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Abstract

We present an N = 1 superfield formulation of supersymmetric gauge theories with a
compact extra dimension. The formulation incorporates the radion superfield and allows
to write supersymmetric theories on warped gravitational backgrounds. We apply it to
study the breaking of supersymmetry by the F -term of the radion, and show that, for
flat extra dimensions, this leads to the same mass spectrum as in Scherk-Schwarz models
of supersymmetry breaking. We also consider scenarios where supersymmetry is broken
on a boundary of a warped extra dimension and compare them with anomaly mediated
models.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25315353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Supersymmetry and extra dimensions are well-motivated extensions of the Standard Model.
They could play a role in the hierarchy problem, or be crucial ingredients in a quantum de-
scription of gravity, as is the case in string theory. Also extra dimensions and supersymmetry
could be connected to the origin of the electroweak symmetry breaking [1].

To study supersymmetric theories it is very useful to have a superfield description where
supersymmetry invariance is manifest, and nonrenormalization theorems are easily derived
[2]. The N = 1 superfield formalism has been extensively analyzed in four dimensions. In
higher dimensions, however, supersymmetry is usually presented in component fields, since
a superfield description is usually not known. A first attempt to write higher-dimensional
supersymmetric theories in superfields was presented in Ref. [3] for theories in 10 dimensions,
and has been recently extended to other dimensions in Ref. [4]. The formulation of Refs. [3, 4]
is based on writing higher-dimensional supersymmetric theories using N = 1 four-dimensional
superfields. These are the ordinary superfields defined in a 4D superspace. Higher-dimensional
supersymmetric theories contain the 4D supersymmetry and therefore it is always possible to
write them using N = 1 superfields. With this formulation, only the N = 1 supersymmetry is
manifest. In spite of this limitation, we think that the formulation is already very useful for
supersymmetric theories with extra dimensions. The effective action is simpler to write than
in component fields, and the bulk-boundary couplings are easily obtained. Nonrenormalization
theorems can also be derived.

Here we will use the N = 1 superfield formulation to write the action of a 5D supersymmetric
theory with a compact extra dimension. The important new ingredient of our formulation is
that it incorporates the radion superfield T . This will allow us to write the supersymmetric
action for fields living in either a flat or a warped extra dimension. In particular, we will
consider a gauge theory with 5D vector multiplets and charged hypermultiplets in an extra
dimension (1) flat and compactified in a circle S1 or orbifold S1/Z2, (2) warped as in the
Randall-Sundrum (RS) scenario [5].

We will apply this superfield formulation to study supersymmetry breaking induced by the
F -term of the radion superfield. This occurs when a constant superpotential is present in the
bulk of the extra dimension. For a flat extra dimension we will show that this is equivalent
to break supersymmetry by boundary conditions (Scherk-Schwarz (SS) mechanism [6]). In
particular, we will derive the mass spectrum of the models of Refs. [7, 8]. Our formulation
therefore will provide a superfield description of the SS mechanism and will show that the SS
breaking of supersymmetry is spontaneous.

For a warped extra dimension, we will consider the breaking of supersymmetry induced by
a boundary superpotential, and derive the mass spectrum in the gauge sector. We will show
the similarities of this breaking with models of anomaly mediated supersymmetry breaking
(AMSB) [9].

A final comment is in order. In our formulation we will be only considering part of the 5D
supergravity multiplet, the radion superfield T . Therefore our approach does not incorporate
the full 5D gravitational sector. The action derived below must be considered as that of
supersymmetric theories on nontrivial gravitational backgrounds. A complete formulation with
the full 5D supergravity multiplet is a subject of future research.
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2 5D superfield action with a flat and compact extra

dimension

Let us consider a 5D theory in M4 × S1. The metric is given by

ds2 = ηµνdxµdxν + R2dy2 , (1)

where R is the radion of the extra dimension labeled by y, which ranges from 0 to 2π. We want
to derive the action of superfields living on the 5D gravitational background of Eq. (1). For
this purpose, we need to promote R to a superfield. This corresponds to a 4D chiral superfield
T that, together with R, it is known to contain the fifth-component of the graviphoton B5, the
fifth-component of the right-handed gravitino Ψ5

R and a complex auxiliary field FT , and we will
write it as

T = R + iB5 + θΨ5
R + θ2FT . (2)

