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Abstract

We derive and solve the full set of scalar perturbation equations for a class of Z2-
symmetric five-dimensional geometries generated by a bulk cosmological constant and
by a 3-brane non-minimally coupled to a bulk dilaton field. The massless scalar modes,
like their tensor analogues, are localized on the brane, and provide long-range four-
dimensional dilatonic interactions, which are generically present even when matter on
the brane carries no dilatonic charge. The shorter-range corrections induced by the
continuum of massive scalar modes are always present: they persist even in the case of a
trivial dilaton background (the standard Randall–Sundrum configuration) and vanishing
dilatonic charges.
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1 Introduction

The possibility, first discovered in the context of Horava–Witten (HW) heterotic M-theory
[1, 2], that our Universe could lie on a hypersurface (a “brane”) embedded in some higher-
dimensional “bulk” space-time –the so-called brane-world scenario– has recently attracted
considerable attention. In the original HW paper, our world is a 9-brane sitting at one of
the boundaries of an eleven-dimensional bulk, while in a large class of M-theory models
[3, 4], in which six dimensions are compactified in a more traditional Kaluza–Klein (KK)
way, one can envisage constructing fully consistent four-dimensional brane-world scenarios
with, effectively, a five-dimensional bulk. Unfortunately, finding brane configurations which
are consistent with all stringy constraints has proved to be a very hard, if not impossible,
task.

At a more phenomenological level, i.e. when problems with quantization of the higher-
dimensional gravity theory are ignored, one can consider the dimensions orthogonal to the
3-brane as either compact and large [5, 6, 7], or as having infinite proper size [8, 9, 10]. In the
latter (so-called Randall–Sundrum (RS)) case, the bulk geometry is bent by an appropriate
“warp-factor”, providing a crucial difference with respect to the “old” KK scenario, where
the bulk geometry is simply the direct product of an “internal” and an “external” manifold.
In particular, unlike the KK models, RS models are able to reproduce the four-dimensional
Newton law at large distances on the brane by dynamically binding the massless gravitons
to it [10].

As a consequence of the non-factorized structure of the metric in RS-type scenarios,
previous approaches to the study of metric fluctuations in higher-dimensional backgrounds
[11]–[16], based on the isometries of a factorizable geometry, cannot be applied directly
to the brane-world scenario. A new gauge-invariant formalism is required, like the one
developed in [17]. The classical and quantum analysis of metric fluctuations is of primary
importance for understanding the possible localization of massless modes on the brane, as
well as the nature of the orrections to the long-range interaction due to the continuum of
massive modes that are typically living in the bulk. Until now, the study of this problem
has been mainly focused on the structure of tensor (i.e. transverse-traceless) perturbations
of the bulk geometry (see [18] for a general discussion).

In all string/M-theory models, however, the graviton enjoys the company of (perturba-
tively) massless scalar partners (the dilaton, compactification moduli, etc.). These typically
induce long-range interactions of gravitational strength [19], and are therefore dangerous in
view of the existing experimental tests (see for instance [20]). The standard way to solve
this problem is to assume that these scalars get a SUSY-breaking non-perturbative mass
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(for alternatives see e.g. [21]). However, one may ask whether RS-type scenarios can offer
an alternative solution to (or an alleviation of) this problem, e.g. by not confining scalar
fluctuations on the brane. If this were the case, scalar interactions on the brane would be
suppressed, or possibly become short-ranged, and brane-world scenarios would naturally
solve one of the most serious potential problems with higher-dimensional or stringy exten-
sions of the Standard Model and General Relativity. This particular aspect of brane-world
scenarios has never been completely addressed, to the best of our knowledge, in spite of
many studies recently appeared in the literature, and devoted to the perturbations of a
brane-world background [22]–[30].

In this paper we present a detailed discussion of the localization of scalar metric fluc-
tuations in a typical example of brane-world scenario. Unlike gravitons, which are decou-
pled from matter fluctuations, the scalar fluctuations of the bulk geometry are in general
non-trivially coupled to the matter sources. We shall thus consider a non-compact, Z2-
symmetric, five-dimensional background, generated by a positive tension 3-brane and by a
bulk dilaton field coupled to the brane and to the (negative) bulk energy density. We shall
restrict ourselves, in particular, to the gravi-dilaton solutions discussed in [31] (hereafter
called CLP backgrounds, for short), which generalize the AdS5 RS scenario [10] in the pres-
ence of a bulk scalar field, and which are already known to guarantee the localization of
tensor metric fluctuations [31].

By extending the analysis of the perturbations, and by using an appropriate gauge-
invariant formalism [17], we find that the same class of CLP backgrounds that localize
massless tensor perturbations on the four-dimensional brane also localize massless scalar
perturbations (i.e. the dilatonic interaction). However, the short-range corrections to the
scalar interactions, due to the massive modes propagating in the extra-dimension, are in
general different from the higher-dimensional corrections affecting the pure tensor part of
the gravitational interaction. We also find that, in general, scalar metric fluctuations exhibit
a non-trivial, “self-sustained” spectrum of solutions, even for a trivial dilaton background.
This implies that long- and short-range gravitational interactions on the brane are effectively
of the scalar-tensor type, in agreement with previous results [32], and are therefore subject
to strong phenomenological constraints.

The paper is organized as follows. In Section 2 we present the action and the classical
equations of motion for a 3-brane non-minimally coupled to a five-dimensional gravi-dilaton
background, and we retrieve the whole class of CLP solutions [31]. In Section 3 we give the
full set of scalar perturbation equations in the so-called “generalized longitudinal gauge”
[17], and we find the four independent canonical variables diagonalizing them. In Section
4 we discuss the localization of massless modes, and determine the class of backgrounds
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admitting long-range dilatonic interactions confined on the brane. In Section 5 we present
the general spectrum of solutions for the massive modes that propagate throughout the
bulk, and determine the relative magnitude of their amplitudes. In Section 6 we evaluate,
in the weak field limit, the leading-order corrections to the effective gravitational potential
generated by a static source with a point-like mass and dilatonic charge, confined on the
brane. The main results of this paper are finally summarized in Section 7.

