define the

latter in the obvious way, with the action reduced to those terms that depend on

the dynamical link variables. Sublattice expectation values are denoted by a square

bracket [· · ·] in order to distinguish them from the expectation values 〈· · ·〉 on the
whole lattice.

Later we shall be dealing mostly with time-slice expectation values of products

of two-link operators. These are explicitly given by

[T(x0) · · ·T(y0 − a)] = 1

Zsub
∫
D[U ]sub T(x0) · · ·T(y0 − a) e−S[U ]sub , (3.6)

where the index “sub” indicates that the sublattice expression is meant. In particular,

the sublattice partition function Zsub is determined by the requirement that [1] = 1.
It will be important in the following to keep in mind that sublattice expectation values

are well-defined functions of the link variables at the boundary of the sublattice, but

do not depend on the gauge field elsewhere on the lattice.

3.3 Hierarchical integration formulae

We now insert the product representation (3.4) in the expectation value of the Wilson

loop and reorganize the functional integral in a hierarchical way. The manipulations

are essentially the same as in the case of the multihit method [1], but they are applied

to the two-link operators and are carried to higher levels.

We first note that the expectation value can be rewritten in the form

〈W (C)〉 =
〈
L(0)αγ {[T(0) · · ·T(t− a)]}αβγδ L(t)∗βδ

〉
, (3.7)

where the square bracket stands for the expectation value in the time-slice [0, t]. The

Wilson loop expectation value may thus be computed in two steps, first calculating

the time-slice average of the product of the two-link operators, for the current config-

uration of the gauge field at the boundary of the time-slice, and then the full lattice

average of the product of the time-slice expectation value with the line operators.

We can in fact derive various expressions of this type, with many levels of nested

averages. The key observation is that the time-slice expectation values are compatible

with each other in the sense that they satisfy identities like

[T(x0)T(x0 + a)] = [[T(x0)] [T(x0 + a)]] . (3.8)

The inner square brackets here refer to the time-slices [x0, x0+a] and [x0+a, x0+2a],

respectively, while the time interval for the outer bracket is [x0, x0 + 2a]. A formula
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for the Wilson loop expectation value involving three levels of averaging, for example,

is given by (for t/a even)

〈W (C)〉 =
〈
L(0)αγ {[[T(0)] [T(a)]] · · · [[T(t− 2a)] [T(t− a)]]}αβγδ L(t)∗βδ

〉
. (3.9)

In general we may choose an arbitrary hierarchy of time-slices of increasing thickness

that fit within one another and with the time extent of the loop. The pattern does

not even need to be regular, although this will often be the case in practice.

3.4 Centre symmetry & quark confinement

On any time-slice [x0, y0], the sublattice theory has a global Z3 symmetry that acts

on the time-like link variables according to

U(x, 0)→ U(x, 0)z , z = ei2πk/3 , k = 0, 1, 2 . (3.10)

The symmetry situation is thus similar to the one in finite-temperature lattice gauge

theory. In particular, for fixed time-slice thickness and small values of the gauge

coupling, the Z3 symmetry is probably spontaneously broken. The time-slices should

otherwise be in the confinement phase and we then expect that

‖[T(x0) · · ·T(y0 − a)]‖ ∝ e−m0r (3.11)

at large distances r, where ‖ · · · ‖ denotes the usual operator norm for 9×9 matrices
acting on complex vectors. This is surely so in the strong coupling regime, and the

picture is also supported, at least qualitatively, by our present (limited) numerical

experience.

Combining eq. (3.11) with the hierarchical integration formulae derived above, it

follows that theWilson loop expectation value satisfies an area law with string tension

σ ≥ m0/(y0− x0). The decay properties of the time-slice expectation value (3.6) are
thus directly linked to the issue of quark confinement.

4. Multilevel simulation

In the context of numerical simulations, the hierarchical integration formulae derived

above do not seem to be particularly useful, because the time-slice averages cannot

in general be calculated exactly or so precisely that the errors are surely negligible.

However, as in the case of the multihit method [1], the sublattice averages may

be estimated stochastically without compromising the correctness of the simulation.

