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Abstract

We present a short review of experimental and theoretical constraints on the mass
of the Standard Model Higgs boson. We briefly illustrate the unsatisfactory aspects
of the standard theory, and we present some general considerations about possible
non-standard scenarios.

Talk given at Les Rencontres de la Vallée d’Aoste
La Thuile, Italy, March 4-10, 2001

1On leave from INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25315339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introductory remarks

It is now an experimentally well-established fact that the SU(2)×U(1) gauge sym-
metry of electroweak interactions is spontaneously broken to U(1)em. We observe
the three Goldstone modes corresponding to the broken part of the gauge group
as the longitudinal polarization states of W± and Z0. However, the details of the
mechanism that induces spontaneous breaking of the gauge symmetry are still un-
known. In the original formulation of the Standard Model, spontaneous symmetry
breaking is achieved by means of a scalar SU(2) doublet φ with unit hypercharge,
whose classical potential

V (φ) = m2 |φ|2 + λ |φ|4 , m2 < 0 (1)

has a minimum for |φ|2 = −m2/(2λ) ≡ v2/2, which corresponds, at the quantum
level, to a non-invariant ground state (assuming the validity of perturbation theory
in the scalar sector). The value of v is fixed by the measurement of the β decay
rate, v ' 246 GeV. Only one physical degree of freedom in the Higgs sector remains
in the spectrum, a scalar H with tree-level mass m2

H = 2λv2. Large values of mH

correspond to strong interactions in the Higgs sector. Indeed, the decay width of
the standard model Higgs into a pair of gauge bosons

Γ(H → V V ) =
3

32π

m3
H

v2
(2)

becomes approximately equal to mH for mH ∼ 1.4 TeV. In this case, the Higgs boson
can no longer be considered as a particle. In the following, we will concentrate on the
conventional scenario in which the Higgs sector is within the perturbative regime,
and the Higgs boson mass is not too large.

The Higgs boson has not been detected so far. The lower limit on the

Higgs boson mass from direct searches is about 113 GeV 1), but there are strong
indications that, if it exists, its mass should not be too much larger than this. In fact,
a global fit to precision observables indicates that the Higgs boson of the minimal
standard model is a light particle: the minimum value of χ2, shown in fig. 1, is
obtained for mH = 98 GeV, with mH < 212 GeV at 95% confidence level.

In the following, we will present a short and simple review of our present
theoretical knowledge on the Higgs boson. We will then recall the problems that
the introduction of scalar particles induces, and we will present some considerations
about how extensions of the Standard Model may appear in future experiments.

2 Theoretical constraints on the Higgs boson mass

In this section, we will briefly review the arguments that lead to conclude that
values of the Standard Model Higgs mass in the 100–200 GeV range are favoured
on theoretical grunds.
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Figure 1: Fit of the Higgs boson mass from electroweak precision data.

A lower bound on mH originates from the requirement that the scalar
potential be bounded from below even after the inclusion of radiative corrections.
In practice, it turns out that this requirement is fulfilled if the running quartic
coupling λ(µ) stays positive, at least up to a certain scale µ ∼ Λ, the maximum
energy scale at which the theory can be considered reliable. In fig. 2 the running
of λ is shown for three different values of the initial condition, given at µ = mZ .
Clearly, the smaller is λ(mZ), the smaller becomes the scale Λ at which λ becomes
negative and the scalar potential unbounded. Since m2

H ' 2λ(mZ)v2, this implies
a Λ-dependent lower bound on mH , which is shown in fig. 3 as a function of Λ for
mt = 174.3 GeV. Observe that the lower bound never becomes larger than about
130 GeV.

As the dashed lines in fig. 3 show, a value of the Higgs mass just above
the present exclusion limit (say mH = 115 GeV) seems to imply the presence of new
phenomena at a scale Λ ∼ 106 GeV. This is in fact not strictly true, for different
reasons. First, the stability lower bound of fig. 3 turns out to be extremely sensitive
to the value of the top quark mass mt, which enters the calculation because the
evolution of λ also depends on the top Yukawa coupling. This can be seen from fig. 4,
where the stability bound is shown for different values of mt. For mt = 164 GeV,
which is only about two standard deviations smaller than the central value of the
Tevatron measurements, the scalar potential of the Standard Model is bounded from
below up to energies of the order of the unification scale, ∼ 1016 GeV.

