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Abstract

We study 5 dimensional grand-unified theories in an orbifold geometry by the method of
effective field theory: we match the low and high energy theories by integrating out at
1-loop the massive Kaluza-Klein states. In the supersymmetric case the radius dependence
of threshold effects is fixed by the rescaling anomalies of the low energy theory. We focus
on a recently proposed SU(5) model on M4 × S1/(Z2 × Z ′

2). Even though the spectrum
of the heavy modes is completely known, there still are corrections to gauge unification
originating from boundary couplings. In order to control these effects one has to rely on
extra assumptions. We argue that, as far as gauge couplings are concerned, the predictive
power of these models is similar to conventional GUTs.

1 Introduction

Since their early days [1] grand unified theories (GUT) have attracted a lot of interest
and though the paradigm is not flawless it is still an exciting and active research field.
Besides aesthetic reasons, a strong evidence in favor of GUTs is that in the minimal
supersymmetric standard model (MSSM) the couplings of SU(3) × SU(2) × U(1)
unify at a scale of order 1016 GeV [2]. Models with extra compact dimensions
can add interesting twists to the basic GUT idea. This was first realized in string

∗On leave from INFN, Pisa, Italy.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25318066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


models where intrinsically higher dimensional mechanisms can solve some of the
problems of conventional GUTs. One example is the doublet-triplet splitting prob-
lem [3]. Recently there has been a revival in extra-dimensional GUT model building,
but now taking a “bottom-up” approach as opposed to the “top-down” approach
of string model building. Kawamura has first constructed a non-supersymmetric
model on S1/Z2 [4], and has later obtained a realistic supersymmetric spectrum on
S1/(Z2 × Z ′

2) [5]. (The interesting properties of S1/(Z2 × Z ′
2) for model building

where noticed in ref. [6]). The model was further studied in [7, 8]. Many papers
have since followed [9]-[11]. In this paper we extend the effective field theory (EFT)
approach proposed by Weinberg [12] to the case of a grand unified gauge theory
in five dimensions. We build the effective field theory valid below the GUT scale
by integrating out the heavy degrees of freedom represented here by the massive
KK excitations. The form of the low-energy theory is strongly constrained by sym-
metries and operators’ coefficients are expressed in terms of the parameters of the
underlying high energy theory. As an explicit example we consider the SU(5) uni-
fied theory on M4×S1/(Z2×Z ′

2) of ref. [5, 8]. We compute the matching functions
relating the SM gauge couplings to the parameters of the 5 dimensional theory.
Although the explicit results are given for SU(5), the method presented is general.
One important feature of the orbifold geometry is the presence at the boundary
of local operators contributing to the vector boson kinetic term. These operators
do not respect SU(5) and lead to corrections to gauge unification. Indeed their
coefficients follow a logarithmic RG evolution, so that they cannot just be set to
zero.

The outline of the paper is the following. In section 2 we discuss the conditions
under which the gauge symmetry does not conflict with the orbifold projections
and the SU(5) model considered is briefly reviewed. Section 3 is devoted to a
general discussion of the boundary counterterms induced by quantum corrections
at the orbifold fixed points. The construction of the effective 4D low energy theory is
presented in section 4, in particular the matching functions are computed at the one
loop level. Finally, in section 5, the values of the SM gauge couplings are computed
at the weak scale at next to leading order and the phenomenological consequences
are discussed.

2 SU(5) on the orbifold

We consider a grand unified 5-dimensional SU(5) theory defined on M4×S1/(Z2×
Z ′

2) [5, 8], where S1/(Z2×Z ′
2) is obtained from a circle with radius R by the following

identifications:

Z2 : y ∼ 2πR− y , Z ′
2 : y ∼ πR − y y ∈ [0, 2πR]. (1)
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Coordinates in 5D are denoted by XM = (xµ, y), using capital Latin (small Greek)
letters for 5D (4D) indices. The points (0, πR) and (πR/2, 3πR/2) are fixed under
the action of Z2 and Z ′

2 respectively; moreover 0 ∼ πR and πR/2 ∼ 3πR/2.
A function f(x, y) with a definite parity under the orbifold projections can be

Fourier decomposed according to

f(x, y) =

+∞∑
n=0

f (n)(x) Ψn(y), Ψn(y) =




a2n cos
2ny

R
(+, +)

a2n+1 cos
(2n + 1)y

R
(+,−)

a2n+1 sin
(2n + 1)y

R
(−, +)

a2n+2 sin
(2n + 2)y

R
(−,−)

(2)

a0 =
1√
2πR

, an =
1√
πR

n 6= 0 .

