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@’ Abstract

Upcoming projects relying on pulsed linear accelerators intend to use
superconducting RF systems. Cost reasons suggest driving several cavities by a
common transmitter, controlled over a vector sum feedback system, possibly
supported by a feed forward system. Numerical simulations hint that such a system
may become uncontrollable under certain conditions. In the present paper, for a
model very close to reality, we will present a mathematical proof that in fact
spontaneous symmetry braking is possible for these configurations, defining also the
precise conditions under which it will take place. These can be used as an estimate for

the real RF system stability limits. The listing of a small program demonstrating the
mechanism numerically for two cavities is attached.
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1INTRODUCTION

When raising the field in a cavity, the Lorentz force will dlightly deform its shape and thus
change its resonance frequency. If the system bandwidth is small and fields are high — as generdly is
the case in systems applying superconducting cavities — this frequency change can lead to considerable
voltage deviations. When the RF system is pulsed, the cavity is excited to mechanical oscillations and
the tuner can only compensate the corresponding average detuning, but fast dynamic detuning remains.
Therefore a RF vector feedback correcting for these changes controls the transmitter.

In numerical simulations with ‘SPLinac’ [1], this mechanism always works well provided that
thereis only one cavity controlled by the vector feedback. However, when we supply several cavities
by the same transmitter, controlled by the vector sum feedback, control instabilities showed up under
certain circumstances, see e.g. Appendix A. Based on a modd, we will analyse these instabilities
mathematically in this paper.

For one cavity per transmitter the vector feedback perfectly controls the unique cavity voltage.
For more than one cavity driven by a single transmitter the vector sum feedback still controls the sum
voltage but has no influence at al on the other degrees of freedom of the system, i.e. how cavities share
the sum amongst each other. For identical static cavity parameters intuitively (without justification) we
assume that cavities equitably share the voltage. However, as we shall demonstrate in this paper, this
assumption is not always true; spontaneous symmetry breaking may take place.

Imagine two cavities driven by a common transmitter with al static settings (as static detuning,
Q. Power splitting, vector sum contribution) perfectly identica for both cavities. Let us assume now
that by asmall initial perturbation (noise) both cavities have a microscopically small mutua difference
in RF tune. Hence, due to the common transmitter, cavity fields are not identical while the RF is on.
The vector sum feedback will immediately adjust the drive to obtain a perfect vector sum, so one cavity
will have a deviation +dV, the other one —dV with respect to the nominal voltage. Hence the created
Lorentz force ‘kick’ for the two cavities will dlightly differ and hence also the additionally excited
mechanical oscillation amplitudes. This mechanism enforces that a the next pulse agan a tune
difference between the two cavities exists. Now it cannot be excluded that the tune deviation so created
islarger than theinitia deviation and is thus amplified from pulse to pulse to macroscopic size.

We will mathematically analyse this mechanism and establish the precise stability limits for the chosen
simplified model. As we shall see in the numerical examples, the mathematical predictions and the
simulation with ‘SPLinac’ agree quite well. Therefore the effect observed with ‘SPLinac’ is not a
computer artefact — always a justified doubt when a computer tells us things not initially expected — but
has to be taken seriously.

2THE MODEL

Precise behaviour with many system parameters can only be simulated numericaly, but we want
to understand the mechanism and estimate the essential parameter combinations. Therefore we have to
smplify in an intelligent way, not sacrificing essentia ingredients.

Thefirst simplification isthe use of a ‘rectangular’ RF pulse, i.e. the cavity field rises instantly
from zero to itsdesign field and at the end drops instantly to zero again. Generally the ‘RF on time’ is
short compared to the mechanica cavity oscillation period. Therefore we will even use the limit of a
short RF pulse length (‘delta function excitation’) where Lorentz force and ‘RF on time’ enter as a
product only. Practically this means that we do not take into account the precise shape of cavity
loading and unloading but use an effective Lorentz force averaged over the ‘RF on time'.

The second smplification is the application of a perfect RF vector sum feedback with infinite
gain and without delays. Practically this means that there are no voltage over— or undershoots and no
residual errors, the vector sum is aways perfect.

We will write down as a first step the general formula predicting the mechanical and voltage
amplitudes of the next pulse from the quantities of the previous one. Then we will determine the
equilibrium point, where the previous and following amplitudes are mathematically identical. Thisis

the point where we expect the system to settle after aninitia transient of afew linac pulses.



Findly we will derivein linear approximation how aninitial perturbation around this equilibrium
will propagate from pulseto pulse. The eigenvalues of the corresponding matrix equation will predict
the parameter settings for stability or instability.

The author has also programmed these formulas and checked that the matrix equation shows
exactly the same output as the formula generally vdid (for smal deviations from the equilibrium). A
listing of the (very short) program with the generally valid formula is given in Appendix C such that
the ‘unfaithful’ can check and run the program and see stability or ingtability according to small
parameter changes. The outcome can be predicted beforehand by inspecting the main eigenvalue,
calculated according to the formula (39) we will derive here, i.e. thereis a perfect agreement.

Also, numerical outputs from this program are shown in Appendix D for a typica example,
comparing two nearly identical settings, one stable —with an absolute eigenvalue dightly below unity —
the other unstable —with an absolute eigenvalue dightly above unity.

2.1 The Mechanical cavity movement

We assume a mechanical resonator excited by a constant force between 0 and T, (‘RF on’) and
oscillating free from T, to the linac repetition time T (‘ RF off’):

. : ) [, F 0<t<T,
(1) S+ 20 S+ WS = [

o O T, <t<T
with the mechanica resonance w,,,, and attenuation o = w, ., /(2Q,)- This equation of motion is
compatible with an additional free oscillation (homogeneous solution) of any amplitude s, — remainder
of the previous pulses. We use complex notation with s proportional exp(ict); the real part of s
represents the observed movement, the imaginary part being proportiona to the velocity. The free
oscillation frequency @ is determined by the resonance condition w/,,, — @ +2i cw=0. @ contains
the attenuation as the imaginary pat and can — for small attenuation — be approximated by
W = Wy, 1 0. The movement (inhomogeneous sol ution)

(2) Sm(t) = F(Q-exp(ia))

solves the equation of motion in 0< t <T, and, having the boundary condition s(0)=0, it fulfils the
continuity condition at t=0. This movement becomes at t=T,, where F drops to zero, an additional free
oscillation with the same amplitude to obey continuity of location (Re(s)) and veocity (Im(s)).
Thereforeintherange T, <t < T we get the solution.

©) S(t) = F-exp(ial))exp(im(t -T))) + s exp(i a)

Fig. 1 shows the equilibrium oscillation pattern for different duty-cycles T,/T with constant product
T, F = 1 including the ‘delta’ case where T, - O and F - . Fig.2 illustrates the cavity

momentum. We see the momentum transfer (‘kick’) during the ‘RF on time, especialy the
instantaneous ‘ delta-kick’.

For a’RF ontime’ T, short compared to a mechanical oscillation (3) can be approximated by a
delta-kick excitation (seefig. 1)

(4) st) = (s, — i@TF) exp(iat)
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Fig. 1: The mechanical cavity movement (repetitive equilibrium) with finite length of ‘RF on’ period for a ‘duty cycle T,/T" of
30%, 20%, 10% and 5% while conserving T, F = 1. For the ‘delta’ case thelimit T, — Oand F — 00 is shown.
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Fig. 2: As Fig. 1 but showing the mechanical speed/momentum of the cavity.



We see that the parameters T, and F no longer enter the problem individualy, but only their
product. s, is the amplitude of the resdua free oscillation caused by the previous pulses at t=0, just
before receiving the ‘Lorentz kick’. S(T) is therefore the similar amplitude just before the next
‘Lorentz kick’ at t=T". We get therefore the recursion relation from the ‘old’ mechanical amplitude

SO:'Aold tO S1:Anew by

(5) A = (A — I(@T, Flag) p

with the complex ‘transfer factor’ p for one linac repetitiontime T

(6) p = exp(ial) = |d (cos(y) + i sin(y))
(6a) =21/ )

(6b) o = exp(—n(fmech/ frep) / Qmech)

In fact, |p| is the damping factor of the mechanical oscillation during the repetition time T=1/f
and ) the mechanica phase advance during the same interva. We have indexed the expression
(w T, F) by ‘old since F may vary from pulseto pulse.