2.1 Vector supermultiplet

The off-shell 5D N = 1 vector supermultiplet consists of a 5D vector AM , two Weyl gauginos
λ1,2, a real scalar Σ, and a real and complex auxiliary field D and Fχ respectively. Under the
N = 1 supersymmetry, they form a vector supermultiplet V and a chiral supermultiplet χ 1:

V = −θσµθ̄Aµ − iθ̄2θλ1 + iθ2θ̄λ̄1 +
1

2
θ̄2θ2D ,

χ =
1√
2

(Σ + iA5) +
√

2θλ2 + θ2Fχ , (3)

where V is given in the Wess-Zumino gauge. Let us first consider an Abelian theory. Under a
gauge transformation, the superfields transform as

V → V + Λ + Λ† ,

χ→ χ +
√

2∂5Λ , (4)

where Λ is an arbitrary chiral field. The gauge invariant action is given by

S5 =

∫
d5x

[
1

4g2
5

∫
d2θ TW αWα + h.c. +

2

g2
5

∫
d4θ

1

(T + T †)

(
∂5V − 1√

2
(χ + χ†)

)2
]

. (5)

It is easy to check that this superfield action leads to the right action in component fields. We
must perform the integrals over θ taking 〈T 〉 = R, eliminate the auxiliary fields using their
equation of motion

Fχ = 0 , D = −∂5Σ

R2
, (6)

1We will follow the notation of Ref. [2].
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and rescale the fields according to Σ → RΣ, λ2 → −iRλ2. We finally obtain

S5 =
1

g2
5

∫
d5x
√−g

[
−1

2
∂MΣ∂MΣ− 1

4
FMNF MN +

i

2
λ̄iγ

M∂Mλi

]
, (7)

where we have defined the symplectic-Majorana spinors [λi]
T ≡ (λi, εijλ̄j) in order to make

Eq. (7) manifestly invariant under the SU(2) automorphism group [10].
For the non-Abelian case, the second term of Eq. (5) must be replaced by

2

g2
5

∫
d4θ

1

(T + T †)
Tr
[
{eV/2, ∂5e

−V/2}+
1√
2
(eV/2χ†e−V/2 + e−V/2χeV/2)

]2
, (8)

that is gauge invariant under the gauge transformation

χ → U−1(χ−
√

2∂5)U , eV → U−1eV U−1 † , (9)

χ† → U †(χ† +
√

2∂5)U
−1 † , e−V → U †e−V U , (10)

where U = e−Λ, U † = e−Λ†
, Λ = ΛaT a, χ ≡ χaT a and V ≡ V aT a. For T = constant, Eq. (8)

differs from Ref. [4] only in chiral or antichiral terms which vanish under the integration over
the whole superspace

∫
d4θ. Nevertheless, these terms are nonzero for the case in which T is a

superfield with a nontrivial θ dependence, and they must be taken into account.

2.2 Hypermultiplet

The off-shell 5D hypermultiplet consists in two complex scalars, φ and φc, a Dirac fermion
Ψ and two complex auxiliary fields FΦ and FΦc . It can be arranged in two N = 1 chiral
superfields, Φ and Φc. Assuming that they are charged under some gauge group and transform
as Φ → U−1Φ and Φc → ΦcU , we have that the 5D action for the hypermultiplet is given by

S5 =

∫
d5x

{∫
d4θ

1

2
(T + T †)

(
Φ†e−V Φ + ΦceV Φc †)+

∫
d2θ Φc

[
∂5 − 1√

2
χ
]
Φ + h.c.

}
. (11)

For 〈T 〉 = R, the auxiliary fields are given by

FΦ =
1

R

(
∂5 +

1

2
(Σ− iA5)

)
φc † , F a

χ =
g2
5R√
2

φ†T aφc † ,

F †
Φc = − 1

R

(
∂5 − 1

2
(Σ + iA5)

)
φ , Da = −∂5Σ

a

R2
+

g2
5

2
(φ†T aφ− φcT aφc †) . (12)

By rescaling Σ and λ2 as in Section 2.1, Eq. (11) gives

S5 =

∫
d5x
√−g

{
−|DMφ|2 − |DMφc|2 + iΨ̄γMDMΨ− 1√

2
(φcλ̄1Ψ− φ†λ̄2Ψ) + h.c.

