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Abstract

There has been recently a surge of interest in Grand Unified Theories on

orbifolds of higher dimensional spaces. In particular, the higher dimensional

doublet–triplet splitting mechanism has been of much interest. I revisit the

superstring doublet–triplet splitting mechanism in which the color triplets are

projected out by the GSO projections, while leaving the electroweak doublets

in the physical spectrum. The connection with the higher dimensional theories

is elucidated. It is shown that the doublet–triplet splitting depends crucially

on the assignment of boundary conditions in the compactified directions. The

possibility of reducing the number of Higgs multiplets by using the GSO pro-

jections is also discussed.
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1 Introduction

Superstring theory provides a consistent framework for perturbative unification
of gravity and gauge theories. Among the five perturbative string limits the heterotic
string is the only one that also admits the standard grand unification structures,
for example that of SO(10). The specific implications of this is that the heterotic
string can in principle preserve the embedding of the standard model generations in
the 16 representation of SO(10) as well as the canonical normalization of the weak
hypercharge. However, as is well known supersymmetric grand unified theories [1]
give rise to proton decay from dimension four, five and six operators [2].

Superstring theory offers resolutions to the proton decay from all of these sources.
The issue of proton decay in realistic string constructions has been amply discussed
in the past [3, 4, 5, 6, 7] and therefore I will be brief in respect to the details that
are given in the earlier literature. The purpose of this note, prompted by the recent
interest in grand unified higher dimensional theories [8], is to elucidate the connection
between the superstring doublet–triplet splitting mechanism, which was derived in
the free fermionic formulation and the higher dimensional theories.

2 Realistic free fermionic models

The class of models under consideration are constructed in the free fermionic
formulation [9]. The notation and details of the construction of these models are
given elsewhere [10, 11, 12, 13, 14, 15, 16, 17]. In the free fermionic formulation of the
heterotic string in four dimensions all the world–sheet degrees of freedom required to
cancel the conformal anomaly are represented in terms of free fermions propagating on
the string world–sheet. In the light–cone gauge the world–sheet field content consists
of two transverse left– and right–moving space–time coordinate bosons, Xµ

1,2 and X̄µ
1,2,

and their left–moving fermionic superpartners ψµ1,2, and additional 62 purely internal
Majorana–Weyl fermions, of which 18 are left–moving, χI , and 44 are right–moving,
φa. In the supersymmetric sector the world–sheet supersymmetry is realized non–
linearly and the world–sheet supercurrent is given by TF = ψµ∂Xµ + iχIyIωI , (I =
1, · · · , 6). The {χI , yI , ωI} (I = 1, · · · , 6) are 18 real free fermions transforming as the
adjoint representation of SU(2)6. Under parallel transport around a noncontractible
loop on the toroidal world–sheet the fermionic fields pick up a phase

f → − eiπα(f)f , α(f) ∈ (−1,+1]. (2.1)

Each set of specified phases for all world–sheet fermions, around all the non–
contractible loops is called the spin structure of the model. Such spin structures
are usually given is the form of 64 dimensional boundary condition vectors, with
each element of the vector specifying the phase of the corresponding world–sheet
fermion. The basis vectors are constrained by string consistency requirements and
completely determine the vacuum structure of the model. The physical spectrum is
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obtained by applying the generalized GSO projections. The low energy effective field
theory is obtained by S–matrix elements between external states [18].