2.1.1 The equivalent tune change

Until now we have only talked about mechanicad movement. For small mechanica amplitudes
this movement is proportional to the cavity detuning with respect to its relaxed tune status. Therefore
we can interpret the above equations aso for the detuning. To keep the formula as smple as possible,
we will not use the detuning expressed in Hz but in bandwidths B of the corresponding cavity-
transmitter system. We thus write the cavity detuning as complex variable z — in fact the red part of z
isthe actual detuning —repeating (1) as
. . ,. _ WiF 0sts<T,

(7) Z+ 20z + W)z =[]
O T<t<T

If in (7) we apply F forever (i.e. T, - ), z and z will decay to zero and we will end up with
the static detuning under Lorentz forcez, = F. For a given constant cavity excitation we know to
express z, using the Lorentz detuning constant k, and the cavity field. Therefore we can immediately
express the detuning, measured in bandwidths, by

(8) F=2z=k E*B =k V*/( B)

where E is the cavity field, V its voltage and L the nomina cavity length. We can thus define the
‘Lorentz kick’ K, asafunction of the cavity voltage V

(9) Kod = @Onenhh Fog = |Vo|d|2(4nach T, k. /(L2 B) = K, |V0Id|2/V02
with the nominal (real) voltage V, and the nominal ‘Lorentz kick’ K, defined as
(10) KO: kL VO2 wrr‘ecth /(L2 B): kL E(? 6qnech-rl /B
and get the pulse to pulse recursion relation for the detuning equivalent to (5)
. 2
(11) Zoew = (Zold =i Ky [Vl /Voz) p

The actual detuning (in bandwidths) is Re(z).



2.2 The tune dependent cavity voltage with constant generator
A cavity driven by a constant generator, has a steady state voltage amplitude proportional to

1

(12) vi-—a———ro
1-1i 2Af/B

where Af is the cavity detuning with respect to the generator frequency and B is the system band width.
Since the RF feedback is assumed to have very high (infinite) gain, there are negligible (no) transients
when switching the field on, thus only the steady state exists. The detuning Af has two components,
one being the dynamic Lorentz detuning expressed by Re(z) (measured in bandwidths) as shown
before. Furthermore generally a static pre-tuning X, — aso expressed in bandwidths —will be applied
due to operationa considerations. It is set such that the oscillating cavity RF frequency approaches
about the generator frequency when ‘RF on’ is required, thus avoiding excess RF power. This pre-
tuning has to be considered constant since the tuner is too ow to make any sensitive changes on the
time-scale considered. We assume that al cavities have the same static detuning x,,. (real parameter).

tune

Therefore the voltage V, of cavity n for constant generator can be expressed with a constant G,
unique for al cavities, as

G
1-1 2(Xume + RE(7))

(13) V, =

2.3 The Vector Sum Feedback

The voltages expressed by (13) are added up as vectors (complex numbers) in the RF vector
sum device and the generator drive G is adjusted instantly by the feedback such that the average cavity
voltageisidentical to the nominal cavity voltage V. Thisenforcesfor N supplied cavities the constraint

n=N G N 1
14 V.= NV, O V= —
(14 2V = N 0% ) T 2k, + Rez))

fixing G and determining uniquely the voltages (13).

2.4 Pulsing the system

Following the most probable real operation, we may start with al cavities without oscillation,
thus the amplitudes are all equal to zero z, ,=0. However, there is no reason not to start with any other
set z

n,old"

Starting with the chosen set of z, equations (13) and (14) determine the cavity voltages V,, as
they are forced by the vector sum feedback during ‘RF on’, to obtain the perfect sum voltage. These
voltages will produce a‘Lorentz kick’ and equation (11) will give the new set of z, for the next pulse,
to be injected again into (13) and (14) for the next pulse. Cycling through this scheme determines
subsequently all future amplitudes.

Appendix D contains output examples of the program of Appendix C. They demonstrate this
mechanism with a stable (converging) case and a diverging one, both differing only by a minimally
changed parameter. Also some interesting outputs concerning a tune-scan are shown there.

3. The Equilibrium Condition

Mathematicaly there exists an equilibrium state where the system executes exactly repetitive
movements from pulse to pulse. For this case al N cavities — having identical static settings — behave
precisely in the same manner. Hence the vector sum feedback forces the same voltage V,, for dl of
them and they also feel identically the nominal ‘Lorentz kick’ K, as defined in (10). Therefore



equation (11) isvalid for al cavities without distinction and amplitudes exactly repeat under the
condition

- Ky p
1-p

The actua frequency deviation from the relaxed state is its red part, thus x=Re(z,). The
equilibrium constant G, from (14) then becomes

(16) Go =V (1= 21 %) % = X + Re(Z,)

Intuitively we expect that the system will settle at this equilibrium state after a short transient
period. However, aswe will prove in the following chapters, thisis not always the case.

(15) zeqz(zeq—iKo)pD Z=

On closer examination this approach for the equilibrium-state is even somewhat naive. For
stronger detuning there exist in fact other stable equilibrium cases where both cavities do not have
equal amplitudes (caled ‘split-stable’). Therefore, if an instability starts around the ‘naive
equilibrium, it can get caught again in this split state and stay stable there. Also ‘breathing’ can happen
when the system walks forward and backward between two nearly stable situations without growing
amplitude. One instructive case observed numerically for two cavities is the exchange of equilibrium
position from pulse to pulse, thus each cavity comes back to its initial amplitude each second pulse
only. All this can be demonstrated straightforwardly with the very small and easily understandable
program in Appendix C.

On the other hand if such effects start we are ‘lost’ in any case. Therefore we will not do a
(probably very complicated) detailed analysis of these cases. If we can guarantee stability on the
‘naive’ equilibrium, our RF system will do what it should do. What happens once the instability starts
is of amore academic interest.

4. Perturbations around the Equilibrium Condition

Let us assume that the amplitudes z, are very closeto the (‘naive') equilibrium condition and we
write with small dz, and dV/

(17) z, = Z, +dzn
(18) V. =V, +dV,

We express equation (11) using (17) and (18) and subtract the steady state equation (15)
yielding the recursion relation for the deviations

(19) dznnew = (dzn,old = K (‘1+dV old/ ‘2 _1)) p
or to first order
(20) Az, e = (dzn,old -1 2 K, Re(dv, nold)/Vo) P
V, being areal number. The cavity voltages according to (13) become
G
(21) Vn,old = . ; XO = Xtune + Re(zeq)

1-i 2(x, +Re(dz, 44))

or to first order in dz,

G 21 Re(dznnew 0 2i Redz, )0
22 V. = _ ,
(22) nod = 7 2|x051 1-2ix B S H 1-2ix H




with anew constant G’'. The normalization condition (14) determines G’ to first order

H 1 2 N U
23 SRV R
@39 G =Vl 1oy DRG]
thus we get
21V, s 0
(24) av, 4 = @?e( od) Re(dz,, ,4)
old 1-12x Zn,0ld mz:l Zm,ld%

N
holding precisely Z dV, =0. Therea part of dV  isthusto first order
n=1

N [
25) RAM,s) = =1 e Re000) > RAGaa)]

yielding finally the fundamental recursion relation

O . - 1]
26) o = [Woagn + 1 & (R 00) 0 > RelGz0) ] P

(268.) Wn:hf — ]8- K04Xo2 - 8 KO ((Xtune+RZ((ZEQ))))2
taX 1+ 4 (X, +Relz,

5. The Equivalent Matrix Equation

In (26) we haveto use the real part of dz,, thuswe split dz, into itsreal and imaginary part, dz, =
dx.,+ i dy,. We rearrange the N-fold equations (26) by defining the two N-vectors (dx) and (dy), (dx)
having as components dx, to dx,,, and (dy) the components dy, to dy,,. Furthermore we define the 2N-
vector ((dx),(dy)) with the components (dx,..dx,,dy,..dy,). The caculations with Re(dz,) can be
expressed by a NxN matrix P, having —1/N in dl non-diagona elements and (1-1/N) in the diagona
elements