Furthermore, the stability lower bound can be released by allowing metasta-



Figure 2: The running of the scalar quartic coupling λ of the Standard Model, for
three different values of the Higgs boson mass.

bility of the ground state, instead of requiring its absolute stability, provided the life-
time of the metastable vacuum is larger than the age of the Universe, T ∼ 1010 yrs.
The decay probability of the false vacuum per unit volume and per unit time is
given, to one loop accuracy, by

Γ

V
=

e−S1[h]

V
=

S2
0 [h]

4π2
e−S0[h]

∣∣∣∣∣Det′(S ′′
0 [h])

Det(S ′′
0 [0])

∣∣∣∣∣
−1/2

, (3)

where h(x) – the bounce – is the solution of classical field equations that interpolates
between the true and the metastable vacuum state, S0[h] (S1[h]) the correspond-
ing value of the tree-level (one-loop) euclidean action, and Det′ indicates that the
functional determinant is to be calculated with the zero eigenvalues omitted. The

metastability bound has been computed recently to one loop accuracy (see ref. 2)

and references therein). The results are summarized in fig. 5, where the dashed
and dot-dashed curves represent the stability bound, λ = 0, and the metastabil-
ity bound, respectively. One finds that for mH = 115 GeV and mt at its central
value, the metastability bound is violated at a much higher Λ than the absolute
stability bound. If mt = 173 GeV,2 less than 1 σ away from the central value, the
lower bound is respected up to the grand unification scale. Therefore, even if the
Higgs boson mass is close to its present exclusion limit, one cannot conclude that

2This value is affected by an uncertainty of ±2 GeV, due to higher order QCD corrections.



Figure 3: The stability lower bound on the Higss mass, for mt = 174.3 GeV, as a
function of the cut-off Λ.

new physics is necessarily present at relatively low energies, on the basis of internal
consistency arguments only.

A long-known upper bound on the Higgs mass comes from unitarity of the
scattering matrix. Consider elastic scattering of longitudinally polarized Z bosons:

ZLZL → ZLZL. (4)

The corresponding amplitude, in the limit s � m2
Z , can be computed using the

equivalence theorem:

M = −m2
H

v2

[
s

s−m2
H

+
t

t−m2
H

+
u

u−m2
H

]
, (5)

and the unitarity bound on the J = 0 partial amplitude takes the form

|M0|2 →
[

3

16π

m2
H

v2

]2

<
s

s− 4m2
Z

, (6)

which, for s� m2
Z , implies

mH <

√
16π

3
v ∼ 1 TeV. (7)

Slightly more restrictive bounds (∼ 800 GeV) are obtained considering other scat-
tering processes, such as ZLWL → ZLWL.



Figure 4: Lower bound on the Higgs mass (in GeV) as a function of the cut-off Λ,
for different values of mt.

A less rigorous, but more severe constraint is the so-called triviality bound.
The coupling λ has a Landau pole; this can be seen explicitly by looking at the
solution of the renormalization group equation for λ in the simplified case when
gauge and Yukawa couplings are neglected. One finds

λ(µ2) =
λ(m2

Z)

1− 3
4π2 λ(m2

Z) log µ2

m2
Z

(no gauge and Yukawa couplings) (8)

which has a singularity for

µ2 = m2
Z exp

[
4π2

3λ(m2
Z)

]
. (9)

The location of the Landau pole in the real case is at a different value of µ2, but
the qualitative behaviour is the same. The theory is no longer perturbative when µ
approaches this value, and the one-loop approximation is no longer reliable. Should
this behaviour persist also at higher perturbative orders, one should conclude that
the theory is consistent at all energy scales only if λ = 0, that is, if the theory
is a trivial one. There is no rigorous proof that this is the case for the Standard
Model, but lattice computations indicate that the λφ4 theory is indeed a trivial one.
This is of course unacceptable in the Standard Model: we need a non-zero quartic
coupling to implement the spontaneous breaking of the gauge symmetry. Therefore,