Our aim in this section is to work this out in some detail and to explain why the

resulting multilevel algorithm may be expected to be highly efficient for large loops.
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4.1 Update cycle

Let us consider, as a simple example, the Polyakov loop correlation function on a

lattice with an even number of points in the time direction. A hierarchical integration

formula that might be used in this case is given by

〈P (x)∗P (x+ r1̂)〉 =
〈
{[T(0)T(a)] · · · [T(T − 2a)T(T − a)]}ααγγ

〉
. (4.1)

The associated multilevel simulation algorithm then proceeds along the following

lines:

1. Generate a sequence of gauge field configurations using a mixture of heatbath

and over-relaxation link updates as usual.

2. For a subsequence of configurations, estimate [T(x0)T(x0+a)] by updating the

gauge field in the interior of the time-slice [x0, x0 + 2a] a number of times and

by averaging T(x0)T(x0 + a) over these configurations.

3. Compute the average of the trace of the product in eq. (4.1) using the stochastic

estimates for [T(0)T(a)], . . . , [T(T − 2a)T(T − a)] calculated in step 2.

In practice the simulation proceeds sequentially, and the second step may be inte-

grated in the first by performing n1 updates of the whole lattice, then n2 updates of

the time-slices, then n1 full updates, and so on. The trace of the product of the time-

slice expectation values [T(x0)T(x0 + a)] is calculated in each of these cycles, and

the Polyakov loop correlation function is finally obtained by computing the average

of these values over a significant number n0 of cycles.

It should be emphasized that this algorithm produces exact results, up to statis-

tical errors of order (n0)
−1/2, for any choice of n1 ≥ 1 and n2 ≥ 1. In this respect the

quality of the stochastic estimation of the time-slice averages is therefore irrelevant,

but as we shall see shortly the efficiency of the simulation strongly depends on it. A

formal proof of the exactness of the algorithm is given in appendix A.

4.2 Exponential error reduction

We now show that the two-level algorithm described above leads to an exponential

reduction of the statistical errors if the time-slices of thickness 2a are in the confine-

ment phase, where the expectation values [T(x0)T(x0 + a)] decay exponentially at

large r.

The stochastic estimates of the latter, which are obtained in each cycle of the

algorithm, are accurate to within a statistical error proportional to (n2)
−1/2. We

may, for example, fix n2 so that the signal-to-noise ratio is approximately equal to

unity at the specified value of r, which requires n2 to be scaled according to

n2 ∝ e2m0r (4.2)
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(cf. eq. (3.11)). The factors in the product (4.1) are then of order e−m0r, so that the
magnitude of the trace of the product calculated in each cycle is roughly proportional

to e−m0rT/2a. In particular, the statistical fluctuations are reduced to this level.
As a result we expect that the algorithm achieves an exponential error reduction,

with exponent proportional to the area A = rT , for a computational effort growing as

suggested by eq. (4.2). It goes without saying that this analysis ignores many details

and can only give a first indication of what the true behaviour of the algorithm is

going to be.

4.3 Higher-order schemes

It should be quite clear at this point that any given hierarchical integration formula,

with possibly many levels of nested time-slice expectation values, corresponds to a

multilevel simulation algorithm. At each level the associated time-slice expectation

values are estimated stochastically, and these estimates are then used in the averages

taken at the next higher level. The algorithm thus follows a cycle during which the

thin time-slices are updated more often than the thicker ones.

Further details on the algorithm and how to program it can be found in ap-

pendix B. Here we only note that at the lowest level, where the products of the basic

link variables are averaged, the multihit method [1] (perhaps also in its analytic

version [10]) may be used to achieve a further reduction of the statistical errors.

5. Test of the method

5.1 Lattice size and choice of parameters

For this first test of the multilevel simulation algorithm, we decided to calculate the

Polyakov loop correlation function at gauge coupling β ≡ 6/g20 = 5.7, where the
Sommer reference scale r0 is about 2.92a [11, 12]. This implies a ' 0.17 fm, and a
lattice of spatial size L = 12a is thus approximately 2 fm wide.