− i

2
Ψ̄ΣΨ− 1

4
(φ†iΣ

2φi)− g2
5

8

∑
m,a

(φ†i(σ
m)ijT

aφj)
2
}

, (13)
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where in the last two terms we have defined {φ1, φ2} ≡ {φ, φc †} and the gauge covariant
derivative as DM = ∂M − i

2
Aa

MT a. A supersymmetric mass for the hypermultiplet,∫
d2θ ΦcmΦ + h.c. , (14)

can be easily included by performing in Eq. (11) the shift χ → χ − √2m that in Eq. (13)
corresponds to Σ → Σ− 2m.

2.3 The orbifold S1/Z2 and bulk-boundary couplings

The above bulk action is not modified if the extra dimension is compactified in the orbifold
S1/Z2, which corresponds to the circle S1 with the identification y ↔ −y. This identification
leads to a manifold with two boundaries at y = 0 and at y = π.

There can be fields living on these 4D boundaries. They respect an N = 1 supersymmetry
and therefore their superfield action is the ordinary one. The couplings of the boundary fields
to the bulk fields are easily obtained using superfields. Assuming that V and χ are respectively
even and odd under the Z2 parity, we have that χ vanishes on the boundaries and therefore
only V couples to fields on the boundaries. For the hypermultiplet, if we assume that Φ and Φc

are respectively even and odd under the Z2, we have that only Φ can couple to the boundary
fields. For a chiral superfield Q living on the y = 0 boundary these couplings are simply given
by

S5 =

∫
d5x

[∫
d4θ
(
Q†e−V Q + e−V ξ

)
+

∫
d2θ W (Φ, Q) + h.c.

]
δ(y) , (15)

where W is a superpotential that can depend on Φ and Q, and ξ is a Fayet-Iliopoulos term that
can be present for an Abelian vector supermultiplet. The boundary couplings Eq. (15) change
the auxiliary field equation of motion by δ-function terms:

D = −∂5Σ

R2
+

g2
5

2
δ(y)

(
Q†Q + ξ

)
,

FΦ =
1

R

(
∂5 +

1

2
(Σ− iA5)

)
φc † − δ(y)

∂W

∂Φ

∣∣∣∣
Φ=φ

. (16)

Similarly we can obtain the couplings on the boundary at y = π.

3 Superfield action in a warped 5D space

The above action can be generalized to the case where the extra dimension is warped. As an
example, we will consider the RS scenario [5] where the extra dimension y is compactified on
an orbifold S1/Z2 of radius R, with −π ≤ y ≤ π. The 5D space is defined by the metric

ds2 = e−2Rσηµνdxµdxν + R2dy2 , (17)
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where

σ = k|y| , (18)

and 1/k is the curvature radius. This space corresponds to a slice of AdS5. The supersymmetric
version of the RS model has been recently studied in Refs. [11, 12]. The supersymmetric con-
ditions for vector and hypermultiplets on the background of Eq. (17) were derived in Ref. [11].
Here we will present the action written in superfields.

3.1 Vector supermultiplet

The action for the Abelian vector superfield is given by

S5 =

∫
d5x

[
1

4g2
5

∫
d2θ TW αWα + h.c. +

2

g2
5

∫
d4θ

e−(T+T †)σ

(T + T †)

(
∂5V − 1√

2
(χ + χ†)

)2
]

. (19)

The auxiliary fields are given by

Fχ = 0 , D = −e−2Rσ

R2
(∂5 − 2Rσ′)Σ , (20)

where σ′ = ∂5σ. After the rescaling Σ → RΣ, λ1 → e−3Rσ/2λ1, λ2 → −iRe−Rσ/2λ2, we obtain
the action

S5 = − 1

g2
5

∫
d5x
√−g

[
1

2

(
∂MΣ

)2
+

1

2
m2

ΣΣ2 +
1

4
F 2

MN −
i

2
λ̄iγ

MDMλi −mλ
i

2
λ̄i[σ3]ijλj

]
, (21)

where σ3 = diag(1,−1), DMλi = ∂Mλi + ΓM [σ3]ijλj , being ΓM the spin connection, ΓM =
(σ′γ5γµ/2, 0), and where

m2
Σ = −4k2 + 2

σ′′

R
, mλ =

1

2
σ′ , (22)

in agreement with Ref. [11].

3.2 Hypermultiplet

The action is given by

S5 =

∫
d5x

{∫
d4θ

1

2
(T + T †)e−(T+T †)σ (Φ†e−V Φ + ΦceV Φc †)

+

∫
d2θ e−3Tσ Φc

[
∂5 − 1√

2
χ−

(3

2
− c
)
Tσ′
]
Φ + h.c.