Only a function with parity (+, +) has a zero mode.
When a gauge theory is defined in a orbifold one has to satisfy certain consistency

conditions in order to avoid that gauge symmetry conflicts with orbifold projections.
The Z2 action P on the fields of the theory is defined to be

Φ(x, y) → Φ(x,−y) = P Φ(x, y) P 2 = 1 , (3)

where we have collected all the fields in single vector Φ. Without loss of generality
P can be chosen diagonal with eigenvalues ±1. In particular, for the gauge field
Ai

MT i one has

Ai
µ(x,−y) = ΛijAj

µ(x, y)

Ai
5(x,−y) = −ΛijAj

5(x, y)
Λ2 = 1 ; (4)

where T i are the generators of the gauge group G with structure constants fijk. For
the Lagrangian to be Z2 invariant, the covariant derivative acting on a matter field
DMϕ must have a definite transformation property under Z2, thus

PT iP = ΛijT j (5)

In turn this implies that P is an inner automorphism of the Lie algebra G of G, in
other words

Λim Λjn Λkl fmnl = fijk , (6)
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and P acts as a group conjugation (see [10] for a discussion of inner and outer
automorphism in the context of orbifold projections). Taking Λij = δij ci (no sum-
mation in i), with ci = ±1, we can divide the generators in two subsets: H =
{T a, a = 1, · · ·n : ca = 1 ∀a} and V = {T â, â = n + 1, · · ·dim(G) : câ = −1 ∀â}.
From eq.(6) it follows that [H,H] = H, [H,V] = V and [V,V] = H. Repeating the
same argument, with the simplifying hypothesis that also second projection Z ′

2 acts
through P ′ as a diagonal matrix on the fields, exactly the same result holds 1. Sum-
marizing, consistency between the gauge symmetry and orbifold projections leads
to a Z2 gradation for G

[H,H] = H , [H,V] = V , [V,V] = H ;

∀T a ∈ H with parity (+, +) and ∀T â ∈ V with parity (−, · ) or (· ,−) .
(7)

Finally, the parity of a generic field must be gauge independent, implying that a
gauge transformation with parameters ξi(x, y) commutes with the Z2 × Z ′

2 action
and as a consequence ξi(x, y) must have the same parity of the corresponding Ai

µ.
In [5, 8] a realistic supersymmetric SU(5) unified theory in 5 dimensions was

constructed with a vector gauge multiplet and two higgs hypermultiplets in the 5
and 5̄ representation propagating in the bulk. From the 4D point of view the field
content is the one of N=2 SUSY. Indeed, the 5D vector multiplet splits into a vector
and a chiral N=1 multiplets V = (Aµ, λ), Σ = (σ+ iA5, λ

′); in the same way each of
the hypermultiplets decomposes into two chiral N=1 multiplets, H, Hc and H̄, H̄c

respectively.
The action of P and P ′ is chosen to be [4]

P = 15×5 P ′ =
(
13×3

−12×2

)
. (8)

Denoting with {T a, a = 1, . . . 12} the SU(3) × SU(2) × U(1) generators and with
{T â, â = 13, . . . 24} the remaining ones, one has a (+, +) parity for Aa

µ and (+,−)
for Aâ

µ. With this choice, the zero modes gauge fields are the ones of the Standard
Model. Notice that, while in the fixed point O(y = 0) the SU(5) is still effective, in
O′(y = πR/2) only SU(3)×SU(2)×U(1) gauge transformations are non-vanishing.
The parity of the various fields is summarized in table 1. The choice is such that
only the weak doublet components H2, H̄2 of the higgs multiplets H , H̄ have zero
modes, while the triplet components H3, H̄3 and the remaining two multiplets are
massive. It is also clear that the zero mode spectrum is N=1 supersymmetric.