2 Background equations

We shall consider a five-dimensional scalar-tensor background {gAB , φ}, possibly arising
from the bosonic sector of a dimensionally reduced string/supergravity theory, and non-
trivially coupled to a negative cosmological constant Λ and to a 3-brane of positive tension
T3:

S = Sbulk + Sbrane = M3
5

∫
d5x

√
|g|
(
−R+

1
2
gAB∂Aφ∂Bφ− 2Λeα1φ

)
− T3

2

∫
d4ξ
√
|γ|
[
γαβ∂αX

A∂βX
BgABe

α2φ − 2
]
. (2.1)

Here M5 is the fundamental mass scale of the five-dimensional bulk space-time, and the
parameters α1, α2 control the coupling of the bulk dilaton to Λ and to the brane (partic-
ular values of these parameters may simply correspond to the rescaling of the minimally
coupled σ-model action in the canonical Einstein frame [33], but here we allow in general
for non-minimal couplings). The brane action (see for instance [34]) is parametrized by
the coordinates XA(ξ) describing the embedding of the brane in the bulk manifold, and
by the auxiliary metric tensor γαβ(ξ) defined on the four-dimensional world-volume of the
brane, spanned by the coordinates ξα. Consequently, ∂αX

A is a short-cut notation for
∂XA(ξ)/∂ξα.

Conventions: Greek indices run from 0 to 3, capital Latin indices from 0 to 4, lower-case
Latin indices from 1 to 3. For the bulk coordinates we use the notation xA = (t, xi, z).
The metric signature is (+,−,−,−,−), and the curvature tensor is defined by RMNA

B =
∂MΓNA

B + ΓMP
BΓNA

P − (M ←→ N), RNA = RMNA
M .

The variation of the action with respect to gAB , φ, XA and γαβ gives, respectively, the
Einstein equations (in units such that M3

5 = 1):

GA
B =

1
2

(
∂Aφ∂Bφ− 1

2
δA
B∂Cφ∂

Cφ

)
+ Λeα1φδA

B +

+
T3

2
1√|g|gBC

∫
d4ξ
√
|γ|δ5(x−X)γαβ∂αX

A∂βX
Ceα2φ, (2.2)
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the dilaton equation:

∇M∇Mφ+ 2α1Λeα1φ +
α2T3

2
1√|g|

∫
d4ξ
√
|γ|δ5(x−X)γαβ∂αX

A∂βX
BgABe

α2φ = 0, (2.3)

the equation governing the evolution of the brane in the bulk space-time:

∂α

(√
|γ|γαβ∂βX

BgABe
α2φ
)

=
1
2

√
|γ|γαβ∂αX

B∂βX
C ∂A

(
gBCe

α2φ
)∣∣∣

x=X(ξ)
, (2.4)

and the induced metric on the brane:

γαβ = ∂αX
A∂βX

BgABe
α2φ. (2.5)

We now specialize these equations to the case of a conformally flat bulk metric, with a
warp factor a and a dilaton φ, both of which only depend on the fifth coordinate z. Also,
we shall look for Z2-symmetric solutions, describing a flat brane rigidly located at z = 0,
and we set

gAB = a2(z)ηAB , φ = φ(z), XA = δA
µ ξ

µ. (2.6)

where ηAB is the five-dimensional Minkowski metric. The induced metric thus reduces to

γαβ = δA
α δ

B
β gAB eα2φ, (2.7)

while the brane equations (2.4) are identically satisfied thanks to the Z2 symmetry.

The dynamical equations are obtained from the dilaton equation (2.3), which becomes

3
a′

a
φ′ + φ′′ − 2α1Λa2eα1φ − 2α2T3ae

2α2φδ(z) = 0, (2.8)

and from the (α, β) and (4, 4) components of the Einstein equations (2.2), which give,
respectively,

−3
a′′

a
=
φ′2

4
+ Λa2eα1φ +

T3

2
ae2α2φδ(z), (2.9)

−6
a′2

a2
= −φ

′2

4
+ Λa2eα1φ (2.10)

(a prime denotes differentiation with respect to z). The last three equations are not inde-
pendent: the dilaton equation, for instance, can be obtained by differentiating eqs. (2.9),
(2.10), as a consequence of the Bianchi identities.

No general solution is known for arbitrary values of α1, α2, T3 and Λ. However, if we
fine-tune these parameters by choosing:

α1 = 4α2 , T3 = 8
√

Λ/∆ , α2
1 = ∆ +

8
3
, (2.11)
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where the last equation defines ∆, we recover the four-dimensional sector of a known, one-
parameter family of exact domain wall solutions [35], which can be written in an explicitly
Z2-symmetric form. For ∆ = −2 the solution is:

a(z) = e−
k|z|
3 , φ(z) =

√
2
3
k|z|, k2 = −2Λ, (2.12)

otherwise (∆ 6= −2):

a(z) = (1 + k|z|) 2
3(∆+2) , eφ(z) = (1 + k|z|)−

2α1
∆+2 , k2 =

(∆ + 2)2Λ
∆

. (2.13)

We shall choose k > 0 so that the z coordinate, transverse to the brane, may run
from −∞ to +∞ (the proper size of the transverse dimension is finite, however, unless
∆ = −8/3). In that case, the solution corresponds to a brane of positive tension, T3 > 0,
provided ∆ ≤ −2. This range of ∆ guarantees a positive tension and also avoids the presence
of naked singularities [31]. On the other hand, the reality of α1 requires ∆ ≥ −8/3. In the
rest of this paper we shall thus assume

k > 0, − 8
3
≤ ∆ ≤ −2. (2.14)

We may note that in the limit ∆ = −8/3 the dilaton decouples and becomes trivial, and
the solution reduces to the well studied pure AdS5 background , originally introduced to
localize gravity on a 3-brane [10].

In the following section we will obtain the canonical equations governing the evolution
of scalar (metric + dilaton) fluctuations around the above CLP background solutions.