The boundary condition basis defining a typical realistic free fermionic heterotic
string models is constructed in two stages. The first stage consists of the NAHE set,
which is a set of five boundary condition basis vectors, {1, S, b1, b2, b3} [15]. The gauge
group after imposing the GSO projections induced by the NAHE set is SO(10) ×
SO(6)3×E8 with N = 1 supersymmetry. The space–time vector bosons that generate
the gauge group arise from the Neveu–Schwarz sector and from the sector 1+b1+b2+
b3. The Neveu–Schwarz sector produces the generators of SO(10)×SO(6)3×SO(16).
The sector ζ ≡ 1+b1+b2+b3 produces the spinorial 128 of SO(16) and completes the
hidden gauge group to E8. The NAHE set divides the internal world–sheet fermions
in the following way: φ̄1,···,8 generate the hidden E8 gauge group, ψ̄1,···,5 generate the
SO(10) gauge group, and {ȳ3,···,6, η̄1}, {ȳ1, ȳ2, ω̄5, ω̄6, η̄2}, {ω̄1,···,4, η̄3} generate the
three horizontal SO(6)3 symmetries. The left–moving {y, ω} states are divided to
{y3,···,6}, {y1, y2, ω5, ω6}, {ω1,···,4} and χ12, χ34, χ56 generate the left–moving N = 2
world–sheet supersymmetry. At the level of the NAHE set the sectors b1, b2 and b3
produce 48 multiplets, 16 from each, in the 16 representation of SO(10). The states
from the sectors bj are singlets of the hidden E8 gauge group and transform under
the horizontal SO(6)j (j = 1, 2, 3) symmetries. This structure is common to all the
realistic free fermionic models.

The second stage of the basis construction consists of adding to the NAHE set
three (or four) additional boundary condition basis vectors. These additional basis
vectors reduce the number of generations to three chiral generations, one from each
of the sectors b1, b2 and b3, and simultaneously break the four dimensional gauge
group. The assignment of boundary conditions to {ψ̄1,···,5} breaks SO(10) to one
of its subgroups SU(5) × U(1) [10], SO(6) × SO(4) [12], SU(3) × SU(2) × U(1)2

[11, 13, 14, 16] or SU(3) × SU(2)2 × U(1) [17]. Similarly, the hidden E8 symmetry
is broken to one of its subgroups by the basis vectors which extend the NAHE set.
The flavor SO(6)3 symmetries in the NAHE–based models are always broken to
flavor U(1) symmetries, as the breaking of these symmetries is correlated with the
number of chiral generations. Three such U(1)j symmetries are always obtained in
the NAHE based free fermionic models, from the subgroup of the observable E8,
which is orthogonal to SO(10). These are produced by the world–sheet currents
η̄η̄∗ (j = 1, 2, 3), which are part of the Cartan sub–algebra of the observable E8.
Additional unbroken U(1) symmetries, denoted typically by U(1)j (j = 4, 5, ...), arise
by pairing two real fermions from the sets {ȳ3,···,6}, {ȳ1,2, ω̄5,6} and {ω̄1,···,4}. The
final observable gauge group depends on the number of such pairings.

3 Superstring Higgs doublet–triplet splitting

In the free fermionic models, representations in the 5 and 5̄ of SU(5) which yield
electroweak Higgs doublets and color Higgs triplets arise from the untwisted (Neveu–
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Schwarz) and twisted sectors. The color triplets arising from these sectors are those
that can mediate rapid proton decay from dimension five operators. Additional color
triplets may arise from “Wilsonian” sectors, but their interactions with the Standard
Model states may be protected by discrete symmetries [5].

For the Higgs multiplets arising from the Neveu–Schwarz sector there exists a
doublet–triplet splitting mechanism which operates by the assignment of boundary
conditions to the set of internal world–sheet fermions {y, ω|ȳ, ω̄}1,···,6. The Neveu–
Schwarz sector gives rise to three fields in the 10 representation of SO(10). These
contain the Higgs electroweak doublets and color triplets. Each of those is charged
with respect to one of the horizontal U(1) symmetries U(1)1,2,3. Each one of these
multiplets is associated, by the horizontal symmetries, with one of the twisted sec-
tors, b1, b2 and b3. The doublet–triplet splitting results from the boundary condition
basis vectors which breaks the SO(10) symmetry to SO(6)×SO(4). We can define a
quantity ∆i in these basis vectors which measures the difference between the bound-
ary conditions assigned to the internal fermions from the set {y, w|ȳ, ω̄} and which
are periodic in the vector bi,

∆i = |αL(internal) − αR(internal)| = 0, 1 (i = 1, 2, 3) (3.1)

If ∆i = 0 then the Higgs triplets, Di and D̄i, remain in the massless spectrum while
the Higgs doublets, hi and h̄i are projected out and the opposite occurs for ∆i = 1.

