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ABSTRACT

Using new theoretical information on the NNLO and N3LO perturbative QCD corrections to
renormalization-group quantities of odd xF3 Mellin moments, we perform the reanalysis of the
CCFR’97 data for xF3 structure function. The fits were done without and with twist-4 power
suppressed terms. Theoretical questions of applicability of the renormalon-inspired large-β0

approximation for estimating NNLO and N3LO terms in the coefficient functions of odd xF3

moments and even non-singlet moments of F2 are considered. The comparison with [1/1]
Padé estimates is presented. The small x behaviour of the phenomenological model for xF3

is compared with available theoretical predictions. The x-shape of the twist-4 contributions is
determined. Indications of oscillating-type behaviour of h(x) are obtained from more detailed
NNLO fits when only statistical uncertainties are taken into account. The scale-dependent
uncertainties of αs(MZ) are analyzed. The obtained NNLO and approximate N3LO values
of αs(MZ) turn out to be in agreement with the world average value αs(MZ) ≈ 0.118. The
interplay between higher-order perturbative QCD corrections and 1/Q2-terms (or high twist
duality) is studied in more detail. The problem of performing NNLO scheme-invariant analysis
of xF3 data is discussed. The results of our studies are compared with those obtained recently
using the NNLO model of the kernel of the DGLAP equation and with the results of the NNLO
fits to CCFR’97 xF3 data, performed by the Bernstein polynomial technique.
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1 Introduction

The series of our previous works [1]-[5] (for a brief summary see the review of Ref. [6]) was
devoted to the QCD analysis of the xF3 data obtained at the Fermilab Tevatron. In Refs. [3]-[5]
we made the consequent steps towards the next-to-next-to-leading order (NNLO) fits to the
xF3 CCFR’97 data [7] both without and with twist-4 corrections taken into account. In the
process of these studies definite theoretical approximations were made. This work is devoted
to the fixation of the number of theoretical ambiguities involved in our previous fits. Let us
recall the basic steps of these studies.

The x-behaviour of xF3 was reconstructed from the Mellin moments with the number 2 ≤
n ≤ 10 with the help of the Jacobi polynomial technique, developed in Refs. [8] -[12]. At the
NNLO the perturbative expansion for the coefficient functions of these moments is explicitly
known from analytical calculations of Refs. [13], which were confirmed recently with the help
of another technique [14]. However, the NNLO corrections to the anomalous dimensions of
the considered non-singlet (NS) moments, closely related to still analytically unknown NNLO
contributions to the kernel of the DGLAP equation [15]-[18], were modelled in the definite
approximations only. These approximations were based on the observation that for 2 ≤ n ≤ 10
the next-to-leading (NLO) corrections to the anomalous dimensions γ

(1)
NS,F2

(n) of the NS Mellin
moments for F2 do not numerically differ from the NLO corrections to the anomalous dimensions
γ

(1)
F3

(n) of the moments taken from the xF3 structure function (SF) [1]. In view of this it was
assumed that this similarity will be true in the case of higher-order corrections to the anomalous
dimensions γ

(n)
NS,F2

and γ
(n)
F3

as well, provided the typical diagrams with new Casimir structure

dabcdabc (which are starting to contribute to γ
(n)
F3

from the NNLO) are not large. Using this
assumption, we applied in our analysis [3]-[5] of the xF3 CCFR’97 data [7] the available results

for the NNLO corrections to γ
(2)
NS,F2

(n), which were known in the cases of n = 2, 4, 6, 8, 10 due
to the distinguished calculations of Refs. [19, 20]. For the odd moments with n = 3, 5, 7, 9 the

NNLO corrections to γ
(2)
NS,F2

(n) were estimated using the procedure of smooth interpolations,
previously proposed in Ref. [21] in the process of first NS NNLO fits to the F2 data of the
BCDMS collaboration [22].

Quite recently the renormalization group quantities for the xF3 Mellin moments were ana-
lytically calculated at the NNLO level [23] by the methods of Refs. [24]-[26] , used in the case
of calculations of the even Mellin moments of F2 [19, 20]. In Ref. [23] the following information,
quite useful for the fixation of some theoretical ambiguities of our previous fits, was obtained:

• the NNLO corrections to γ
(n)
F3

at n = 3, 5, 7, 9, 11, 13;

• the NNLO corrections to γ
(n)
NS,F2

at n = 12 and n = 14;
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• the N3LO corrections to the coefficient functions of odd Mellin moments of xF3 with
n = 3, 5, 7, 9, 11, 13 1.

Due to the appearance of this new important information it became possible to recast the
analysis of Refs. [3]-[5] on the new level of understanding. First, we are now able to improve the

precision of the smooth interpolation procedure for γ
(n)
NS,F2

, applied in the process of the works
of Refs. [1]-[5]. Second, it is now possible to change the previously-used approximation for NS
anomalous dimensions and take into account the available expressions for the NNLO corrections
to γF3(n) including terms typical to this level of perturbation theory, which are proportional to
f(dabcdabc)/n (in our case we will consider f = 4 number of massless active flavours, while for the
SUC(3)-group (dabcdabc)/3 = 40/9). Moreover, since the best way of estimating the perturbative
part of theoretical uncertainties of the N(i)LO fits is the incorporation of the N(i+1)LO-terms,
the results of Ref. [23] are giving us the chance to perform the approximate N3LO analysis of
xF3 data and compare its outcome with the results obtained within the framework of the N3LO
Padé motivated fits of Ref. [5].

The aims of this work are the following:

1. To reveal and eliminate definite theoretical uncertainties related to the previously-used
NNLO approximation γ

(2)
NS,F2

(n) ≈ γ
(2)
F3

(n) at 2 ≤ n ≤ 10;

2. To include in the analysis the NNLO corrections to the coefficient functions C
(n)
F3

and to

the anomalous dimensions γ
(n)
F3

up to n ≤ 13 (the first results of this program were already
presented in Ref. [28]);

3. To reveal and fix the uncertainties of our previous NNLO fits of Refs. [3]-[5], which had
the aim to determine the NNLO value of αs(MZ) and the parameters of the xF3 SF model
at the initial scale Q2

0;

4. To check the interesting feature of the interplay between NNLO perturbative QCD cor-
rections and 1/Q2- terms the discovered in Refs. [3, 5] which leads to the effective decrease
of the value of the basic free parameter of the infrared renormalon (IRR) model for the
twist-4 contribution to xF3 [29] (for the discussions of the IRR contributions to character-
istics of deep-inelastic scattering see Refs. [30, 31], while for recent reviews of the current
general status of the IRR approach see Refs. [32, 33]);

5. To comment upon the predictive abilities and special features of the Padé approximants
at the N3LO level;

6. To study the applicability of the renormalon-inspired large-β0 expansion for estimat-
ing higher-order perturbative corrections to the coefficient functions of moments of xF3,
which will be used by us. The similar consideration of NS moments for F2 SF [34] is
also updated. The results will be compared with those obtained by means of the Padé
approximation technique;

1In the case of n = 1 the α3
s contribution to the Gross–Llewellyn-Smith sum rule was already known [27].
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7. To study the scale-dependence of the obtained values for αs at the NLO and beyond;

8. To reconsider the problem of the extraction of the x-shape of the twist-4 contributions
at the LO, NLO, NNLO using new information about γ

(2)
F3

(n) and taking into account

additional terms in the perturbative expansion of C
(n)
F3

at the N3LO;

9. To compare our results with other phenomenological applications of the perturbative
QCD calculations of Refs. [13, 23], which appeared in the literature recently and were
based on the application of DGLAP approach (see Ref. [35]) and Bernstein polynomial
technique proposed in Ref. [36] and used at the NNLO in Ref. [37].

It should be stressed that since in the current work we are interested in the study of theoret-
ical ambiguities of the outcome of the fits on a more solid background than was done in Ref. [5],
and in revealing the importance of the knowledge of exact expressions for still uncalculated
NNLO corrections to γ

(2)
F3

(n) for n even, we will neglect the systematic experimental uncertain-
ties of the CCFR’97 data, taking into account statistical ones only. The incorporation to the
fits of systematic error-bars might shadow the effects of fixing the theoretical uncertainties we
are struggling for and might make the process of clarification of the necessity of getting explicit
numbers for γ

(2)
F3

(n) for even n more complicated. At the NLO level the combined analysis of
statistical and systematic experimental uncertainties of the xF3 CCFR’97 data was done in
Refs. [38, 39] using the machinery of the method proposed in Ref. [40].

2 Preliminaries

For the sake of completeness of the presentation we will repeat some definitions from Ref. [5].

We start from the Mellin moments for xF3(x, Q2):

MF3
n (Q2) =

∫ 1

0
xn−1F3(x, Q2)dx (1)

where n = 2, 3, 4, .... These moments obey the following renormalization group equation(
µ

∂

∂µ
+ β(As)

∂

∂As
− γ

(n)
F3

(As)
)
MF3

n (Q2/µ2, As(µ
2)) = 0 (2)

where As = αs/(4π). The renormalization group functions are defined as

µ
∂As

∂µ
= β(As) = −2

∑
i≥0

βiA
i+2
s

−µ
∂lnZF3

n

∂µ
= γ

(n)
F3

(As) =
∑
i≥0

γ
(i)
F3

(n)Ai+1
s (3)

The NS anomalous dimensions of F2 will be defined in the analogous way, namely :

−µ
∂lnZNS,F2

n

∂µ
= γ

(n)
NS,F2

(As) =
∑
i≥0

γ
(i)
NS,F2

(n)Ai+1
s (4)
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where ZF3
n and ZNS,F2

n are the renormalization constants of the corresponding NS operators. In
the case of xF3 moments the solution of the renormalization group equation is:

MF3
n (Q2)

MF3
n (Q2

0)
= exp

[
−
∫ As(Q2)

As(Q2
0)

γ
(n)
F3

(x)

β(x)
dx
]
C

(n)
F3

(As(Q
2))

C
(n)
F3

(As(Q2
0))

(5)

where MF3
n (Q2

0) is a phenomenological quantity defined at the initial scale Q2
0 as:

MF3
n (Q2

0) =
∫ 1

0
xn−2A(Q2

0)x
b(Q2

0)(1− x)c(Q2
0)(1 + γ(Q2

0)x)dx . (6)

This expression is identical to the parametrization used by the CCFR collaboration [7]. In the
process of our studies we will extract from the fits the parameters A(Q2

0), b(Q2
0), c(Q2

0) and

γ(Q2
0), together with the parameter Λ

(4)

MS
and with the information on the twist-4 terms.

The first moment of xF3 coincides with the Gross–Llewellyn Smith sum rule

GLS(Q2) = MF3
1 (Q2) =

∫ 1

0
F3(x, Q2)dx . (7)

At the N3LO the coefficient function C
(n)
F3

, which enters Eq. (5), can be defined as

C
(n)
F3

(As) = 1 + C
(1)
F3

(n)As + C
(2)
F3

(n)A2
s + C

(3)
F3

(n)A3
s, (8)

while the corresponding expression for the anomalous-dimension term is :

exp
[
−
∫ As(Q2) γ

(n)
F3

(x)

β(x)
dx
]

= (As(Q
2))

γ
(0)
F3

(n)/2β0 × AD(n, As) (9)

where
AD(n, As) = [1 + p(n)As(Q

2) + q(n)As(Q
2)2 + r(n)As(Q

2)3] (10)

and p(n), q(n) and r(n) read:

p(n) =
1

2

(
γ

(1)
F3

(n)

β1
− γ

(0)
F3

(n)

β0

)
β1

β0
(11)

q(n) =
1

4

(
2p(n)2 +

γ
(2)
F3

(n)

β0

+ γ
(0)
F3

(n)
(β2

1 − β2β0)

β3
0

− γ
(1)
F3

(n)
β1

β2
0

)
(12)

r(n) =
1

6

(
− 2p(n)3 + 6p(n)q(n) +

γ
(3)
F3

(n)

β0

− β1γ
(2)
F3

(n)

β2
0

(13)

−β2γ
(1)
F3

(n)

β2
0

+
β2

1γ
(1)
F3

(n)

β3
0

− β3
1γ

(0)
F3

(n)

β4
0

− β3γ
(0)
F3

(n)

β2
0

+
2β1β2γ

(0)
F3

(n)

β3
0

)
.
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The coupling constant As(Q
2) can be decomposed into the inverse powers of L = ln(Q2/Λ2

MS
)

as ANLO
s = ALO

s +∆ANLO
s , ANNLO

s = ANLO
s +∆ANNLO

s and AN3LO
s = ANNLO

s +∆AN3LO
s , where

ALO
s =

1

β0L
(14)

∆ANLO
s = −β1ln(L)

β3
0L

2

∆ANNLO
s =

1

β5
0L

3
[β2

1 ln
2(L)− β2

1 ln(L) + β2β0 − β2
1 ] (15)

∆AN3LO
s =

1

β7
0L

4
[β3

1(−ln3(L) +
5

2
ln2(L) + 2ln(L)− 1

2
) (16)

−3β0β1β2ln(L) + β2
0

β3

2
] .