3 Scalar perturbations

We now perturb to first order the full set of bulk equations (2.2)–(2.5), keeping the position
of the brane fixed, δXA = 0. It is known, indeed, that the brane location can be consistently
assumed to remain unchanged, to the relevant linear order, when perturbing a background of
the type we are considering [17] (see [25] for a study that includes, instead, a non-vanishing
deformation of the brane). We thus set

δgAB = hAB, δgAB = −hAB, δφ = χ, δXA = 0, (3.1)

where the indices of the perturbed fields are raised and lowered by the unperturbed metric,
and the background fluctuations hAB , χ are assumed to be inhomogeneous.
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The perturbation of the background equations (2.2)–(2.5) gives, respectively, the lin-
earized equations for the Einstein tensor:

δGA
B =

1
2

(
−hAC∂Cφ∂Bφ+ ∂Aφ∂Bχ+ ∂Aχ∂Bφ

)
− 1

4
δA
B

(
2∂M∂Mχ− hMN∂Mφ∂Nφ

)
+Λα1χe

α1φδA
B +

T3

2
1√|g|

∫
d4ξ
√
|γ|δ5(x−X)γαβ∂αX

A∂βX
Ceα2φ

×
[
hBC + gBC

(
−1

2
gMNhMN +

1
2
γµνδγµν + α2χ

)]
+
T3

2
1√|g|gBC

∫
d4ξ
√
|γ|δ5(x−X)∂αX

A∂βX
Ceα2φδγαβ , (3.2)

for the dilaton:

∇M∇Mχ− hMN∇M∇Nφ− gMNδΓB
MN∂Bφ+ 2α2

1Λχe
α1φ

+
α2T3

2
1√|g|

∫
d4ξ
√
|γ|δ5(x−X)γαβ∂αX

A∂βX
BgABe

α2φ

×
(
−1

2
gMNhMN +

1
2
γµνδγµν + α2χ

)
+
α2T3

2
1√|g|

∫
d4ξ
√
|γ|δ5(x−X)∂αX

A∂βX
Beα2φ

(
gABδγ

αβ + hABγ
αβ
)

= 0, (3.3)

for the brane:

∂α

{√
|γ|∂βX

Beα2φ
[
δγαβgAB + γαβhAB + γαβgAB

(
α2χ+

1
2
γµνδγµν

)]}
=

=
1
2

√
|γ|∂αX

B∂βX
C

[(
δγαβ +

1
2
γαβγµνδγµν

)
∂

∂xA

∣∣∣∣
x=X(ξ)

(
gBCe

α2φ
)

+γαβ ∂A

(
hBCe

α2φ + α2χgBCe
α2φ
)∣∣∣

x=X(ξ)

]
, (3.4)

and for the induced metric:

δγαβ = ∂αX
A∂βX

Beα2φ (hAB + α2χgAB) . (3.5)

Here all geometrical quantities, such as the perturbed connection δΓAB
C , the perturbed

scalar curvature δR = −hABRAB + gABδRAB , and so on, are computed to first order in
hAB .

By expanding around the background (2.6), it is now easy to study the propagation
of the spin-2 physical degrees of freedom on the brane, represented by the transverse and
traceless perturbations hij,

hAB = a2δi
Aδ

j
Bhij, h

i
i = 0, ∇ihij = 0. (3.6)

In the linear approximation, the tensor fluctuations hij are decoupled from the scalar and
matter fluctuations. We can consistently set χ = 0, and find that the dilaton and the
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brane equations are trivially satisfied; in addition, the right-hand side of the Einstein equa-
tions (3.2) is identically vanishing, and the linearized Ricci tensor leads to the well known
covariant wave equation for gravitons:

25hij ≡
(
∂2

∂t2
− ∂2

∂xi2
− ∂2

∂z2
− 3a′

a

∂

∂z

)
hij = 0, (3.7)

where 25 ≡ ∇M∇M is the five-dimensional covariant d’Alembert operator, describing free
propagation in the warped bulk geometry.

In this paper (also in preparation of future cosmological applications) we are primarily
interested in the scalar fluctuations of the bulk metric, which are coupled to the dilaton
fluctuations. Thus, we shall keep δφ = χ 6= 0, and we shall expand around the background
(2.6) in the so-called “generalized longitudinal gauge” [17], which extends the longitudinal
gauge of standard cosmology [36] to the brane-world scenario. As discussed in [17], in five
dimensions there are four independent degrees of freedom for the scalar metric fluctuations:
in the generalized longitudinal gauge they are described by the four variables {ϕ,ψ,Γ,W},
defined by

h00 = 2ϕa2, hij = 2ψa2δij ,

h44 = 2Γa2, h04 = −Wa2. (3.8)

(Off-diagonal metric fluctuations have been taken into account also in a recent study of
linearized gravity in a brane-world background [37]: in that case, however, there are no
scalar sources in the bulk, and no long-range scalar interactions).

By inserting the explicit form of the background (2.6) and of the metric fluctuations (3.8)
into the perturbed equations (3.2)–(3.5), we obtain the full set of constraints and dynamical
equations governing the linearized evolution of the five scalar variables {ϕ,ψ,Γ,W, χ}. Let
us give them in components, starting from the Einstein equations, and using eq. (3.5) for
the perturbations of the induced metric.

Equation (0, 0) gives:

2∇2ψ + 3ψ′′ +∇2Γ + 9
a′

a
ψ′ − 3

a′

a
Γ′ − φ′

2
χ′ − 6

a′′

a
Γ− φ′2

2
Γ

−a2eα1φΛα1χ− 1
2
ae2α2φT3 (Γ + 2α2χ) δ(z) = 0. (3.9)

Equation (i, i) gives:

−∇2ϕ− ϕ′′ − 2ψ̈ +∇2ψ + 2ψ′′ − Γ̈ +∇2Γ

−3
a′

a
ϕ′ − Ẇ ′ − 3

a′

a
Ẇ + 6

a′

a
ψ′ − 3

a′

a
Γ′ − φ′

2
χ′ − 6

a′′

a
Γ− φ′2

2
Γ

−a2eα1φΛα1χ− 1
2
ae2α2φT3 (Γ + 2α2χ) δ(z) = 0. (3.10)
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Equation (i, j), with i 6= j, gives:

∂i∂j (ϕ− ψ − Γ) = 0. (3.11)

Equation (4, 4) gives:

−∇2ϕ− 3ψ̈ + 2∇2ψ − 3
a′

a
ϕ′ − 3

a′

a
Ẇ + 9

a′

a
ψ′ +

φ′

2
χ′

−12
a′2

a2
Γ +

φ′2

2
Γ− a2eα1φΛα1χ = 0. (3.12)

Equation (i, 0) gives:

∂i

(
W ′

2
+

3
2
a′

a
W + 2ψ̇ + Γ̇

)
= 0. (3.13)

Equation (4, 0) gives:

1
2
∇2W − 3ψ̇′ + 3

a′

a
Γ̇ +

φ′

2
χ̇ = 0. (3.14)

Equation (4, i) gives:

∂i

(
Ẇ

2
+ ϕ′ − 2ψ′ + 3

a′

a
Γ +

φ′

2
χ

)
= 0. (3.15)

The dilaton equation gives:

25χ− φ′ϕ′ − φ′Ẇ + 3φ′ψ′ − φ′Γ′ − 6
a′φ′

a
Γ− 2φ′′Γ

+2a2eα1φΛα2
1χ+ 2ae2α2φT3α2 (Γ + 2α2χ) δ(z) = 0 (3.16)

(the dots denote differentiation with respect to Minkowski time on the brane). Finally, the
brane perturbation equation gives a constraint at z = 0 which is always satisfied because
of the Z2 symmetry. A similar set of equations was already derived in [17]. We have no
contributions from the time derivatives of the background, since our background is static.

In the absence of bulk sources with anisotropic stresses, we can now eliminate ϕ from
eq. (i 6= j), thus reducing to four scalar degrees of freedom, by setting:

ϕ = ψ + Γ. (3.17)

As a consequence, we immediately find that the variable W decouples from the other fluc-
tuations. The combination of the time derivative of eq. (4, i) with the z-derivative of eq.
(i, 0) and with eq. (4, 0) leads in fact to the equation

25W = 3

(
a′′

a
− a′2

a2

)
W. (3.18)
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Thus W is decoupled but, because of the non-trivial self-interactions, it does not freely
propagate in the background geometry like the graviton, eq. (3.7).

In order to discuss the dynamics of the remaining variables ψ,Γ and χ, it is now con-
venient to recombine their differential equations in an explicitly covariant way, to obtain a
canonical evolution equation. To this aim, we can use eq. (3.17) and eq. (4, i) to eliminate
ϕ and Ẇ in eqs. (i, i), (4, 4) and in the dilaton equation (3.16). We then combine the
simplified version of eqs. (4, 4), (i, i) with eq. (0, 0), and obtain the following system of
coupled equations, where the source terms depend only on Γ and χ:

25ψ = −2
a′′

a
Γ + 2

a′2

a2
Γ +

a′φ′

a
χ− 2

3
a2eα1φΛα1χ

− 1
6
ae2α2φT3 (Γ + 2α2χ) δ(z), (3.19)

25Γ = −2
a′′

a
Γ + 8

a′2

a2
Γ− φ′2Γ + φ′′χ+

a′φ′

a
χ− 2

3
a2eα1φΛα1χ

− 2
3
ae2α2φT3 (Γ + 2α2χ) δ(z), (3.20)

25χ = 2φ′′Γ− φ′2χ− 2a2eα1φΛα2
1χ

− 2ae2α2φT3α2 (Γ + 2α2χ) δ(z). (3.21)

This system can be diagonalized by introducing the fields

ω1 = 2ψ + Γ, ω2 = 6α2Γ + χ, ω3 = Γ− 2α2χ, (3.22)

relations that can be inverted as:

ψ =
ω1

2
− 2α2ω2 + ω3

2
(
1 + 12α2

2

) , Γ =
2α2ω2 + ω3(
1 + 12α2

2

)
χ =

ω2 − 6α2ω3(
1 + 12α2

2

) . (3.23)

In terms of these new variables, the perturbation equations (3.19)–(3.21) reduce to

25ω1 = 0, (3.24)

25ω2 = 0, (3.25)

25ω3 =
[
− φ′′

2α2
− φ′2 − a′φ′

2α2a
+
(
α1

3α2
− 2α2

1

)
a2eα1φΛ

]
ω3

+
[(

2
3
− 4α2

2

)
ae2α2φTδ(z)

]
ω3. (3.26)

Together with eq. (3.18), and the constraints (3.13)–(3.15), the above decoupled equa-
tions describe the complete evolution of the scalar (metric + dilaton) fluctuations in the
CLP brane-world background (2.12), (2.13). Two variables (ω1, ω2) are (covariantly) free
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on the background like the graviton, while the other two variables (ω3,W ) have non-trivial
self-interactions.

In all cases, we can introduce the corresponding “canonical variables” Ŵ , ω̂i (i = 1, 2, 3),
which have canonically normalized kinetic terms [36] in the action, simply by absorbing the
geometric warp factor as follows:

W = Ŵa−3/2, ωi = ω̂ia
−3/2. (3.27)

The variables Ŵ , ω̂i are required for a correct normalization of the scalar perturbations to a
quantum fluctuation spectrum, as they satisfy canonical Poisson (or commutation) brackets.
When the general solution is written as a superposition of free, factorized plane-waves modes
on the brane,

Ŵ = Ψw(z)e−ipµxµ
, ω̂i = Ψi(z)e−ipµxµ

, (3.28)

they define the inner product of states with measure dz [18], as in conventional one-
dimensional quantum mechanics,

∫
dz|Ψ(z)|2.