Finally, the MSSM matter content, organized in SU(5) multiplets, and the
Yukawa couplings are localized in the fixed point O where the original gauge sym-
metry is unrestricted; of course N=1 SUSY must be broken with conventional 4D

1For a discussion of the general case see [11].
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(P, P ′) 4D N = 1 superfield mass

(+, +) V a, H2, H̄2 2n/R
(+,−) V â, H3, H̄3 (2n + 1)/R
(−, +) Σâ, Hc

3, H̄c
3 (2n + 1)/R

(−,−) Σa, Hc
2, H̄c

2 (2n + 2)/R

Table 1: Parity assignments for the various fields. The subscripts 2, 3 refer to the
weak doublet and the colour triplet of Higgs multiplets.
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0
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0 2n

n
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Figure 1: One-loop rainbow diagrams with at least a zero-mode external line which
contribute to the gauge kinetic term. Diagram (b) with all scalar, vector and
fermionic fields circulating in the loop is relevant for the computation of the match-
ing functions. Diagram (c) is allowed only in the orbifold.

methods to get an acceptable phenomenology. According to our classification, the
other possible choice in which the generators T â are (−,−) would break SU(5) in
both fixed points rendering unnatural the organization in SU(5) multiplets of the
observed matter.

3 Boundary counterterms

Before presenting the computation of the matching, it useful to gain some feeling
on the general structure of the 1-loop radiative corrections of a gauge theory on
an orbifold. The main difference with respect to the standard case is that, be-
sides bulk counterterms, also operators localized at the orbifold fixed points can be
induced [13].

We consider the 1-loop corrections to the gauge kinetic term due to a bulk scalar.
For simplicity we focus on the diagrams with at least one zero-mode external line;
the rainbow-like Feynman graphs involved are shown in fig.(1). The contribution
from seagull diagrams (with a quartic vertex) reproduces the transverse structure
dictated by gauge invariance and will be neglected in our discussion. The analysis
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can be easily extended to fermions circulating in the loop. Some additional care
would be needed in dealing with gauge bosons: the counterterms will be local
provided the gauge fixing term is also local in 5D.

Let us do some power counting. The gauge kinetic coefficient in 5D has di-
mension [mass]. Indicating by Λ the UV cut-off, we in general expect for the bulk
kinetic term a divergence ∝ Λ + m ln Λ, where m is any lagrangian mass parameter
(for instance a fermion mass). In our case there is no massive parameter in the
bulk, so we will not have any logarithmic divergence there. Moreover we choose
to work with dimensional regularization 2 (truly, dimensional reduction to preserve
supersymmetry), for which there are also no power divergences 3. So we expect no
divergence whatsoever from the bulk. However our space is not homogeneous, it
has fixed points, and it is perfectly fine to have divergences located there. The fixed
points are 4D manifolds, so here we will in general have logarithmic renormalization
of the gauge kinetic term. Therefore the only divergences are due to the boundaries.

Consider for instance the simple case of a scalar on a circle. Since there are no
boundaries the sum of diagrams (1a) and (1b) in fig.(1) must be finite (diagram
(1c) is not allowed on the circle). A scalar on the circle can be decomposed into
cosine and sine modes both circulating in the loop of diagram (1b). The sum over
cosine modes and the sum over the sine modes are equal. Therefore their divergent
piece should equal −1/2 of the zero mode divergent contribution. This result can be
checked by explicit computation. Somehow the KK mode tower acts as a regulator
of the UV divergences of the zero mode.

Consider next the non trivial case of an orbifold S1/Z2, with the gauge field
taken with positive parity. Because of the orbifold projection, half of the massive
scalar modes (say the sines) are eliminated, the above cancellation no longer works
and logarithmic divergences appear. The only possible counterterm has the form

Lct =

∫
d4x dy FµνF

µν
[
a δ(y) + b δ(y − πR)

]
, (9)

where a, b are constants; group indices have been suppressed for simplicity. After a

2See for instance appendix D of ref. [14] for details on dimensional regularization in the presence
of compact dimensions.