}
, (23)

where following Ref. [11] we have parametrized the hypermultiplet mass as cσ′. Neglecting for
simplicity the gauge sector, we have that the auxiliary fields are given by

FΦ =
e−Rσ

R

[
∂5 +

(3

2
− c
)
Rσ′

]
φc † ,

F †
Φc =− e−Rσ

R

[
∂5 −

(3

2
− c
)
Rσ′
]
φ , (24)
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that after the rescaling Ψ → e−Rσ/2Ψ yields,

S5 =

∫
d5x
√−g

{(−|∂Mφ|2 − |∂Mφc|2 −m2
φ|φ|2 −m2

φc|φc|2 + iΨ̄γM(∂M + ΓM)Ψ− imΨΨ̄Ψ
)}

,

(25)

where

m2
φ,φc =

(
c2 ± c− 15

4

)
k2 +

(3

2
∓ c
)σ′′

R
, mΨ = cσ′ . (26)

3.3 Low-energy 4D effective theory

At energies below the KK masses (that in the warped case are of order ke−Rkπ), the KK can be
integrated out and the effective theory can be written with only the massless sector. For the
5D vector superfield this corresponds to the zero mode of the superfield V . Its wave-function
f0(y) is determined by ∂5f0 = 0, so it is y-independent [13]. The 4D effective lagrangian for
the massless mode of V is therefore the same as the one with a flat extra dimension:

L4D =
π

2g2
5

∫
d2θ TW αWα + h.c. . (27)

For the hypermultiplet only the chiral superfield Φ (even under Z2) has a massless mode. Its

wave-function satisfies [∂5 − (3
2
− c)Tσ′]f0 = 0 that yields f0 = e( 3

2
−c)Tσ. After integrating over

y, we get the effective lagrangian

L4D =

∫
d4θ

1(
1
2
− c
)
k

(
e( 1

2
−c)(T+T †)kπ − 1

)
Φ†e−V Φ . (28)

3.4 Bulk-boundary couplings

For a chiral superfield Q living on the y = 0 boundary the bulk-boundary couplings are the
same as those in Eq. (15). On the other boundary, at y = π, we have

S5 =

∫
d5x

[∫
d4θ e−(T+T †)kπ

(
Q†e−V Q + e−V ξ

)
+

∫
d2θ e−3TkπW (Φ, Q) + h.c.

]
δ(y − π) .

(29)

4 Supersymmetry breaking by the radion F -term

As an application of the action derived above, we will calculate the spectrum of soft masses that
is obtained when supersymmetry is broken by a nonzero F -term of the radion superfield. We
will first consider the case of a flat extra dimension with a constant (y-independent) FT . We will
show that the resulting mass spectrum is the same as that in models with SS supersymmetry
breaking. For a warped extra dimension we will consider the case when FT is induced on the
boundary. We will see that FT is exponentially suppressed, generating small soft masses.
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4.1 A flat extra dimension

The simplest model to break supersymmetry by the radion F -term is the no-scale model [14].
In superfields this is given by

S5 =

∫
d5x

[
−3M3

5

∫
d4θ ϕ†ϕ

(T + T †)
2

+

∫
d2θ ϕ3W + h.c.

]
, (30)

where W is a “superpotential” that can arise in gauged supergravity theories [15]. We are
considering that W is constant (y-independent) and real. Eq. (30) corresponds to the effective
action of the radion of a flat extra dimension. We have introduced the conformal compensator
ϕ [16]. This is a non-propagating superfield useful to incorporate the supergravity effects to
the effective radion potential. The superfield ϕ makes the 4D supergravity action manifestly
invariant under a conformal transformation. The breaking of the superconformal group down
to the super-Poincare group is parametrized by the scalar component of ϕ and the F -term of
ϕ corresponds to the auxiliary component of the supergravity multiplet:

ϕ = 1 + θ2Fϕ . (31)

From Eq. (30) we obtain

FT =
2W

M3
5

, Fϕ = 0 , (32)

that leads to a vanishing potential for the radion (at tree level). Therefore if the vacuum
expectation value of W is nonzero, supersymmetry is broken by a nonzero FT with zero cosmo-
logical constant. This is a very simple example of breaking supersymmetry by FT . This model,
however, does not stabilize the radius R. For this purpose, one could need some extra massive
matter fields, as for example in Ref. [17]. Other scenarios have been proposed in Ref. [18]. In
what follows, we will assume that the radius is stabilized without affecting Eq. (32).