M-1/N -1/N . -1/N[
O-1/N 1-1/N .. -1/NUO
(27) =0 0
Q—l/N -1/N . 1—1/N§
yielding
O _ O 1 O 0dx, O
DRe(dzl) ZRe(d )D o = N mzzldme -
(28) O D—D . U=-ppo" 0
Re(dz) - L S Re(ciz )1 Ed Lswn B R
z,)—— Xy — — X
Feda) =y 2 Reldm)g N 2%05 BB
The multiplication of dz, with the complex factor p becomes
(29) dz,Cp = (p, dx,—p dy,) +i(p dx, +p dy,)



which can aso be expressed in matrix form. Then we can write the recursion relation (26) for small
amplitudes close to the equilibrium state in matrix form

gpr -p ¢ P} {_pi} 00Xy 0 _ [OX e, O
P+ p & F} {+pr} %Ymdg EdynewE

where al four curly brackets { } correspond to a NxN matrix, the scalars p,, p, and & are to be
interpreted as this factor times a NxN identity matrix. To investigate if any initial perturbation grows or
decays again, we have to determine all eigenvalues A of the corresponding eigenvalue equation with the
system matrix T

[ox - p ¢ —py O X [oix
@ T o=t 0 ia ahd-E

(30)

6. Solution of the Eigenvalue Equation

The apparent complexity of the 2Nx2N eigenvalue equation can be reduced due to the fact that
only Pisatrue matrix. All other components are * disguised scalars — multiplied by an identity matrix
—for which any vector is an eigenvector, the eigenvalue being the scalar. Therefore let us assume that
we know an eigenvalue [ of the matrix P and a corresponding eigenvector (dx),,.

(32) P (dx), = (),

Then the 2N-dimensional equation (31) is equivalent to the two N-dimensional equations
(33) (- P Ep-2)(), - p(dy), = 0O
(34) (0 + o &p)(d), + (o -A)(dy), =0

These can be solved for a(dy), co-linear to (dx),, e.g. defined by (33), but also the determinant
of the system has to vanish (characteristic polynomial), i.e.

(35) (o= o Eu=A)o.=A) + (o, +p &l =0
whichis solved by

(36) A= p - t&up = (o, - séup,) - o
i.e. we obtain two eigenvalues A, for each eigenvaue p of P.

All'N eigenvalues i of P can be determined easlly. Let us assume a vector (dx), where dl
componentsareset to ‘1'. Practically this means dl cavities have the same amount of voltage dV too
much. One sees immediately that P as defined in (27) will transform this vector onto the zero-vector,
thus u=0. Practically this meansthat such avector cannot survive in the system since there would be a
net voltage deviation, in contrast to the system definition that the vector feedback cancels al overdl
deviations immediately, thus transforming any existing component to zero.

We construct another vector (dx), where al components are equal to zero except the first one,
set to -1, and a single other component, set to +1. Practically this means that the first cavity has a
voltage deviation -dV and the other single cavity the deviation +dV, dl others being perfect. Therefore
the RF vector sum is correct. Thisvector will be transformed by P (see (27)) exactly onto itself again,
thus p=1. Since we have N-1 possibilities to placethe‘+1" component, the eigenvalue p=1 of P exists
N-1timesand any linear combination of these eigenvectors is an eigenvector for this case, al having
no total voltage deviation. In practice this means that the feedback does not change any vector that has
the design sum voltage. Therefore we have identified all N eigenvalues and eigenvectors of P.



For the unique case =0 the corresponding pair of system eigenvalues A, , becomes

(37) Ao = P 21 P,

The other pair of eigenvalues A, , for the case u=1 (with multiplicity N-1) becomes

2

@ A= b, = 380, (o - 4e0)

Since the 2Nx2N matrix T has 2N eigenvaues and we have found one pair and (N-1) identica
pairs, the determined set of eigenvaluesis complete.

7. Discussion of the Solutions

At each multiplication with the real matrix T the length of an eigenvector is scded by the
eilgenvaue, provided the latter is real. Also for complex eigenvalues a smilar statement holds, but the
scaling factor isthe absolute value of the eigenvalue. Some details of this case will be briefly discussed
in Appendix B. An initial random perturbation contains contributions from al eigenvectors (see aso
Appendix B) and for any egenvadue with absolute vadue larger than unity, its corresponding
eigenvector contribution will not stop to increase, thusthe system is unstable. If there are severa such
eigenvalues, the largest one will dominate the growth. Only if al eigenvadues have absolute vaues
smaller than one, any initial perturbation will decay and the system will settle onto its ‘naive
equilibrium state. We will determine now the conditions for which al absolute eigenvalues are smaler
than one.

The eigenvalue pair A, ,in (37) is complex and has the absolute vaue |p|. However, p describes
a damped oscillatory movement (see (6)) and therefore its absolute vadue is dways below one.
Therefore the eigenvalue pair A, , cannot cause any instability.

All remaining eigenvalues of T are (N-1) identical pairs, thus we have to examine only one pair.
For the further discussion of A, in (38) it is convenient to introduce the parameter o

@=p -3 0O A ax jat pf

(39)

For further discussion we consider p as a fixed vaue, determined by the repetition rate and the
cavity mechanica resonance, and vary a — in fact the parameter & — which is a function of the cavity
field and RF tune.

We will have to examine three distinct ranges for |a|

71 Range 1: |a| < |o|

The expression under the root in (39) is negative and the eigenvalues are complex. We can
express (39) then with real and imaginary part as

(40) A= a tipf -a?
with the absol ute value squared
(41) Af=a® +pf -a® =of

p has an absolute value smaller than one and we conclude

(42) al <lo| O al¥ |pt 1 O stability

10



72Range 2 |p| < o] < %(1+|p|2)
The left inequality guarantees that al eigenvalues are rea. The right inequality enforces
indirectly [a| < 1—since |p|° is smaller than one—and it can be transformed to

(43) af ~lof < 1-2a] + @ = (1-pl)]

In (43) both sides are positive. In this case (43) is equivaent to the same inequality with the
positive roots. Since 0 < 1-|a|, we obtain

(442) al + ylaf* -pf <1

Exploitingthefactthat >0 O |8 a O  f| o p:|2 A ., weconclude
(44b) fora >0 O A< 1
Multiplying (44a) by (1) and inverting the inequality condition yields

(44c) -1 < -fa| = |laf" ~Jof
Explaitingthefactthat @ <0 O- ¢ a O- k| bf p&° A_,weconclude

(44d) for a<0 O- & A_

Trivially the following condition always holds (left we subtract, right we add to |a)

(45) af ~lof" < 1+2@| + " = (L +p|)’

Both sides are positive, thus (45) is equivaent to

(46a) Hal + \laf -pf <1 O (for &« 00 A, 1)
Multiplying (46a) by (1) and inverting the inequality condition yields

(46b) -1 < |a| - Jaf -pf O (for & 00- <1 A.)
Using the fact that per definition A_ <A, we conclude that within ‘range 2’ the inequalities

(47) “1< AL <A, < +1

+

aways hold, enforced for postive a by (46b) and (44b), and for negative a by (44d) and (46a).
Therefore, combining ‘range 1’ and ‘range 2' examined till now, we conclude

(48) ol < 3(1+pf) DO sability
7.3 Range 3: %(1+|p|2) < |a

If we assume that |a| isjust on the edge of the above inequality, i.e. as an equality, we have the two
cases for positive or negative o

(492) O<a=+i1+pf) O Az & a* pf=+1

(49b) 0>a=-1+pf) O A= & a2z pf=-1

11



If for positive a in (49a) we increase a by any amount, A, increases above +1 and if for negative a
in (49b) we increase its absolute value — i.e. we decrease o — by any amount, A. becomes less than —1.
Therefore we conclude:

(50) %(1+|p|2) <la| O instability
The limiting case A=t1, where an initial perturbation will ring forever with neither growth nor

decay, is a mathematical artefact without practical interest. Hence we conclude that (48) covers
exclusively all stable cases.