3Dimensional regularization is useful in dealing with effective field theories [12] as it preserves
only the logarithmic divergences, i.e. those, and only those, which are saturated in the infrared.
Power divergences are totally UV dominated and their effect is equivalent to changing the UV
boundary conditions on the already incalculable parameters of the EFT. Note that as far as
the logarithmic divergences are concerned our results agree with ref. [15], where gauge coupling
evolution in 5 dimensions was studied, but with a different regularization procedure.
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Fourier decomposition, (9) takes the form

Lct =

∫
d4x

{
(a + b)

∞∑
n=0

a2
nF (n)

µν F µν (n) + 2(a + b)

∞∑
n=0
k=1

an an+2k F (n)
µν F µν (n+2k) +

2(a− b)

∞∑
n=0
k=1

an an+2k+1 F (n)
µν F µν (n+2k+1)

}
.

(10)

Momentum along the fifth dimension is conserved up to a sign and only “transitions”
k → (k + 2n) are allowed requiring a = b. We have explicitly checked that all the
(logarithmic) divergences in diagrams (1a), (1b) and (1c) correspond to a = b for all
parity choices of the scalar. If the gauge field has negative parity, no counterterm
localized at the orbifold fixed points is possible and therefore the 1-loop correction
to the gauge kinetic term must be finite in dimensional regularization.

Finally, we consider an S1/(Z2 × Z ′
2) orbifold. The most general counterterm

localized at the two (inequivalent) fixed points is

Lct =

∫
d4x dy FµνF

µν
[
a δ(y) + b δ(y − πR/2)

]
(11)

According to the parity choice for Ai
µ and for the fields circulating in the loop, we

get different values for a, b as shown in the following table.

Ai
µ loop fields counterterm

(+, +)
(±,±) (±,±) a = b

(±,∓) (±,∓) a = −b

(+,−) (±,∓) (±,±) b = 0

(−, +) (∓,±) (±,±) a = 0

Notice that Z2 and Z ′
2 parities are separately conserved in each vertex and when the

gauge field is odd (parity (±,∓)) the only non vanishing diagrams are the ones with
an even (parity (±,±)) and an odd field circulating in the loop. This can happen if
the fields in the loop are gauge bosons; for minimally coupled matter the required
vertex is forbidden by symmetry considerations. Again, for Ai

µ with (−,−) parity,
no boundary counterterms exist and logarithmic divergences are absent. When
Ai

µ has parity (+, +) and the fields in the loop are both odd, all divergences are
canceled for a = −b; performing a Fourier decomposition in eq.(11) only operators
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corresponding to transitions 2n → 2n + 4k + 2 are present. This means that the
diagram of fig.(1b) with odd modes in the loop and zero mode external lines do not
give rise to logarithmic divergences, as one can check by an explicit computation.
This explains why in the matching functions (see the following section) all the µ-
dependence comes from even modes.

4 The matching equation

Our goal is to relate the SU(5) coupling g5 to the SU(3)× SU(2)×U(1) couplings
measured at the weak scale. In our scenario two different energy scales appear: the
weak scale MZ and 1/R � MZ which sets the typical mass for the heavy modes.
A useful way to deal with very heavy gauge fields was outlined by Weinberg in
[12]. The idea is to construct a low energy effective SU(3) × SU(2) × U(1) gauge
theory containing only light fields integrating out the heavy particles. The matching
consists in relating g5 to the SU(3) × SU(2) × U(1) couplings gi at the matching
scale µ. The effective action Seff is defined by

eiSeff[ϕ] =

∫
DΦ eiS[ϕ,Φ]+iSGF[ϕ,Φ] . (12)

Here the heavy fields are all the massive KK modes Φ = (V (n), Σ(n), H(n), H̄(n), H
(n)
c , H̄

(n)
c )

and the effective action depends on the zero modes fields ϕ = (V a (0), H
(0)
2 , H̄

(0)
2 ).

Once a suitable gauge fixing term SGF has been added to the action, the inte-
gration over the heavy fields is well defined. Splitting the gauge field into a “light”
A

L
and an “heavy” A

H
part, AM = A

L

M + A
H

M

A
L

M = A
a (0)
M T a

A
H

M =

∞∑
n=1

A
a (n)
M T a cos[2ny/R] +

∞∑
n=0

A
â (n)
M T â cos[(2n + 1)y/R] ,

(13)

the original action S has the following background symmetry

δA
L

M = DMξ
L

, δA
H

M = i[A
H

M , ξ
L

]

DM = ∂M + i[A
L

M , · ] ,
(14)

which coincides with SU(3) × SU(2) × U(1) gauge transformations; DM is the
covariant derivative with respect to the background A