The allowed mass spectrum of m2 = ηµνpµpν , for the scalar fluctuations on the brane,
can then be obtained by solving an eigenvalue problem in the Hilbert space L2(R) for the
canonical variables Ψw,Ψi, satisfying a Schrödinger-like equation in z, which is obtained
from the equations (3.18), (3.24)–(3.26) for W and ωi, and which can be written in the
conventional form as:

Ψ′′
w +

(
m2 − ξ′′w

ξw

)
Ψw = 0, Ψ′′

i +
(
m2 − ξ′′i

ξi

)
Ψi = 0. (3.29)

Here, by analogy with cosmological perturbation theory [36], we have introduced four “pump
fields” ξw, ξi, defined as follows:

ξw = aβw , ξi = aβi ,

βw = −3
2
, β1 = β2 =

3
2
, β3 = −1

2
(1 + 3α2

1) = −3
2
(∆ + 3). (3.30)

The effective potential generated by the derivatives of the pump fields depends on βw, βi,
and contains in general a smooth part, peaked at z = 0, plus a positive or negative δ-function
contribution at the origin. We may have, in principle, not only volcano-like potentials,
which correspond to the free covariant d’Alembert equation with β = 3/2 [31] (and which
are known to localize gravity [10, 18]), but also potentials that are positive everywhere and
admit no bound states. The possible localization of scalar interactions on the 3-brane, for
the given background and perturbation equations, will be discussed in the next section.
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4 Localization of the massless modes

The general solutions of the canonical perturbation equations (3.29) are labelled by the
mass eigenvalue m, by their parity with respect to z-reflections, and by the parameters
βw, βi, which depend on the type of perturbation. The massless scalar modes correspond-
ing to bound states of the effective potential [10, 18, 31] will describe long-range scalar
interactions confined to the four-dimensional brane. Concerning z-reflections, we shall fol-
low the perturbative formalism developed in [17] consistently, restricting ourselves to a
perturbed background that is still Z2-symmetric, namely to Z2-odd solutions for W , and
to Z2-even solutions for ωi. To describe a bound state, we shall further restrict such so-
lutions to those with a normalizable canonical variable w.r.t. the measure dz, namely to
Ψ(z) ∈ L2(R). Among the acceptable solutions, we shall finally select those satisfying the
constraints (3.13)–(3.15) derived in the previous section. The above set of conditions will
determine the class of brane-world backgrounds allowing the four-dimensional localization
of long-range scalar interactions.

For m = 0 the exact solution of the canonical equations (3.29), for a generic pump field
ξ(z), can be separated into an even and an odd part, Ψ+ and Ψ−, as follows:

Ψ+
0 (z) = c+ξ(z), Ψ−

0 (z) = c−ξ(z)
∫
dz′ξ−2(z′), (4.1)

where c+ and c− are integration constants. In order to parametrize the solutions for dif-
ferent values of ∆ and β (and also in view of subsequent applications to the massive mode
solutions), it is now convenient to introduce the two indices ν and ν0, defined by

ν0 =
∆

2(∆ + 2)
, ν =

1
2
− 2β

3(∆ + 2)
. (4.2)

For the three possible values of βw, βi (see eq. (3.30)), they are related by

ν = 1− ν0, β = βw = −3
2
,

ν = ν0, β = β1,2 =
3
2
,

ν = 2− ν0, β = β3 = −3
2
(∆ + 3). (4.3)

We recall that, in the class of backgrounds we are considering, the parameter ∆ is con-
strained in the range −8/3 ≤ ∆ ≤ −2 (because of the conditions of positive tension,
absence of naked singularities and reality of the dilaton couplings). As a consequence, the
index ν0 can range from 2 to +∞.

Let us first discuss the limiting case ν = ν0 = ∞, corresponding to ∆ = −2. For a
generic pump field, with exponent β, the massless solutions are:

Ψ+
0,∞(z) = c+0,∞e

−β
3
k|z|, Ψ−

0,∞(z) = c−0,∞sgn{z}
(
e

β
3

k|z| − e−β
3

k|z|) . (4.4)
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In our background k > 0, so that the fluctuations W and ω3, both with β = −3/2, are
not normalizable. The even solutions of the free d’Alembert equation, with β = 3/2, are
instead normalizable, so we have acceptable solutions for ω1 and ω2. However, from the
constraint (i, 0) of eq. (3.13), ω1 is forced to vanish when W = 0, unless the fluctuations are
static, ω̇1 = 0. All the other constraints (using also the background equations) are instead
identically satisfied by ω2. It follows that, for ∆ = −2, there are two independent massless
modes localized on the brane: one, ω2, is propagating and the other, ω1, is static.

The same is true for the case ∆ < −2, i.e. finite ν0. In that case the massless solutions
can be written in the form

Ψ+
0,ν(z) = c+0,ν (1 + k|z|) 1

2
−ν ,

Ψ−
0,ν(z) = c−0,νsgn{z}

[
(1 + k|z|) 1

2
+ν − (1 + k|z|) 1

2
−ν
]
. (4.5)

The solutions for W and ω3 always correspond to ν < 0, and are not normalizable. The
even d’Alembert modes, with ν = ν0, are normalizable for ν > 1, i.e. ∆ > −4, so that
ω1 and ω2 are always acceptable in our class of backgrounds, for which ∆ ≥ −8/3. Again,
however, the constraint (3.13) implies ω1 = 0, unless ω̇1 = 0, while the other constraints
are identically satisfied by ω2, so we are left with non-trivial massless solutions only for a
propagating fluctuation, ω2, and for a static one, ω1.

We may thus conclude that all backgrounds of the class defined by the conditions (2.14)
localize on the brane not only the massless spin-2 degrees of freedom [31] (long-range tensor
interactions), but also one propagating massless scalar degree of freedom (ω2), corresponding
to a long-range scalar interaction generated by the dilaton field. In the longitudinal gauge,
the canonical representation ω2 of such a scalar interaction is associated not only with
the dilaton fluctuation χ, but also with the four-dimensional “Bardeen potential” ψ, and
with the “breathing mode” Γ of the dimension orthogonal to the brane (see eqs. (3.23)).
In addition, we have a second independent massless degree of freedom localized on the
brane (ω1), which is not propagating (ω̇1 = 0), but is essential to reproduce the standard
long-range gravitational interaction in the static limit, as we shall discuss in Section 6.

The localization of the scalar interactions does not impose any further constraints on
the background, besides those of eq. (2.14). Also, in the limiting case of a pure AdS5

solution (∆ = −8/3, ν0 = 2, α1 = 0 = α2) the dilaton background disappears, and the
dilaton fluctuation χ = ω2 decouples from the others. The only (static) contribution to the
scalar sector of metric fluctuations comes from ω1, which generates the long-range Newton
potential ϕ = ψ on the brane (see Section 6). However, even in the case ∆ = −8/3,
the propagating dilaton flucutuation ω2 is non-vanishing, and remains there to describe a
(possibly dangerous) long-range scalar interaction. By contrast, no propagating massless
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scalar modes appear in the “pure-gravity” models without bulk scalar fields in the action,
as the AdS5 brane-world scenario discussed in [10].