7.4 The General Stability Condition
We now re-inject the definition (39) of a

(51) I, - &1 < H1+lo) - stability

Going back to the basic definition (6) of p and dividing by (|p|/2) we separate attenuation and
phase advance in p and finally obtain the stability condition

_ 1 0 .
(52) 2 co - & sn < + - stahilit
| 2 cosly) - & sin(y) | R s y
with
(52a) ol = e0(~T (fre/ fip) / Quun)i & = 2 71 (Frn/ i)
(52b) p = |of (cos(y) + i sin(w))
_ 8 KO XO _ 8 KO (Xtune+Re(zeq))
(52c¢) é = 5 = 5
1+ 4 x5 1+ 4 (xtune+Re(qu))
(52d) Ko= V2w, T, k /(> B) = w., k /(L® B) JT'VZdt
0
(52e) Xo = Xue ¥ RE(Zg): 2y = —1|_—K0pp Xune USEr tunable

Practicaly ¢ and |p| are given by the cavity design and linac repetition parameters and these
determine the stability limits g, and &, by (52). Therefore we can determine for an assumed field

level and RF pulse length the parameter K,. This determines the limits n,, =¢,,/(2K,) and

Mow = & /(2K,) of thefunction n = (4 x,)/(1 + 4 x¢); n isbound by the absolute value 1. Then
all cases with atune status x, —which is the cavity detuning (in bandwidths) a the instant ‘RF on’ is
required — within this range are stable. We have depicted this function with hypothetical limits — the
genera case—infig. 3. Wefind acentral stable region enclosed by two unstable regions. Outside we
have again two stable regions but they are of no practica interest since the cavities are far out of tune
and the RF power would be excessive. If n,,, would be larger than 1, the upper unstable region would
vanish; if also n,,, would be smaller than —1, al unstable regions would disappear. This is only
possible for very low K, equivalent to very low field

12
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Fig 3: Stable and unstable regions. Dashed lines are the limits ],,, = Eup/(ZKo)and Niow = ElOW/(ZKO), the
corresponding ‘inner limits' x,,, and x,,, are depicted as vertical lines as well as the *outer limits'. Whenever 1] = ¢ /\ZKO) is
between the limits n,, and n,,,,, the system is stable. If |n|>1, the corresponding instability region disappears and if both [,

[>1 and |n,,[>1 the system is stable for al tuner positions.

8. GENERAL PRACTICAL IMPLICATIONS

8.1 Cavity mechanically ‘on tune’ or ‘anti-tune’

The right-hand side of (52) is aways larger than two for |p|<l Therefore we see that for
sin(P)=0, the system is always stable. There are two possibilities to realise this condition.

Oneisacavity ‘mechanically on tune', i.e. it makes an integer number of oscillations within the
linac repetition time. Then stability exists despite the fact that the mechanical oscillation of the cavity
may become huge due to this resonant condition. This strong excitation will probably cause materia
fatigue and will be avoided by the mechanica engineers. Also the cavity RF frequency will change
considerably during the —in reality not infinitely short —*RF on time' when the mechanical amplitude
ishigh.

The second possibility is a cavity ‘mechanically on anti-tune’, i.e. it executes exactly a half-
integer number of oscillations within the linac repetition. This condition coincides also with the
smallest mechanical amplitude and is therefore very attractive. However, it isvery difficult to hit exactly
this condition. Therefore we should assume sin()#0 for a redistic design, and maybe also exclude
sin(y) being very small.

8.2 Istherean intrinsically stable set-up ?

For sin()#£0, by increasing &, it is dways possible — at least on paper — to break the condition
(52), thusthereis no redlistic set-up that isintrinsically free from instabilities up to al field levels.

8.3 Isthere a preferred mechanical cavity frequency condition ?

If we would change the cavity design such that the angle g goes to ' =+T1, i.e.sin(y’)=-sin(y)
and cos(y’ )=-cos(ls), the condition (52) is broken at exactly the same & since the absolute vaue enters
on the left-hand side.

If we would change the cavity design such that the angle Y goesto @' =y+11/2 i.e. ether sin(y’)
or cos(y’) change their sign and the other one not, the condition (52) is broken at exactly the same
absolute |§| but with opposite sign.
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Therefore there is no preferential ‘quadrant’, only the total distance from the closest mechanical
resonance condition isimportant.

8.4 Can we guarantee £=0 ?

If we could guarantee dways that £&=0 (very small), there would also be no ingability,
independent of the cavity mechanical conditions. We can assume that the cavity is already designed
with aminimum possible Lorentz constant k; and the design voltage is an externa constraint, thus we
have no handle on K, any more (see (52c)). The other parameter is X,, representing the cavity tune
status at the instant when *RF on’ isrequired. It can in theory always be tuned to zero sinceit is a sum
(see (52e)) where one term is the RF tune-setting X, of the cavity. However there is one technical
difficulty. If we change the design voltage, K, and with it the equilibrium position z,, x,=Re(z,)
changes. Therefore each voluntary or involuntary change of the operational voltage of the cavity has to
be followed by a corresponding change of tuner setting (which isaso in the interest of minimising the
necessary RF power). An additional difficulty arises due to the fact that in a real machine there is not
an exact instant of ‘RF on’ as used for our model. In redity there is a certain lap of time while RF is
on during which the cavity RF frequency changes. Therefore x, becomes more difficult to measure to
drive atuner feedback to keep & small.

The condition (52) gives the alowable range within which x, has to be kept to avoid this
instability.

& also becomes small if x, gets very large. However, this idea is not realistic since this means to
work with astrongly detuned cavity requiring forbidding RF power.

8.5 Isthere a most safe tuner position ?

There are two ways to break (52), a podtive and a negative one. For the discussion we assume
that the mechanica frequency is in the quadrant with cos()>0 and sin(y)> O; other quadrants are
identical except the choice of signs (see 8.3). The two limit conditions become then with

L = (o +1/0)

. 2 cofy) + L
53 2 - ¢ =L 0O & _
(53) cof(y) - &, sin(y) & Sn(w)
The *central point’ of both limitsistheir average
_2cody) _
(54) Ecent - SIn(L,U) - 2C0t((l/)

and the ‘problem free’ range has the width
+ L = * 2
sin(y) sin(y)

where we have approximated L by 2 (vaid for a not too strong attenuation). However, this
consideration is not always applicable since a voluntary static detuning by ¢ (see e.g. (13)) means an
overpower of

(59) A=

(56) PRF — 1 + 4 Eczent
I:)FZF,min 1

prohibitive for larger &.
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9. NUMERICAL EXAMPLES

First, we derive an approximation formula. In reality the cavitieswill beloaded and unloaded in a
finite time and have a beam pulse of finite length. We assume that loading has about a linear rise, the
beam pulse the field is constant and unloading takes place with the system energy decay time constant
T, = Q. / wge . Therefore we haveto replace T, in (52d) by

(57) <Tl> - Vioz‘l’vz(t) dt = |éﬁli--rrise + Tbeam +2_§
0 RF

For the following analysis we use the stability criterion given in (52).

9.1 SPL

For SPL [2] it was planned to run with 75 Hz repetition rate' and the LEP2 cavities — probably
similar to the planned 3=0.8 cavities — have the main resonance very close to 100 Hz. As mechanica
Q-vaue we have assumed 38 (in the ballpark between 20 and 50 matching the LEP2 cavity
observations), so we have

(58) cof()=-05 sin(y)=0866; [0=089%6 - |d + 1 22012

o)

The stability condition (52) then becomes| & 0.866 +1| < 2.012, i.e. we remain stable for
€= -3478<E<+1.169=E,

The SPL RF frequency is 352 MHz withaQ,,, of 3 10°%, thus B=117 Hz. The Lorentz constant
was measured to —2 Hz/(MV/m)?, therise timeis T,_=2 ms, and the beam pulse T, =2.2 ms, thus we
get with the formula (57) <T,>=4.2 msyielding

BYK, = Vy w (T k /(L By=E%., w(T,) k /B=-45007 E[MV/m]

Using the definition (52) for & and the abbreviation =4 x,/(1+4x}) — i.e we have
=2 n K,—wekeep stahility for
(60) —12.99/E’[MV/m] < n < 38.64/E MV/m]

From the definition n =4 x0/(1+4x§) we see (fig. 3) that its absolute maximum is 1.