Some experimenting reveals that the time-slices of thickness 2a appear to be in

the confinement phase, for this gauge coupling and lattice size, and if T ≥ 6a. The
two-level simulation algorithm discussed in the previous section is hence expected

to perform well. As it turns out, for the larger values of r and T , an even greater

algorithmic efficiency is achieved with a further level of averaging. The corresponding

hierarchical integration formula reads

〈P (x)∗P (x+ r1̂)〉 =
〈
{[[T(0)T(a)] [T(2a)T(3a)]] · · · [· · · [T(T − 2a)T(T − a)]]}ααγγ

〉
,

(5.1)

where T/a is assumed to be a multiple of 4.

Multilevel algorithms have many parameters and it is not easy to find their op-

timal values. The most important parameters are the numbers of time-slice updates

8
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T/a r/a 〈P ∗P 〉 T/a r/a 〈P ∗P 〉
12 2 6.46(2)× 10−5 6 6 2.48(2)× 10−4
12 3 4.93(3)× 10−6 8 6 9.53(13)× 10−6
12 4 5.42(5)× 10−7 12 6 1.90(4)× 10−8
12 5 7.06(9)× 10−8 16 6 3.91(7)× 10−11

20 6 8.23(16)× 10−14
Table 1: Results for the Polyakov loop correlation function at β = 5.7, L = 12a.

that are to be performed at each level. Using an optimization strategy discussed

in appendix B, we found that a good efficiency at distance r = 6a is achieved with

96 update sweeps at the lowest level (time-slices of thickness 2a) and 10 sweeps at

the next-to-lowest level (thickness 4a). In addition, the application of the multihit

method at the lowest level proved to be beneficial. The ratio of heatbath to over-

relaxation link updates is not critical and was set to 1 : 5. At smaller distances r,

it is generally better to reduce the numbers of time-slice updates, which reflects the

fact that it does not pay to determine the time-slice averages accurately.

5.2 Simulation results

The results of our calculations (table 1 and figures 2 and 3) show rather strikingly

that the Polyakov loop correlation function is obtained for a large range of loop

sizes and distances with statistical errors that decrease exponentially. With these

algorithms the relative errors can effectively be kept fixed even if the correlation

function is very rapidly decaying.

In total the simulations that we have done required the equivalent of about 1000

hours of processor time on a PC with 1.4GHz Pentium 4 processor. With a program

that makes use of the multihit method only, and with any currently available super-

computer, it would be quite impossible to reproduce the data listed in table 1. At

r = 6a and T = 12a, for example, the multilevel algorithm achieves an efficiency (in

terms of the computer time required for a specified error on a given machine) that

is better by a factor of 3× 105 or so, and this factor rises to astronomical values at
the larger values of T .

Our tests have also shown that the multilevel algorithm is well behaved when

the time extent of the lattice increases. For fixed r and a given number of “mea-

surements” of the loop correlation function, the relative errors appear to be growing

roughly linearly with T . In other words, the required computer time scales appro-

ximately like T 3 if the relative errors are to be kept fixed. Eventually this becomes

a big factor, but the improvement with respect to the exponential decrease of the

signal-to-noise ratio that is characteristic of the simulation algorithms used to date

is obvious.

9



J
H
E
P
0
9
(
2
0
0
1
)
0
1
0

Figure 2: Polyakov loop correlation function at distance r on a 124 lattice at β = 5.7.

The loops on this lattice are about 2 fm long and enclose an area A = rT ranging from 0.7

to 2.1 fm2. Statistical errors are smaller than the dots.

6. Conclusions

At the gauge coupling that we have considered, the multilevel algorithm proposed in

this paper performs exceedingly well, and there is little doubt that a similarly impres-

sive error reduction will be achieved also at other couplings. Using this technique,

it is possible to compute loop correlation functions and Wilson loop expectation

values in a range of loop sizes and distances that had remained inaccessible so far.

In particular, one of the physics issues that might be reconsidered at this point is

the question of whether long colour flux tubes are described by an effective bosonic

string theory [13, 14] or perhaps a different kind of string theory (or none at all).