Figure 5: Running of λ for three different values of mH and mt = 174.3 GeV (solid)
and mt = 173 GeV (dotted). The stability (dashed) and metastability (dot-dashed)
lower bounds are also shown.

we are forced to admit that the Standard Model is only an effective theory, valid up
to some energy scale Λ, defined as the scale at which λ(µ) leaves the perturbative
regime. Larger values of the initial condition λ(mZ) correspond to smaller values
of Λ; conversely, the requirement that λ stay within the perturbative domain for
all scales µ < Λ, gives a Λ-dependent upper bound on mH . Of course, this upper
bound depends on how we define the perturbative domain, and therefore it is to
some extent arbitrary. The triviality upper bound obtained imposing the conditions
λ < 1 and λ < 10 are shown in fig. 6. We see that in both cases the triviality bound
is much more stringent than the unitarity limit; an extremely severe upper bound
of about 180 GeV is found if the validity of the Standard Model is pushed up to the
grand unification scale.

To summarize, spontaneous gauge symmetry breaking induced by the Higgs
mechanism with one scalar doublet and perturbative coupling is an extremely ap-
pealing solution: it is relatively simple, and it is consistent with present theoretical
constraints. Furthermore, it should be noted that it can accommodate a consistent
description (even though not an explanation) of the observed pattern of flavor vi-
olation (GIM suppression, FCNC phenomena, CP violation). At the same time,
there are different indications that such a theory cannot be valid up to arbitrarily
large energy scales, and that it should therefore be considered as the low-energy
approximation of some more fundamental scenario.



Figure 6: Upper and lower bounds on mH .

3 How will new physics look like?

It is natural to ask what is the energy scale Λ at which we should expect non-
standard phenomena to take place. A related question is whether it is possible
to build a reasonable (i.e., consistent with data) extension of the Standard Model,
where the upper bound of about 200 GeV on mH is evaded, and the Higgs mass is
close to the unitarity bound. Assuming that there are no non-standard degrees of
freedom at the weak scale, one can parametrize physics at scales well below Λ by

extending the Standard Model lagrangian, as suggested in ref. 3), in the following
way:

Leff = LSM +
∑

i

ci

Λp
O(4+p)

i , (10)

where O(4+p)
i are all the operators of dimension 4 + p, p ≥ 1, consistent with the

classical symmetries of LSM, that one can build with the Standard Model fields. The
upper bound on mH obtained from the global fit to precision observables obviously
holds under the assumption that Λ is large enough, so that the Standard Model is
a good approximation of the true theory at presently explored energies. The non-
standard term in eq. (10) must be non-renormalizable, since LSM already contains
all renormalizable operators allowed by the Standard Model symmetries. The lowest



mh 115 GeV 300 GeV 800 GeV
ci −1 +1 −1 +1 −1 +1

OWB 9.7 10 7.5 — — —
OH 4.6 5.6 3.4 — 2.8 —
OLL 7.9 6.1 — — — —
O′

HL 8.4 8.8 7.5 — — —
O′

HQ 6.6 6.8 — — — —
OHL 7.3 9.2 — — — —
OHQ 5.8 3.4 — — — —
OHE 8.2 7.7 — — — —
OHU 2.4 3.3 — — — —
OHD 2.2 2.5 — — — —

Table 1: Fitted values of Λ (in TeV) at 95% C.L. for each of the operators in eq. (11),
for different values of mH .

(six) dimension operators (flavor-universal, B, L, CP -conserving) are listed below:

OWB = (H†τaH)W a
µνBµν OH = |H†DµH|2

OLL = 1
2
(L̄γµτ

aL)2 O′
HL = i(H†DµτaH)(L̄γµτ

aL)
O′

HQ = i(H†Dµτ
aH)(Q̄γµτ

aQ) OHL = i(H†DµH)(L̄γµL)
OHQ = i(H†DµH)(Q̄γµQ) OHE = i(H†DµH)(ĒγµE)
OHU = i(H†DµH)(ŪγµU) OHD = i(H†DµH)(D̄γµD).