L
. It is convenient to choose a

gauge fixing for the heavy modes which respects the low energy gauge transformation
of eq.(14) [12]. This way Seff is gauge invariant and the effective gauge coupling is
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read just by looking at the vector kinetic term, without further need to look at the
three point vertex. The simplest choice is the unitary gauge

∂5A
5 = 0 (15)

in which there are no ghosts. Another possible choice is the following background
covariant ’t Hooft ξ gauge [12]

LGF =

∞∑
n=1

− 1

2ξ

(
∂µA(n)i

µ − g5√
2πR

f ija A(n)j
µ A(n)a

µ − ξ
in

R
A

(n)i
5

)2

, (16)

where A
(n)
5 play the role of the Goldstone bosons. The functional integration over

the heavy fields gives a matching relation between the running low energy coupling
gi(µ) and the high energy parameters

1

g2
i (µ)

=
2πR

g2
5

+ ∆i(µ) + λi(µR) . (17)

In eq.(17) the first term is the tree level contribution from the 5-dimensional kinetic
term; the second one, ∆i(µ), also originates at tree level and represents the con-
tribution of the 4D gauge kinetic operators localized on the orbifold fixed points;
finally, the matching functions λi(µR) encode the radiative contribution from the
massive modes [12, 16]. As we already said, in dimensional regularization we only
get logarithmic divergences, so that the λi depend logarithmically on µ. At one
loop level, the diagram relevant for the matching function λi is the one of fig.(1b)
with all scalar, vector and fermionic massive fields circulating in the loop; it gives
in the dimensional reduction scheme with minimal subtraction (DR)

λi(µR) =
1

96π2

{[
bS
i − 21 bG

i + 8 bF
i

]
Fe(µR) +

[
b̃S
i − 21 b̃G

i + 8 b̃F
i

]
Fo

}
, (18)

with

Fe(µR) = I − 1− log(π)− log(µR) , Fo = − log 2 ,

I =
1

2

∫ +∞

1

dt
(
t−1 + t−1/2

)
[θ3(it)− 1] , θ3(it) =

+∞∑
n=−∞

e−πtn2

.
(19)

We denote with bS,G,F
i the constants Ci(r) defined as Tr(T aT b) = Ci(r) δab in a

representation r of the SM group i = SU(3), SU(2), U(1) for real scalars (S), vector
bosons (G) and Dirac fermions (F) with “even” mass 2n/R. The constants b̃S,G,F

i are
the same quantities for “odd” modes with mass (2n+1)/R. A numerical integration
gives I ' 0.02. The ln µ dependence of the λi’s is due to the even modes only (Fe),
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the diagram in fig.(1b) with odd modes circulating being finite. As discussed in
section 3 heavy modes with definite parity lead to a divergent term in diagram (1b)
which is −1/2 the zero mode divergent contribution; as a consequence the coefficient
of ln µ in our matching functions is −1/2 the one in the standard 4D case (see eq.(2)
in [16]). For the specific model considered we get

1

g2
i (µ)

=
2πR

g2
5

+ ∆i(µ) +
βH

i

8π2
log(µR) +

βH
i

8π2

[
log π + 1− I]+

β̃H
i

8π2
log 2

βH
i = (3, 1, −3/5) ; β̃H

i = (1, 3, 23/5) i = SU(3), SU(2), U(1)

(20)

We explicitly checked that both choices (15) and (16) for the gauge fixing give the
same result. One can verify that the coefficient of log(µR) in (20) agrees with the
result of ref. [8] after it is written at an arbitrary scale µ.

Eq.(18) can be used to perform a next-to-leading order calculation of gauge uni-
fication. In this equation the constant terms are specific of our chosen scheme, while
the dependence on µR is universal. In a supersymmetric theory this dependence
can be directly understood in terms of rescaling anomalies of the low energy theory
[17]. Considering just one group factor and focusing on the R dependence, eqs.(17,
18) read

1

g2(µ)
=

2πR

g2
5

+
1

8π2

(
C(A)−

∑
r

C(r)

)
ln R + . . . (21)

where by C(A) we indicate the Casimir of the adjoint representation, the sum
∑

r

extends over the bulk matter multiplets which have a zero mode chiral superfield,
and by the dots we indicate the R independent terms. The above equation can be
interpreted as the relation between the holomorphic (Wilsonian) coupling g2