Thereforeaslong asE is beow +12.99 MV/m = 3.6 MV/m, we are safe for all tuner settings. If we

stay below ~/38.64 MV/m = 6.2 MV/m, there is an infinitely large stable range for positive detuning
but an unstable region for negative detuning. From n we get X, by

(61) X = %(1 £ 1-17)

where we have to take the negative root for the limit closer to the centra region. Let us assume
now that wetry torunat 2, 6, 8, 9, 10 and 11 MV/m. We get the following table:

! Updated plans talk of 50 Hz, thus the main cavity frequency becomes be a multiple of the repetition frequency ...
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E[MV/m] KO nlow  nup  x0low xO0up x0.ow xO.up Af[HZ]
2 0.18 -9.6611 3.2472 00 00 00 00 o0
6 1.62 -1.0735 0.3608 00 0.0933 00 2.6783 00
8 2.88 -0.6038 0.2030 -0.1680 0.0513 -1.4881 4.8760 25.65
9 3.645 -0.4771 0.1604 -0.1270 0.0404 -1.9691 6.1957 19.58
10 4.5 -0.3864 0.1299 -0.1005 0.0326 -2.4872 7.6663 15.58
11 5.445 -0.3194 0.1073 -0.0820 0.0269 -3.0491 9.2887 12.74

Table 1: Stable limits for 2, 6, 8, 9, 10 and 11 MV/m cavity operation in SPL as predicted by the model calculations. Af is the
range between X,,,, and x, ,, transformed into Hz

For comparison we have done simulations with ‘ SPLinac’ with two cavities connected to one
transmitter, we have dlowed alimit 2 MW of RF power, largely overpowered to be as independent as
possible of small changes during cavity loading.

For a chosen field level we have scanned the static detuning; the absolute sefting is less
|mportantsmce it is difficult to define the cavity frequency swing X.=Re(z,,) at the ‘instant’ of ‘RF
on’ sincein redlity thisisalap of time during which the frequency moves. Firg we have searched for a
field level a which thereisno instability for any tune setting; predicted were 3.6 MV/m. However, we
found instabilities at negative tune settings for fields aslow as 2.5 MV/m, but none a 2 MV/m. Teble
2 shows the results.

Af fO[107]  Af[HZ] observation
-6 -211.2 stable
-4 -140.8 stable
-2 -70.4 stable
-1 -35.2 stable
0 0 stable
1 35.2 stable
2 70.4 stable

Table 2: Simulation with ‘SPLinac’ for the same case with E=2 MV/m, cavity frequency swing —13 to +8 Hz, centre at —2.5 Hz

The modd predicts that there is an infinitely large stable range for postive detuning but
instability for negative detuning if we stay below 6.17 MV/m. In the smulation we have tested the
field level of 6 MV/m, table 3 shows the results, they behave as predicted by the model.

Af fO[107] Af [HZ] observation
0 0 unstable

1 35.2 unstable

2 70.4 unstable

3 105.6 unstable

3.1 109.12 stable

4 140.8 stable

5 176 stable

6 211.2 stable

7 246.4 stable

8 281.6 stable

9 316.8 stable

10 352 stable

12 422.4 stable

Table 3: Simulation with *SPLinac’ for the same case with E=6 MV/m, cavity frequency swing —120 to +79 Hz, centre at —20.5
Hz
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Therefore we have smulated afield level of 8 MV/m and in fact, as predicted by the model, there
isinstability below and above a small stable range. Table 4 shows the corresponding results.

Two new effects appeared here, one caled ‘split-stable’. When pulsing, both cavities behave
completely identically for quite afew pulses but then start to separate asin the standard unstable cases.
However, after a few pulses the assumed growth stops and a new equilibrium is established with the
two cavities dightly distinct, but the pattern exactly repeating from pulse to pulse. Similar behaviour
can be found with the smple model simulation program of Appendix C. The second effect was called
‘breathing’. It starts as dl instabilities do but stops growing and settles on a pattern that does not
repeat from pulse to pulse but that executes limited changes. This can be attributed to non-linearities in
the system.

Af fO[107]  Af[HZ] observation
3 105.6 unstable
4 140.8 unstable
5 176 unstable

5.7 200.64 unstable
5.8 204.16 stable
6 211.2 stable
7 246.4 stable
7.7 271.04 stable
7.8 274.56 split-stable
8 281.6 split-stable
8.1 285.12 breathing
8.3 292.16 breathing
8.4 295.68 unstable
10 352 unstable
12 422.4 unstable

Table 4: Simulation with *SPLinac’ for the same case with E=8 MV/m cavity frequency swing —217 to +142 Hz, centre at —37.5
Hz; stable range 67 Hz

Finally we have increased the field to 10 MV/m and thereis no principal change compared to the
8 MV/m case but the stable range is smaller. Table 5 shows the results.

Af/f0[107]  [Af[HZ] [ observation
8.7 306.24 unstable
8.8 309.76 stable

9 316.8 stable
9.2 323.84 stable
9.4 330.88 stable
9.6 337.92 stable
9.8 344.96 split-stable
1 352 breathing
10.3 362.56 breathing
10.2 359.04 breathing
10.4 366.08 unstable

Table 5: Simulation with ‘SPLinac’ for the same case with E=10 MV/m, cavity frequency swing —3 28to +220 Hz, centre at -54
Hz; stable range 28 Hz

We have seen that the model predicts quite well the smulated behaviour, only the precise field
levels at which atransition occurs and how wide the stable rangeis, differ by a factor 2-3 in range, but
much less for the threshold fields. However, this can partly be explained by the non-linearities that
shift the equilibrium status differently from the predicted by the linear model.
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We have aso simulated with * SPLinac’ casesat 10 MV/m at the edge of instability. The system
was set up with 2, 4, 8 or 16 cavities connected to a single transmitter without any other change of
parameter, except the transmitter power limit scaled with the number of cavities. For al set-ups at the
start the system settled on an equilibrium, seemed to stay on it, but after more than 100 pulses the
instability that was hidden before reached visble size and drove the system into a chaotic movement.
This demonstrates well the independence of the instability condition from the number of connected
cavities.

9.2 TESLA

TESLA [3] runs a 5 Hz repetition rate; the main mechanica resonance [4] has a frequency
around 280 Hz and a Q-value of about 20, thus |p|=1.5 10™. This attenuation is so strong — the
repetition frequency being much lower than the mechanica frequency — that there is so to say no
coupling from pulse to pulse. Therefore the limiting vaue (|p|+1/ |p|) of (52) is so large, that any
reasonable ¢ is alowed without risking a control instability. This fact is certainly welcome to the
TESLA team. On the other hand if for a test the TESLA cavities cannot be pulsed much faster than 5
Hz (even the foreseen option of 10 Hz is largely insufficient) the threshold cannot be approached and
no useful experimental comparisons can be made with these calculations.

10. CONCLUSIONS

We have shown in this paper that there can be areal problem in a pulsed RF system when a
single transmitter supplies several cavities that fed sendtive Lorentz detuning. The model used is
based only on simple assumptions and basic physics laws but still very close to the real object.

We have found with the model that
* For very low field there isno instability at all, independent of the tuner setting

» For medium field leve instability appears on one side of the tuning range, the other side
remains stable. Which side this is depends on the ratio of cavity mechanical resonance and the
machine repetition frequency

« For high field level —and thisisthe range of planned operational fields— a central stable tuning
region is enclosed by instability regions on both sides. This is in contrast to the classica
ponderomotive instability which ‘works only on one side of the tune range?. The width of this central
stable region shrinks with rising operationa field and can become rather small causing operationa
difficulties. Further outside are stable regions again but these are of no practica interest (very large
detuning requiring large RF overpower).

* The threshold is independent of the number of cavities connected to the unique transmitter
(provided there are @t least two).

The same principal findings were made with smulations of the same RF systems with
‘SPLinac’, which models all details of cavity loading, unloading and RF power limit with vector sum
feedback (all ‘real-world errors were set to zero). Evidently the numerical thresholds differ somewhat
between the model cal culations and the more detailed simulations. However, in view of the concordant
findings, one can have confidence that ‘SPLinac’ describes such a system correctly. Hence, any
problem encountered there has to be taken serioudly.

