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We discuss the recent scenario of tachyonic preheating at the end of inflation as a consequence 
of a tachyonic mass term in the scalar field responsible for spontaneous symmetry breaking. We 
use 30 lattice simulations to expore this very non-perturbative and non-linear phenomenon, 
which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so 
efficient that sy=etry breaking typically completes within a single oscillation of the field 
distribution as it rolls towards the minimum of its effective potential. 

During the last few years we have learned that the coherent oscillations of a scalar field 
may induce explosive particle production within a dozen oscillations, due to a nonperturbative 
process called preheating1 •  Usually preheating is associated with broad parametric resonance in 
the presence of a coherently oscillating inflaton field 1, but other mechanislilS are also possible. 
In a recent letter2 we studied what we called tachyonic preheating, which occurs due to the spin­
odal instabilities in the scalar field responsible for symmetry breaking. Spontaneous symmetry 
breaking is one of the fundamental ingredients of modern theories of elementary particle physics. 
In the context of the evolution of the universe it has often been considered as associated with 
first or second order thermal phase transitions. We explored a new scenario2 in which symmetry 
breaking occurs at zero temperature, at the end of a period of inflation, when the tachyonic mass 
term -m2¢2 /2 appears suddenly, i.e. on a time scale that is much shorter than the time required 
for symmetry breaking to occur, and which induces the spinodal growth of quantum fluctuations. 
Spontaneous symmetry breaking is a strongly nonlinear and nonperturbative effect. It usually 
leads to the production of particles with large occupation numbers inversely proportional to 
the coupling constants 2. As a result, the perturbative description, including the Hartree and 
1/ N approximations, has limited applicability. For instance, it cannot describe adecuately the 
rescattering of the created particles and other important features such as production of topo­
logical defects. Thus, for further theoretical understanding of these issues one should go beyond 
perturbation theory. This is the reason why we used the new methods of lattice simulations, 
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based on the observation that quantum states of hose fields with large occupation numbers can 
be interpreted as classical waves and their dynamics can be fully analyzed by solving relativistic 
wave equations on a lattice 3,4. A significant advantage of these methods as compared to other 
lattice simulations of quantum processes is that the semi-classical nature of the effects under 
investigation allows us to have a clear visual picture of all the processes involved. 

We will show that tachyonic preheating can be extremely efficient, both in the usual sym­
metry breaking model and in hybrid models5. In most cases it leads to the transfer of the initial 
potential energy density V(O) into the gradient or kinetic energy of scalar particles within a 
single oscillation. For instance, contrary to standard expectations, the first stage of preheating 
in hybrid inflation 6 is typically tachyonic, which means that the stage of oscillations of a homo­
geneous component of the scalar fields driving inflation either does not exist at all or ends after 
a single oscillation. A detailed description of our results will be given in a coming publication 7• 

Symmetry breaking occurs due to tachyonic instability and may be accompanied by the 
formation of topological defects. Here we will consider two toy models that are prototypes for 
many interesting applications, including symmetry breaking in hybrid inflation. The simplest 
model of spontaneous symmetry breaking is based on the theory with effective potential 

(1) 

where A «  1. V(cfo) has a minimum at ¢ =  ±v (or 1¢1 = v in the case of a complex symmetry 
breaking field) ,  and a maximum at ¢ = 0 with negative curvature V" = -m2• 

The development of tachyonic instability in this model depends on the initial conditions. We 
will assume that initially the symmetry is completely restored so that the field ¢ does not have 
any homogeneous component, i.e. (¢) = 0. But then, because of the symmetry of the potential, 
(¢) remains zero at all later stages, and for the investigation of spontaneous symmetry breaking 
one needs to find the spatial distribution of the field cfo(x, t). To avoid this complication, many 
authors assume that there is a small but finite initial homogeneous background field ¢(t), and 
even smaller quantum fluctuations 6¢(x, t) that grow on top of it. This approximation may 
provide some interesting information, but quite often it is inadequate. In particular, it does not 
describe the creation of topological defects, which, as we will see, is not a small nonperturbative 
correction but an important part of the problem. 

For definiteness, we suppose that in the symmetric phase, ¢ = 0, there are the usual quantum 
fluctuations of a massive field with mode fnnctions koe-ikot+ikx, where ki = k2 + V", and then 
at t = 0 we 'switch on' the tachyonic term -m2¢2 /2. The modes with k = lkl < m will grow 
exponentially, cPk ,..., exp(tv'm2 - k2), so the dispersion of these fluctuations can be estimated as 

{¢2) = _1_ rm dk k e2t� = e2mt(2mt - 1) + 1 
. 47r2 lo 167r2t2 (2) 

To get a qualitative understanding of the process of spontaneous symmetry breaking, instead 
of many growing waves with momenta k < m let us consider a single sinusoidal wave 6¢ = 
A(t) cos kx with k ,..., m and with initial amplitude A(O) ,..., ¥fr in one-dimensional space. This 
amplitude grows exponentially nntil its becomes A(t.) ,..., v = m/ ../)., which leads to the splitting 
of the universe into domains of size CJ(m-1), in which the scalar field changes from CJ(v) to 
CJ(-v ). The gradient energy density of domain walls separating regions with positive and 
negative ¢ will be "' k26¢2 = CJ(m4/A). This energy is of the same order as the total initial 
potential energy of the field V(O) = m4 /4A. This is one of the reasons why any approximation 
based on perturbation theory and ignoring topological defect production cannot give a correct 
description of the process of spontaneous symmetry breaking. Thus a substantial part of the 
false vacuum energy V(O) is transferred to the gradient energy of the field ¢ when it rolls down 
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to the minimum of V(¢). Because the initial state contains many quantum fluctuations with 
different phases growing at a different rate, the resulting field distribution is very complicated, 
so it cannot give all of its gradient energy back and return to its initial state ¢ = O. This is could 
be the main reason why spontaneous symmetry breaking and the initial stage of preheating in 
this model may occur within a single oscillation of the field ¢. 