Notice that in our normalization the expressions for β0, β1, β2 and β3 have the following
numerical expressions:

β0 = 11− 0.6667f

β1 = 102− 12.6667f

β2 = 1428.50− 279.611f + 6.01852f 2

β3 = 29243.0− 6946.30f + 405.089f 2 + 1.49931f 3 (17)

where β3 was analytically calculated in Ref.[41].

3 Anomalous dimensions and coefficient functions:

approximate vs exact results

Let us discuss the numerical approximations of higher-order perturbative corrections to anoma-
lous dimensions and coefficient functions, used in our fits. The analytical expression for the one-
loop term of NS anomalous dimensions γ

(0)
NS,F2

(n) = γ
(0)
F3

(n) = 8/3[4
∑n

j=1(1/j)−2/n(n+1)−3]
is well known. The NLO corrections to the NS anomalous dimensions were obtained in
Refs. [42, 43] and confirmed by the independent calculation in Ref. [44]. In the cases of both
F2 and xF3, the numerical expressions for the NLO contributions to the anomalous dimensions
are given in Table 1, where we also present the numerical values of the NNLO coefficients used
to the NS anomalous dimension functions of Eq. (3) and Eq. (4). They are also normalized

to the case of f = 4 number of flavours. The coefficients γ
(2)
F3

(n)|wts represent the contribution

to γ
(2)
F3

of the terms without typical structure (wts) f(dabcdabc)/n = 4 ∗ 40/9, which is absent

in the expression for γ
(2)
NS,F2

and appears for the first time in the anomalous dimensions of xF3

moments at the NNLO.
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We describe now how the related approximations for γ
(2)
NS,F2

(n) and γ
(2)
F3

(n) were obtained
and what is the connection between the sets of these numbers. The expressions without round
brackets are the results of explicit analytical calculations of Refs. [19, 20, 23]. The expressions
in round brackets are the approximations obtained with the help of the smooth interpolation
procedure. To study the possibility of getting stable dependence of the values for Λ

(4)

MS
from

the change of the initial scale Q2
0 after incorporation to the fits of the NNLO corrections to γ

(n)
F3

with 10 < n < 13, the interpolation procedure was supplemented with the fine tuning of the
NNLO corrections to γ

(2)
F3

(n) with n = 6, 8, 10.

n γ
(1)
NS,F2

(n) γ
(1)
F3

(n) γ
(2)
NS,F2

(n) γ
(2)
F3

(n)|wts γ
(2)
F3

(n)

2 71.374 71.241 612.0598 (585) (631)
3 100.801 100.782 ( 839.8534) 836.3440 861.6526
4 120.145 120.140 1005.823 (1001.418) (1015.368)
5 134.905 134.903 (1134.967) 1132.727 1140.900
6 147.003 147.002 1242.0006 (1241.21) (1246.59)
7 157.332 157.332 (1334.865) 1334.316 1338.272
8 166.386 166.386 1417.451 (1416.73) (1419.783)
9 174.468 174.468 (1491.711) 1491.124 1493.466

10 181.781 181.781 1559.005 (1558.854) (1560.675)
11 188.466 188.466 (1620.755) 1620.727 1622.283
12 194.629 194.629 1678.400 (1677.696) (1679.809)
13 200.350 200.350 (1732.640) 1731.696 1732.809

Table 1. The numerical expressions for NLO and NNLO coefficients of anomalous dimensions
of NS moments of F2 and xF3 at f = 4 number of flavours.

The numerical values of the obtained fine-tuned numbers will be given in the next Section.
This procedure results in better stability of the fitted values of Λ

(4)

MS
with respect to changes of

the initial scale at Q2
0 ≥ 5 GeV2 (see Table 4 below). The approximation for γ

(2)
F3

(2) contains
more uncertainties. At the first stage it was obtained by extrapolation of the NNLO coefficients
to anomalous dimensions with n > 2 without using the explicit number for γ

(2)
F3

(n = 1) (which is
zero). We have checked the reliability of this procedure, considering the set of NLO anomalous

dimensions γ
(1)
F3

(n) which are explicitly known at any values of n. We found that the interpolated
values at even n = 4, 6, ... are much closer to the real numbers than those obtained with
incorporation of the the zero expression for the n = 1 anomalous dimension. In this case for
n = 2 we obtained the extrapolated value (75.41), which is over 6% higher than the real value
71.24. In the case of application of the interpolation procedure, which used the n = 1 result
(zero), we get the value (66.11), which is 6% smaller than the real value. To estimate the

NNLO expression for γ
(2)
F3

(2) we imposed the conditions of the reduction found at the NLO and

thus fixed the value of γ
(2)
F3

(2) 6% below the extrapolated number. Its numerical expression,

which will be used throughout this work, is quoted in Table 1. The 6% uncertainty of γ
(2)
F3

(2)

translates to a 1−2 MeV variation of Λ
(4)

MS
, which is below the precision of the NNLO extraction

of the value of this parameter.
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In view of the doubts in the validity of the interpolation procedure, expressed in Ref.[45], it
is of definite interest to desribe the results of its applications in more detail. At the first stage
one can compare the interpolated numerical expressions for γ

(2)
NS,F2

(n) at n = 3, 5, 7, 9, 11, 13,

obtained with application of values recently calculated in Ref. [23] for γ
(2)
NS,F2

(12) and γ
(2)
NS,F2

(14)

with the explicit identical results for γ
(2)
F3

(n)|wts, which do not contain the dabcdabc-structure.
The comparison is presented in Table 1. The estimates from the third column (839.8534),
(1134.967), (1334.865), (1491.711), (1620.755), (1732.640) should be compared with the explicit
numbers 836.3440; 1132.727; 1334.316; 1491.124; 1620.727 and 1731.696. One can see that the
qualitative agreement between these sets of numbers is rather good. Moreover, we can study
the applicability of the interpolation procedure for simulating explicitly unknown coefficients
of γ

(2)
NS,F2

(n) obtained with and without application of γ
(2)
NS,F2(12) and γ

(2)
NS,F2(14) terms. In fact

we found that for n=3,5,7,9 the difference between the “new” and “old” interpolated numbers
is not large, namely 2.45; -0.8; 0.9; -1.8. It affects the third significant digit of the interpolated
estimates and improves their qualitative agreement with the results of the calculations of γ

(2)
F3

(n)
at odd values of n [23]. However, it is known that even a knowledge of the 3rd significant digit
in anomalous dimension terms is not enough for the precise reconstruction of SF from the the
NLO results for the moments at large n ≥ 6 [11, 12]. Therefore, to determine the unknown

even values of γ
(2)
NS,F3

(n) from the known NNLO corrections to γ
(2)
F3

(n) at n = 3, 5, 7, 9, 11, 13

[23] with more precision we supplement the interpolation procedure for γ
(2)
F3

(n) by the fine-
tuning of its terms for n = 6, 8, 10. The results of the application of the first approximation
are presented in the last column of Table 1. Notice that they contain the scheme-independent
new contributions, labelled by the dabcdabc gauge group structure. The fine-tuned expressions
for γ

(2)
F3

(n) at n = 6, 8, 10 will be presented below.

One more verification of the idea of smooth interpolation comes from the consideration of its
application for estimating NNLO corrections to the coefficient functions of even Mellin moments
of xF3. The estimates obtained are presented in column 4 of Table 2. The comparison with the
results, given in column 3, which were calculated from the expression of Ref. [13], demonstrate
perfect agreement of these estimates with the explicit numbers. We think that in view of this,
one can safely apply the idea of smooth interpolation in order to estimate the N3LO terms
to the coefficient functions of even Mellin moments of xF3 from those calculated in Ref. [23]
with n = 3, 5, 7, 9, 11, 13, and also taking into account the order O(A3

s) correction to the Gross–
Llewellyn Smith sum rule (n = 1 moment), obtained in Ref. [27].

The information about the N3LO corrections to the considered coefficient functions is the
important and dominating ingredient of the N3LO fits to xF3 data we are going to perform.
It should be supplemented with the model for the N3LO corrections r(n) to the anomalous
dimension (AD) function of Eq. (10).
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n C
(1)
F3

(n) C
(2)
F3

(n) C
(2)
F3

(n)|int C
(3)
F3

(n)|int C
(3)
F3

(n)|[1/1] C
(3)
F3

(n)|[0/2]

1 -4 -52 -52 -644.3464 -676 480
2 -1.778 -47.472 (-46.4295) (-1127.454) -1267.643 174.4079
3 1.667 -12.715 -12.715 -1013.171 97.00418 -47.01328
4 4.867 37.117 (37.0076) (-410.6652) 283.0851 246.0090
5 7.748 95.4086 95.4086 584.9453 1174.835 1013.328
6 10.351 158.2912 (158.4032) (1893.575) 2420.569 2167.903
7 12.722 223.8978 223.8978 3450.468 3940.284 3637.790
8 14.900 290.8840 (290.8421) (5205.389) 5678.657 5360.371
9 16.915 358.5874 358.5874 7120.985 7601.721 7291.305

10 18.791 426.4422 (426.5512) (9170.207) 9677.391 9391.308
11 20.544 494.1881 494.1881 11332.82 11885.25 11633.28
12 22.201 561.5591 (561.2668) (13590.97) 14204.22 13991.80
13 23.762 628.4539 628.4539 15923.91 16620.99 16449.68

Table 2. The values for NLO, NNLO, N3LO QCD contributions to the coefficient functions,
used in our fits, and the results of N3LO Padé estimates.

We fix them using the [1/1] Padé resummation procedure of the coefficients of the AD-
function (for the results see Table 3, where the expressions which come from [0/2] Padé estimates
are also presented). It should be mentioned that the values for p(n) and q(n) are calculated
from the numbers given in Table 1.

n p(n) q(n) r(n)|[1/1] r(n)|[0/2]

1 0 0 0 0
2 1.6462 4.8121 14.0666 11.3822
3 1.9402 5.5018 15.6011 14.0456
4 2.0504 5.8327 16.5919 15.2986
5 2.1149 6.2836 18.6691 17.1187
6 2.1650 6.7445 21.0110 19.0560
7 2.2098 7.1671 23.2447 20.8847
8 2.2525 7.6013 25.6518 22.8152
9 2.2939 8.0164 28.0151 24.7073

10 2.3344 8.4353 30.4804 26.6614
11 2.3741 8.8146 32.7261 28.4720
12 2.4131 9.1855 34.9647 30.2794
13 2.4512 9.5620 37.3002 32.1491

Table 3. The values for NLO and NNLO QCD contributions to the expanded anomalous
dimension terms used in our fits and the N3LO Padé estimates.

Several comments should be made concerning the comparison of the Padé estimates tech-
nique of the N3LO corrections C

(3)
F3

(n) with more definite, to our point of view, results of
application of the interpolation procedure (see Table 2). One can see that the agreement of
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[1/1] Padé estimates with the N3LO coefficients is good in the case of the Gross–Llewellyn
Smith sum rule (this fact was already known from the estimates of Ref. [46], which are close
to the results of the scheme-invariant approach of Ref. [47]). In the case of n = 2 and n ≥ 6
moments the numbers of columns 5 and 6 of Table 2 are also in satisfactory agreement. In-
deed, one should keep in mind that the difference between the numbers presented in columns
5 and 6 of Table 2 should be divided by the factor (4)3, which comes from our definition of
the expansion parameter As = αs/(4π). Note that starting from n ≥ 6 the results of the ap-
plication of [0/2] Padé approximants, which in accordance with the analysis of Ref.[48] reduce
scale-dependence uncertainties, are even closer to the the estimates which are given by the
interpolation procedure (for the comparison of the outcome of approximate N3LO fits to xF3

data, which are based on [1/1] and [0/2] Padé approximants, see Ref. [5], while the comparison
of the applications of [1/1] and [0/2] Padé approximants within the quantum mechanic model
was analysed in Ref. [49]). For n = 3, 4 the interpolation method gives completely different
results. The failure of the application of the Padé estimates approach in these cases might be
related to the irregular sign structure of the perturbative series under consideration. A similar
problem arises in the case of the analysis of the perturbative series for QED renormalization
group functions (for discussions see Ref. [50]).

However, in the case of the perturbative series AD for the expanded anomalous dimension
term we do not face this problem (see Table 3). In view of the absence of other ways of
fixation of N3LO coefficients r(n) (the renormalon-inspired large-β0 expansion is definitely not
working for the anomalous dimensions functions [51, 52]) we will use in our fits the [1/1] Padé
estimates for r(n). Note in advance that the application of [0/2] Padé resummation to r(n)
does not influence the outcome of our approximate N3LO fits with αs defined by its explicit
N3LO expression (see Eqs.(14)-(16)). It should be stressed that since in the process of these
fits we will use the explicitly calculated coefficient functions of the xF3 Mellin moments [23],
the obtained uncertainties will be more definite than those estimated in our previous work of
Ref. [5].