In some cases it may be useful to combine the multilevel algorithm with link-

blocking techniques [2, 3] and the variational method [4, 5]. The calculation of the

energy spectrum of excited colour flux tubes is an example for this. String breaking,

on the other hand, is perhaps better approached by considering correlation functions

of long Polyakov loops, as we did in this paper, since their exponential decay at large

time extents T is guaranteed to yield the true ground-state energy in the chosen

charge sector (i.e. this is an unbiased method).

We finally mention that the basic ideas underlying the algorithm (sublattice

averages and hierarchical averaging) are likely to be more widely applicable. An im-

portant case to consider are the correlation functions of two or more local operators,

which are another instance where the signal-to-noise ratio is exponentially decreasing

if the established simulation techniques are employed.

10



J
H
E
P
0
9
(
2
0
0
1
)
0
1
0

Figure 3: Polyakov loop correlation function at β = 5.7 and distance r = 6a ' 1.0 fm,
on a lattice of spatial size L = 12a and variable time extent T . Statistical errors are not

visible on this scale. On the largest lattice, T = 20a, the loops are 3.4 fm long.
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A. Theoretical discussion of the multilevel algorithm

In this appendix we establish the correctness of the two-level simulation algorithm

defined in section 4. The principal question is whether the replacement of the two-

link operators by their averages over certain subsets of configurations is permissible.

A.1 Abstract model

To be able to bring out the essence of the argument more clearly, an abstract system

will be considered with a finite number of states s. Each state is characterized by a

vector (s0, s1, . . . , sn) of discrete variables, whose joint probability distribution is of
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the factorized form

p(s) = p0(s0)

n∏
k=1

pk(s0, sk) , (A.1)

∑
s0

p0(s0) =
∑
sk

pk(s0, sk) = 1 . (A.2)

We are then interested in calculating expectation values of factorized observables

O(s) = O0(s0)
n∏
k=1

Ok(s0, sk) . (A.3)

Evidently this model fits the case of interest if we identify s0 with the space-like link

variables at all even times, s1 with the link variables in the interior of the time-slice

[0, 2a], s2 with those in [2a, 4a], and so on.

A.2 Two-level simulation

We now suppose that the system is simulated by updating the variables s0, s1, . . . , sn
one by one in an arbitrary order. The update algorithm is assumed to be such that

the transition probability for changing sk at fixed s0 is independent of the current

values of all other variables. This implies, in particular, that the algorithm simulates,

and thus preserves, the conditional probability distribution pk(s0, sk).

If we perform the simulation in cycles, where, in each cycle, n1 updates of all

variables are followed by n2 updates of s1, . . . , sn only, it is clear that the subsequence

of configurations that are obtained during the n1 full updates simulates the probabil-

ity distribution p(s). The complete sequence of configurations does that too, but it

is useful to look at the n2 intermediate configurations in a different way. Since s0 is

fixed in this part of each cycle, the algorithm effectively generates n2 configurations

of each sk separately, so that in total there are (n2)
n configurations of the vector

(s1, . . . , sn). In practice these are not stored in the memory of the computer at any

time, but for the theoretical discussion we may assume this to be the case.

A.3 Factorization lemma

As we just remarked, the simulation generates (n2)
n configurations of the vector

(s1, . . . , sn) in each cycle, and we now focus on the sequence of these sets of states.

Lemma. The vectors (s1, . . . , sn) in the sets with the same value of s0 occur with

conditional probability p1(s0, s1) . . . pn(s0, sn).

To prove this, we first note that the states s at the end of the n1 full updates

in each cycle are distributed with probability p(s). In particular, the states in this

sequence with the same value of s0 are distributed with probability p1(s0, s1) . . .

pn(s0, sn).

12
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When the algorithm arrives at any of these points, it continues to generate the

next set of (n2)
n vectors with a transition probability that preserves the conditional

probabilities of the variables sk. Since the initial values of these variables are already

properly distributed, and since they are statistically independent, the sequence of

the sets of (n2)
n additional states with the specified value of s0 must be distributed

in the same way.