Thus, the rule in Eq. (3.1) is a generic rule that can be used in the construction
of the free fermionic models. The model of table (3.2) illustrates this rule. In this
model ∆1 = ∆2 = 0 while ∆3 = 1. Therefore, this model produces two pairs of color
triplets and one pair of Higgs doublets from the Neveu–Schwarz sector, D1, D̄1 D2,
D̄2 and h3, h̄3.

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0
β 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
γ 1 0 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3ȳ3 y4ȳ4 y5ȳ5 y6ȳ6 y1ȳ1 y2ȳ2 ω5ω̄5 ω6ω̄6 ω2ω3 ω1ω̄1 ω4ω̄4 ω̄2ω̄3

α 1 0 0 1 0 0 1 0 0 0 1 1
β 0 0 0 1 0 1 1 0 0 1 0 1
γ 1 1 0 0 1 1 0 0 0 0 0 1

(3.2)

With the choice of generalized GSO coefficients:

c

(
b1, b3, α, β, γ

α

)

= −c
(
b2
α

)

= c

(
1, bj , γ

β

)

=

c

(
γ

b3

)

= −c
(

γ

1, b1, b2

)

= −1 (j = 1, 2, 3),
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with the others specified by modular invariance and space–time supersymmetry. In
ref. [4] this doublet–triplet splitting mechanism is proven in terms of the world–sheet
modular invariance constraints and the GSO projections. The constraint

|αL(bj) − αR(bj)| = 1 , (j = 1, 2, 3), (3.3)

in the basis vectors that break SO(10) to SO(6)×SO(4), guarantees that the Neveu–
Schwarz color triplets, Dj and D̄j , are projected out and that the electroweak dou-
blets, hj and h̄j, remain in the massless spectrum. It is now possible to construct
models in which all the color Higgs triplets from the Neveu–Schwarz sector are pro-
jected out by the GSO projections. Table (3.4) provides an example of such a model.
It is noted that the NS Higgs–doublet triplet mechanism operates irrespective of the
choice of the GSO projection coefficients.

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0
β 0 1 0 1 0 1 0 1 1 0 0 0
γ 0 0 1 1 1 0 0 0 0 1 0 1

(3.4)

As the Higgs–doublet triplet mechanism operates irrespective of the GSO phases
they are not displayed here explicitly. The sector b1 + b2 +α+β produces additional
states that transform solely under the observable sector. In particular it can give
rise to additional electroweak doublets and color triplets. The color triplets from
this sector may cause problems with proton lifetime constraints. However, a sim-
ilar doublet–triplet splitting mechanism works for this sector as well. There exist
choices of boundary conditions for the set of left–right symmetric internal fermions,
{y, ω|ȳ, ω̄}1,···,6, for which the triplets are projected out and the doublets remain in
the massless spectrum. For example, in the model of ref. [13] this sector produces
one pair of electroweak doublets and one pair of color triplets,

h45 ≡ [(1, 0); (2,−1)]
−

1

2
,− 1

2
,0,0,0,0 D45 ≡ [(3,−1); (1, 0)]

−
1

2
,− 1

2
,0,0,0,0 (3.5)

while in the model of table (3.4) this sector produces two pairs of electroweak dou-
blets,

h45 ≡ [(1, 0); (2,−1)]1

2
, 1
2
,0,0,0,0 h′45 ≡ [(1, 0); (2,−1)]