To circumvent the general problem of this control instability, it might be envisaged to use a more
intelligent ‘ detector’ than a straight vector sum. However, asintelligent as the controller might be, with
only one handle — the RF power — nothing more can be done with this additional knowledge. The only
way out is supplying additional handles, either a single transmitter per cavity, a rapid tuning system
much faster than the cavity oscillation period or afast mechanical actuator [5] controlling the individua
cavity movements (which then also partly acts asfast tuner).

2 There are several analysis of ponderomotive oscillations; the author has done one for LEP2, including growth rate
plots positive on one, negative on the other tune side (CERN-SL Note 95-119 (RF) (1995))
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APPENDIX A: EXAMPLE FROM ‘SPLINAC’

The example shows a RF system with two cavities starting up a 10 MV/m. The sum voltage
(zero suppressed) is drawn in blue, , both cavity
movement/detuning in black (these traces of both cavities graphically overlap at the beginning). The
system seems to settle on arepetitive equilibrium but after about 75 pulsesthe instability that is hidden
till then has grown to visible size, completely taking over soon after.

Transmitter 74 Cav|[ 74, 75] \

A \m
N

AV/n (-5.00, 5.00) MV Af + 500.0 Hz t0 0.000[ms] k& 13.333[ms]> Joachim Tuckmantel

Fig Al:Start at pulse 1 with cavities at rest

. / h

AV/N (-5.00, 5.00) M\f Af + 500.0 Hz t0 2.533e-01[§] < 13.333[ms]> Joachim Tuckmantel

<

Fig A2: Equilibrium stabilized at about pulse 20
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Transmitter 74 Cav|[ 74, 75]

e

AV/ (-5.00, 5.00) M\f Af + 500.0 Hz

t0 9.200e-01[} < 13.333[ms]>

/ N\

Joachim Tuckmantel

Fig A3: Still running on equilibrium at pulse 70, at least it looks like ....

Transmitter 74 Cav[ 74, 75]

)

<Sha

AV (-5.00, 5.00) MVf Af + 500.0 Hz

t0 1.013e+00[] < 13.333[ms]>

N

<

Joachim Tuckmantel

Fig A4: First indication of separation of the two cavity movements at pulse 77
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Transmitter 74 Cav|[ 74, 75]

e

AV (-5.00, 5.0) MV} Af + 500.0 Hz t0 1.080e+00[}] < 13.333[ms]>

VN

Joachim Tuckmantel

Fig A5: Clear separation of the two cavity movements at pulse 82

Transmitter 74 Cav| 74, 75]

t0 1.147e+00[] < 13.333[ms]>

Joachim Tuckmantel

Fig A6: Irrecoverable chaotic movement after pulse 87
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APPENDIX B: COMPLEX EIGENVALUES FOR REAL MATRICES

We will open a parenthesis here concerning the question of complex eigenvalues of a real matrix
T in an N-dimensional red vector space — thus with red vectors exclusvely — which at first looks
contradictory. When the characteristic polynomial of T contains a (2™ order) factor irreducible with
real roots, we consider T as a complex matrix that has ‘accidentally’ a zero imaginary part. Then we
obtain a complex conjugate eigenvaue pair. In this case there exist no real eigenvectors but a
2—dimensiona real elgenspace — a plane embedded in the N-dimensional vector space — spanned by
two red vectors®. T images any vector in this plane onto another vector in this plane and ‘in average
scaled in length by the absolute value of the complex eigenvalue.

To demonstrate above statements, let us assume that the real Matrix T has a (unique) complex
eigenvalue A=ati*b, with real aand b, and the corresponding complex eigenvector A+ i*B, A and B
having N real components each, thus

(B1) T (A+iB)=(a+ib) (A+iB) = (aA-bB) + i (aB +bA)

Since T isred, itisidentica to its conjugate. Therefore we get immediately the other eigenvalue
and the corresponding eigenvector in conjugating (B1)

(B2) T (A-iB)=(a-ib) (A-iB) = (aA-bB) - i (aB +bA)
Adding or subtracting (B1) and (B2) yields the purely real equations

(B3) TA= aA-bB

(B4) TB=bA+aB

and in the following demonstration we will not use complex numbers any more. We can define now a
2Nx2N equation expressing T"A and T™B. In fact, the above equations (B3) and (B4) can be
combined as

o OprtAD Ml -b Ig0AQ

(B9 o THEBH T B a HEH

where ‘0’ isaNxN zero-matrix and | the N-dimensiona identity matrix. The matrix on the right hand
side can in fact be interpreted as a 2-dimensiona rotation matrix multiplied with a scaling factor, the

|atter isthe absolute value of |A| = v/a* +b? . Therefore we can rewrite (B5) as

T OOA [to | -sin 1O CA
(B6) @0 T@ EB% = W Esns((;l/j)) | cos((n/(fl))l EEB%

with tan(¢)=b/a and |A|=~a® +b®. A product of two (2-dimensiona) rotation matrices is a
rotation matrix itself with an angle corresponding to the sum of the two angles. Therefore we can write
immediately

o™ 00CAD » eos(my) | —sin(my) 10 0AQ

®D Ho HEH T Binlmy) 1 codmy) 1 B EB8

% If the same eigenvalue exists M times, there is an eigenspace of 2M vectors. In fact this situation is even the case
here since T has N-1 identical eigenvalue pairs. But the important fact is (for more details for the case M>1 see any
textbook on linear algebra) that — exactly asfor M=1 demonstrated here - each vector of this 2M dimensional eigenspace
is imaged onto another vector in this eigenspace and the change in vector-length is always governed by the absolute
value of the eigenvalue.
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Any initial vector aA+pB from this eigenspace, isimaged by T™ then as

(B8) T"(aA+BB) = |A["((@A+pBB) cosimy) + (BA-aB) sin(my))
Having two not necessary orthogonal vectors C and D, we can try the * Ansatz’
(B9) C cos(yy) + D sin(¢) =E co(y +y)+F sin(y+y)

with orthogonal vectorsE and F, i.e. E+ F= 0 and the still free parameter y. With some agebra it can
be shown that choosing

0 2CeD [
[De D-Ce CcU

E = +D sin(y) - C cody)
F = -D cog(y) - C sin(y)
we can fulfil (B9) for al  with orthogonal vectors E and F. Therefore, choosing

(B10a) y = sarctan and

(B10b)

(B11) C =oA+8B;, D = BA-0oB
we get E and F according (B10) and obtain finally for orthogonal E and F
(B12) T"(aA+BB) = A["(E cos{my +y) + F sin(my +y))

With rising m the image vector is ‘walking’ on the border of an elipse scaled in size by the
factor |]A|" —“modulated’ in length by theratio of the half-axisE and F. Using the orthogonality of E
and F, we can express the absol ute square of the vector (B12) as scalar product with itself

(B13) [T"(@A+pB)[ = A"(IEF cos'(my +y) + [FIF sin*(my +y))
Assuming |E| = |F|, we can get from (B13) the two inequalities’
(B14) A" 8] = [T"(@A+pB)| = h[" |F]

Therefore, the length of the m™ vector has a lower and an upper bound proportional to |A|™.
Provided F£0 we have shown that if |A|>1, there is an unlimited growth, if |A|[<1 the vector length will
be forced towards zero, both governed by the factor |A|™.

In the specia case F=0 we have E£0 (else both eigenvectors A and B would be zero-vectors),
hence the upper bound remains valid, i.e. for |A|<1 the vector length tendsto zero. For the lower bound
we express (B13) with F=0

(B15) [T"(an+pB)| = ]AI" [E] [cos(m +)

In fact the vector (B15) may even become zero ‘from time to time', but since E£0 for F=0, there is —
mathematically speaking — no finite upper bound larger than al vectors (B15) for any m, hence also
for F=0 unlimited growth is guaranteed for |]A[>1.

Therefore clearly a complex eigenvaue with absolute vaue larger than one corresponds to
unlimited growth (till non-linearities take over), for an absolute vaue smaler than one the
corresponding eigenvalue component(s) will tend to zero. That the same statement also holds if the
eigenvalueis purely real seems evident.