5/2πR
and the physical (1PI) g2. Notice indeed that in the supergravity context the radius
R is part of a chiral superfield, whose scalar component is S = R + iB5, where B5

is the 5th component of the graviphoton. By analyticity and by the fact that B5

couples derivatively, the holomorphic coupling 1/g2
h can only depend linearly on S:

1/g2
h + iθ/32π2 = 2πS/g2

5 +const. Notice also that in the low energy lagrangian the
massless matter fields coming from the bulk have a wave function Z = 2πR ∝ S+S†.
Then one sees directly that in eq.(21), the term ∝ C(A) represents the well known
rescaling anomaly of the gauge multiplet wave function [18, 19] while the matter
contribution is just the Konishi anomaly [20].

Taking the µd/dµ derivative on both sides of eq.(20) we get

µ
d

dµ
∆i = −

(
βH

i + bMSSM
i

)
8π2

(22)
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where bMSSM
i = (−3, 1, 33/5) are the β-function coefficients in the MSSM. The ∆i’s

are free parameters and have in principle an important impact on gauge unification.
In order to preserve predictivity we need to be able to control the ∆i by reasonable
assumptions. By eq.(22) it is clear that it would certainly be unnatural to assume
that the ∆i are smaller than O(1/8π2). However it seems natural to assume ∆i ∼
O(1/8π2) at some given scale Λ. Around Λ, the tree and quantum contribution to
∆i would be comparable, a sign that some strong dynamics happens at Λ. Now, our
5D theory is strongly coupled at a scale ∼ 24π3/g2

5, so it is natural to assume that
this very scale coincides with Λ. This set of assumptions forms the basis of naive
dimensional analysis (NDA) (see for instance [21]). The resulting NDA estimate of
the ∆i gives a relative correction O(g2/8π2) to the gauge couplings at the unification
scale. This effect is small and predictivity is preserved. This situation is quite similar
to that of ordinary 4D GUTs. In that case the uncertainties come from the GUT
spectrum (see for instance [22]), which in turn depends on the superpotential mass
parameters and Yukawa couplings. The usual assumption is that all masses are
roughly of the same order and that Yukawas are of order 1. In this way there is no
hierarchy in the spectrum, threshold effects are small. Then the theory is predictive
and most importantly there is good agreement with the data. Like for the ∆i’s the
standard assumption on GUT masses and couplings is not unnatural. For instance,
it is stable under RG flow. But it remains just an assumption: any GUT model by
itself could have a large hierarchy of masses, precisely like we are familiar in the SM
where the top and electron mass differ by 6 orders of magnitude. Indeed it is more
the other way around: the fact that gauge unification works well suggests that the
GUT theory is weakly coupled with a fairly non hierarchical spectrum.

Indeed, with some more careful thinking, our 5D model supplemented with the
NDA assumption seems slightly better on the predictive side. The point is that there
is a parametric separation between the strong dynamics scale and the matching scale
1/R: ΛR ∼ 8π2/g2

GUT >> 1. If we consider eq.(20) for µ = 1/R, we have that the
threshold correction is controlled by

∆i(1/R) = ∆i(Λ)−
(
βH

i + bMSSM
i

)
8π2

ln(ΛR) ∼ −
(
βH

i + bMSSM
i

)
8π2

ln(8π2/g2
GUT ) (23)

When ΛR is very large the second term dominates the bare ∆i(Λ) ∼ 1/8π2, and
represents a definitely calculable threshold correction to gauge unification. One can
then check if this correction improves the agreement with the measured value of αs.
Of course, in doing so one should be aware that in the realistic case ln 8π2/g2

GUT ∼ 5,
which is not much bigger than 1: the unknown contribution ∆i(Λ) may not be so
negligible compared to the effect we are considering. Notice that concentrating on
just the ln ΛR term is practically equivalent to what done in ref. [8], where it was
(implicitly) assumed that the ∆i unify at the scale Λ. Our assumption is however
justified in a different way.
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5 Phenomenology