Let us derive the soft masses in the gauge sector for this scenario. Taking T = R + θ2FT in
Eq. (5), we obtain an extra mass term for the 5D gauginos:

Lsoft =
1

2

FT

2R
λT

i Cλi , (33)

where C is the charge-conjugation matrix in 5D. Eq. (33) is a Majorana mass term. In the case

of the orbifold S1/Z2 where we decompose the 5D fields in KK states, λ1 =
∑

cos(ny)λ
(n)
1 (x)

and λ2 =
∑

sin(ny)λ
(n)
2 (x), the gaugino masses are given by

Lmass =
FT

2R
λ

(0)
1 λ

(0)
1 +

1

R

∞∑
n=1

(
λ

(n)
1 λ

(n)
2

)(FT /2 n
n FT /2

)(
λ

(n)
1

λ
(n)
2

)
+ h.c. , (34)

which give rise to Majorana gaugino masses |FT /2± n|/R. This is the same spectrum as the
one obtained by SS supersymmetry breaking with an R-symmetry [7]. The correspondence is
FT /2 = qR that implies W/M3

5 = qR, where qR is the R-charge defined in Ref. [7]. For FT = 1
it also corresponds to the gaugino mass spectrum of Ref. [8]. Notice that the scalar Σ does not
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get a soft mass as it is also predicted by SS supersymmetry breaking since the R-charge of Σ
is zero.

For the hypermultiplet a nonzero FT gives in Eq. (11) an extra contribution to the F -terms
of the scalars. These are now given by

FΦ =
1

R

(
[∂5 + iα]φc † − 1

2
FT φ

)
,

F †
Φc = − 1

R

(
[∂5 + iα]φ +

1

2
FT φc †

)
, (35)

where, for later use, we have also included a supersymmetric mass, Eq. (14), with m = iα.
After KK reduction in a circle S1 (imposing periodic boundary conditions), the mass term for
the scalars is given by

Lmass = − 1

R2

∞∑
n=−∞

(
φ(n) † φc (n) †)((n + α)2 + F 2

T /4 i(n + α)FT

−i(n + α)FT (n + α)2 + F 2
T /4

)(
φ(n)

φc (n)

)
, (36)

that corresponds to scalars with masses |n + α ± FT /2|/R. Fermions do not get soft masses
and the mass spectrum is given by |n + α|/R. Let us compare the mass spectrum of Eq. (36)
with that in the models of Refs. [7] and [8].

In Ref. [8] quarks and leptons were associated to hypermultiplets that would correspond to
the above hypermultiplet with α = 0, FT = 1 and, after orbifolding, n = 0, 1, 2, .... To derive
the mass spectrum of the Higgs of Ref. [8], we must proceed as follows. Let us absorb the
supersymmetric mass m = iα of the hypermultiplet by the redefinition 2

Φ
′
= eiαyΦ , Φc ′

= e−iαyΦc , (37)

and assign the following Z2 parities: Φ
′
(y) → Φ

′
(−y) and Φc ′

(y) → −Φc ′
(−y). For α = 1/2,

we have that the KK decomposition in the S1/Z2 orbifold is given by Φ
′

=
∑

n cos[(n +
1/2)y]Φ(n)(x) and Φc ′

=
∑

n sin[(n+1/2)y]Φc (n)(x) where n = 0, 1, 2, .... The mass spectrum is
supersymmetric and is given by |n + 1/2|/R. Let us now turn on the FT and break supersym-
metry. The scalar mass matrix will be given by Eq. (36) with α = 1/2 and n = 0, 1, 2, ..., and
therefore the scalar masses will be |n + 1/2± FT /2|/R. For FT = 1 we obtain the same mass
spectrum as that of the Higgs in Ref. [8]. There is a single massless scalar that is associated
with the SM Higgs.

In Ref. [7] quarks and leptons were localized on the boundaries of the orbifold while the
Higgs sector was living in the bulk. To give masses to the fermions, the Higgs sector had to
consist in two hypermultiplets (Φi, Φ

c
i) i = 1, 2. Assigning the Z2 parity as Φ(y) → ηΦ(−y),

with η = +1(−1) for Φ1 and Φc
2 ( Φc

1 and Φ2), the Higgs sector can be written as

S5 =

∫
d5x

{∫
d4θ

1

2
(T + T †)

(
Φ†

iΦi + Φc
iΦ

c †
i

)
+

∫
d2θ Φc

i(∂5δij + mεij)Φj + h.c.