Finaly, if the system has many different eigenvalues, a single one with an absolute vaue larger
than one is sufficient to drive an ingtability, even if the transients corresponding to al the other

* the case ||| = ||E| can be demonstrated similarly
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eigenvalues decay. Only if all absolute values are smaller than one, all transients will decay and the
system will settle onits equilibrium state.
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APPENDIX C: SHORT PROGRAM LISTING ‘PULSE-TO-PULSE’

Following is the listing of an easy to understand program demonstrating the sudden transition
from stability to ingtability, in comparing runs with the field EO different by 0.1%. The program was
written in simple ‘ self-explaining’ standard ANSI C; hence aversion in the reader’s favorite language
should be straightforward. Since complex variables do not exist in ANSI C, complex multiplication
and divison are expressed by real variables, making the core code longer than might be possible. In
fact, a C++ version with a ‘complex’ class is considerably shorter®. Two compressed outputs have
been added (Appendix D), one stable with E,=10 MV/m and one unstable with E;=10.01 MV/m, else
unchanged parameters, as well as atune-scan.

Another study worthwhile (see Appendix D) is keeping E;=10 MV/m fixed (constant
operational voltage) but ‘ play with the tuner’ in changing the cavity RF tune expressed in bandwidths,
caled ‘xtune'. The system a far out negative tune xtune=—6.38 is a the limit stable (eigenvaue
—0.9964). Increasing the tune at e.g. xtune=—5, shows instability but the system soon settles on a new
(‘non-naive’) equilibrium where both cavities exchange their amplitude, coming back after two pulses
only(*breathing’). Increasing the tune further — including crossing the cavity resonance at xtune=0 —
stays in the unstable range till xtune=1.2610 (eigenvaue —1.0241) and entering the stable region a
xtune=1.26120 (real eigenvalue —0.9985). In about the center of the stable region at xtune=1.3 we have
complex eigenvaues (-0.3612+i*0.8196) having an absolute value equa to |p|. We are ill stable a
xtune=1.3942 (real eigenvalue 0.985) but become unstable again at xtune=1.3944 (eigenvalue 1.0105).
At xtune=1.4 we are unstable but the system settles on another ‘non-naive’ equilibrium where each
cavity has arepetitive position, but not identical for both cavities(* split-stable’). At xtune=3.780 we are
still unstable (eigenvalue 1.0043) but enter the far out positive stable range at xtune=3.783 (eigenvaue
1.0043). This behavior resembles very much to the simulations done with * SPLinac’.

Have fun in playing with the parameters ...

#i ncl ude <stdio. h>

#i ncl ude <mat h. h>

voi d DoOnePul se( void );

void SetEquil ( void );

voi d Ei genval ues( );

/* global variables accessible fromall functions */
doubl e EO, V1Re, V1l m V2Re, V2l m z1Re, z1I m z2Re, z21 m ki ck1, ki ck2;
doubl e Pi, xt une, ki ck0, r hoRe, rhol m r hoAbs, r hoPhi

i nt mai n(voi d)

t

int i;

Pi = 3. 1415926536

/***** Set up SyS'[em COI’]StantS ******************************/
rhoAbs = exp(-Pi*(100./75.)/38.);/* attenuation in T */
rhoPhi = (100./75.)*(2.*Pi); /* phase adv. in T (radian)*/
xtune = 1.2612; [* static detuning in BW */
[* ---- here chose: stable or unstable ---------------- */
EO = 10.; [* field in M/m */
/*E0 = EO + 0.01; /[* drives it unstable */
ki ckO = -4.5E- 2*EO0* EO; /* SPL Lorentz kick */

/************************************************************/

rhoRe = rhoAbs*cos(rhoPhi);

rhol m = rhoAbs*si n(rhoPhi);

printf("|rho| %2.5e phiDeg %.3f xtune %0.5f EO %8.5f\n",
rhoAbs, r hoPhi *180. / Pi , xt une, EO) ;

/* ----  here chose: starting condition ---------------- */
z1Re = 0.; /* zero start condition ... */
zllm= 0.;

z2Re = 0.

z2l m= 0.

® Not considering the class library, evidently ...
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Set Equil ( ); /* or <<OPTIONAL>> equilibriumstart .. *|

Ei genvalues( ); [/* calculate eigenval ues <<OPTI ONAL>> */
z1lRe = z1Re + 1.E-8; /* 'random perturbation: KEEP !! */
for(i=0; i< 300 ; i++) /* run for 300 pulses ... */

DoOnePul se( );
printf("98d> z1 (9%2.5e,%2.5e) z2 :(%2.5e,%2.5e)\n",
i,z1Re, z1I m z2Re, z2I M) ;

return( 0 );

The function DoOnePul se( ) is the ‘work-horse’ of the program. It uses the two present
(complex) mechanical amplitudes z1 and z2 to calculate the voltage excitation. It scales the voltage
vector sum to the design average vaue, determines the corresponding ‘Lorentz kick’ for the two
cavities and with it the new amplitudes z1New and z2New after oscillation during the linac repetition
time T. These new variables serve as the present ones for the next pulse.

voi d DoOnePul se( void )

{
doubl e GRe, @ m UlRe, Ull m U2Re, U2I m USunRe, USum m USumAbs?2;
doubl e zINewRe, z1New m z2NewRe, z2Newl m aux1, aux2;

/* determ ne tune dependent rel ative voltages: */
/* U=1/(1 - 2*i*(xtune + Re(2z)) */

auxl = 2. *(xtune + z1Re);

UlRe = 1./(1. + auxl*auxl);

Ullm = aux1/ (1. + auxl*auxl);

aux2 = 2. *(xtune + z2Re);

U2Re = 1./(1. + aux2*aux2);

U2l m = aux2/ (1. + aux2*aux2);

/* cal cul ate vector sum */
USunRe = UlRe + U2Re;
USumi m = Ullm+ U2l m

/* calibration constant G = 2/ (Ul+W2) */
USumAbs?2 = USunmRe* USunRe + USund mrUSum m
GRe = +2. *USunRe/ USumAbs2;
A m= -2 *USum m USumAbs2;

/* vector sumenforces sumvoltage '2' : V=G'U */

ViRe = UlRe*GRe - UlInfd@ m
Vilm = UlRe*d m + Ull n¥ GRe;
V2Re = U2Re*GRe - W2InfA m
V2Im = 2Re*d@ m + U2l nt GRe;

/* Lorentz kick proportional to |V|~2 */

ki ckl = ki ckO*(V1Re*V1Re + ViInmrVilnm;
ki ck2 = ki ckO*(V2Re*V2Re + V2l mFV2lnm;

/* apply it */
zllm= z1llm- kickil;

z2lm= z2Im- kick2;
/* let cavities oscillate for tinme T: z'=z*rho */

z1NewRe = z1Re*rhoRe - zllntrholm
zINewl m = z1ll mfrhoRe + z1Re*rholm
z2NewRe = z2Re*rhoRe - z2l n¥rholm
z2Newd m = z2I nfrhoRe + z2Re*rholm
/* these are the input z for the next pul se */
z1Re = z1NewRe;
zllm = z1Newl m
z2Re = z2NewRe;
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z2lm = z2Newl m
/* and that's it for this pul se */

The following two functions, call and prototype are only optional (but handy ..) Set Equi | () finds
the (‘naive’) mechanical equilibrium position for both cavities
Ei genval ues() caculates eigenvauesand predictsinstability (formula(39)).

void SetEquil ( void )