A.4 Expectation values

The expectation value of the factorized observable (A.3) can be written in the form

〈O〉 =
∑
s0

p0(s0)O0(s0)
n∏
k=1

[Ok](s0) , (A.4)

[Ok](s0) =
∑
sk

pk(s0, sk)Ok(s0, sk) . (A.5)

From the lemma it now follows that the product

n∏
k=1

[Ok](s0) (A.6)

is equal to the average over all sets of (n2)
n configurations with the specified value

of s0 that occur in the course of the simulation. Moreover the average over the

(n2)
n configurations in any one of these sets is trivially given by the product of

the averages of the factors Ok(s0, sk). In particular, there is no need to store any
configurations other than the current one, since the averages of the factors can be

computed sequentially.

We have thus shown that the expectation value 〈O〉 may be obtained by substi-
tuting stochastic estimates for the factors [Ok](s0) on the right-hand side of eq. (A.4)
and by averaging the so calculated product over the sequence of values of s0. For

each k the estimate of [Ok](s0) is the average over the n2 configurations of sk that
are generated in the second part of each update cycle.

B. Program description

The implementation of the multilevel algorithm requires some care in order to avoid

excessive memory usage and arithmetic inefficiencies. In the following paragraphs we

discuss the structure of our program in outline and address some of the key points

that should be taken into account.

B.1 Basic update algorithm

We use the now standard “hybrid over-relaxation” simulation algorithm that com-

bines heatbath with over-relaxation link updates in an adjustable proportion (for a

13
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review, see ref. [17], for example). In both cases a link update involves three Cabibbo-

Marinari rotations [18] in the obvious SU(2) subgroups of SU(3). Depending on the

driving force exerted by the surrounding link variables, the heatbath algorithm of

Creutz [19] or the one of Fabricius-Haan [20] and Kennedy-Pendleton [21] is applied.

In this way a high efficiency is achieved in all situations.

It is well-known that the choice of the random number generator can introduce

a systematic bias in numerical simulations. To be on the safe side we use the ranlux

generator [15, 16] even though it consumes a significant fraction of the update time.

B.2 Program structure

The multilevel simulation algorithm cycles through several levels that correspond to

time-slices of increasing thickness. At the lowest level the product T(x0) · · ·T(y0−a)
is averaged over a set of configurations on the time-slice [x0, y0]. The result of this

calculation is then passed to the next level, where the contributions from two or more

lowest-level time-slices are multiplied and averaged. From here on the procedure

repeats itself until the top level is reached, at which point the product of the nested

averages of the two-link operators is calculated and its trace is taken.

This algorithm thus has a tree-like structure, where at each level the following

parameters need to be specified:

dts: thickness of the associated time-slice

nms: number of “measurements” to be made for the time-slice average

nup: number of time-slice updates between “measurements”

nhb, nor: numbers of heatbath and over-relaxation sweeps per time-slice update

pws: pointer to a memory area that may be used as workspace at this level

In the program the full set of parameters is globally visible so that the calculated

time-slice expectation values (which reside in the workspace of the associated level)

can easily be accessed when the algorithm has moved to the next higher level.

The level structure can be elegantly programmed by defining a recursive function

that takes the level number and the time-slice initial time x0 as arguments and

calculates the corresponding (nested) time-slice average. Exactly what is to be done

can be inferred from the globally visible parameters that describe the hierarchy of

the time-slices. Internally the program calls itself until the lowest level is reached,

and the tree-structure of the algorithm is thus mapped to the call sequence generated

by the program.

14
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B.3 Rounding errors

In the range of loop sizes and distances that we have considered, the Polyakov loop

correlation function decays over many orders of magnitude. One might suspect that

significance losses become an issue when the calculated values approach the machine

precision. This is not the case, however, because the correlation function is obtained

by averaging a product of factors of about equal magnitude (that are themselves

averages of products of still larger factors, etc.). In other words, the small numbers

do not result from an enormous cancellation but by multiplication of many factors.