}
, (38)

2This y-dependence of the hypermultiplet can be the result of imposing the (supersymmetric) boundary
condition Φ

′
(x, y + 2π) = ei2παΦ

′
(x, y) and similarly for Φc ′

.
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where a supersymmetric mass m compatible with the Z2 parity has been introduced. For
FT 6= 0, the scalar masses are given by |m − FT /2 ± n|/R and |m + FT /2 ± n|/R, while the
fermion sector has masses |m ± n|/R. This spectrum is identical to that of Ref. [7] with the
identification m = qH and FT = 2qR.

In conclusion, we have showed that a constant (y-independent) W yields supersymmetry
breaking parametrized by the F -term of the radion and gives the same spectrum as supersym-
metry broken by boundary conditions. In particular, we have recovered the mass spectrum
of the models of Refs. [7] and [8]. Since supersymmetry is broken by the F -term of T , the
Goldstino field corresponds to the fermionic component of T that is the fifth-component of the
right-handed gravitino, Ψ5

R (in a different way, this has also been shown in Ref. [19]).
What happens when W is localized on the boundary instead of in the bulk? 3 In this case

the gaugino mass term Eq. (33) is localized on the boundary and therefore will only affect the
even modes 4:

Lsoft =
δ(y)

R

W

M3
5

λ1λ1 + h.c. , (39)

for a canonically normalized λ1. This term can be thought to arise from Eq. (5) with FT =
2δ(y)W/M3

5 . The term (39) produces a mixing between the KK. To obtain the mass spectrum
one has to redefine the KK states. It is much simpler, however, to obtain the mass spectrum
by solving the 5D equation of motion of the gauginos with the term Eq. (39) included. This
has already been done in Ref. [21]. Instead of repeating this here, we will consider this scenario
of supersymmetry breaking in a warped extra dimension.

4.2 A warped extra dimension

The interesting situation for a warped extra dimension is when the breaking of supersymmetry
is located on the boundary at y = π. In this case the soft masses are exponentially suppressed,
explaining the hierarchy between the weak and the Planck scale [11, 22, 23, 24]. Here we will
consider the effects of triggering a constant superpotential term W on the y = π boundary.
This breaks supersymmetry inducing a gaugino mass given by

Lsoft =
δ(y)

R

e−RkπW

M3
5

λ1λ1 + h.c. . (40)

Eq. (40) shifts the gaugino mass spectrum from the gauge-boson one. The exact mass eigen-
values mn of the gauginos are derived in the Appendix. For large supersymmetry breaking,
W � M3

5 , the Majorana gaugino masses become independent of W :

±
√

2

Rkπ
ke−Rkπ , ±5

4
πke−Rkπ , ±9

4
πke−Rkπ , ... . (41)

3As far as the low-energy effective theory is concerned (the one describing physics below the KK masses and
consisting of only of the zero modes), it is clear that there is no difference from the case where W is coming
from the bulk as long as W/M3

5 � 1 and the zero modes can be considered lighter than the KK.
4See Ref. [20] for the case of the gravitino.
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Notice that in this limit, W/M3
5 → ∞, the gauginos can be combined in Dirac fermions and

the theory becomes U(1)R invariant. This is exactly the same spectrum as the one obtained
when supersymmetry is broken by boundary conditions [22].

For small supersymmetry breaking, W � M3
5 , only the zero modes are substantially affected

(the KK masses get small corrections as it is shown in the Appendix). We can analyze these
effects by just considering the effective theory at energies below the KK masses with only the
zero modes. For the vector and hypermultiplet sector the effective theory is given by Eqs. (27)
and (28). For the radion, the effective lagrangian is given by [25]

L4D = −6M3
5

k

∫
d4θϕ†ϕ(1− e−(T+T †)kπ) +

∫
d2θϕ3

[
W0 + e−3TkπW + h.c.