4 Results of the fits without twist-4 terms

In order to perform the concrete fits to xF3 CCFR’97 data and thus analyze how new theoretical
input, described in Sec.3, affects the results previously obtained in Ref. [5], we apply the same
theoretical method, based on reconstruction of xF3 from its Mellin moments using the Jacobi
polynomial expansion [8]- [12]:

xFNmax
3 (x, Q2) = w(α, β)(x)

Nmax∑
n=0

Θα,β
n (x)

n∑
j=0

c
(n)
j (α, β)MTMC

j+2,xF3

(
Q2
)

(18)

+
h(x)

Q2

where Θα,β
n are the Jacobi polynomials, c

(n)
j (α, β) contain α- and β-dependent Euler Γ-functions

where α, β are the Jacobi polynomial parameters, fixed by the minimization of the error in the
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reconstruction of the SF, and w(α, β) = xα(1− x)β is the corresponding weight function with
α = 0.7 and β = 3 chosen following the detailed analysis of Ref. [5]. The contributions of the
dynamical twist-4 terms are modelled by the Q2-independent function h(x). The kinematical
power corrections, namely the target mass contributions, are included in the reconstruction
formula of Eq. (18) up to order O(M2

nucl/Q
2)-terms:

MTMC
n,xF3

(Q2) = MF3
n (Q2) +

n(n + 1)

n + 2

M2
nucl.

Q2
MF3

n+2(Q
2) . (19)

Using Eqs. (18),(19) one can conclude that choosing Nmax = 6, as was done in the case of NNLO
fits of Refs. [3]- [5], we are taking into account 2 ≤ n ≤ 10 Mellin moments in Eq. (18). As was
emphasized above, definite information on the NNLO QCD corrections to the renormalization-
group functions of 2 ≤ n ≤ 13 moments of xF3 is now available. In view of this we can now
increase the number of Nmax from Nmax = 6 to Nmax = 9 and analyze the changes in the results
of the NNLO fits of Ref. [5] due to application of additional theoretical information.

We are starting our studies from the case when twist-4 contributions are switched off (namely

h(x) = 0). In Table 4 we present the dependence of the extracted values of Λ
(4)

MS
from the

variations of Nmax and of the initial scale Q2
0. Looking carefully at Table 4, one can clearly see

that the results of the NLO fits are rather stable under the changes of Q2
0. Moreover, they are

in agreement with the ones presented in Table 3 of Ref. [5]. However, for Nmax = 10 the values
of χ2 are larger than for the case of Nmax = 9. Moreover, we checked that for Q2

0=20 GeV2 and

Nmax=11, despite the fact that the corresponding value Λ
(4)

MS
= 334 ± 37 MeV is comparable

with the one obtained in the case of choosing Nmax=10 (see Table 4), χ2 continues to increase
(we got χ2=88.9/86). Therefore, we think that it is reasonable to stop at Nmax=9 and thus
take into account in Eq. (18) 13 moments only.

At Nmax = 6 new NNLO results agree with the findings of Ref. [5]. They demonstrate

the same dependence of Λ
(4)

MS
from Q2

0. Notice that it has the stability plateau starting from
Q2

0 = 20 GeV2 only. However, there is the important difference between the results of the NNLO
fits of the current work and the ones of Ref. [5]. Indeed, at the NNLO Table 4 demonstrates

the widening of the stability plateau for Λ
(4)

MS
to lower Q2

0 values for 7 ≤ Nmax ≤ 9 and the
minimization of χ2-value at Nmax = 9. This welcome feature is showing us the importance
of changing the approximate expressions for γ

(2)
NS(n) from the model γ

(2)
F3

(n) ≈ γ
(2)
NS,F2

(n) used

in Ref. [5] to the new one, which is based on the exact numbers for γ
(2)
F3

(n), calculated in
Ref. [23] plus application of the fine-tuning procedure, which in the case of Nmax = 6 gives

γ
(2)
F3

(6) = 1247.4222 ± 2.1357; for Nmax = 7 gives γ
(2)
F3

(6) = 1248.1219 ± 1.0359, γ
(2)
F3

(8) =

1420.1729 ± 4.0854; for Nmax = 8 gives γ
(2)
F3

(6) = 1248.5610 ± 1.2951, γ
(2)
F3

(8) = 1419.3301 ±
1.5112; γ

(2)
F3

(10) = 1561.4299 ± 1.4074; and for Nmax = 9 gives γ
(2)
F3

(6) = 1247.7852 ± 0.5091,

γ
(2)
F3

(8) = 1420.2215±0.3337; γ
(2)
F3

(10) = 1560.8461±0.2292. Within the quoted error bars these
fine-tuned numbers agree with the estimates obtained by smooth polynomial interpolation and
presented in the last column of Table 1. The agreement improves with the increasing of Nmax.
In the case of Nmax = 9 the difference is in the 4th significant digit.
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Nmax Q2
0 (GeV 2) 5 8 10 20 50 100

10 LO 266±35 265±36 265±38 264±35 264±36 263±36
(113.2) (113.2) (113.2) (113.1) (112.9) (112.6)

6 NLO 341±37 341±37 340±37 340±36 339±37 338±37
(85.4) (85.7) (85.7) (85.7) (85.4) (85.1)

7 NLO 342±38 341±38 341±37 340±37 339±37 338±37
(87.1) (87.3) (87.4) (87.4) (87.2) (86.9)

8 NLO 346±38 344±38 344±38 343±37 341±38 341±38
(86.0) (86.4) (86.5) (86.5) (86.2) (85.9)

9 NLO 349±42 347±37 347±37 345±38 344±37 343±38
(84.2) (84.8) (85.0) (85.1) (84.8) (84.5)

10 NLO 341±35 340±33 339±34 338±40 337±37 336±35
(87.1) (87.4) (87.5) (87.6) (87.5) (87.3)

6 NNLO 297±30 314±34 320±34 327±36 327±35 326±35
(77.9) (76.3) (76.2) (76.9) (78.5) (79.5)

7 NNLO 326±34 327±35 327±35 326±36 327±36 328±35
(75.9) (76.7) (77.1) (78.1) (78.8) (78.7)

8 NNLO 334±35 334±35 333±35 331±35 328±35 328±35
(74.3) (75.7) (76.2) (77.4) (78.3) (78.5)

9 NNLO 330±33 332±35 333±34 331±37 330±35 329±35
(72.4) (73.6) (74.7) (75.8) (76.7) (77.8)

6 N3LO 303±29 317±31 321±32 325±33 325± 33 324±33
(76.4) (75.6) (75.7) (76.6) (78.0) (78.7)

7 N3LO 328±32 326±33 325±33 322±33 324± 33 324±33
(76.2) (77.0) (77.3) (78.2) (78.5) (78.2)

8 N3LO 334±33 329±33 327±34 324±34 323± 34 324±34
(74.8) (76.2) (76.6) (77.4) (77.3) (77.2)

9 N3LO 330±31 329±34 329±32 325±33 325± 32 325±33
(73.3) (74.6) (75.7) (76.4) (76.7) (76.8)

Table 4. The Q2
0 and Nmax dependence of Λ

(4)

MS
[MeV]. The values of χ2 are presented in

parenthesis.

However, the improved Q2
0-independent NNLO values of Λ

(4)

MS
do not differ significantly

from the results of Ref. [5] (the difference of over 4–5 MeV is about 7 times smaller than the
existing statistical error). A similar feature reveals itself in the process of the N3LO fits, which
are based in part on application of the exact numbers for the α3

s-corrections to the coefficient
functions of odd Mellin moments, calculated in Ref. [23], and were performed using the N3LO
approximation of αs. It should be stressed that the inclusion in the fits of these numbers at
Nmax = 6 does not lead to the detectable difference of the new results from the ones obtained
in Ref. [5] with the help of the Padé approximation method. The essential advantage of the
new considerations is that we are able to reach Nmax = 9 and observe perfect stability of both
NNLO and new N3LO values for Λ

(4)

MS
to the variation of Q2

0 after slight modification of γ
(2)
F3

(6),

γ
(2)
F3

(8), and γ
(2)
F3

(10) (which arise from the application of fine-tuning procedure at the N3LO),
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and can determine from these numbers the Padé approximations for r(n)|[1/1] at n = 6, 8, 10.

It should be mentioned that the obtained estimates for the fitted three terms of γ
(2)
F3

(n) are in
agreement with the estimates presented above at the level of 4 significant digits. Note also,
that if we use in the fits [0/2] Padé approximants for modelling the N3LO correction r(n), we

get the values of Λ
(4)

MS
, which are rather close to those obtained in the case of application of

[1/1] Padé approximants.

Comparing now the results of the NNLO and approximate N3LO fits we conclude that
for 7 ≤ Nmax ≤ 9 the difference between the obatined values of Λ

(4)

MS
is rather small and

almost disappears for Q2
0 = 5 GeV2. Thus we can make the conclusion that we observe the

minimization of theoretical uncertainties and, probably, the saturation of the predictive power
of the corresponding perturbative series at the 4-loop level. A similar feature was discovered
in the process of calculations of the perturbative corrections to the correlator of scalar quark
currents in the large-f approximation [53]. Therefore, we think that the perturbation theory
approximants for xF3 moments can be safely truncated at one more step beyond the NNLO.
Higher-order calculations might manifest the signal for asymptotic divergence of the related
perturbative QCD predictions and as a result, the increase of the value of χ2.

order/Nmax Q2
0 A b c γ χ2/nop

LO/9 5 GeV2 5.13±0.21 0.72±0.01 3.87±0.06 1.42±0.20 113.2/86
10 GeV2 5.07±0.22 0.70±0.01 3.97±0.08 1.16±0.25 113.2/86
20 GeV2 4.98±0.47 0.68±0.03 4.05±0.10 0.96±0.41 113.1/86
100 GeV2 4.73±0.36 0.64±0.02 4.19±0.09 0.62±0.30 112.6/86

NLO/9 5 GeV2 4.05±0.20 0.65±0.02 3.71±0.06 1.93±0.16 87.1/86
10 GeV2 4.48±0.21 0.66±0.02 3.85±0.05 1.32±0.15 87.5/86
20 GeV2 4.48±0.21 0.65±0.01 3.96±0.07 0.95±0.15 87.6/86
100 GeV2 4.73±0.38 0.62±0.02 4.12±0.12 0.46±0.34 87.3/86

NNLO/6 5 GeV2 4.25±0.38 0.66±0.03 3.56±0.07 1.33±0.33 78.4/86
NNLO/9 3.73±0.68 0.63±0.05 3.52±0.08 1.69±0.68 72.4/86
NNLO /6 10 GeV2 4.50±0.36 0.65±0.03 3.73±0.07 1.05±0.31 76.3/86
NNLO/9 4.21±0.35 0.63±0.03 3.73±0.07 1.22±0.31 74.2/86
NNLO/6 20 GeV2 4.70±0.34 0.65±0.03 3.88±0.08 0.80±0.30 77.0/86
NNLO/9 4.49±0.25 0.63±0.02 3.89±0.06 0.93±0.20 75.8/86
NNLO/6 100 GeV2 4.91±0.28 0.63±0.02 4.11±0.10 0.53±0.27 80.0/86
NNLO/9 4.74±0.32 0.61±0.02 4.14±0.09 0.46±0.27 77.8/86
N3LO/9 5 GeV2 4.16±0.28 0.65±0.02 3.31±0.09 0.91±0.21 73.3/86
N3LO/9 10 GeV2 4.49±0.41 0.65±0.03 3.61±0.08 0.81±0.32 75.1/86
N3LO/9 20 GeV2 4.64±0.72 0.64±0.05 3.83±0.15 0.73±0.60 76.4/86
N3LO/9 100 GeV2 4.77±0.30 0.61±0.02 4.15±0.09 0.47±0.26 77.6/86

Table 5. The determined values of the parameters A, b, c, γ of the model for xF3 and their
comparison with the values obtained in Ref. [4]. The new ones, related to the NNLO, are
marked by bold type.
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Another consequence of our new improved analysis corresponds to the determination of Q2
0-

dependence of the parameters A, b, c, and γ. It is presented in Table 5 and is compared with
the previous extraction of their Q2

0-dependence given in Ref. [4]. The LO and NLO numbers
are the same, while at the NNLO the new results marked out by bold type, which correspond
to Nmax = 9, are compared with the previous NNLO ones [4], obtained at Nmax = 6 using

the calculations of γ
(2)
NS,F2

(n)-terms [19, 20] available at this time. One can see the noticeable
decrease in χ2 at the NNLO. In the LO the obtained Q2

0-dependence of c is in agreement
with the shape of variation of this parameter, predicted in Ref. [54] and confirmed recently in
Ref. [55].

Even more interesting are the comparisons of the extracted values for the parameter b
with the calculations of the intercepts of the NS SFs, performed to all orders in αs in the
double-logarithmic approximation in Ref. [56] (note that in the case of NS SFs this method
was studied in detail in Ref. [57]). It should be stressed that the estimate ω− = 0.4 in the

expression FNS = (1/x)ω−(Q2

µ2 )ω−/2, obtained in Ref. [56] for µ ≈ 5.5 GeV, ΛQCD = 0.1 and

f = 3 is in amazingly good agreement with our NLO, NNLO and N3LO numbers for 1 − b,
which are almost Q2

0-independent in the interval of the initial scales chosen by us. Despite the
fact that in our analysis, performed in the MS-scheme, we used f = 4 and higher value of Λ, the
agreement with the results of Ref. [56] probably points out that the typical normalization point
µ2, which enters into these calculations, is rather large, namely µ2 = Q2

0 ≥ 5 GeV2. However,
in order to clarify the relations of our scale-independent results to those, obtained in Ref. [56]
on more solid ground, further theoretical studies are needed.