Consider the tachyonic growth of all fluctuations with k < m, i.e. those that contribute most 
to (¢2) in Eq. (2). This growth continues until (¢2)112 ,..., v/2, since at ¢ =  v/./3 the curvature 
of the effective potential vanishes and instead of tachyonic growth one has the usual oscillations 
of all the modes. This happens within the time t. ,..., 

2
� ln �. The exponential growth of 

fluctuations up to that moment can be interpreted as the growth of the occupation number of 
particles with k « m. These occupation numbers at the time t. grow up to nk ,..., exp(2mt.) ,..., 
exp(ln � / >..) = � » 1. One can easily verify that t. depends only logarithmically on the choice 
of the initial distribution of quantum fluctuations. For' small >.. the fluctuations with k « m have 
very large occupation numbers, and therefore they can be interpreted as classical waves of the 
field ¢. The dominant contribution to (¢2) in Eq. (2) at the moment t. is given by the modes 
with wavelength l. ,..., 21rk;1 ,...., v'27rm-1 ln112 (2� />..) > m-1. As a result, at the moment when 
the fluctuations of the field ¢ reach the minimum of the effective potential, (¢2)112 ,..., v, the field 
distribution looks rather homogeneous on a scale l ;S l •. On average, one still has (¢) = 0. This 
implies that the universe becomes divided into domains with two different types of spontaneous 
symmetry breaking, ¢ ,..., ±v. The typical size of each domain is l./2 ,...., J?. m-1 in1/2 2f-, which 
differs only logarithmically from our estimate m -1. At later stages the domains grow in size 
and percolate (eat each other up), and spontaneous symmetry breaking becomes established on 
a macroscopic scale. 
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Figure 1: Left panel: The process of symmetry breaking in the model (1) for .X = 10-4, In the beginning the 
distribution is very narrow. Then it spreads out and shows two maxima which oscillate about <P = ±t1 with an 
amplitude much smaller than ti. These maxima never come close to the initial point <P = 0. The values of the field 
are shown in units of ti. Right panel: The process of symmetry breaking in the model (1) for a complex field t/J. 
The field distribution falls down to the minimum of the effective potential at It/JI = t1 and experiences only small 

oscillations with rapidly decreasing amplitude ldt/JI < v. 

When the field rolls down to the minimum of its effective potential, its fluctuations scatter 
off each other as classical waves. It is difficult to study this process analytically, but fortunately 
one can do it numerically using the method of lattice simulations developed in Refs. [3,4]. We 
performed our simulations on latticee with either 1283 and 2563 gridpoints. Figure 1 illustrates 
the dynamics of symmetry breaking in the model (1). It shows the probability distribution 
P( ¢, t), that is the fraction of the volume containing the field ¢ at a. time t if at t = 0 one 
begins with the probability distribution concentrated near ¢ = 0, with the quantum mechanical 
dispersion (¢2) = m2 /47r2 as in (2). 
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As we see from this figure, after the first oscillation the probability distribution P(¢, t) 
becomes narrowly concentrated near the two minima of the effective potential corresponding to 
¢ = ±v. In this sense one can say that symmetry breaking completes within one oscillation. To 
demonstrate that this is not a strong coupling effect, we show the results for the model (1) with 
>.. = 10-4• Note that only when the distribution stabilizes and the domains become large can 
one use the standard language of perturbation theory describing scalar particles as excitations 
on a (locally) homogeneous background. That is why the use of the nonperturbative approach 
based on lattice simulations was so important for our investigation. 

The dynamics of spontaneous symmetry breaking in this model is better illustrated by a com­
puter generated movie that can be found at http://physics.stanford.edu/gfelder/hybrid/1.gif. It 
consists of an animated sequence of images similar to the one shown in Fig. 1. These images 
show the whole process of spontaneous symmetry breaking from the growth of small Gaus­
sian fluctuations of the field ¢ to the creation of domains with ¢ = ±v. Similar results can 
be obtained for the theory of a complex scalar field ¢ with the potential (1). For example, 
the behavior of the probability distribution P(¢1 , ¢2, t) in the theory of a complex scalar field 
¢ = ( ¢1 + i¢2) / .../2 is also shown in Fig. 1. As we can see, after a single oscillation this probabil­
ity distribution has stabilized at 1 ¢1 ,..., v. A computer generated movie illustrating this process 
can also be found at http://physics.stanford.edu/gfelder/hybrid/2.gif. We also performed 3D 
lattice simulations of symmetry breaking in hybrid models of inflation and found that, contrary 
to original expectations, symmetry breaking also occurs within a single oscillation, thus making 
tachyonic preheating a generic feature of potentials with a negative curvature direction in the 
potential 2• 

In summary, the new 3D lattice methods developed during the last few years in application to 
the theory of reheating after inflation have been applied to the theory of spontaneous symmetry 
breaking. These methods have for the first time allowed us not only to calculate correlation 
functions and spectra of produced particles, but to actually see the process of spontaneous 
symmetry breaking and to reveal some of its rather unexpected features, like production of 
topological defects, percolation of domains, and thermalization. 
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