]
, (42)

where W0 and W are the superpotentials on the boundary at y = 0 and y = π respectively. W0

has been introduced to cancel the cosmological constant as we will see below. From Eq. (42),
we obtain the auxiliary fields

FT = e−Rkπ W

2πM3
5

+
W0

2πM3
5

, Fϕ =
kW0

2M3
5

, (43)

and the effective radion potential

V =
3k

2M3
5

(
e−4Rkπ|W |2 − |W0|2

)
. (44)

Unlike the flat case, the vanishing of the potential is not guaranteed for a constant W . In fact,
one must tune |W0|2 = e−4Rkπ|W |2 to have a zero cosmological constant. In this case, we get

FT =
W

2πM3
5

e−Rkπ , Fϕ = πFT e−Rkπ . (45)

We see that, as expected, the F -term of the radion is exponentially suppressed and Fϕ, although
nonzero, is exponentially smaller than FT . Although this is not a realistic model since R is not
stabilized, it can be considered as a simple example of a supersymmetry breaking scenario with
FT ∼ e−Rkπ. Turning on a nonzero FT in Eqs. (27) and (28), we obtain the supersymmetry
breaking masses

mλ1 =
FT

2R
, mφ =

∣∣∣∣ (1/2− c)kπFT

2 sinh[(1/2− c)Rkπ]

∣∣∣∣ . (46)

Notice that mφ has its maximum for c = 1/2 and tends exponentially to zero when c deviates
from this value.

The result of Eq. (46) has an interesting 4D interpretation using the AdS/CFT correspon-
dence, that is based on the conjecture that theories on AdS5 are dual to 4D strongly coupled
conformal field theories (CFT) in the large N limit [26]. This correspondence between AdS
and CFT theories has been also extended to the RS set-up, giving a useful tool to understand
the physics of this 5D scenario from a 4D point of view. For example, it has been argued that
placing the boundary at y = 0 in the AdS5 space corresponds, in the 4D dual picture, to break
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explicitly the conformal group by introducing an ultraviolet cutoff at k and by adding new (ul-
traviolet) degrees of freedom [27]. For the case of a 5D theory with gravity and a gauge sector
in the bulk, these new degrees of freedom correspond to a graviton and a gauge boson coupled
to the CFT (it corresponds to a gauging of the Poincare group and a global symmetry of the
CFT). The boundary at y = π has a different correspondence in the 4D dual. It corresponds to
a spontaneous breaking of the conformal group at the scale ke−Rkπ. The radion is associated
to the Goldstone boson of the broken conformal symmetry, that we will call the dilaton. This
has been recently checked in different ways in Ref. [28]. Under the conformal transformation,
gµν → Ω2gµν , the superfields of the effective theory of Eqs. (27)–(29) must transform according
to

T → T +
1

kπ
ln Ω ,

V → V ,

Φ → Ω(c−3/2)Φ ,

Q → Q . (47)

The lagrangian of Eqs. (27) and (28) is, however, not fully invariant under the transformation
Eq. (47) due, as we said, to the y = 0 boundary. In Eq. (27) the appearance of T coupled to
the vector multiplet breaks the conformal symmetry. In the 4D dual picture this corresponds
to the coupling of the dilaton to the gauge vector supermultiplet at the one-loop level due to
the conformal anomaly. In 5D it appears at the tree-level according to the duality relation
[28] g2

5bCFT /(8π2) = 1/k. For the hypermultiplet zero mode, Eq. (28), the effect of the y = 0
boundary becomes exponentially suppressed for c � 1/2. In this limit the zero mode is localized
on the boundary at y = π and corresponds in the 4D dual picture to a bound state arising from
the spontaneously broken CFT.

Our scenario where supersymmetry is broken by the F -term of the radion corresponds in
the 4D dual to break supersymmetry with the dilaton F -term. This is similar to AMSB where
the breaking of supersymmetry is parametrized by the F -term of the conformal compensator
ϕ. In AMSB models gaugino and scalar masses are generated at the loop level due to the
conformal anomaly. In our case, the role of ϕ is played by T . It is also the anomaly (in the
4D dual) responsible for the gaugino masses. The scalar mass of φ tends to zero at tree level
in the conformal limit c � 1/2, but it is generated at the one-loop level, similarly to AMSB,
due to a wave function renormalization. In the opposite limit, c � 1/2, the zero mode of the
hypermultiplet is localized on the y = 0 boundary and corresponds in the 4D picture to a new
degree of freedom. In this case its tree-level mass is also small since its direct coupling to the
dilaton (arising from the CFT) is exponentially suppressed.

5 Conclusions

We have presented the 5D action of a supersymmetric gauge theory with a compact extra
dimension using N = 1 superfields. For a flat extra dimension the action is given in Eqs. (5)
and (11), while for a warped extra dimension as in the RS scenario this is given in Eqs. (19)
and (23).
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We have applied the above results to study the breaking of supersymmetry by the F -term
of the radion. We have showed that, for a flat extra dimension, this type of breaking leads to
the same mass spectrum as in Scherk-Schwarz models of supersymmetry breaking. One can
therefore consider our formulation as a superfield description of the SS mechanism.