(11)

The authors of ref. 3) have obtained the values of Λ for each operator in eq. (11) by
fitting the data using eq. (10) with one operator at a time, and with fixed values of
mH . The results, at 95% C.L., are shown in table 1, where a blank means that no
value of Λ could be found such that χ2 < χ2

SM + 3.85. Observe that the values of Λ
are generally quite large. Observe also that fits to data are increasingly difficult with
increasing mH ; for most operators, no value of Λ can be found that allows a Higgs
boson much larger than 200 GeV. A fit is possible, for mH in the range 300–500 GeV,
for a few operators and Λ of the order of a few TeV. Building well-motivated models
that give rise precisely to those effective operators is a difficult task. Some examples

are known, and have been reviewed recently in ref. 5), in which non-standard physics
compensates the effect of a heavy Higgs, and the fit to precision data is as good as
in the Standard Model. In some cases, they lead to observable effects at the next
generation of high energy experiments.

4 Hierarchy, naturalness, and fine tuning

Apart from the considerations of the previous sections, there is a very simple reason
why the Standard Model is generally believed to be just an effective low-energy
theory: at very high energies, new phenomena take place, that are not described



by the Standard Model (gravitation is an obvious example). However, one would
like to understand why the weak scale is so much smaller than other relevant energy
scales, such as the Planck mass or the unification scale. This hierarchy problem is
especially difficult to solve within the Standard Model, because of the unnaturalness
of the Higgs mass. As we have seen, we have solid arguments to believe that the
Higgs mass is of the same order of the weak scale; however, it is not naturally small,
in the sense that there is no approximate symmetry that prevents it from receiving
large radiative corrections. As a consequence, it naturally tends to become as heavy
as the heaviest degree of freedom in the underlying theory (and therefore, maybe, of
the order of the Planck mass or of the unification scale), unless the parameters are
accurately chosen. It is instructive to see explicitly how this phenomenon arises in a
simple example. Consider a theory of two scalars interacting through the potential

V0(φ, Φ) =
m2

2
φ2 +

M2

2
Φ2 +

λ

4!
φ4 +

σ

4!
Φ4 +

δ

4
φ2Φ2 (12)

(which is the most general renormalizable potential, if symmetry under φ → −φ,
Φ → −Φ is required), and assume M2 � m2 > 0. In order to check whether this
mass hierarchy is conserved at the quantum level, let us compute one-loop radiative
corrections to m2 by taking the second derivatives of the effective potential at its
minimum, φ = Φ = 0. We get

m2
one loop = m2(µ2) +

λm2

32π2

(
log

m2

µ2
− 1

)
+

δM2

32π2

(
log

M2

µ2
− 1

)
, (13)

where the running mass m2(µ2) obeys the renormalization group equation

µ2∂m2(µ2)

∂µ2
=

1

32π2

(
λm2 + δM2

)
. (14)

Corrections to m2 proportional to M2 appear at one loop. One can choose µ2 ∼M2

in order to get rid of them, but they reappear through the running of m2(µ2). The
only way to preserve the hierarchy m2 � M2 is carefully choosing the parameters,
so that

λm2 ∼ δM2, (15)

but this requires fixing the renormalized parameters of the theory with an unnatu-
rally high accuracy :

δ

λ
∼ m2

M2
(16)

This is what is usually called a fine tuning of the parameters. The situation is
similar when m2 < 0, M2 � |m2| > 0. In this case, the the tree-level potential
has a minimum at Φ = 0, φ2 = −6m2/λ ≡ v2, and the symmetry φ → −φ is
spontaneously broken. The physical degrees of freedom in this case are Φ, with



mass m2
Φ = M2, and φ′ = φ− v with mass m2

φ′ = −2m2 = λv2/3. At one loop, v2

is given by the minimization condition

m2 +
λ

6
v2 +

1

32π2

[
λ

(
m2 +

λ

2
v2

)(
log

m2 + λ
2
v2

µ2
− 1

)

+δ

(
M2 +

δ

2
v2

)(
log

M2 + δ
2
v2

µ2
− 1

)]
= 0. (17)

Following the same procedure as in the unbroken case, one finds

m2
φ′ =

λv2

3
+

v2

32π2

[
λ2 log

m2 + λ
2
v2

µ2
+ δ2 log

M2 + δ
2
v2

µ2

]
(18)

with v ∼ M without a suitable tuning of the parameters. These simple examples
show that squared masses of scalar particles receive radiative corrections propor-
tional to the squared masses of the other degrees of freedom in the theory. There-
fore, without a suitable fine tuning of the parameters, they naturally become as large
as the largest energy scale in the theory. This is related to the fact that no extra
symmetry is recovered when scalar masses vanish, in contrast to what happens, for
example, for fermion masses.