−
1

2
,− 1

2
,0,0,0,0 (3.6)

and all the color triplets, from the Neveu–Schwarz sector and the sector b1+b2+α+γ,
are projected out from the physical spectrum by the GSO projections. The two
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models differ only by the assignment of boundary conditions to the set of internal
fermions, {y, ω|ȳ, ω̄}1,···,6. The simplicity and elegance of the superstring doublet–
triplet splitting mechanism is striking. There is no need for exotic representations
of high dimensionality as in minimal SU(5) extension of the Standard Model [19].
Moreover, the superstring doublet–triplet splitting mechanism does not depend on
additional assumptions on Yukawa couplings as is required in all GUT doublet–triplet
splitting mechanism. In the superstring doublet–triplet splitting mechanism the dan-
gerous color triplets simply do not exist in the massless spectrum. Furthermore, due
to discrete and custodial non-Abelian symmetries [5] there exists examples of models
in which proton decay mediating operators are not generated.

Another relevant question with regard to the Higgs doublet–triplet splitting mech-
anism is whether it is possible to construct models in which both the Higgs color
triplets and electroweak doublets from the Neveu–Schwarz sector are projected out
by the GSO projections. This is a viable possibility as we can choose for example

∆
(α)
j = 1 and ∆

(β)
j = 0,

where ∆(α,β) are the projections due to the basis vectors α and β respectively. This
is a relevant question as the number of Higgs representations, which generically ap-
pear in the massless spectrum, is larger than what is allowed by the low energy
phenomenology. Consider for example the model in table (3.7)

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 1 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 0
β 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0
γ 1 0 0 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 1 1
2

1
2

1
2

0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 0 1 0 0 0 0 1 0 0
γ 0 1 0 0 0 1 0 1 1 0 0 0

(3.7)

With the choice of generalized GSO coefficients:

c

(
bj

S, bj , α, β, γ

)

= c

(
α

α, β, γ

)

=

c

(
β,

β, γ

)

= c

(
γ

1

)

= −1

(j=1,2,3), with the others specified by modular invariance and space–time supersym-

metry. In this model ∆
(α)
1 = ∆

(α)
2 = ∆

(α)
3 = 1, and ∆

(β)
1 = ∆

(β)
3 = 0, Therefore, In

this model irrespective of the choice of the generalized GSO projection coefficients,
both the Higgs color triplets and electroweak doublets associated with b1 and b3 are
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projected out by the GSO projections. However, it is found that the combination of
these projections also results in the projection of some of the representations from
the corresponding sectors b1 and b3 and therefore these sectors do not produce the
full chiral 16 of SO(10). Therefore, realization of this mutual projection of both
Higgs triplets and doublets from the Neveu–Schwarz sector requires that the chiral
generations be obtained from non–NAHE set basis vectors.

4 Correspondence with orbifolds

In the previous section it was shown that the superstring doublet–triplet splitting
mechanism depend on the assignment of boundary conditions to the set of internal
world–sheet fermions {y, ω|ȳ, ω̄}. In this section I show that this set of internal
world–sheet fermions in fact corresponds to six internal compactified dimensions.
Consequently, in the bosonic language, i.e. in the language of the compactified
dimensions, the boundary condition of the internal fermions translate to twisting of
the internal dimensions with orbifold fixed points.

The correspondence with the orbifold construction is illustrated by extending the
NAHE set, {1, S, b1, b2, b3}, by one additional boundary condition basis vector [20]

X = (0, · · · , 0| 1, · · · , 1
︸ ︷︷ ︸

ψ̄1,···,5,η̄1,2,3

, 0, · · · , 0) . (4.1)

with a suitable choice of the GSO projection coefficients the model possess an
SO(4)3 × E6 × U(1)2 × E8 gauge group and N = 1 space–time supersymmetry.
The matter fields include 24 generations in 27 representations of E6, eight from each
of the sectors b1 ⊕ b1 +X, b2 ⊕ b2 +X and b3 ⊕ b3 +X. Three additional 27 and 27
pairs are obtained from the Neveu–Schwarz ⊕ X sector.