5 The massive mode spectrum

The massive part of the spectrum of the canonical equations (3.29) is not localized on the
brane; it may induce higher-dimensional (and short-range) corrections to the long-range
scalar forces (just as in the case of the pure tensor part of the gravitational interaction
[10, 18, 31]). Such corrections thus provide physical effects from the fifth dimension on our
brane.

In order to determine the massive modes able to survive the constraints of Section 3,
and to evaluate the corresponding short-range corrections, we shall first present the exact
solutions of the massive canonical equations (3.29), distinguishing, as before, the even and
odd parts under z-reflections. For m 6= 0, ∆ = −2 (i.e. ν0 =∞), and a generic pump field
with power β, such solutions can be written as follows

Ψ+
m,∞(z) =

1√
πmq

(
q cos q|z| − β

3
k sin q|z|

)
,

Ψ−
m,∞(z) = −

√
m

πq
sin qz, (5.1)

where

q =

(
m2 − k2

4

)1/2

. (5.2)

For ∆ < −2, i.e. finite ν0, the solution can be written as a combination of first- and
second-kind Bessel functions Jν and Yν [38], of index ν given by eq. (4.2):

Ψ+
m,ν(z) = cm,ν−1

√
1 + k|z|

[
Yν−1

(
m

k

)
Jν (y)− Jν−1

(
m

k

)
Yν (y)

]
,

Ψ−
m,ν(z) = cm,ν sgn{z}

√
1 + k|z|

[
Yν

(
m

k

)
Jν (y)− Jν

(
m

k

)
Yν (y)

]
, (5.3)

where

cm,ν =
√
m

2k

[
J2

ν

(
m

k

)
+ Y 2

ν

(
m

k

)]− 1
2

, y =
m

k
(1 + k|z|). (5.4)

Note that in the above equations we have adopted the δ-function normalization of the contin-
uum modes, as for plane waves in one-dimensional quantum mechanics. As a consequence,
Ψm is dimensionless (unlike in [31], where a different normalization is adopted).

It is important to note that modes with negative squared mass (tachyons) are not
included in the spectrum, as they would not correspond to a normalizable canonical variable
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(Ψ would blow up in z). This can be regarded as a direct check of the stability of the given
class of CLP backgrounds against scalar perturbations, since tachyonic modes would also
blow up in time, and would destroy the assumed homogeneity of the four-dimensional brane.
Another consequence of the normalization condition is the mass gap (m2 > k2/4, see eq.
(5.2)) between the localized massless mode and the massive corrections, in the limiting
background with ν0 =∞ (already noticed in [31] for the case of pure tensor interactions).

We shall now impose the constraints (3.13)–(3.15) following from the perturbed back-
ground equations. It is convenient to introduce the four amplitudes Ai, Aw, defined by

ω1 =
a−3/2A1

cm,ν0−1
Ψ+

m,ν0
(z)e−ipµxµ

, ω2 =
a−3/2A2

cm,ν0−1
Ψ+

m,ν0
(z)e−ipµxµ

ω3 =
a−3/2A3

cm,1−ν0

Ψ+
m,2−ν0

(z)e−ipµxµ
, W =

a−3/2Aw

cm,1−ν0

Ψ−
m,1−ν0

(z)e−ipµxµ
, (5.5)

where Ψ± are the above normalized solutions. Plugging this ansatz into the constraint
equations (3.13)–(3.15), we find that, in contrast with the massless case, none of the four
scalar fluctuations is forced to vanish. However, only two amplitudes are independent. By
taking, for instance, ω2 and ω3 as independent variables, we can indeed express A1 and
Aw in terms of A2 and A3, for all values of ν0, in such a way that all the constraints are
identically satisfied. For a generic mode of mass m and momentum p, we find, in particular,

A1 =
m2

9m2 + 6p2

√
2ν0 − 1
ν0 − 1

(√
3 (ν0 − 2)A2 + 3

√
2ν0 − 1A3

)
,

Aw =
2im

√
m2 + p2

9m2 + 6p2

√
2ν0 − 1
ν0 − 1

(√
3 (ν0 − 2)A2 + 3

√
2ν0 − 1A3

)
, (5.6)

which also hold when ν0 → ∞. Note that a single combination of A2 and A3 determines
both A1 and Aw.

For such backgrounds we thus have four types of higher-dimensional contributions to
the scalar interactions on the brane, arising from the massive spectrum of ωi and W . The
exchange of such massive modes generates corrections to the four-dimensional scalar forces.
The corrections are in general different from those of tensor interactions, arising from the
massive spectrum of a variable satisfying the free d’Alembert equation, like ω2. In the
weak field limit, however, the leading-order contributions to the non-relativistic potential
generated by a static scalar sources have the same qualitative behaviour as in the case of
tensor interactions, as will be illustrated in the next section.
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6 Static limit and leading-order corrections

To make contact with previous works, and for future phenomenological applications, we
shall now compute the effective scalar-tensor interaction induced on the brane, in the weak
field limit, by a static and point-like source of mass M and dilatonic charge Q.

In our longitudinal gauge (3.6), (3.8), in which the decomposition of the metric fluctu-
ations is based on the O(3) symmetry of the spatial hypersurfaces of the brane, the energy
density of a point-like particle only contributes to the scalar part of the perturbed matter
stress tensor (with T00 as the only non-vanishing component), and provides a δ-function
source to the (0, 0) scalar perturbation equation (3.9). Similarly, the charge Q acts as a
point-like source in the dilaton perturbation equation (3.16).

As a consequence, we obtain three δ-function sources in the equations for the three ωi

fluctuations, Siδ
3(x− x′)δ(z), with three scalar charges Si, which are “mixtures” of M and

Q, while no source term is obtained in the static limit for the W fluctuation (in agreement
with the fact thatW = 0, in the static limit, according to the constraint (i, 0)). The effective
sources Si for the massless and massive ωi fluctuations are defined by the combination of
eqs. (4, 4), (i, i), (0, 0), and by the dilaton equation (3.16), as follows:

S1 = M, S2 = Q+ 2α2M, S3 =
M

3
− 2α2Q. (6.1)

The exact static solutions of eqs. (3.24)–(3.26), with the above point-like sources, can
be easily obtained using the static limit of the retarded Green function evaluated on the
brane (z = 0), i.e.