5 Incorporation of the twist-4 terms

5.1 Infared renormalon model parameterization

The next stage in modification of QCD theoreretical approximations is the inclusion of the
higher-twist terms in the expression for the structure functions. At the first stage we will
rely on the prediction of the IRR approach [29] and model the twist-4 contribution to h(x) in
Eq.(18) as

h(x)

Q2
= w(α, β)

Nmax∑
n=0

Θα,β
n (x)

n∑
j=0

c
(n)
j (α, β)M IRR

j+2,xF3
(Q2) (20)

where

M IRR
n,xF3

(Q2) = C̃(n)MF3
n (Q2)

A
′
2

Q2
with C̃(n) = −n− 4 + 2/(n + 1) + 4/(n + 2) + 4S1(n). (21)

The results of the new improved fits to CCFR’97 data for xF3 with the twist-4 term taken
into account through Eq. (21) are presented in Table 6.
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order/Nmax Q2
0 = 5 Gev2 20 GeV2 100 GeV2

LO/6 Λ
(4)

MS
433±54 431±36 429±35

χ2/nep 81.2/86 81.2/86 80.6
A

′
2 −0.331±0.057 −0.330±0.059 −0.328±0.058

LO/9 Λ
(4)

MS
447±54 443±54 439±56

χ2/nep 79.8/86 80.1/86 79.6/86
A

′
2 −0.340±0.059 −0.337±0.059 −0.335±0.059

NLO/6 Λ
(4)

MS
370±38 369±41 367±38

χ2/nep 80.2/86 80.4/86 79.9/86
A

′
2 −0.121±0.052 −0.121±0.053 −0.120±0.052

NLO/9 Λ
(4)

MS
379±41 376±39 374±42

χ2/nep 78.6/86 79.5/86 79.0
A

′
2 −0.125±0.053 −0.125±0.053 −0.124±0.053

NNLO/6 Λ
(4)

MS
297±30 328±36 328±35

χ2/nep 77.9/86 76.8/86 79.5/86
A

′
2 −0.007±0.051 −0.017±0.051 −0.015±0.051

NNLO/7 Λ
(4)

MS
327±34 327±35 328±36

χ2/nep 75.8/86 78.1/86 78.6/86
A

′
2 −0.011±0.051 −0.013±0.051 −0.015±0.051

NNLO/8 Λ
(4)

MS
335±37 330±36 329±36

χ2/nep 73.8/86 77.0/86 77.5/86
A

′
2 −0.012±0.051 −0.013±0.051 −0.015±0.051

NNLO/9 Λ
(4)

MS
331±33 332±35 331±35

χ2/nep 73.1/86 75.7/86 76.9/86
A

′
2 −0.013±0.051 −0.015±0.051 −0.016±0.051

N3LO/6 Λ
(4)

MS
305±29 327±34 326±34

χ2/nep 76.0/86 76.2/86 78.5/86
A

′
2 0.036±0.051 0.033±0.052 0.029±0.052

N3LO/7 Λ
(4)

MS
331±33 325±34 326±34

χ2/nep 75.6/86 77.7/86 77.8/86
A

′
2 0.040±0.052 0.036±0.052 0.035±0.052

N3LO/8 Λ
(4)

MS
337±34 326±34 326±34

χ2/nep 74.1/86 76.9/86 76.7/86
A

′
2 0.040±0.052 0.036±0.052 0.035±0.052

N3LO/9 Λ
(4)

MS
333±34 328±33 328±38

χ2/nep 73.8/86 75.9/86 76.4/86
A

′
2 0.038±0.052 0.035±0.052 0.034±0.052

Table 6. The results of the fits to the CCFR’97 xF3 data with HT terms modelled through
the IRR model. A2

′ is the additional parameter of the fit. The cases of different Q2
0 and Nmax

are considered.
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Looking carefully at Table 4 we arrive at the following new conclusions:

• The χ2-value decreases from LO up to NNLO and at N3LO level it almost coincides with
the one obtained at the NNLO. Moreover, χ2 decreases with the increasing of Nmax and
distinguishes the fits with Nmax = 9. This is the welcome feature of including in the fit-
ting procedure more detailed information on the perturbative theory contributions both
to coefficient functions and anomalous dimensions of xF3 moments, and in particular
explicitly-calculated three-loop coefficients γ

(2)
F3

(n) at n = 3, 5, 7, 9, 11, 13 [23], supple-
mented by us with application of the interpolation procedure for even n plus fine-tuning
of the terms γ

(2)
F3

(6), γ
(2)
F3

(8) and γ
(2)
F3

(10).

• At the N3LO, χ2 is smaller than the one obtained in the process of pure Padé-motivated
fits of Ref. [5]. This feature is related to the fact that the explicit expressions for N3LO
corrections for odd xF3 moments [23] are now taken into account.

• For Nmax = 9 the values of Λ
(4)

MS
and the IRR model free parameter A

′
2 are rather stable

to variation of Q2
0 not only at the LO, NLO but at the NNLO and N3LO as well. The last

property gives favour to our new results in comparison with the ones obtained in Ref. [5]
in the case of Nmax = 6 and Q2

0 = 20 GeV2, taking into account a more approximate

model for γ
(2)
F3

(n) and Padé approximations for C
(3)
F3

(n) at n ≤ 10.

• At the scale Q2
0=20 GeV2 the obviously visible difference with the findings of Ref. [5]

is related to the switch from the Padé approximant estimates of N3LO contributions to
coefficient functions to the expressions for C

(3)
F3
|int, presented in Table 2, and obtained

from the calculations of C
(3)
F3

(n) at n = 1 [27] and n = 3, 5, 7, 9, 11, 13 [23]. The positive

outcome of this change is the shift of Λ
(4)

MS
from 340± 37 MeV to the the values, given in

Table 6 ( which are less different from the results of the NNLO fits) and the minimization
of the value of χ2.

• The LO and NLO fits seem to support the IRR model for the twist-4 terms by the
foundation of negative values of A

′
2, which are different from zero within the presented

error-bars and are in agreement with the results of the previous similar fits of Refs. [3, 5]
and with the one, obtained in Ref. [38] using the NLO DGLAP analysis of the same set
of CCFR’97 data.

• At the NNLO the central value of A
′
2 is also negative, but has large error bars. Moreover,

the inclusion of the N3LO corrections clearly demonstrates the effective minimization
of the free parameter of the IRR model, which becomes positive, but has statistical
uncertainties twice as large as the central value. Thus, we may conclude, that at this
level the interplay bewteen high-order perturbative corrections and the model for twist-4
contributions (or as we are calling it high twist duality), discussed from various points
of view in Refs.[58]– [60], is manifesting itself.
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5.2 IRR approach and naive non-Abelianization

Perturbative expansion of the IRR model is usually understood within the framework of the
large-β0 expansion, where β0 is the first coefficient of the QCD β-function. The approximations
for coefficient functions (but not anomalous dimensions) obtained within this model can be
compared with the explicit expression for the quantities under consideration, calculated in the
MS–scheme. As a rule, the qualitative success of the estimating power of the large-β0 expansion
is rather satisfactory (see e.g. [32, 53]). Let us study the application of this approach to the
coefficient functions of odd Mellin moments of xF3 used in our work.

They can be presented in the following numerical form (see Refs. [27, 23]):

C
(1)
F3

= 1− 4As + A2
s(−73.333 + 5.333f) + A3

s(−2652.154 + 513.310f − 11.358f 2) (22)

C
(3)
F3

= 1 + 1.667As + A2
s(14.254− 6.742f) + A3

s(−839.764− 45.099f + 1.748f 2)

C
(5)
F3

= 1 + 7.748As + A2
s(173.001− 19.398f) + A3

s(4341.081− 961.276f + 22.241f 2)

C
(7)
F3

= 1 + 12.722As + A2
s(345.991− 30.523f) + A3

s(11119.001− 1960.237f + 43.104f 2)

C
(9)
F3

= 1 + 16.915As + A2
s(520.006− 40.355f) + A3

s(18771.996− 2975.924f + 63.171f 2)

C
(11)
F3

= 1 + 20.548As + A2
s(690.872− 49.171f) + A3

s(26941.480− 3984.412f + 82.246f 2)

C
(13)
F3

= 1 + 23.762As + A2
s(857.178− 57.181f) + A3

s(35426.829− 4976.081f + 100.351f 2)

Note that for the reasons discussed below, the order O(A3
s)-corrections to Eq. (22) are

presented without typical structures (wts), proportional to dabcdabc-terms.

The procedure of large β0-expansion is formulated in the following way: one should extract
from the explicit expressions for perturbative coefficients, calculated in the MS-scheme, the
leading terms in the number of flavours f and then make the substitution f → −6β0. This
approximation is known in the literature as the “naive non-Abelianization” (NNA) procedure
[61]. Note that it does not simulate dabcdabc-terms. Using this pattern we present below the
coefficient functions of Eq. (22) in the NNA form:

C
(1)
F3

= 1− 4As + A2
s(−6× 5.333β0) + A3

s(−36× 11.358β2
0) (23)

C
(3)
F3

= 1 + 1.667As + A2
s(6× 6.742β0) + A3

s(36× 1.748fβ2
0)

C
(5)
F3

= 1 + 7.748As + A2
s(6× 19.398β0) + A3

s(36× 22.241β2
0)

C
(7)
F3

= 1 + 12.722As + A2
s(6× 30.523β0) + A3

s(36× 43.104β2
0)

C
(9)
F3

= 1 + 16.915As + A2
s(6× 40.355β0) + A3

s(36 ∗ 63.171β2
0)

C
(11)
F3

= 1 + 20.548As + A2
s(6× 49.171β0) + A3

s(36× 82.246β2
0)

C
(13)
F3

= 1 + 23.762As + A2
s(6× 57.181β0) + A3

s(36× 100.351β2
0)

The obtained NNLO and N3LO corrections should be compared with the corresponding
ones of Eqs. (24). The f -dependence of the ratios R

(2)
F3,NNA(n) = C

(2)
F3

(n)NNA/C
(2)
F3

(n) and
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R
(3)
F3,NNA(n) = C

(3)
F3

(n)NNA/C
(3)
F3

(n)|wts, which follow from the comparison of the related expres-
sions of Eqs. (22,23), is presented in Table 7 and Table 8, where the f -dependence of the ratio

R
(3)
F3

(n)|[Pade] = C
(3)
F3

(n)|[1/1]/C
(3)
F3

(n)|wts is also given in round brackets.

n f = 3 f = 4 f = 5
1 1.25 1.28 1.31
3 -15.24 -6.63 -3.98
5 2.34 2.61 3.07
7 1.43 1.42 1.41
9 1.36 1.41 1.46

11 1.22 1.24 1.27
13 1.13 1.14 1.15

Table 7. The f -dependence of the ratios R
(2)
F3,NNA(n).

n f = 3 f = 4 f = 5
1 1.61 (0.68) 2.01 (0.87) 2.99 (1.48)
3 -0.32 (-0.002) -0.26 (-0.1) -0.21 (-0.22)
5 2.46 (1.03) 4.15 (1.38) 41.32 (8.22)
7 1.4 (0.90) 1.7 (0.99) 2.4 (1.22)
9 1.1 (0.90) 1.25 (0.96) 1.56 (1.09)

11 0.95 (0.91) 1.04 (0.96) 1.20 (1.06)
13 0.85 (0.92) 0.95 (0.97) 1.02 (1.05)

Table 8. The f -dependence of the ratios R
(3)
F3,NNA(n) and R

(3)
F3

(n)|[Pade] (in round brackets).

One can see that the NNA approach is working reasonably well in the case of the Gross-
Llewellyn Smith sum rule (n = 1 moment). This fact was already observed in the review of
Ref. [32]. It also gives satisfactory estimates both at the NNLO and N3LO in the case of odd
values of n with n ≥ 7, but does not work for n = 3 (where even the wrong sign is obtained)
and for n = 5, where at the N3LO the subleading in f (and thus β0) term is larger than the
leading β2

0-contribution. Notice that in the case of even NS moments of F2 the situation was the
same: the NNA approximation was predicting the correct sign starting from the n = 4 moment
and was giving qualitatively good estimates in the cases of n = 6, 8 moments [34]. Armed by
the new information about explicit behaviour of the NS moments for F2 with n = 10 [20] and
n = 12, 14 [23], we extend the considerations of Ref. [34] to the case of higher moments, omitting
f
∑f

f=1 ef -contribution to the order O(A3
s)-corrections of the NS moments of F2. Taking into

account this approximation we present the explicit expressions for the coefficient functions of
the NS moments of F2 in the following numerical form:

C
(2)
F2,NS = 1 + 0.444As + A2

s(17.694− 5.333f) + A3
s(442.741− 165.197f + 6.030f 2) (24)

C
(4)
F2,NS = 1 + 6.607As + A2

s(141.344− 16.988f) + A3
s(4169.268− 901.235f + 23.355f 2)
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C
(6)
F2,NS = 1 + 11.177As + A2

s(302.399− 28.013f) + A3
s(10069.631− 1816.323f + 42.663f 2)

C
(8)
F2,NS = 1 + 15.530As + A2

s(470.807− 37.925f) + A3
s(17162.372− 2787.298f + 61.9118f 2)

C
(10)
F2,NS = 1 + 19.301As + A2

s(639.211− 46.861f) + A3
s(24953.135− 3770.102f + 80.5201f 2)

C
(12)
F2,NS = 1 + 22.628As + A2

s(804.585− 54.994f) + A3
s(33171.455− 4746.441f + 98.348f 2)

C
(14)
F2,NS = 1 + 25.611As + A2

s(965.813− 62.465f) + A3
s(41657.116− 5708.216f + 115.392f 2) .