{
/* set all nech. cavity anplitudes on equilibrium*/
doubl e aux;
aux = 1. + rhoRe*rhoRe + rholnfrholm- 2.*rhoRe;
z1Re = +ki ckO*rhol nf aux;
z1llm = -ki ckO*(rhoRe - rhoRe*rhoRe - rhol nfrhol n/aux;
z2Re = z1Re;
z2lm= zllm
printf("z.eq (9%0.7f,%0.7f) x0 %40. 7f\n", z1Re, z1l m xt une+z1Re);
}
voi d Ei genval ues( void )
{
doubl e al p, di skr, aux, xeq, x0, xi , evl, ev2;
aux = 1. + rhoRe*rhoRe + rholnmfrholm- 2.*rhoRe;
xeq = +ki ckO*r hol nf aux;
x0 = xtune + Xxeq;
xi = 8.*ki ck0*x0/ (1. +4. *x0*x0);
alp = rhoRe - 0.5*xi *rholm
di skr = al p*alp - (rhoRe*rhoRe+rhol ntrhol m;
if( diskr < 0. )
printf("xi 9%0.7f E V. 90.7f+i *%0.7f |E V.| 9%0.7f\n\n",
xi,al p,sqrt(-diskr), rhoAbs);
}
el se
{
evl = alp - sqrt(diskr); ev2 = alp + sqgrt(diskr);
printf("xi %90.7f E V. %40.7f , 90.7f\n",xi,evl, ev2);
if(fabs(evl) >1. || fabs(ev2) >1.) printf("[Unstable]l\n");
printf("\n");
}
}
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APPENDIX D: PROGRAM OUTPUT EXAMPLES

Following two ‘runs’ with 10 MV/m and 10.01 MV/m, else identical parameter, for 2 cavities
supplied by one transmitter. Shown are the two (complex) mechanica cavity amplitudes z1 and z2. In
thefirst run the cavities stay on the ‘naive’ equilibrium, in the second case they behave uncontrollable
after about 100 pulses.

The fate of the run can aready be predicted by the absolute eigenvalue (larger/smaller 1)

calculated by the formula (39) derived in this paper.

Output for the stable case with EO = 10 MV/m
(equilibrium start)

|rho| 8.95627e-01 phiDeg 480.000 xtune  1.26120 EO 10.00000
z.eq (-1.2937925, - 2. 0849870) x0 - 0. 0325925
xi  1.1683666 E.V. - 0. 9985057 - 0. 8033480
0> 71 (-1.29379e+00, - 2. 08499e+00) 22 : (- 1.29379e+00, - 2. 08499e+00)
1> z1 (-1.29379e+00, - 2. 08499e+00) 22 :(-1.29379e+00, - 2. 08499¢+00)
2> 71 (-1.29379e+00, - 2. 08499e+00) z2 : (- 1.29379e+00, - 2. 08499e+00)
297> z1 (- 1.29379e+00, - 2. 08499e+00) 22 : (- 1.29379e+00, - 2. 08499e+00)
298> z1 (-1.29379e+00, - 2. 08499e+00) z2 : (- 1.29379e+00, - 2. 08499e+00)
299> 71 (-1.29379e+00, - 2. 08499e+00) z2 : (- 1.29379e+00, - 2. 08499e+00)
Output for the unstable case with EO = 10.01 MV/m
(equilibrium start, same RF tune as before)
|rho| 8.95627e-01 phiDeg 480.000 xtune  1.26120 EO 10.01000
z.eq (-1.2963814, - 2. 0891591) xO -0. 0351814
xi  1.2628130 E. V. - 1. 2147940 - 0. 6603158
[ Unst abl e]
0> z1 (-1.29638e+00, - 2. 08916e+00) z2 : (- 1.29638e+00, - 2. 08916e+00)
1> z1 (-1.29638e+00, - 2. 08916e+00) z2 :(-1.29638e+00, - 2. 08916e+00)
2> 71 (-1.29638e+00, - 2. 08916e+00) z2 : (- 1.29638e+00, - 2. 08916e+00)
30> z1 (- 1.29638e+00, - 2. 08916e+00) z2 : (-1.29638e+00, - 2. 08916e+00)
31> z1 (-1.29638e+00, - 2. 08916e+00) z2 :(-1.29638e+00, - 2. 08916e+00)
60> z1 (-1.29737e+00, - 2. 08889e+00) 22 : (- 1. 29540e+00, - 2. 08944e+00)
61> z1 (-1.29519e+00, - 2. 08950e+00) z2 : (- 1. 29759e+00, - 2. 08884e+00)
90> z1 ( 3.60853e-01,-1.27884e+01) z2 :( 5.01867e+01, - 1. 53643e+01)
91> z1 (-3.38633e+00, -1.58191e+00) 22 :(-1.05715e+01, 4.57987e+01)
120> 71 (-1.89852e+00, 3.29843e+02) 22 :(-5.92071le-01, 1.91274e+02)
121> z1 (-2.64739e+02, - 1. 54810e+02) 22 :(-1.57264e+02, - 9. 14088e+01)
150> z1 (-1.84068e+00, 8.12721e+01) 22 :(-1.55109e+01, - 3. 41352e+01)
151> z1 (-7.50880e+01, - 4. 52557e+01) z2 :( 3.33854e+01, 3.23397e+00)
180> z1 (- 1.59182e+03,-9. 17094e+02) 22 :(-1.26148e+03, - 7. 33305e+02)
181> 1. 42144e+03, - 8. 25566e+02) 72 :( 1.12933e+03, - 6. 52580e+02)

z1l (
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Following a tune scan from x,,,..= -6.38 to x,,,.= +3.78300:

(equilibrium start, constant parameters except ‘xtune')

rho| 8.95627e-01 phiDeg 480.000 xtune -6.38000 EO 10. 00000
z.eq (-1.2937925, - 2. 0849870) x0 -7.6737925
xi  1.1678649 E.V. -0.9964980 , -0.8049666

|rho| 8.95627e-01 phiDeg 480.000 xtune -5.00000 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 -6.2937925

Xi 1.4210120 E. V. -1.4412512 - 0. 5565633

[ Unst abl e]

0> z1 (-1.29379e+00, -2.08499e+00) z2 :(-1.29379e+00, -2. 08499e+00)
1> z1 (-1.29379e+00, - 2. 08499e+00) z2 :(-1.29379e+00, - 2. 08499e+00)

296> z1 (-1.05873e+01,-6.81706e-01) z2 :( )
297> z1 ( ) z2 :(-1.05873e+01,-6.81706e-01)
298> z1 (-1.05873e+01,-6.81706e-01) z2 :( )
299> z1 ( ) z2 :(-1.05873e+01,-6.81706e-01)

| rho| 8.95627e-01 phi Deg 480.000 xtune 1.26100 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 -0.0327925

Xi 1. 1754749 E. V. -1.0240848 , -0.7832824

[ Unst abl e]

[Tho| 8.95627e-01 phi Deg 480.000 xtune 1.26120 EO 10.00000
z.eq (-1.2937925, -2.0849870) X0 - 0. 0325925
xi  1.1683666 E.V. -0.9985057 ,  -0.8033480

| rho| 8.95627e-01 phi Deg 480.000 xtune 1.30000 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 0.0062075
Xi  -0.2234345 E.V. -0.3611616+i* 0.8195791 |E. V.| 0. 8956269

[Tho] 8.95627e-01 phi Deg 480. 000 xtune 1.39420 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 0.1004075
xi -3.4745519 E. V. 0.8143801 , 0.9849794

|rho| 8.95627e-01 phi Deg 480.000 xtune 1.39440 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 0.1006075

Xi -3.4809347 E. V. 0. 7938211 1.0104891

[ Unst abl e]

|rho| 8.95627e-01 phi Deg 480.000 xtune 1.40000 EO 10. 00000
z.eq (-1.2937925,-2.0849870) x0 0.1062075
xi -3.6584014 E.V. 0.5959408 1.3460190
[ Unst abl e]
0> z1 (-1.29379e+00, -2.08499e+00) z2 :(-1.29379e+00, -2.08499e+00)
1> z1 (-1.29379e+00, - 2. 08499e+00) z2 :(-1.29379e+00, - 2. 08499e+00)

208> 71 22 :(-1.33329e+00, - 2. 14864e+00)
299> 71 22 ©(-1.33329e+00, - 2. 14864e+00)

| rho| 8.95627e-01 phi Deg 480.000 xtune 3.78000 EO 10.00000
z.eq (-1.2937925,-2.0849870) x0 2.4862075

Xi  -3.4792529 E. V. 0.7987419 1.0042639

[ Unst abl e]

[Tho] 8.95627e-01 phi Deg 480. 000 xtune 3.78300 EO 10.00000
z.eq (-1.2937925,-2.0849870) x0 2.4892075
xi -3.4753851 E. V. 0.8113598 , 0. 9886459
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