ωi(ν, x, x′) = −SiGi(ν, x, x′), (6.2)

where

Gi(ν, ~x, ~x′, z = z′ = 0) =
∫

d3p

(2π)3
ei~p·(~x−~x′)


[
ψ+

0,ν(0)
]2

p2
+
∫ ∞

m0

dm

[
ψ+

m,ν(0)
]2

p2 +m2

 (6.3)

(see also [31, 32, 39]). Here ν = ν0 for i = 1, 2, while ν = 2−ν0 for i = 3, and ψ+
0,ν(z), ψ+

m,ν(z)
(including the case ν =∞) are the exact solutions (4.4), (4.5), (5.1), (5.3), obtained in the
previous sections. The first term in the integrand corresponds to the long-range forces
generated by the massless modes, the second term to the “short-range” corrections due to
the massive modes, and m0 is the lower bound for the massive spectrum (m0 = k/2 if
ν0 =∞, while mo = 0 if ν0 <∞, see eqs. (5.1), (5.2)).

We should note that in the ω1, ω2 case we have to include both the massless and massive
contributions, while in the ω3 case only the massive ones survive (indeed, we recall that
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for m = 0 the ω3 modes are not normalizable, and that the massless sector of ω1, in the
static limit, is not eliminated by the constraint (i, 0), see Section 4). We also note that the
amplitude of the massless solutions (4.4), (4.5) has to be fixed by the correct normalization,
i.e.

c+0,∞ = (kβ/3)1/2 , c+0,ν = [k(ν − 1)]1/2 . (6.4)

Let us start with ω1, for which ν = ν0, and with the limiting background ∆ = −2, i.e.
ν =∞. By setting β = 3/2, and using eqs. (4.4) and (5.1) for ψ+

0,∞ and ψ+
m,∞, respectively,

we obtain

ω1(ν =∞) = −S1
k

8πr

1 +
2
kπ

∫ ∞

k/2

dm

m

(
m2 − k2

4

)1/2

e−mr

 , (6.5)

where r = |~x − ~x′|. The same integral had already been obtained in [31] when discussing
the localization of tensor fluctuations, and the associated leading-order corrections (in the
large-distance limit) are known to be of the form e−kr/2(kr)−3/2.

In the case ∆ < −2, i.e. ν = νo < ∞, we shall use instead eqs. (4.5) and (5.3) for
ψ+

0,ν0
and ψ+

m,ν0
, respectively. Also, we shall estimate the contribution of the massive modes

by expanding the Bessel functions in the small-m regime (which is relevant at the long
distances typical of the weak field limit). The small argument limit [38] of Jν , Yν then gives[

ψ+
m,ν0

(0)
]2

=
1

Γ2(ν0 − 1)

(
m

2k

)2ν0−3

, (6.6)

and we are led to

ω1(ν <∞) = −S1
k(ν0 − 1)

4πr

[
1 +

Γ(ν0 − 1/2)√
πΓ(ν0)

(
1
kr

)2ν0−2
]

(6.7)

(here Γ obviously represents the Euler function, not to be confused with the g44 component
of the metric fluctuations).

Exactly the same results (6.5), (6.7) are obtained for ω2, which satisfies the same free
d’Alembert equation as ω1, with the only difference that S1 has to be replaced by S2.

Let us then compute ω3, for which ν = 2 − ν0, and which has only the massive mode
contribution to the Green function. For ∆ = −2, i.e ν = ∞, we shall use eq. (5.1) for
ψ+

m,∞. At z = 0 the solution however is β-independent, and we obtain the (massive part)
of the result already given in eq. (6.5) (with S1 replaced by S3).

In the case ∆ < −2, i.e ν <∞, we shall use ψ+
m,2−ν0

from eq. (5.3). In the large-distance
(small-m) regime, however, the contribution at z = 0 to the Green function is exactly the
same as that of eq. (6.6), so that we obtain

ω3(ν <∞) = −S3
k(ν0 − 1)

4πr
Γ(ν0 − 1/2)√

πΓ(ν0)

(
1
kr

)2ν0−2

. (6.8)
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We are now ready to estimate, in the static limit, the dilaton and metric fluctuations
χ,Γ, ψ, ϕ. We shall explicitly consider the case ν0 < ∞, for an easy comparison with
previous results relative to an AdS5 background, for which ν0 = 2. Defining

Aν0 =
k(ν0 − 1)

4π
, Bν0 =

Γ(ν0 − 1/2)√
πΓ(ν0)

, (6.9)

we first rewrite the ωi solutions in compact form as:

ω1 = −S1Aν0

r

[
1 +Bν0

(
1
kr

)2ν0−2
]
,

ω2 = −S2Aν0

r

[
1 +Bν0

(
1
kr

)2ν0−2
]
,

ω3 = −S3Aν0

r
Bν0

(
1
kr

)2ν0−2

. (6.10)

We may note, as a check of our previous computations, that the relative amplitude of
the massive corrections, in the weak, static limit, is controlled by the correspondig scalar
charges, which satisfy the relation (from eq. (6.1)):

S3 + 2α2S2 =
(

1
3

+ 4α2
2

)
S1. (6.11)

By eliminating α2 in favour of ∆ according to eq. (2.11), and ∆ in terms of ν0, according
to eq. (4.2), we obtain

S1 =
1

ν0 − 1

[
1
3

√
3(ν0 − 2)(2ν0 − 1)S2 + (2ν0 − 1)S3

]
, (6.12)

which exactly reproduces, in the static limit m2 +p2 → 0, the general relation (5.6) between
the massive amplitudes.

It is convenient, at this point, to explicitly introduce the four-dimensional gravitational
constant M−2

p , by noting that

Aν0 =
k(ν0 − 1)

4π
=

1
4π

[
ψ+

0,ν0
(0)
]2

=
1
4π

[∫
dz a3(z)

]−1

. (6.13)

The above normalization integral, when expressed in terms of a new bulk coordinate y,
with dy = a(z)dz, represents the warped extra-dimensional volume that controls the ratio
between the four- and five-dimensional gravitational constants [9, 10], i.e.

