Searches for Exotica at LEP

Andrei Kounine MIT

EPS99, Tampere, Finland, 15-21 July 1999

OUTLINE:

- Standard Model vs LEP results
- Precision EW tests and New Physics
- Why beyond the Standard Model?
- Challenges beyond the SM
- Any experimental hints?
- Contact Interactions
- New Generations
- Compositeness
- Technicolour
- Quantum Gravity
- Conclusions

Precision LEP results

- Masses of the gauge bosons
- Neutral couplings of fermions
- Self-couplings of gauge bosons

Qualitative LEP results

- Evolution of couplings beyond EW scale
- Sensitivity to the hidden sector of the Model (top quark and Higgs boson)

LEP Electroweak Working Group, measurements from LEP, Tevatron and SLAC:

Higgs mass in the Standard Model

Higgs boson may not be too light, otherwise

- Higgs running coupling become negative
- our vacuum becomes metastable
- $m_{\rm H} \ge 130 \text{ GeV}$ G.Altarelli and G.Isidori, Phys. Lett., B337 (1994) 141

Higgs boson may not be too heavy, otherwise

- unitarity limit is reached for gauge boson scattering
- quadric Higgs coupling behaves unsatisfactory
- $m_{\rm H} \leq 180~{\rm GeV}$ T.Hambye and K.Riesselmann, Phys.Rev. D55 (1997) 7255

"Great Desert" scenario is not very attractive

Hierarchy problem

- Radiative corrections to Higgs mass are large $\delta {\rm M}_{\rm H}^2 \sim \Lambda_{\rm NP}^2 = {\rm M_P}^2$
- ${
 m M_P}>>M_W$, however ${
 m M_H}\sim M_W$
- Why gravity is so much detached?

Flavour dynamics

- Universal fermion couplings to gauge bosons
- However, flavour symmetry is broken
- Fermion mass values in SM are hand-made
- No hints why the pattern is so bizarre

May all that be fixed in one go?

SUSY

- Solves the hierarchy problem
- Doubles the spectrum of particles
- Does not address the flavour symmetry breaking
- Does not explain $M_P >> M_W$

Technicolour

- Attempts to address flavour symmetry breaking
- Dynamic EW symmetry breaking (no Higgs!)
- Does not explain $M_P >> M_W$

Low scale quantum gravity

- Attempts to explain $M_P >> M_W$
- Attempts to include gravity into the theory
- Does not address flavour dynamics

Price to pay:

- New phenomena predicted, yet to be observed
- More free parameters, "flexibility" of predictions

- Electron-positron collider near Geneva
- 27 km circumference
- Maximal energy $\sqrt{s}\sim 200~{
 m GeV}$
- Four major experiments: ALEPH, DELPHI, L3, OPAL
- $-\sqrt{s} = M_{\sf Z}$ in 1989-1995
- $-130 < \sqrt{s} < 196$ GeV in 1995-1999
- $\sqrt{s}\sim 200~{
 m GeV}$ in 2000

Presented results are based on $4\cdot 175 \ pb^{-1}$ at $\sqrt{s} = 189 \ {
m GeV}$

Significant effects in the cross section and charge asymmetry of fermion pairs

Example of cross section measurements

Limits on contact interactions

Similar limits from other LEP groups

New Vector Bosons

- Mass, M_{Z'}
- PARAMETERS Mixing with Z, θ_M
 - Couplings to fermions, model dependent
 - LEP1: limits on the mixing angle
 - LEP2: limits on mass and couplings

Similar exclusions reported by ALEPH, DELPHI and L3

SENSITIVITY

Experimental signatures

- Two isolated leptons
- Hadronic activity

- Missing momentum
- Hadronic activity
- Isolated leptons
- Highly ionising tracks

L3 Sequential Lepton search summary

Channel	Data	Background	Efficiency
$L^0 \rightarrow eW$	6	7.2	$\sim 34\%$
$L^0 o \mu W$	1	1.2	$\sim 32\%$
$L^0 o au W$	33	32.3	$\sim 20\%$
$L^{\pm} ightarrow \nu_{\ell} W^{\pm *}$	51	53.3	$\sim 20\%$

Limits from L3

Channel	95% CL Mass Limit GeV		
LO	Dirac	Majorana	
$L^0 \rightarrow eW$	92.4	81.8	
$L^0 o \mu W$	93.3	84.1	
$L^0 o au W$	83.3	73.5	
$L^{\pm} \rightarrow \nu_{\ell} W^{\pm *}$	92.4		
Stable L [±]		93.5	

Limits from OPAL

Channel	95% CL Mass Limit GeV		
LO	Dirac	Majorana	
$L^0 \rightarrow eW$	93.4	84.9	
$L^0 o \mu W$	92.9	83.4	
$L^0 o au W$	80.1	62.6	
$L^{\pm} \rightarrow \nu_{\ell} W^{\pm *}$	91.3		
Stable L [±]		92.6	

Similar limits on L^{\pm} from ALEPH and DELPHI

Isosinglet Heavy Neutrino

Pair production is suppressed ($\sim |U_{\ell}|^4$), compared to single production ($\sim |U_{\rm e}|^2$) *t*-channel dominates (factor ~ 50)!