To construct the model in the orbifold formulation one starts with a model com-
pactified on a flat torus with nontrivial background fields [21]. The action of the six
dimensional compactified dimensions is given by

S =
1

8π

∫

d2σ(Gij∂X
i∂Xj +Bij∂X

i∂Xj) (4.2)

where

Gij =
1

2

D∑

I=1

Rie
I
iRje

I
j (4.3)

is the metric of the six dimensional compactified space and Bij = −Bji is the anti-
symmetric tensor field. The ei = {eIi } are six linear independent vectors normalized
to (ei)

2 = 2. The subset of basis vectors

{1, S,X, I = 1 + b1 + b2 + b3} (4.4)
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generates a toroidally-compactified model with N = 4 space–time supersymmetry
and SO(12) × E8 × E8 gauge group. The same model is obtained in the geometric
(bosonic) language by constructing the background fields which produce the SO(12)
lattice. Taking the metric of the six-dimensional compactified manifold to be the
Cartan matrix of SO(12):

gij =













2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2













(4.5)

and the antisymmetric tensor

bij =







gij ; i > j,
0 ; i = j,
−gij ; i < j.

(4.6)

When all the radii of the six-dimensional compactified manifold are fixed at RI =
√

2,
it is seen that the left– and right–moving momenta

P I
R,L = [mi −

1

2
(Bij±Gij)nj ]e

I
i

∗

(4.7)

reproduce all the massless root vectors in the lattice of SO(12), where in (4.7) the
eIi

∗

are dual to the ei, and e∗i · ej = δij .
The orbifold models are obtained by moding out the six dimensional torus by a

discrete symmetry group, P [23]. The allowed discrete symmetry groups are con-
strained by modular invariance. The Hilbert space is obtained by acting on the
vacuum with twisted and untwisted oscillators and by projecting on states that are
invariant under the space and group twists. A general left–right symmetric twist is
given by (θij , v

i; ΘI
J , V

I) (i = 1, · · · , 6) (I = 1, · · · , 16) and X i(2π) = θijX
j(0) + vi;

XI(2π) = ΘI
JX

J(0) + V I . The massless spectrum contains mass states from the
untwisted and twisted sectors. The untwisted sector is obtained by projecting on
states that are invariant under the space and group twists. The twisted string cen-
ters around the points that are left fixed by the space twist. In the case of “standard
embedding” one acts on the gauge degrees of freedom in an SU(3) ∈ E8 ×E8 with
the same action as on the six compactified dimensions + NSR fermions. In this case
the number of chiral families (27’s of E6) is given by one half the Euler characteristic,

χ =
1

|P |
∑

g,h∈P

χ(g, h), (4.8)
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where χ(g, h) is the number of points left fixed simultaneously by h and g. The mass
formula for the right–movers in the twisted sectors is given by,

M2
R = −1 +

(P + V )2

2
+ ∆cθ +NR (4.9)

where V I are the shifts on the gauge sector and ∆cθ = 1
4

∑

k ηk(1 − ηk) is the contri-
bution of the twisted bosonic oscillators to the zero point energy and ηk = 1

2
for a Z2

twist.
To translate the fermionic boundary conditions to twists and shifts in the bosonic

formulation we bosonize the real fermionic degrees of freedom, {y, ω|ȳ, ω̄}. Defining,

ξi =
√

1
2
(yi + iωi) = −ieiXi , ηi =

√
1
2
(yi − iωi) = −ie−iXi with similar definitions for

the right movers {ȳ, ω̄} and XI(z, z̄) = XI
L(z) + XI

R(z̄). With these definitions the
world–sheet supercurrents in the bosonic and fermionic formulations are equivalent,

T intF =
∑

i

χiyiωi = i
∑

i

χiξiηi =
∑

i

χi∂Xi. (4.10)

The momenta P I of the compactified scalars in the bosonic formulation are identical
with the U(1) charges Q(f) of the unbroken Cartan generators of the four dimensional
gauge group,

Q(f) =
1

2
α(f) + F (f) (4.11)

where α(f) are the boundary conditions of complex fermions f , reduced to the interval
(−1, 1] and F (f) is a fermion number operator.