The NNA versions of the expressions from Eq. (24) read:

C
(2)
F2,NS = 1 + 0.444As + A2

s(6× 5.333β0) + A3
s(36× 6.030β2

0) (25)

C
(4)
F2,NS = 1 + 6.607As + A2

s(6× 16.988β0) + A3
s(36× 23.355β2

0)

C
(6)
F2,NS = 1 + 11.177As + A2

s(6× 28.013β0) + A3
s(36× 42.663β2

0)

C
(8)
F2,NS = 1 + 15.530As + A2

s(6× 37.925β0) + A3
s(36× 61.9118β2

0)

C
(10)
F2,NS = 1 + 19.301As + A2

s(6× 46.861β0) + A3
s(36× 80.5201β2

0)

C
(12)
F2,NS = 1 + 22.628As + A2

s(6× 54.994β0) + A3
s(36× 98.348β2

0)

C
(14)
F2,NS = 1 + 25.611As + A2

s(6× 62.465β0) + A3
s(36× 115.392β2

0)

The numerical values of the ratios of the coefficients of Eqs. (24,25), namely R
(2)
F2,NNA(n) =

C
(2)
F2,NS(n)NNA/C

(2)
F2,NS(n) and R

(3)
F2,NNA(n) = C

(3)
F2,NS(n)NNA/C

(3)
F2,NS(n)|wts are given below. In

Table 10 R
(3)
F2,NNA(n) is compared with R

(3)
F2

(n)|[Pade] = C
(3)
F2

(n)|[1/1]/C
(3)
F2

(n)|wts. Getting support
from the related results for n = 10, 12, 14 NS moments of F2, we can make the conclusion
that the findings of Ref. [34] and the new numbers for the moments of xF3 (see Tables 7,8)
demonstrate that at the NNLO and N3LO the NNA approximation is working in the NS channel
for n = 1 and n ≥ 6, which corresponds to the region of x, closer to the limit x = 1. In the
cases of low NS moments the reason for failure of the NNA approximation remains unclear. A
similar conclusion can be drawn from the comparison of the [1/1] Padé estimates for C

(3)
F3

-terms
with the results of the interpolation procedure (see Table 2 and related discussions after it) and

the f -dependence of the ratios R
(3)
F3,NNA(n) vs R

(3)
F3

(n)|[Pade] and R
(3)
F2,NNA(n) vs R

(3)
F2

(n)|[Pade]

(see Tables 8, 10).

n f = 3 f = 4 f = 5
2 43.24 -18.17 -3.27
4 2.54 2.89 3.43
6 1.74 1.83 1.98
8 1.43 1.48 1.55

10 1.28 1.29 1.33
12 1.16 1.18 1.19
14 1.08 1.09 1.10

Table 9. The f -dependence of the ratios R
(2)
F2,NNA(n).
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n f = 3 f = 4 f = 5
2 773.92 (4.56) -7.75 (-0.24) -3.41 (-0.22)
4 2.54 (0.73) 3.89 (0.87) 12.51 (1.95)
6 1.55 (0.85) 1.19 (0.93) 2.74 (1.95)
8 1.18 (0.88) 1.38 (0.94) 1.71 (1.07)

10 1.00 (0.90) 1.13 (0.95) 1.31 (1.05)
12 0.90 (0.91) 1.02 (0.96) 1.09 (1.04)
14 0.82 (0.93) 0.87 (0.97) 0.95 (1.04)

Table 10. The f -dependence of the ratios R
(3)
F2,NNA(n) and R

(3)
F2

(n)|[Pade].

This interesting similarity might be explained by the studies of the large-β0 limit of the
Padé approximant approach Ref. [62] and its relation to the BLM approach [63]. Note in these
circumstances that within the large-β0 limit, the BLM approach was extended to all orders in
perturbation theory in Ref.[64], while the possibility of incorporation of the subleading terms
in number of flavours f and constructing the NNLO generalization of the BLM approach was
first demonstrated in Ref. [65] (for further related analysis see Ref. [66]).

5.3 The determination of αs(MZ) values and
their scale-dependence uncertainties

As is known from the work of Refs. [67, 35] it is rather instructive to consider the sensitivity
of the results of the perturbative QCD analysis to the variation of renormalization and fac-
torization scales. We will study the question of factorization-renormalization scale dependence
within the class of MS-like schemes. This means that we will change only the scales without
varying the scheme-dependent coefficients of anomalous dimensions and β-function.

The arbitrary factorization scale enters in the following equation:

As(Q
2/µ2

MS
) = As(Q

2/µ2
F )
[
1 + k1As(Q

2/µ2
F ) + k2A

2
s(Q

2/µ2
F ) + k3A

3
s(Q

2/µ2
F )
]

(26)

where µ2
F is the factorization scale and

k1 = β0ln(
µ2

MS

µ2
F

) (27)

k2 = k2
1 +

β1

β0
k1

k3 = k3
1 +

5β1

2β0

k2
1 +

β2

β0

k1

Let us choose the factorization scale as µ2
F = µ2

MS
kF .

Then we have:
k1 = −β0ln(kF ) (28)
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In this case after application of the renormalization group equation and substitution of
Eq. (26) into Eqs. (9,10) of Sec.2 we get

exp
[
−
∫ As(Q2/kF ) γ

(n)
NS(x)

β(x)
dx
]

= (As(Q
2/kF ))a ×AD(n, As(Q

2/kF )) (29)

where a = γ
(0)
NS/2β0 and

AD(n, As(Q
2/kF )) = 1 +

[
p(n) + ak1

]
As(Q

2/kF ) (30)

+
[
q(n) + p(n)k1(a + 1) +

β1

β0
k1a +

a(a + 1)

2
k2

1

]
A2

s(Q
2/kF )

+
[
r(n) + q(n)k1(a + 2) + p(n)

(
β1

β0
k1(a + 1) +

(a + 1)(a + 2)

2
k2

1

)

+
β2

β0

k1a +
β1

β0

k2
1a(

3

2
+ a) +

a(a + 1)(a + 2)

6
k3

1

]
A3

s(Q
2/kF )

Now let us consider the factorization and renormalization scale dependence, fixing kR =
kF = k. In this case we should also modify the coefficient function in Eq.(6) as

C
(n)
F3

= 1 + C
(1)
F3

(n)As(Q
2/k) +

[
C

(2)
F3

(n)− C
(1)
F3

(n)β0ln(k)
]
A2

s(Q
2/k) (31)

+
[
C

(3)
F3

(n) + C
(1)
F3

(n)
(
β2

0 ln
2(k)− β1ln(k)

)
− 2C

(2)
F3

β0ln(k)
]
A3

s(Q
2/k) .

The commonly accepted practice is to vary k in the interval 1/4 ≤ k ≤ 4 (see, e.g., Ref.[67]).
We repeated our fits both without and with the IRR model of the twist-4 terms in the cases
of k = 1/4 and k = 4. As in the fits described above, in order to achieve the minimum in

χ2 we supplemented the interpolation procedure of the NNLO approximation for γ
(n)
F3

(As) by

fine-tuning of even terms γ
(2)
F3

(6), γ
(2)
F3

(8) and γ
(2)
F3

(10) and got their values, comparable within
small error-bars with the numbers given in Sec. 4. The same procedure was used in the
process of the N3LO fits. In fact they have more theoretical uncertainties than the NNLO ones.
Indeed, in this case we applied the interpolation procedure to determine not only the NNLO
coefficients of anomalous dimensions of even moments of xF3 SF, but the related N3LO terms
of the coefficient functions as well (see Table 2). The N3LO corrections r(n) to AD-function
in Eq. (30) were modelled using the [1/1] Padé approximant procedure. Note that for even
values of n the numerical expresssions for q(n), which enter into the Padé approximants, are
determined in part by the NNLO coefficients of anomalous dimensions of even moments of xF3.
In the process of N3LO fits in the case of k = 4 the ambiguities of the applications of the
[1/1] Padé approximation procedure reflect themselves in the necessity of supplementing the

interpolation procedure by fine-tuning of the coefficient γ
(2)
F3

(12) in addition to the n = 6, 8, 10
NNLO anomalous dimension terms. Only after this additional step were we able to achieve a
reasonable value of χ2 in this case also.
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The consequences of the study of factorization/renormalization scale dependence at the
NLO, NNLO and N3LO in the case of the initial scale Q2

0 = 20 GeV2 are presented in Table
11.

Order Nmax k Λ
(4)

MS
∆k A′

2 (HT ) χ2/points

NLO 9 1 345±38 — — 85.1/86
9 1 376±39 — - 0.121±0.052 79.5/86
9 1/4 482±57 137 — 90.0/86
9 1/4 579±62 203 - 0.184±0.054 78.8/86
9 4 270±25 -75 — 84.7/86
9 4 271±24 -105 - 0.032±0.051 84.4/86

NNLO 9 1 331±37 — — 75.8/86
9 1 332±36 — -0.015±0.051 75.7/86
9 1/4 379±45 47 — 78.7 /86
9 1/4 399±46 66 - 0.084±0.052 76.1/86
9 4 297±27 -35 — 79.4/86
9 4 318±30 -15 + 0.117±0.052 74.9/86

N3LO 9 1 327±34 — — 76.4/86
9 1 329±34 — +0.033±0.052 76.0/86
9 1/4 355±39 28 — 75.9 /86
9 1/4 357±39 28 - 0.026±0.051 75.9/86
9 4 312±24 -15 — 74.8/86
9 4 318±24 -11 + 0.058±0.052 84.5/86

Table 11. The outcomes of NLO, NNLO and N3LO fits to CCFR’97 xF3 data for Q2 ≥ 5 GeV 2

with different values of factorization/renormalization scales. The difference in the values of Λ
(4)

MS

is determined by ∆k(MeV ) = Λ
(4)

MS
(k)−Λ

(4)

MS
(k = 1). The value of the IRR model coefficient is

given in GeV2. The initial scale is fixed at Q2
0 = 20 GeV2.

It should be mentioned that despite the approximate nature of the Padé resummation
procedure used for the estimation of the N3LO contribution r(n) to the anomalous dimension
function AD, in the case of application of the fine-tuning procedure at k = 1 and k = 1/4 we

get for γ
(2)
F3

(n) with n = 6, 8, 10, 12 the numerical expressions which agree with the interpolated
numbers of Table 1 in the 4th significant digit. For the fine-tuned fits with k = 4 and high-twist
terms included the price for small values of χ2 is paid by more approximate determinations of
γ

(2)
F3

(10) and γ
(2)
F3

(12) which differ from the ones presented in Sec. 4 in the 3rd significant digit.

For example, for n = 12 the following number was obtained: γ
(2)
F3

(12) ≈ 1694.4907 ± 3.1194.
It should be stressed, however, that this difference leads to negligibly small effects in the
overall contributions to Padé estimated values of r(n). Moreover, it is rather pleasant that
the approximate character of the fixation of this part of the theoretical input of our new
N3LO fits does not drastically spoil reasonable (from our point of view) estimates for γ

(2)
F3

(n)
at n = 6, 8, 10, 12.

We make now several conclusions which come from the results presented in Table 11.

21



• At NLO, NNLO and N3LO and k = 1/4 the values of Λ
(4)

MS
and thus αs are larger than in

the case of k = 1, while for k = 4 smaller numbers are obtained.

• The NLO and NNLO results of Table 11 are in satisfactory agreement with the similar ones
from Table 6 of Ref. [5], provided one takes into account the difference in the definitions
of the parameter k (in Ref. [5] the case k = 4 (k = 1/4) corresponds to the choice k = 1/4
(k = 4) in Table 11).

• To our point of view the results of the NNLO fits with k = 1/4 (k = 4) both without and
with twist-4 terms simulate in part the results of the NLO (N3LO) fits with k = 1.

• The increase of order of perturbative theory approximations leads to minimization of the
scale-dependence uncertainty which manifests itself through the decrease of the values of
∆k deviations.

• In the case of NLO fits with HT terms the value of |∆k| is larger than in the case of
switching of power-supressed terms. However, this difference is minimized at the NNLO
and the the N3LO especially. We think that this property is reflecting the correlation with
the effective minimization of the fitted value of the HT parameter A

′
2, which becomes

comparable with zero in the NNLO and N3LO fits with k = 1.

• We checked that for k = 1 and k = 1/4 the results are not sensitive to the changes of the
initial scale from Q2

0 = 20 GeV2 to Q2
0 = 5 GeV2.