We have also considered scenarios where supersymmetry is broken on a boundary of a
warped extra dimension. The spectrum in this case presents certain similarities with that in
AMSB models.
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Appendix

In this Appendix we will derive the mass spectrum for the gaugino sector in a theory with
a warped extra dimension where the breaking of supersymmetry induces a Majorana gaugino
mass on the boundary as in Eq. (40).

Redefining λi → e−2Rσλi i = 1, 2 to absorb the spin connection term, the equations of
motion for the gauginos are given by

ieRσσ̄µ∂µλ2 +
1

R
(∂5 +

1

2
Rσ′)λ̄1 = 0 ,

ieRσσ̄µ∂µλ1 − 1

R
(∂5 − 1

2
Rσ′)λ̄2 − 1

2

W

M3
5 R

δ(y − π)λ̄1 = 0 . (48)

We will solve these equations in the bulk, ignoring boundary effects which will only play
a role when imposing boundary conditions. Looking for solutions of the form λi(x, y) =∑

λ(n)(x)f
(n)
i (y) and using the orthogonality condition of the modes, Eq. (48) leads to the

second order differential equations[ 1

R2
eRσ∂5(e

−Rσ∂5)−
(1

4
± 1

2

)
k2
]
f

(n)
1,2 = e2Rσm2

nf
(n)
1,2 , (49)

with solutions

f
(n)
1 (y) =

eRσ/2

Nn

[
J1

(mn

k
eRσ
)

+ b1(mn)Y1

(mn

k
eRσ
)]

, (50)

f
(n)
2 (y) =

σ′

k

eRσ/2

Nn

[
J0

(mn

k
eRσ
)

+ b2(mn)Y0

(mn

k
eRσ
)]

, (51)

where bi and mn will be determined by the boundary conditions, and Nn are normalization
constants.

Taking into account the Z2 assignment, f
(n)
i must fulfill the following conditions on the

y = 0 boundary:

f
(n)
2

∣∣∣
y=0

= 0 ,(
d

dy
+

R

2
σ′
)

f
(n)
1

∣∣∣
y=0

= 0 , (52)

which imply

b1(mn) = b2(mn) = −J0

(
mn

k

)
Y0

(
mn

k

) . (53)

On the other hand, the presence of the Majorana gaugino mass on the y = π boundary in
Eq. (48) requires the following condition:

f
(n)
2 (π) =

1

2

W

2M3
5 R

f
(n)
1 (π) . (54)

13



Eqs. (53) and (54) yield

2
[
J0

(mn

k
eRkπ

)
− J0

(
mn

k

)
Y0

(
mn

k

)Y0

(mn

k
eRkπ

)]
=

W

2M2
5 R

[
J1

(mn

k
eRkπ

)
− J0

(
mn

k

)
Y0

(
mn

k

)Y1

(mn

k
eRkπ

)]
,

(55)

that determines the mass spectrum. Let us look for solutions of Eq. (55) in the limit kR � 1.
For the lightest modes we can take the limit mneRkπ/k ≡ ε � 1 in Eq. (55) that becomes

2 =
W

2M3
5

[
ε

2
− 1

πkR

1

ε

]
. (56)

If the breaking of supersymmetry is small, W/M3
5 � 1, the only solution to Eq. (56) fulfilling

ε � 1 is given by

m ' W

4M3
5 πR

e−Rkπ . (57)

This corresponds to the zero mode mass. In the strong supersymmetry breaking case, W/M3
5 �

1, there are two solutions to Eq. (56) given by

m ' ±
√

2

πkR
ke−Rkπ . (58)

On the other hand, the masses of the heavier KK modes are easily obtained from Eq. (55) in
the limit ε > 1 that becomes

J0

(
mn

k
eRkπ

)
J1

(
mn

k
eRkπ

) =
W

4M3
5

. (59)

If the breaking of supersymmetry is weak, W/M3
5 � 1, the Majorana mass spectrum is approx-

imately given by

mn '
(

n +
3

4
± W

4πM3
5

)
πke−Rkπ , n = 1, 2, ..., (60)

whereas in the strong supersymmetry breaking limit, W/M3
5 � 1, we have

mn '
(

n +
1

4
± 4M3

5

πW

)
πke−Rkπ . (61)
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