 $\bullet \ {\it N}_{e} \rightarrow e + W \rightarrow e + 2 jets$

Search technique

- Signature: isolated electron, missing momentum, hadronic activity
- Invariant mass reconstruction using energy-momentum conservation

Upper limits on the mixing amplitude $|U_{\rm e}|^2$

These are the only results for ${ m M}_{N_{ m e}} > 80~{ m GeV}$

Top quark production at LEP

- Soft c-jet \implies M_t reconstruction
- One b-jet \implies discriminate WW
- Kinematic constraints

ALEPH Preliminary

Observation of 18 data events with 10.5 background events expected and 17.6% signal efficiency

 $e^+e^- \rightarrow tc(u)$,

 $t \rightarrow bW$

- Severe b-tagging systematics
- Ad-hoc corrections applied
- Probability is 4.6%

ALEPH: $\sigma(e^+e^- \rightarrow tc(u)) < 0.6$ pb at 95% CL

DELPHI performed a similar analysis, with tighter b-tag requirements

DELPHI: 0 (2) data events with 1.0 (4.7) background events expected and 6.6% (5.0%) signal efficiency for W $\rightarrow \ell \nu$ (qq')

DELPHI: $\sigma(e^+e^- \rightarrow tc(u)) < 0.18$ pb at 95% CL

Exclusions are close to the kinematic limits

Search for the Single Production of Excited Fermions:

Similar exclusions are reported by ALEPH, L3 and OPAL

Exclusion for Excited Electrons can be extended above the kinematic limits!

$e^+e^- \rightarrow \gamma \gamma(\gamma)$

Phenomenology at LEP:

K.Lane, hep-ph/9903369; implemented by S.Mrenna in PYTHIA

$$\mathrm{e^+e^-}
ightarrow (\gamma/\mathrm{Z}/
ho_\mathrm{T}/\omega_\mathrm{T})^*
ightarrow \mathrm{f}\, \overline{\mathrm{f}}$$

4 model parameters Technihadron masses, M_{ρ_T} and M_{π_T} Mixing between W_L and π_T , sin χ Technidoublet charge, $Q = Q_U + Q_D$

$$e^+e^- \rightarrow f\bar{f}$$

$$e^+e^- \rightarrow W_L^+W_L^-$$

$$e^+e^- \rightarrow W_L^\pm \pi_T^\mp$$

$$e^+e^- \rightarrow \pi_T^+ \pi_T^-$$

$$e^+e^- \rightarrow \gamma \pi_T^0$$

$$e^+e^- \rightarrow \gamma \pi_T^0$$

 $egin{aligned} & {\sf M}_{
ho_{\sf T}},\,{\sf M}_{\omega_{\sf T}},\,Q \ & \sin^2\chi \cdot \sin^2\chi \ & \sin^2\chi \cdot \cos^2\chi,\,{\sf M}_{\pi_{\sf T}} \ & \cos^2\chi \cdot \cos^2\chi,\,{\sf M}_{\pi_{\sf T}} \ & Q,\,\sin\chi,\,{\sf M}_{\pi_{\sf T}} \ & Q,\,\sin\chi',\,{\sf M}_{\pi_{\sf T}} \end{aligned}$

Technicolour

Gravity and extra dimensions

N.Arkani-Hammed et. al., Phys. Lett B429 (1998) 263

- Gravity scale $M_D \sim M_w$, if extra dimensions exist
- $G_N^{-1}=8\pi R^\delta M_D^{2+\delta}$
- No experimental exclusions for $\delta>2$
- KK excitation modes of gravitons appear as massive particles with spin 0, 1 or 2 in our 3 dimensions
- Hierarchy problem is now in smallness of *R*

Phenomenology at LEP

A search for $e^+e^- \rightarrow \gamma G$ at LEP

δ	2	3	4	5	6
M_D^{95} (GeV)	990	780	650	550	490
$R_{95}\ (mm)$	$4.9 imes10^{-1}$	$5.4 imes10^{-6}$	$1.9 imes10^{-8}$	$6.4 imes10^{-10}$	$6.9 imes10^{-11}$

Virtual effects in $e^+e^- \rightarrow e^+e^-$ at LEP

Process	$M_S({ m GeV})$	$M_S({ m GeV})$
	$\lambda=+1$	$\lambda=-1$
${ m e^+e^-} ightarrow \gamma\gamma$	790	660
$e^+e^- \rightarrow e^+e^-$	850	820
Combined	900	860

- no indication for New Physics yet,
 Standard Model still rules
- energy frontier will be crossed
 1-2 more times in 1999-2000
- analysis of new data is in progress

June 1996 161 GeV $(4 \cdot 11 \text{ pb}^{-1})$ October 1996 172 GeV $(4 \cdot 11 \text{ pb}^{-1})$ 1997 183 GeV $(4 \cdot 55 \text{ pb}^{-1})$ 1998 189 GeV $(4 \cdot 175 \text{ pb}^{-1})$ 1999 196 GeV $(4 \cdot > 150 \text{ pb}^{-1})$ 2000 200 GeV or more?