• However, when k = 4, this pleasant feature is violated in the results of the NNLO and
N3LO fits especially. Indeed, these fits are accompanied by the increase of χ2 up to
over the 100/86 level. This fact can be related to pushing the value of Q2

0 out of the
considered kinematical region Q2 ≥ 5 GeV2 (at Q2

0 = 5 GeV2 and k = 4 the region of
1.25 GeV2 ≤ Q2 ≤ 5 GeV2 should be also taken into account; however the NNLO and
N3LO corrections to the coefficient functions are rather large in this region).

• It should be stressed that the NLO and NNLO results of Table 11 with k = 4 are closer
to the ones obtained in the recent work of Ref. [37]. We will comment on the possible
consequences of this observation in Sec.6.2 below.

Let us now turn to determination of the values of αs(MZ) from the results of Table 11. We

transform Λ
(4)

MS
into Λ

(5)

MS
using the NLO, NNLO and N3LO variants of equation of Ref. [68]:

βf+1
0 ln

Λ
(f+1) 2

MS

Λ
(f) 2

MS

= (βf+1
0 − βf

0 )Lh (32)

+δNLO + δNNLO + δN3LO

δNLO =
(

βf+1
1

βf+1
0

− βf
1

βf
0

)
lnLh − βf+1

1

βf+1
0

ln
βf+1

0

βf
0

(33)
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δNNLO =
1

βf
0 Lh

[
βf

1

βf
0

(
βf+1

1

βf+1
0

− βf
1

βf
0

)
lnLh (34)

+
(

βf+1
1

βf+1
0

)2

−
(

βf
1

βf
0

)2

− βf+1
2

βf+1
0

+
βf

2

βf
0

− C2

]

δN3LO =
1

(βf
0 Lh)2

[
− 1

2

(
βf

1

βf
0

)2(βf+1
1

βf+1
0

− βf
1

βf
0

)
ln2Lh (35)

+
βf

1

βf
0

[
− βf+1

1

βf+1
0

(
βf+1

1

βf+1
0

− βf
1

βf
0

)
+

βf+1
2

βf+1
0

− βf
2

βf
0

+ C2

]
lnLh

+
1

2

(
−
(

βf+1
1

βf+1
0

)3

−
(

βf
1

βf
0

)3

− βf+1
3

βf+1
0

+
βf

3

βf
0

)

+
βf+1

1

βf+1
0

((
βf

1

βf
0

)2

+
βf+1

2

βf+1
0

− βf
2

βf
0

+ C2

)
− C3

]

where βf
i (βf+1

i ) are the coefficients of the β-function with f (f +1) numbers of active flavours,

Lh = ln(M2
f+1/Λ

(f) 2

MS
) and Mf+1 is the threshold of the production of a quark of the (f + 1)

flavour and C3 = −(80507/27648)ζ(3)− (2/3)ζ(2)((1/3)ln2+1)−58933/124416+(f/9)[ζ(2)+
2479/3456]. These formulae contain the NNLO correction to the matching condition with
coefficient C2 = −7/24, previously derived in Ref. [69] and correctly calculated in Ref. [70].
In our massless analysis we will take f = 4 and mb ≈ 4.8 GeV and vary the threshold of
the production of the fifth flavour from M2

5 ≈ m2
b to M2

5 ≈ (6mb)
2 in accordance with the

proposal of Ref. [71]. The latter choice is based on the calculations of the LO and NLO massive
corrections to the Gross-Llewellyn Smith sum rule. The final values of αs(MZ) will be fixed
at the middle of the interval, limited by the choices of threshold matching point at M2

5 ≈ m2
b

and M2
5 ≈ (6mb)

2. The appearing theoretical ambiguities reflect the uncertainties due to the
manifestation of the massive-dependent contributions to the moments of xF3 in the massless
fits. Another procedure of fixing the massive-dependent ambiguities in αs(MZ), which result
from the fits to xF3 data, was proposed in Ref. [72]. It is based on the application of the massive-
dependence of the LO contribution to β-function in the MOM scheme, previously studied in the
works of Refs. [73, 74]. This procedure gives the estimates of the influence of mass-dependence
on the value of αs(MZ), extracted from CCFR’97 xF3 data, which are comparable to ours. To
be more complete at this point, we also mention several other works, which are dealing with
different prescriptions for estimating threshold uncertainties (see Refs. [75, 76] and the work
of Ref. [77] especially, where massive-dependence of the MOM-scheme coupling constant was
evaluated at the 2-loop level). It was shown in Ref. [71] that the application of the MS-scheme
matching condition with the matching point M2

5 ≈ (6mb)
2 does not contradict the application

of the massive dependent approach of Ref. [77]. Therefore, we can conclude that our estimates
of massive-dependent uncertainties in αs(MZ) can be substantiated by this comparisons of the
results of Refs. [71, 77].

Taking into account the numbers given in Table 11, which were obtained with the twist-4
contribution fixed using the IRR model of Ref. [29], and the theoretical expressions of Eqs. (14)-
(16) and Eqs. (32)-(35), supplemented with the estimates of the uncertainties due to different
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possibilities of the choice of matching point and experimental systematic errors, which come
from separate consideration of this type of experimental uncertainties of CCFR’97 data, we
arrive at the following values of αs(MZ), extracted from the fits to CCFR’97 data for xF3

performed in this work:

NLO HT of Ref.[29] αs(MZ) = 0.1194± 0.0022(stat)± 0.005(syst) (36)

±0.0018(thresh.)+0.0096
−0.0063(scale)

NNLO HT of Ref.[29] αs(MZ) = 0.1188± 0.0022(stat)± 0.005(syst) (37)

±0.0017(thresh.)+0.0038
−0.0008(scale)

Minor differences with the similar results of Ref. [5] are explained by the incorporation of
more significant digits in the process of calculations and by more careful study of the scale-
dependence uncertainties. These values presented in Eqs. (36,37) should be compared with the
one given by our new N3LO approximate fit:

N3LO HT of Ref.[29] αs(MZ) = 0.1186± 0.0022(stat)± 0.005(syst) (38)

±0.0017(thresh.)+0.0017
−0.0007(scale) .

Note again, that the experimental systematic uncertainties are extracted from the CCFR’97
data and were not taken into account in the process of our concrete studies for the reasons
discussed above. As to the theoretical uncertainties of the αs(MZ)-value, the incorporation
of the high-order corrections to the fits leaves threshold ambiguities at the same level, but
decreases scale-dependence uncertainties drastically 2.

To study the influence of the twist-4 contributions of Eq. (21) to the values of αs(MZ) we
also extracted from Table 11 the corresponding results, obtained from the twist-4 independent
fits to CCFR’97 data:

NLO αs(MZ) = 0.1177± 0.0024(stat)± 0.005(syst) (39)

±0.00177(thresh.)+0.0070
−0.0047(scale)

NNLO αs(MZ) = 0.1188± 0.0022(stat)± 0.005(syst) (40)

±0.0017(thresh.)+0.0027
−0.0022(scale) .

The approximate N3LO twist-independent fits give us the following numbers:

N3LO αs(MZ) = 0.1184± 0.0022(stat)± 0.005(syst) (41)

±0.0017(thresh.)+0.0017
−0.0009(scale)

2However, like in other studies of the CCFR’97 data of Refs. [3]-[5], [7], [37]- [39], [72], we are neglecting
theoretical uncertainties, which arise from the separation from the CCFR’97 data heavy nuclei corrections.
Definite theoretical considerations of this problem [78, 79] were incorporated in the fits in Ref. [80] and indicate
the decrease of αs(MZ) at the NNLO level to the amount about 2× 10−3.
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Let us make several conclusions, which follow from the comparison of the results of Eqs. (36)-
(38) and Eqs. (39)-(40).

• In the case when HT-corrections are included, the general tendency (αs(MZ))NLO ≥
(αs(MZ))NNLO ≥ (αs(MZ))N3LO for the central values of the outcomes of the fits takes
place.

• The scale dependence of the NLO and NNLO results with HT-corrections included are
larger than in the case of αs(MZ)-values, obtained without HT-terms.

• The scale-dependence of the results of the approximate N3LO fits both without and with
HT-corrections is almost the same. This feature is related to effective minimization of
the contributions of HT-terms at the N3LO.

• Starting from the NNLO the systematical experimental uncertainties dominate theoretical
ambiguities as estimated by us.

• The uncertainties of the matching conditions dominate scale-dependence ambiguities at
the N3LO only. This might mean that the approximation of massless quarks works rea-
sonably well in the analysis of CCFR’97 xF3 data up to NNLO.

It is worth making several comments on the comparison of our results for αs(MZ), ex-
tracted from the CCFR’97 xF3 data, with those available in the literature. Within existing
theoretical error bars, which reflect in part the special features of the procedures of taking
into account threshold effects, our twist-independent NLO result is in agreement with the
value αs(MZ)NLO ≈ 0.122 ± 0.004, given by the independent NLO fits to CCFR’97 xF3

data using the Jacobi polynomial method [72]. It is also in agreement with the one pre-
sented by the CCFR collaboration, namely αs(MZ)NLO = 0.119± 0.002(exp)± 0.004(theory)
[7], which was obtained with the help of the DGLAP approach and reproduced in Ref. [38]
without treating carefully theoretical uncertainties. Within experimental and theoretical er-
ror bars our results also do not contradict the recent application of the Bernstein polyno-
mial method [36] for the extraction of αs(MZ) from CCFR’97 xF3 data at the NLO and
NNLO [37]. Indeed, at the NLO it gives αs(MZ)NLO = 0.116 ± 0.004, while at the NNLO
they got αs(MZ) = 0.1153± 0.0041(exp)± 0.0061(theor) [37]. It is worth mentioning here that
despite the qualitative agreement with our results, the central values of αs(MZ) obtained in
Ref. [37] are lower than the central values of all existing NLO and NNLO determinations of
αs(MZ) from CCFR’97 xF3 data. In Section 6 we will present more detailed comparison of the
results of Ref. [37] with the ones obtained in our work and will propose a possible explanation
of the origin of these deviations.

Although we do not include in our fits the simultaneous analysis of the statistical and
systematic experimental uncertainties, we think that our analysis has some advantages over
other fits to CCFR’97 xF3 data. Indeed, the results of Refs. [72, 37] are free from considerations
of the scale-dependence ambiguities studied in our work, while the DGLAP fits of the same data,
performed in Refs. [7, 38, 39], do not take into consideration the contributions of the NNLO
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and N3LO perturbative QCD corrections, which we were able to treat in the way described
above.

To our point of view, another advantage of our work is that using more rigorous information
than previously (see Ref. [5]) on the effects of the higher-order perturbative QCD contributions
to the characteristics of xF3 SF, we continued the studies of the influence of twist-4 corrections
to the extraction of αs(MZ) from CCFR’97 xF3 data. However, the IRR approach used by us
is not the only way of modelling twist-4 effects. In the next Section we are considering the case
when the twist-4 contribution will be approximated in a less model-dependent way.

5.4 Determination of the x-shape of the twist-4 corrections

We now turn to a pure phenomenological extraction of the twist-4 contribution h(x) to Eq. (18).
In order to get its x-dependence we will model h(x) by free parameters hi = h(xi), where xi

are the points in experimental data binning. The results are presented in Table 12.

LO NLO NNLO N3LO
χ2/nep 69.1/86 68.5/86 65.6/86 66.1/86

A 4.32 ± 1.34 4.08 ± 1.13 5.06 ± 0.46 5.55 ± 1.27
b 0.629 ± 0.096 0.616 ± 0.084 0.682 ± 0.030 0.711 ± 0.079
c 4.28 ± 0.14 4.16 ± 0.15 3.88 ± 0.20 3.73 ± 0.34
γ 1.91 ± 1.20 1.87 ± 1.09 0.73 ± 0.30 0.25 ± 0.81

Λ
(4)

MS
[MeV ] 327 ± 149 395 ± 151 391 ± 159 370 ± 131

xi h(xi) [GeV 2]
0.0125 0.016 ± 0.295 0.056 ± 0.281 0.054 ± 0.274 0.072 ± 0.271
0.025 -0.055 ± 0.241 0.038 ± 0.235 0.239 ± 0.203 0.284 ± 0.228
0.050 -0.079 ± 0.161 0.113 ± 0.206 0.425 ± 0.275 0.472 ± 0.306
0.090 -0.231 ± 0.112 0.050 ± 0.193 0.146 ± 0.283 0.158 ± 0.277
0.140 -0.369 ± 0.108 -0.078 ± 0.132 -0.012 ± 0.211 0.013 ± 0.223
0.225 -0.492 ± 0.223 -0.281 ± 0.160 -0.038 ± 0.123 0.062 ± 0.163
0.350 -0.344 ± 0.371 -0.347 ± 0.367 -0.207 ± 0.303 -0.064 ± 0.227
0.550 0.129 ± 0.304 -0.026 ± 0.335 -0.172 ± 0.385 -0.140 ± 0.325
0.650 0.398 ± 0.195 0.275 ± 0.219 0.144 ± 0.282 0.131 ± 0.255

n γ
(2)
F3

(n) γ
(2)
F3

(n)
6 1247.9 ± 0.7 1247.7 ± 0.6
8 1419.9 ± 0.8 1419.9 ± 0.8
10 1561.9 ± 2.2 1561.6 ± 2.2
12 1676.7 ± 5.3 1676.8 ± 4.9

Table 12. The values for of the the parameters h(xi), A, b, c, γ and Λ
(4)

MS
with corresponding

statistical errors. They are obtained from the fits with Nmax = 9 and Q2
0 = 20 GeV2.
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Fig.1. The x-shapes of h(x) extracted from the fits to xF3 CCFR’97 data in different
orders of perturbative theory. The initial scale is chosen at Q2

0 = 20 GeV 2. The cases of
different Nmax are considered.