The boundary condition vectors b1 and b2 now translate into Z2×Z2 twists on the
bosonsXi and fermions χi and to shifts on the gauge degrees of freedom. The massless
spectrum of the resulting orbifold model consist of the untwisted sector and three
twisted sectors, θ, θ′ and θθ′. From the untwisted sector we obtain the generators
of the SO(4)3 × E6 × U(1)2 × E8 gauge groups. The only roots of SO(12) that are
invariant under the Z2×Z2 twist are those of the subgroup SO(4)3. Thus, the SO(12)
symmetry is broken to SO(4)3. Similarly, the shift in the gauge sector breaks one E8

symmetry to E6 × U(1)2. In addition to the gauge group generators the untwisted
sector produces: three copies of 27 + 2̄7, one pair for each of the complexified NSR
left–moving fermions; three copies of, 1 + 1̄, E6 singlets which are charged under
U(1)2. These singlets are the untwisted moduli of the Z2 × Z2 orbifold model and
match the number of untwisted moduli in the free fermionic model. The E8 × E8

singlets are obtained from the root lattice of SO(12) and transform as (1, 4, 4) under
the S0(4)3 symmetries, one for each of the complexified NSR left–moving fermions.

The number of fixed points in each twist is 32. The total number of fixed points
is 48. The number of chiral 27’s is 24, eight from each twisted sector, and matches
the number of chiral 27’s in the fermionic model. For every fixed point we obtain
the SO(4)3 × E6 × E8 singlets. These are obtained for appropriate choices of the
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momentum vectors, P I , and correspond to twisted moduli. The E6 ×E8 singlets can
be obtained by acting on the vacuum with twisted oscillators and from combinations
of the dual of the invariant lattice, I∗, [22]. The spectrum of the orbifold model
and its symmetries are seen to coincide with the spectrum and symmetries of the
fermionic model [20].

It is noted that the effect of the additional basis vector X, Eq. (4.1),
is to separate the gauge degrees of freedom, spanned by the world–sheet
fermions {ψ̄1,···,5, η̄1, η̄2, η̄3, φ̄1,···,8} from the internal compactified degrees of freedom
{y, ω|ȳ, ω̄}1,···,6. in the realistic free fermionic models this is achieved by the vector
2γ [20], with

2γ = (0, · · · , 0| 1, · · · , 1
︸ ︷︷ ︸

ψ̄1,···,5,η̄1,2,3φ̄1,···,4

, 0, · · · , 0) , (4.12)

which breaks the E8 ×E8 symmetry to SO(16)× SO(16).

5 Discussion

In section (3) it was shown that the assignment of boundary conditions to the
set of world–sheet fermions {y, ω|ȳ, ω̄}1,···,6 is the one that selects between the elec-
troweak Higgs doublet, versus the color Higgs triplets, according to the quantity ∆j

in Eq. (3.1). In section (4) on the other hand it was shown that this set of world–
sheet fermions corresponds to the internal compactified dimensions in an orbifold
construction. This means that the assignment of boundary conditions to this set of
world–sheet fermions in fact corresponds to further Z2 orbifold twisting of the com-
pactified dimensions. This type of construction is precisely the one that has been
recently rediscovered in [8]. It is therefore very rewarding to note that in the context
of the heterotic–string construction such a mechanism operates in a framework of
realistic three generation models, compatible with perturbative quantum gravity. It
ought to be further remarked that elimination of color triplets by Wilson line breaking
has also been noted in other orbifold compactifications [24].
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