To compare with experiments we need to go down from the matching scale µ ∼ 1/R
to the weak scale MZ solving the RG group equations at the next to leading order
(NLO) with the initial conditions provided by the matching equation. The running
from µ down to mSUSY is determined by the MSSM spectrum; SUSY thresholds are
parameterized in terms of a single scale mSUSY [24]. From mSUSY down to MZ the
running is the one of the SM. We want to see the consequences on gauge unification
of neglecting ∆i(Λ) in eq.(23). Though, as we argued, this neglect is motivated (by
NDA) only when ΛR ∼ 8π2/g2

GUT ∼ 100, we will remain general and consider also
smaller values of ΛR. Following [2, 16, 23] one has at NLO

1

αi(M2
Z)

=
4π

g2
GUT

+ λi(ΛR) + λconv
i +

bMSSM
i

2π
log

Λ

MZ
+

(bSM
i − bMSSM

i )

2π
log

mSUSY

MZ
+

1

4π

∑
j

bMSSM
ij

bMSSM
j

log
[
1 + bMSSM

j αG log(Λ/mSUSY )
]

;

(24)

λconv
i is a conversion term from the DR scheme in which our computation has been

done to the MS scheme in which the SM αi are defined [2]. In practice we have used
eq.(20) with µ = Λ and imposed ∆i(Λ) = 0. In fig.(2) we plot sin2 θW (MZ) as a
function of αs(MZ), varying mSUSY in the range 20− 103 GeV for ΛR = 1, 10, 100.
Increasing the value of ΛR, the curve goes in the right direction, approaching the
experimental values αs(MZ) = 0.1181±0.002, sin2 θW (MZ) = 0.23117±0.00016 (MS
scheme) [25]. Similar considerations apply to the plot in fig.(3) in which αs(MZ) and
the unification scale 1/R are extracted using the experimental value of sin2 θW (MZ).
Indeed for the preferred value ΛR ∼ 100 the band of prediction (fig. 2) sits precisely
on top of the measured values, with an interesting improvement over tree level
matching. Unfortunately for this value of ΛR one gets also 1/R ∼ 1015 GeV, which
is somewhat smaller that the lower bound from proton decay 1/R > 5× 1015 GeV
[8]. Indeed for ΛR > 10, the right value of αS is obtained only for 1/R < 5× 1015

GeV. This is in agreement with what found in ref. [8]. While the strict NDA
assumption does not work too well, we should be aware that we are talking about
small effects: ln ΛR ∼ 5 is not a very big number and the ∆i(Λ) may play role.
In the end, we are forced to conclude that even though the running of boundary
couplings gives an effect that goes in the right direction we still need the help of
the almost comparable initial value ∆i(Λ) to agree with the data and satisfy proton
decay constraints.
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Figure 2: αs(MZ) as a function of sin2 θW (MZ) varying mSUSY in the range 20 − 103

GeV for ΛR = 1, 10, 100. The experimental point is shown in green.
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Figure 3: αs(MZ) as a function of mSUSY for ΛR = 1, 10, 100. The region between
lines of the same style represents the uncertainty coming from the experimental error on
sin2 θW (MZ). The region between the green vertical lines is the measured value of αs(MZ).
The predicted values for 1/R are shown in the different regions.
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6 Conclusions

We have applied the running and matching technique to study gauge unification
with one extra compact dimension. We have used dimensional regularization for
which power divergences are absent and which is therefore very convenient for do-
ing effective field theory studies [12]. Moreover dimensional reduction is needed
to consistently perform NLO calculations in supersymmetric theories. In orbifold
models the radius dependence of the matching function is determined by the mis-
match between the RG evolution of the low energy 1/g2

i and the RG evolution of
some gauge kinetic terms localized at the fixed points. The bulk gauge coupling
does not run, so it is just a spectator in the matching. The main role in determin-
ing corrections to gauge unification is played by the boundary kinetic terms: these
are free parameters and in general are not unified. Focusing on the SU(5) model
on S1/(Z2 × Z ′

2) of ref. [5, 8], we have discussed to what extent strong coupling
assumptions based on NDA can control these unknown effects and lead to a more
predictive set up. Our conclusion is that these models, when supplemented with
NDA, stay more or less on the same level as usual GUTs, where threshold effects
are controlled by assuming a non hierarchical GUT spectrum. Also in our case, in
order to get a better agreement with the measured value of αs, one has to rely on
small incalculable effects.
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