The x-shapes of h(x), obtained at LO, NLO, NNLO and approximate N3LO, are depicted
at Fig.1, where we also illustrate the similar behaviour of h(x), obtained in the cases of Nmax =
6, 7, 8, which correspond to smaller number of Mellin moments, used in the perturbative part
of the Jacobi polynomial reconstruction formula of Eq. (18).

It should be noted that to minimize correlations between the values of hi, the parameters
of the model for xF3(x, Q2

0) = A(Q2
0)x

b(Q2
0)(1− x)c(Q2

0)(1 + γ(Q2
0)x) and the QCD scale Λ

(4)

MS
, we

choose 9 twist-4 parameters hi only, contrary to 16 ones considered in the process of our previous
analysis of Refs. [3, 5]. The results of the fits are presented in Table 12. The approximate N3LO
fits are based on the application of available N3LO corrections to the coefficient functions of
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odd Mellin moments for xF3 [23], supplemented with the smooth interpolation procedure (see
Table 2) and using the [1/1] Padé model of the N3LO contributions r(n) to the expanded
anomalous dimension term of Eq. (10) (see Table 3). In the process of NNLO and approximate
N3LO fits we faced a problem identical to the one revealed while fitting xF3 CCFR’97 data
without twist-4 terms (see Sec.4) and with twist-4 contributions, modelled by means of the IRR
approach (see Eqs. (20,21)). Indeed, to get the stable value of χ2 at Nmax = 9 it was necessary

to apply the fine-tuning procedure for the NNLO corrections to γ
(n)
F3

at n = 6, 8, 10, 12. The
obtained values of these parameters are presented in Table 12 also. Within error-bars they are
in agreement with the numbers fixed by the smooth interpolation procedure (see Table 1).

Several comments are now in order.

1. The obtained values of χ2, given in Table 12, are considerably smaller than the ones
obtained in the process of the fits without twist-4 contributions (see Table 4) and with
1/Q2-terms modelled through the IRR approach (see Table 6). This is the welcome feature
of the analysis of DIS data, which is based on the model-independent parametrization of
the twist-4 terms.

2. The parameters A, b, c, γ and Λ
(4)

MS
given in Table 12 are in agreement with their values,

obtained in Ref. [5] with the help of the fits, which were made in the case of Nmax = 6
and 16 HT parameters hi.

3. Due to the effect of correlations of hi and Λ
(4)

MS
the values of the QCD scale parameter

have rather large statistical error-bars.

4. At the LO and NLO the x-shape for h(x) is rather stable to the increase of Nmax from
Nmax = 6 to Nmax = 9 and therefore, to the incorporation of the additional Mellin
moments in the procedure of reconstruction of xF3 via the Jacobi polynomial technique.

5. The x-shape of h(x), obtained at the LO and NLO, is in agreement with the prediction
of the IRR model of Ref. [29].

6. At the NNLO we observe the sinusoidal-type oscillations of h(x), which are become more
vivid in the cases of Nmax = 8 and Nmax = 9.

7. This feature seems to be in agreement with the qualitative expectations which result from
an educated guess about the possible modifications of the prediction of the IRR model
at the NNLO [81].

8. At the N3LO, for all considered Nmax, the shapes of h(x) are similar to the ones obtained
in the process of new NNLO fits.

9. It is worth mentioning that the positive bumps in the x < 0.1-region of the NNLO plots
of Fig.1 appear after applying the fine-tuning procedure to NNLO coefficients of γ

(n)
F3

for

n = 6, 8, 10, 12, which gives us the possibility to get reasonable values for both χ2 and Λ
(4)

MS
at NNLO and beyond. In otherer words, the x-profile of the twist-4 contribution is related
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to the values of the NNLO corrections to γ
(n)
F3

for even n. We consider this observation as
an additional argument in favour of getting explicit results for these terms.

10. In general, taking into account systematic experimental uncertainties of the CCFR’97
data for xF3 might make the sinusoidal-type oscillations of h(x), which demonstrate
themselves in the NNLO and approximate N3LO fits with smaller number of free param-
eters hi, less vivid and more comparable with zero. Indeed, the effective minimization
observed previously in Refs. [3, 5] of the contribution of twist-4 terms during less defi-
nite than present NNLO fits to xF3 CCFR’97 data were confirmed in the process of the
NNLO DGLAP fits to F2 data for charged leptons DIS [82, 83], which were based on the
application of the approximate NNLO model for the DGLAP kernel from Ref. [67]. The
observed changes in the x-shape of twist-4 contributions h(x) to xF3 and F2 SFs serve as
additional arguments in favour of high-twist duality, which demonstrates itself through
the interplay between NNLO perturbative QCD corrections and 1/Q2 terms.

6 Comparison with the results of other NNLO analyses

In this Section we compare the results of our studies with the outcomes of other analyses of
xF3 at the NLO and beyond, peformed independently in the works of Ref. [35] and Ref. [37].

In Ref. [35], to study the evolution of the NS contributions to F2 and xF3 up to the approx-
imate N3LO level of massless QCD, the NNLO corrections to the DGLAP equation coefficient
functions for xF3 [13] and the N3LO corrections to definite Mellin moments of NS SFs, obtained
in Refs. [20, 23], were combined with the NNLO model for the NS kernel, previously obtained
in Ref. [67].

6.1 Comments on estimates of scale-scheme dependence
uncertainties.

Using the input
F2,NS(x, Q2

0) = xF3(x, Q2
0) = x0.5(1− x)3 (42)

specifying the reference scale Q2
0 through the normalization condition αs(µ

2
R = Q2

0 = 30 GeV2) =
0.2 , irrespective of the order of the expansion and varying the renormalization scale in the con-
ventional interval 1

4
Q2 ≤ µ2

R ≤ 4Q2, the authors of Ref. [35] studied the effects of the scaling
violation using a definite model for the xF3 data. The values of αs(30 GeV2) for f = 4 are given
in the second column of Table 13. However, while analyzing real CCFR’97 xF3 data, we found
that scale-dependent uncertainties can be larger. Indeed, using those numbers from Table 11,
which are related to twist-independent fits to the CCFR’97 data, we obtain the inputs in the
third column of Table 13:
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Order Values from Ref. [35] Our values
NLO 0.2035+0.019

−0.011 0.2104+0.0252
−0.0151

NNLO 0.1995+0.0065
−0.0015 0.2150+0.0095

−0.0074

N3LO 0.2000+0.0025
−0.0005 0.2144+0.0058

−0.0032

Table 13. The comparison of the scale-uncertainties of αs(30 GeV2), obtained in Ref. [35] and
in the process of our studies.

At the qualitative level both sets of numbers are in agreement with each other. Moreover,
the scale-dependence of both sets of numbers has the tendency to decrease from NLO up to
N3LO. Definite differences between the central values of αs may be traced to the fact that our
results for αs(30 GeV2) correspond to αs(MZ) ≈ 0.118 irrespective of the order of the expansion
(see Eqs. (39)-(41)), while the choice αs(30 GeV2) = 0.2 in Ref. [35] corresponds to a lower
value αs(MZ) ≈ 0.116.

On the other hand the scale-dependence of our twist-independent NLO and NNLO results
for αs(MZ) (see Eqs. (39),(40)) is in agreement with the previous estimates of this kind of
theoretical uncertainties, namely

∆αs(MZ)NLO =+0.006
−0.004 , ∆αs(MZ)NNLO =+0.0025

−0.0015 (43)

obtained in Ref. [67] using the model constructed in this work for the NNLO NS DGLAP kernel.

As to the application in Ref. [67] of the renormalization-scheme optimization methods of
Refs. [47, 84] for estimating higher-order corrections (up to N4LO) to the factorization-scheme
independent quantity , defined as

Kn(Q
2) = −2

d lnMF3
n

d lnQ2
= γ

(n)
F3

(As)− β(As)
∂C

(n)
F3

(As)/∂As

CF3(As)
, (44)

we think that it might give larger theoretical uncertainties than those presented in Ref. [67].
Indeed, we previously used this ratio in Ref. [5] in the process of the attempt to perform
the massless NNLO fits to CCFR’97 xF3 data using the effective-charges (ECH) approach of
Ref. [85] (for the related methods see Refs. [86]- [89] and the independent unpublished proposal
of Ref. [90]; for the related phenomenological applications in the NLO fits to the charged leptons
DIS SFs data see Ref. [91]). As was found in Ref. [5], the NNLO ECH fits to CCFR’97 xF3

data face the problem of the drastical increase of χ2 up to the level of χ2 ∼ 111/86. This effect

was explained by the appearance of large and negative values of the NNLO coefficients β̃
(n)
2 of

the ECH β-functions, related to the scheme-invariant quantities introduced within the context
of the principle of minimal sensitivity (PMS) Ref. [92]. Here we are going to demonstrate
explicitly how this effect appears, using the results presented in Sec.3.

In the case of n ≥ 2 the NNLO approximation of the factorization-scheme independent
kernel Kn can be rewritten in the following form:

Rn =
Kn

γ
(0)
F3

(n)
= As + d1(n)A2

s + d2(n)A3
s (45)
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Putting d1(n) = d2(n) = 0 we arrive at the following renormalization-group equation

(
µ

∂

∂µ
+ β

(n)
eff (Rn)

∂

∂Rn

)
Rn = 0 , (46)

with the effective β-function defined as

µ
∂Rn

∂µ
= β

(n)
eff(Rn) = −2

(
β0R

2
n + β1R

3
n + β̃

(n)
2 R4

n

)
, (47)

where the NNLO coefficient of Eq. (47) is related to the NNLO coefficients β2 of the MS-scheme
β-function as

β̃
(n)
2 = β2 + ∆(n) (48)

with

∆(n) = β0

(
d2(n)− Ω2(n)

)
(49)

and

Ω2(n) = d1(n)

(
β1

β0

+ d1(n)

)
. (50)

The similar equations can be derived at the N3LO and beyond (see Refs. [47, 84]).

The ECH-inspired estimates proposed in Refs. [47, 84] work only in the case when the

differences β̃
(n)
k − βk with k ≥ 2 are small. These conditions turned out to be valid for the

e+e−-annihilation Adler D-function, DIS sum rules in QCD [47] and (g − 2)µ in QED [84]
also. But unfortunately, they are not working in the case of the quantity defined by Eq. (45).
Indeed, using the results from Tables 1,2 we obtain the numerical expressions for ∆(n), which
are presented in Table 14:

n 2 3 4 5 6 7 8 9 10 11 12 13
∆(n) -1976 -1288 -1066 -937 -851 -783 -730 -684 -644 -606 -576 -547

Table 14. The n-dependence of ∆(n) = β̃
(n)
2 − β2 for f = 4.

Comparing now these numbers with the numerical value for β2 for f = 4, (β2 = 406.35), we
arrive at the conclusion that the basic assumption of the ECH-inspired estimates of Refs. [47,

84], namely β̃
(n)
2 ≈ β2, does not work at NNLO, not only in the case considered previously

of the correlator of scalar quark currents [53], but for the factorization-scheme independent
quantity of Eq. (46) as well.

Despite the fact that we did not consider in detail the case of F2,NS SF, we think that the
estimates presented in Ref. [35] of perturbative theoretical uncertainties for the factorization-
scheme independent kernel Kn for F2,NS made with the help of the ECH and PMS approaches
at the NNLO and beyond might be too optimistic (at least in the case of n ≤ 13). However,
the general tendency of the absolute value of ∆(n) to decrease with increasing n might lead to
the improvement of the situation for a larger number of moments, which are limited in Ref. [35]
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by n = 30. This guess can be substantiated only after completing the explicit analytical
calculations of NNLO corrections to DGLAP kernels.

Another interesting subject, related to negative values of β̃
(n)
2 , corresponds to the appear-

ance of perturbative IRR zeros of the ECH β-function at the NNLO, considered previously as
spurious ones in a number of works (see Refs. [93]-[96], [53]). It should be stressed, that for
the quantity Kn these perturbative IRR zeros are manifesting themselves obviously in the case
of n = 2 and less obviously for n = 3. In the first case the critical value of the corresponding
effective charge (αs)eff is small, namely 0.4, while for n = 3 it is over 0.7, which is rather close
to the non-perturbative region. For n ≥ 4 these zeros lie in the typical nonperturbative sector
where (αs)eff ≥ 1. In view of this it might still be possible to apply the ECH or PMS ap-
proaches for the analysis of the scheme-dependence of the NNLO perturbative QCD predictions
for xF3 moments with n ≥ 3. It could be of interest to study this problem in the future.