M2
p = M3

5

∫
dy a2(y) = M3

5

∫
dz a3(z). (6.14)

It follows that, in units such that M3
5 = 1,

Aν0 = (4πM2
p )−1 = 2G, (6.15)
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where G is the Newton coupling constant. The scalar and dilaton fluctuations (3.23), using
the static solutions (6.10), can then be written in the form:

ϕ = −GM
r

[
1 +

2α2

1 + 12α2
2

(
Q

M
+ 2α2

)
+

4
3
Bν0

(
1
kr

)2ν0−2
]
,

ψ = −GM
r

[
1− 2α2

1 + 12α2
2

(
Q

M
+ 2α2

)
+

2
3
Bν0

(
1
kr

)2ν0−2
]
,

Γ = −GM
r

[
4α2

1 + 12α2
2

(
Q

M
+ 2α2

)
+

2
3
Bν0

(
1
kr

)2ν0−2
]
,

χ = −GQ
r

[
2

1 + 12α2
2

(
1 + 2α2

M

Q

)
+ 2Bν0

(
1
kr

)2ν0−2
]
. (6.16)

It should be noted that the short-range corrections induced by the massive scalar modes
have the same qualitative behaviour as in the tensor case, discussed in [31], in spite of
the fact that the massive scalar modes have different spectra. The dimensional decoupling
(i.e., the suppression of the higher-dimensional corrections) is thus effective for all scales of
distance r such that kr � 1, where k = (M3

5 /M
2
p )(ν0 − 1)−1 is the mass scale relating the

five- and four-dimensional gravitational constants, in our class of backgrounds.

The limiting case ∆ = −8/3, i.e. α2 = 0 and ν0 = 2, corresponds to a pure AdS5

background, if there are no scalar charges on the brane. In that case ω2 exactly corresponds
to the dilaton fluctuation χ (see eq. (3.22)), and can be consistently set to zero (toghether
with the dilaton background) if we want to match, in particular, the “standard” brane-world
configuration originally considered by Randall and Sundrum [10]. In this limit, B2 = 1/2,
and we exactly recover previous results for the effective gravitational interaction on the
brane [32], i.e.

ϕ = −GM
r

(
1 +

2
3k2r2

)
, ψ = −GM

r

(
1 +

1
3k2r2

)
. (6.17)

The massless-mode truncation reproduces in this case the static, weak field limit of
linearized general relativity (note, however, that for Q 6= 0 there is no way to get rid of the
long-range scalar interactions). The massive tower of scalar fluctuations, however, induces
deviations from Einstein gravity already in the static limit (as noted in [32]), and is the
source of a short-range force due to the “breathing” of the fifth dimension,

Γ = −GM
3r

1
(kr)2

, (6.18)

even in the absence of bulk scalar fields, and of scalar charges for the matter on the brane.

In a more general gravi-dilaton background (∆ 6= −8/3, α2 6= 0), the static expansion
(6.16) describes an effective scalar-tensor interaction on the brane, which is potentially

18



dangerous for the brane-world scenario, as it contains not only short-range corrections, but
also long-range scalar deviations from general relativity (and, possibly, violations of the
Einstein equivalence principle), even in the interaction of ordinary masses, i.e. for Q = 0
(similar results have been recently obtained also in the context of a multibrane scenario [40]).
This seems to offer an interesting window to investigate the effects of the bulk geometry on
the four-dimensional physics of the brane.

7 Conclusions

In this paper we have analysed the full set of coupled equations governing the evolution of
scalar fluctuations in a dilatonic brane-world background, supporting a flat 3-brane rigidly
located at the fixed point of Z2 symmetry. We have diagonalized the system of dynamical
equations, and found four decoupled but self-interacting variables representing, in a five-
dimensional bulk, the four independent degrees of freedom of scalar excitations of the gravi-
dilaton background.

We have then restricted our discussion to the class of background solutions characterized
by a brane of positive tension, by a decreasing warp-factor as we move away from the
brane, and by the absence of naked singularities [31]. Such a class of backgrounds can be
characterized by a real parameter ∆ ranging from −8/3 to −2 or, alternatively, by a real
parameter ν0 ranging from 2 to +∞. The limiting case ∆ = −8/3, ν0 = 2, corresponds to
the “pure-gravity” AdS5 background [10].

We have presented the exact solutions of the canonical perturbation equation for all the
scalar degrees of freedom, and we have discussed, in this class of backgrounds, the effects
of their massless and massive spectrum for the scalar interactions on the brane, taking into
account the appropriate parity under Z2 symmetry, the normalization condition for the
bound states of the spectrum, and the first-order differential constraints arising from the
dynamics of scalar perturbations.

We have found that, for all backgrounds, there is one propagating massless mode lo-
calized on the brane, associated with a long-range dilatonic interaction in four dimensions.
Only very exceptionally (i.e. for a RS background and vanishing dilatonic charges) this “fifth
force” disappears. This interaction is always affected by higher-dimensional corrections, due
to the scalar massive modes that are not confined on the brane and can freely propagate in
the bulk space-time. The amplitudes of such massive modes are constrained by the scalar
perturbation equations and, in general, only two amplitudes can be independently assigned.
The scalar fluctuation spectra are in general different from the corresponding spectra of the
spin-2 degrees of freedom. In the weak and static limit, however, the leading-order short-
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range corrections to the scalar force have the same radial dependence as in the case of pure
tensor interactions.

In particular, we have found a non-trivial massive spectrum of scalar metric fluctuations
even in the pure Randall–Sundrum scenario with AdS5 metric [10]. In more general back-
grounds we have found that there are also scalar contributions to the long-range interactions
of two massive bodies, even in the absence of specific “dilatonic” charges, with a resulting
effective scalar-tensor interaction on the brane. In this sense, the bulk geometry seems to
affect not only the radial dependence, but also the spin content of the effective gravitational
forces. We believe that this effect is potentially interesting for further applications of (and
constraints on) the brane-world scenario.
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