Some significance losses may still occur when the time-slice averages are com-

puted. This problem (if present) can be avoided by performing all operations involv-

ing two-link operators, their products and averages in 64-bit floating-point arith-

metic. On the other hand, there is no reason not to use single-precision data and

arithmetic for the link variables and the basic update algorithm.

B.4 Memory requirements

Since the update cycles of the multilevel algorithm are time-consuming, it is eco-

nomical to calculate the Polyakov loop correlation function simultaneously at all

points x = (0, x1, x2, x3) and displacement vectors rk̂, k = 1, 2, 3. At each level the

workspace must then be sufficiently large to contain this many two-link operators.

One actually needs twice this space for the calculation of the averages at all x.

Two-link operators have 162 real components and thus occupy 1296 bytes of

storage if double-precision arithmetic is used. The total memory space required per

level is hence 7.6KB×(L/a)3 times the number of distances r at which the correlation
function is to be calculated. This quickly adds up to a large number, but it should

be taken into account that there is not much to be gained by processing many values

of r at the same time, because the optimal choice of the level parameters depends on

r. Note that the same memory area may be used for all time-slices at a given level

since these are visited sequentially.

B.5 Operation count and timing

The tensor product (3.2) and the product (3.3) of two two-link operators require

486 and 5670 floating-point operations respectively. These numbers are large but

not out of proportion, considering the fact that 1926 operations are required for

the calculation of the “staples” in the link update programs. In our test runs, for

example, the total time spent to manipulate the two-link operators was comparable

to the time needed to update the gauge field.

At the lowest level, multiplications of two-link operators should be avoided by

first calculating the products U(x0, 0) · · ·U(y0 − a, 0) and then the tensor products
of these. If the multihit method is used, the link variables U(z0, 0) are averaged over

a number of heatbath link updates before they are inserted in the products.
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The simulations reported in section 5 have been performed on an 8-node cluster

with 550MHz Pentium III processors and on a stand-alone PC with 1.4GHz Pentium

4 processor. Using vector arithmetic (SSE instructions), the processor time required

for a heatbath (over-relaxation) link update on this PC is 3.4µs (2.0µs). The timing

of the multilevel algorithm is more difficult, but a rough estimate of the execution

time per cycle may be obtained by adding the link update times and multiplying

this number by 2. On the 16 × 123 lattice, for example, 100 “measurements” of the
loop correlation function at distance r = 6a, with cycle parameters as quoted below,

require about 50 hours of PC processor time.

B.6 Parameter tuning

It is our experience that the parameters of the multilevel algorithm are best deter-

mined by fixing them at the lowest level, then at the next-to-lowest level, and so on.

Since the multihit method leads to a further reduction of the statistical errors, the

first step is to optimize this part of the algorithm. The thickness dts of the time-slice

at the lowest level must then be determined. As discussed in subsections 3.4 and 4.2,

dts should be as small as possible, but sufficiently large that the time-slice is in the

confinement phase.

The other parameters listed in subsection B.2 are fixed essentially by minimizing

the average over all points x and directions k of the absolute value |P ∗P | of the trace
of the product of the time-slice expectation values calculated at the lowest level, for

a single thermalized gauge field configuration. More precisely the average 〈|P ∗P |〉
should be balanced against the processor time τ required to compute it so that

τ × 〈|P ∗P |〉2 is minimized (which yields the maximal error reduction for a given
amount of computer time).

At β = 5.7, r = 6a, L = 12a and all T ≥ 8a, the lowest-level parameter list that
we obtained in this way is (dts, nms, nup, nhb, nor) = (2a, 96, 1, 1, 5). The optimum is

rather flat and variations of nms by 10% or so make practically no difference. At the

next level the same optimization procedure suggests to take (dts, nms, nup, nhb, nor) =

(4a, 10, 16, 1, 5). The additional error reduction that is achieved at this level is very

substantial, but having a third level with dts = 8a seems to have no positive effect.

We finally note that the auto-correlations between successive “measurements” of

the loop correlation function can be practically reduced to zero by updating the full

lattice a significant number of times before every “measurement”. This adds an only

small overhead to the total execution time, which is dominated by the time required

for the computation of the time-slice averages.
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