6.2 Comments on outputs of the NNLO Bernstein polynomial

analyses

Let us now comment on the comparison of our NLO and NNLO results for Λ
(4)

MS
and αs(MZ)

with the ones obtained in another interesting work of Ref. [37]. The authors of this work used
the theoretical input identical to ours, namely the results of the NNLO perturbative QCD
calculations for the anomalous dimensions and coefficient functions of odd Mellin moments of
xF3, and performed the NLO and NNLO fits to CCFR’97 data for xF3 with the help of the
Bernstein polynomial technique, proposed in Ref. [36]. In the process of these fits, the initial
parametrization xF3(Q

2
0) = Axb(1 − x)c, which is similar to Eq. (6), was considered. The

initial scales Q2
0 = 8.75 GeV2 and Q2

0 = 12 GeV2 were chosen inside the kinematical region of
CCFR’97 data 7.9 GeV2 ≤ Q2 ≤ 125.9 GeV2, which is only part of the region used in our work.

The results of twist-independent fits at the scale Q2
0 = 8.75 GeV2 obtained in Ref. [37] are

summarized in the last two columns of Table 15, where the error bars include statistcial and
systematic experimental uncertainties.

These results can be compared with our outputs in Table 4, which result from our Jacobi
polynomial twist-4 independent fits of the CCFR’97 data for xF3 in the kinematical region
Q2 ≥ 5 GeV2 with the cuts W > 10 GeV2, x < 0.7. It should be stressed that this region is
identical to the one studied in the original work of the CCFR collaboration [7]. In particular,

we are interested in the following values of Λ
(4)

MS

LO Λ
(4)

MS
= 265± 36 MeV (51)

NLO Λ
(4)

MS
= 347± 37 MeV

NNLO Λ
(4)

MS
= 332± 35 MeV

which correspond to the choice of the initial scale Q2
0 = 8 GeV2 (note that the results of Table

4 demonstrate that these values are almost independent of the choice of Q2
0).
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It is quite understandable why our results have smaller error-bars: contrary to the results
of Ref. [37] they are defined by the statistical experimental errors of CCFR’97 data alone.

However, the explanation of the discrepancies in the central values of Λ
(4)

MS
is not so obvious.

In order to clarify the situation we performed the Jacobi polynomial fits for two sets of exper-
imental data from the CCFR’97 collaboration, choosing the same initial scale Q2

0 = 8.75 GeV2

as in Ref. [37].

1. First, we considered the same data set as in Ref. [37], i.e. the kinematical region
7.9 GeV2 ≤ Q2 ≤ 125.9 GeV2.

• The comparison of the results of our twist-4 independent fits with the ones given in
Table 3 of Ref. [37] are presented in Table 15 below.

Order Λ
(4)

MS
αs(MZ) χ2/nep Λ

(4)

MS
[37] αs(MZ) [37]

LO 227±37 0.1309±0.0037 92/74 217±78 0.130±0.006
NLO 298±38 0.1169±0.0025 76/74 281±57 0.116±0.004

NNLO 303±38 0.1187±0.0026 65/74 255±55 0.1153±0.0041

Table 15. The values of Λ
(4)

MS
and αs(MZ), obtained with the help of Jacobi and

Bernstein polynomial techniques Q2
0 = 8.75 GeV2 .

Notice that the difference between the values of Λ
(4)

MS
obtained by the Jacobi and

Bernstein polynomial techniques are minimized in this case. The LO and NLO
results for αs(MZ), as obtained by us, almost coincide with those taken from Ref. [37].
However, at the NNLO our value of αs(MZ), which is in agreement with the result
of Eq. (40), is comparable with the similar one given in Ref. [37] only within the
presented experimental error-bars, which in the latter case also include systematical
experimental uncertainties.

• To perform a more detailed comparison we also estimated the uncertainties in the
extraction of Λ

(4)

MS
at the NNLO, as those considered in Table 4 of Ref. [37]. The

results are given in Table 16.

Sourse of errors Λ
(4)

MS
∆Λ

(4)

MS
Λ

(4)

MS
[37] ∆Λ

(4)

MS
[37]

No TMC 326 23 298 43
HT 316 13 270 15

Q2
0 to 12 GeV2 298 -5 263 -8

NNLO∗ 294 -9 209 -46

Table 16. Theoretical uncertainties of Λ
(4)

MS
, obtained with the help of Jacobi and

Bernstein polynomial techniques Q2
0 = 8.75 GeV2.

In Table 16 we mark by the symbol NNLO∗ the uncertainties of Λ
(4)

MS
, obtained from

the NNLO fits with αs defined through its N3LO expression (see Eqs. (14)-(16)).
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One can see that we obtained twice as small uncertainties while neglecting TMC
and five times smaller effects while introducing the N3LO expression for αs in the
NNLO fits. It should be stressed that the similar small difference between the the
values of Λ

(4)

MS
of the NNLO and NNLO∗ fits to the CCFR’97 xF3 data was already

observed in Ref. [5] for a larger kinematical region and for different values of Q2
0.

• At present we are unable to explain the most significant differences with the NNLO
results of Ref. [37]. We think that more detailed comparison of the Jacobi and
Bernstein polynomials approaches at the NNLO is really on the agenda.

2. If, following the CCFR collaboration, we exclude one data point with W 2 < 10 GeV2

(namely the point with x = 0.65 and Q2 = 12.6 GeV2), which has a large systematical
error, and if we take into account the complete data set with Q2 ≥ 5 GeV2 and the
cut W 2 > 10 GeV2, we reproduce the results of Eq. (51) with rather small theoretical
uncertainties:

Order Λ
(4)

MS
αs(MZ) χ2/nep

LO 265±36 0.1345±0.0033 113/86
NLO 340±37 0.1193±0.0022 87/86
NNLO 333±36 0.1206±0.0023 74/86

NNLO no TMC 360±32 0.1186±0.0019 77/86
NNLO∗ 322±35 0.1199±0.0022 74/86

Table 17. The results of the fits to the CCFR’97 data within the kinematical conditions,
used in our work. Q2

0 = 8.75 GeV2.

It is worth noting that theoretical uncertainties due to the omission of TMC and due to
the consideration of the N3LO expression for αs, Eqs. (14)-(16), in the NNLO fits remain
the same, as in the case of Table 16.

Several additional comments are now in order

• In Table 15 and Table 17 the values of αs(MZ) were obtained from Eqs. (32)-(34)
using the matching point M5 = mb ≈ 4.8 GeV. Thus we neglected the uncertainties
due to fixation of b-quark threshold ambiguities, described in Sec. 5.3.

• Note, however, that our estimate (∆αs(MZ))thresh ≈ ±0.0017 is only slightly larger
than the estimate (∆αs(MZ))thresh ≈ 0.0010, given in Ref. [37] after application of
a different method for estimating b-quark threshold uncertainties.

• It should be noted that contrary to the analysis in Ref. [37] we were able to study the
scale dependence uncertainties of our results in the case when the renormalization
scale was taken equal to the factorization scale. The results of our studies, presented
in Sec. 5.3 and Table 11 demonstrate the following interesting feature: in the case of
k = 4 and HT neglected, both NLO and NNLO results for Λ

(4)

MS
are almost identical

to the ones obtained in Ref. [37] in a narrower kinematical region of CCFR’97 xF3

data. Therefore, a possible explanation of the deviations of our results from the ones
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in Ref. [37] might be related to the fact that scale-dependence ambiguities of the
latter were not studied and might increase the theoretical uncertainty for αs(MZ).

6.3 The model independence of high-twist duality effect

Despite the fact that in Ref. [37] the subject related to the inclusion of twist-4 terms was
briefly considered at the NNLO only, it is rather instructive to perform a similar analysis at
the LO, NLO and repeat the NNLO studies using the Jacobi polynomial approach. It should
be mentioned that in Ref. [37] the more simple than IRR-model form of the twist-4 corrections
was used, namely

MHT
n,xF3

(Q2) = n
B

′
2

Q2
MF3

n (Q2) , with B
′
2 = a(Λ

(4)

MS
)2 (52)

Its coefficient function differs from C̃(n) of Ref. [29] (see Eq. (21)), which for the moments under
consideration has the following numerical values: C̃(2) = 1.6667, C̃(3) = 1.6333, C̃(4) = 1.4,
C̃(5) = 1.0381, C̃(6) = 0.5857, C̃(7) = 0.0659, C̃(8) = −0.5063, C̃(9) = −1.1205, C̃(10) =
−1.7689 and C̃(11) = −2.4461, etc. Notice that starting from n=8, C̃(n) changes the sign
and in the asymptotic regime tends to −n. Therefore, it is of interest to investigate the model-
dependence of the effect observed in Sec.5.1 of high twist duality using the HT model of Eq. (53),
which is different from the IRR model of Ref. [29].

This question was studied by us using the set of CCFR’97 xF3 data considered in item (1)
of Sec.6.2, The results, obtained with the help of Jacobi polynomial fits, are presented in Table
16, where b-quark threshold uncertainties were not taken into account. Note that in our fits
we considered B

′
2 as the free parameter, and then determined the value of the parameter a,

considered to be free in the fits of Ref. [37].

Order Λ
(4)

MS
χ2/nep B

′
2 a αs(MZ)

LO 433±89 88/74 -0.330±0.126 -1.76±0.37 0.1471±0.0075
NLO 371±72 75/74 -0.135±0.113 -0.98±0.57 0.1231±0.0041
NNLO 316±51 64/74 -0.031±0.088 -0.31±0.80 0.1196±0.026

Table 18. The results of the fits to the subset of CCCFR’97 data with HT contribution,
considered in Ref. [37]. The initial scale is chosen as Q2

0 = 8.75 GeV2.

Comparing now Table 18 with Table 6 of Sec.4 we arrive at the following observations:

• In both cases the values of Λ
(4)

MS
are almost the same and thus do not depend on the

typical structure of the twist-4 model.

• At LO and NLO the value of the parameter B
′
2 is in agreement with the value of the

parameter A
′
2 of the IRR model and decreases after NLO effects are taken into account.
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• At NNLO the value of the parameter B
′
2 is a bit larger than the similar value of A

′
2, but

within error bars both are compatible with zero.

• At NNLO the central value for the parameter a is a bit larger than its value obtained in
Ref. [37], but within existing uncertainties they are compatible.

• The effect observed in Sec.5.1 of interplay between perturbative QCD and twist-4 correc-
tions remains also valid in the case of the choice of twist-4 model given by Eq. (52).

7 Conclusions

In this work we used the new perturbative QCD input in the form of NNLO corrections to the
anomalous dimensions and N3LO corrections to the coefficient functions for odd xF3 moments
[23] to improve our previous fits to xF3 CCFR’97 data, performed in the works of Refs. [3, 5].
We demonstrated that the application of the smooth interpolation procedure, supplemented
with the fine-tuning of NNLO corrections to γ

(n)
F3

for several even n gives us the chance to
include in the NNLO and approximate N3LO fits a greater number of Mellin moments up
to n ≤ 13. The basic feature which we revealed in the process of our fits is the drastical
reduction of the scale-dependence uncertainties for αs(MZ) at the NNLO and beyond. The
obtained values of αs(MZ) turned out to be in in agreement with the world average value of this
parameter, namely αs(MZ) ≈ 0.118 [97, 98]. The previously discovered property of interplay
between NNLO perturbative QCD corrections and twist-4 terms is confirmed using different
models for the 1/Q2 corrections. The interesting feature observed in the process of the NNLO
fits with model-independent parametrization of the twist-4 terms is the sinusoidal oscillation
of its x-shape around zero with definite positive bumps in the low x region. At present we
do not know whether this typical behaviour can be described by the NNLO generalization of
the IRR model of Ref. [29], or whether it will disappear after taking into account systematic
experimental uncertainties. This problem can be studied using the machinery of the work of
Ref. [40], which can allow us to fix experimental uncertainties of αs(MZ) and twist-4 terms on
more solid ground.

As to the effective decrease of the twist-4 contributions at the NNLO and beyond, we are
unable to disfavour the possibility that it occurs because of the use of the CCFR’97 data for
xF3, which are still not precise enough. Possible future more detailed DIS νN data, which are
expected to be obtained at the Neutrino factory [99], might be useful for clarification whether
it is reliable to detect more clear signals from twist-4 contributions at the NNLO level.

On the other hand our NNLO Jacobi polynomial fits revealed the necessity of getting more
precise (namely exact) values for the NNLO corrections to the anomalous dimensions γ

(n)
F3

for
even n, which are related to still explicitly uncalculable NNLO corrections to the kernel of the
DGLAP equation for xF3. Having this information at hand, one might be able to perform
NNLO Jacobi polynomial fits avoiding interpolation and fine-tuning procedures, which were
used by us to fix NNLO corrections to γ

(n)
F3

for even n, and fix still remaining theoretical
uncertainties in the x-shape of HT-contribution to xF3, extracted at the NNLO. More detailed
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understanding of other physical effects when using explicit NNLO corrections to the kernels of
the DGLAP equations might be revealed in the process of more detailed comparisons between
different methods, which implement the classical DGLAP solution of differential equations in
the x space and the Jacobi and Bernstein polynomial techniques.
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