In the case of the Standard Model Higgs, we are already faced with this

problem, as pointed out in ref. 4). The correction to m2
H due to a loop of top quarks

is given by

δm2
H(top) =

3GF m2
t√

2π2
Λ2 ' (0.27 Λ)2, (19)

where we are assuming that the scale Λ that characterizes non-standard physics acts
as a cut-off for the loop momentum. We have seen in the previous section that, if
one assumes that no new degrees of freedom are present around the Fermi scale, Λ
cannot be smaller than a few TeV. With Λ ∼ 5 TeV eq. (19) gives

δm2
H(top) ∼ (1.5 TeV)2, (20)

which is two orders of magnitude larger than the indirect value of mH from the
global fit to precision observables. There is an apparent paradox: precision tests
favour a small value for the Higgs mass, but at the same time, through the analysis
with effective operators, indicate that the scale Λ of non standard physics is too
large to be compatible with the fitted value of mH .

Supersymmetry offers a solution to the naturalness problem, provided the
mass splittings within supermultiplets are not much larger than the Fermi scale.
In fact, in supersymmetric models quadratically divergent radiative corrections to
scalar masses are absent, as a consequence of the fact that supermultiplets contain
both bosonic and fermionic degrees of freedom. In particular, the contribution to
m2

H of a loop of s-top t̃ has the effect of replacing Λ2 in eq. (19) with

m2
t̃ log

Λ2

m2
t̃

(21)



without affecting fits to precision observables. This is the strongest argument in
favour of supersymmetry at the weak scale.

The Higgs sector of supersymmetric models has some specific features. At
least two Higgs doublets must be introduced; their neutral components take non-zero
vacuum expectation values v1, v2 (the notation tanβ = v2/v1 is usually adopted).
After spontaneous breaking of the gauge symmetry, five physical degrees of freedom
are left in the spectrum, usually denoted by h, H , A (neutral) and H± (charged).
The quartic scalar coupling λ in supersymmetric models is replaced by a combination
of the squared weak gauge couplings g, g′. This has two important consequences:
first, the scalar potential is bounded from below by construction; second, Higgs and
weak vector boson masses are related. At tree level, it can be shown that, in a wide
class of supersymmetric models, the lightest Higgs h must be lighter than the Z
boson. Radiative corrections shift this upper bound by an amount proportional to
GFm2

t ; for tanβ >∼ 4 one finds

m2
h ' m2

Z +
3√
2π2

GF m4
t log

m2
t̃

v2
, (22)

where mt̃ is the mass of the scalar partners of the top quark. For mt̃ = 1 TeV,
eq. (22) gives mh ' 118 GeV.

5 Conclusions and outlook

We have reviewed the basic features of the Standard Model Higgs boson, and com-
pared them with current experimental information. The present exclusion limit for
the Higgs bosons from direct searches is mH > 113 GeV, but there are many indirect
indications that the mass of the Standard Model Higgs may lie just above this limit,
and most likely below ∼ 200 GeV.

The possibility of a Higgs boson with a larger mass, whose effects are
compensated by some kind of non-standard physics, has also been investigated in
the literature, and reviewed here. It seems quite unlikely that this could happen in
well-motivated theories, but the possibility is not ruled out.

A Higgs boson with a mass in the range 100–200 GeV is affected by the
problem of the hierarchy between the weak scale and the scale of new physics, which
is known to be larger than ∼ 5 TeV if it is assumed that no new degree of freedom is
present at accessible scales. The hierarchy problem has now become so compelling
that it can be cast in the form of a paradox. Supersymmetry at the Fermi scale is
still the most appealing candidate for its solution.
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