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Abstract

The paper contains a description of a first attempt to understand the ex-
tremely inelastic high energy hadron collisions, when the multiplicity of produced
hadrons considerably exceeds its mean value. Problems with existing model pre-
dictions are discussed. The real-time finite-temperature S-matrix theory is built
to have a possibility to find model-free predictions. This allows to include the
statistical effects into consideration and build the phenomenology. The questions
to experiment are formulated at the very end of the paper.
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1 Introduction

The intuitive feeling that hadron matter should be maximally perturbed in the high energy extremely
inelastic collisions was a main reason of our effort to consider such processes. It was a hope to observe
new dynamical phenomena, or new degrees of freedom, unattainable in other ordinary hadron reactions.
This paper presents a first attempt to describe the particularity of considered processes, to give a review
of existing models prediction and, at the end, we will offer the field-theoretical formalism for hadron
inelastic processes.

Thus, considering hadrons mean multiplicity n̄(s) as a natural scale of the produced hadrons
multiplicity n at given CM energy

√
s, we would assume that

n >> n̄(s). (1.1)

At the same time we wish to have
n << nmax =

√
s/m, (1.2)

where m ' 0.1 Gev is the characteristic hadron mass. The last restriction is introduced to weaken the
unphysical constraints from the finite, for given s, phase space volume. We should assume therefore
that s is high enough.

The multiple production is the process of colliding particles where kinetic energy is dissipated into
the mass of produced particles [1]. Then one may validate that the entropy S accedes its maximum
in the domain (1.1) since the multiplicity n characterizes the rate of stochastization, i.e. the level of
incident energy dissipation over existing (free) degrees of freedom.

There is also another quantitative definition of our reactions. Let εmax be the energy of the fastest
particle in the given frame and let E be the total incident energy in the same frame. Then the difference
(E− εmax) is the energy spent on production of the less energetic particles. It is useful to consider the
inelasticity coefficient

κ =
E − εmax

E
= 1 − εmax

E
≤ 1. (1.3)

It defines the portion of spent energy. Therefore, we wish to consider processes with

1 − κ << 1. (1.4)

So, the produced particles have comparatively small energies.
This property may be used for experimental triggering of our processes. Indeed, using the energy

conservation law,
n(1 − κ) > 1. (1.5)

Following (1.2) we will assume that

1 − κ >>
m

E
. (1.6)

Therefore, the kinetic energy of produced particles in our processes can not be arbitrarily small.
Using thermodynamical terminology, we wish investigate the production and properties of compar-

atively ‘cold’ multi-hadron (mostly of π-mesons) state. We would like to note from the very beginning
that we have only a qualitative scenario of such states which may be produced and the review of the
corresponding why’s may be considered as the main purpose of this paper. Although at the end of
this paper (Appendix K) we will describe principal features of possible field-theoretical solution of our
problem.

It should be noted the absence of any authentic experimental information concerning discussed
processes. Moreover, actually the hadron inelastic interactions with a set peculiar to them of unsolved
theoretical problems will be considered. Nevertheless we suggest to work in this field in spite of these
difficulties because the system with extremal properties may be more transparent since the asymptotics
always simplify a picture. We would demonstrate this idea and will try to put it in the basis of developed
theoretical methods.

Absence of experimental information about so high inelastic hadron processes is the consequence
of the smallness of corresponding cross sections. Besides this it was unclear for what purpose the
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experimental efforts should be done. We would like to convince the reader that the discussed problem
is interesting and important. For instance, we will discuss a possibility that asymptotics over n may
replace in definite sense the asymptotics over

√
s. A short address to experimentalists will be given in

concluding Sec.4.1.2.
We hope that the paper would be useful both for theorists and experimentalists. By this reason

the main text of this paper will contain only the qualitative discussion of the problems and results.
The quantitative proof, formulation of pure theoretical methods etc. are added in the Appendices.
Considered extremal problem is a good theoretical laboratory and is described in the Appendices and
theoretical methods may be applied for other physical problems.

We would like to point out that the special technique was built for the problem discussed, see Sec.2.
– Having the very high multiplicity (VHM) state it is natural to use the thermodynamical methods.

We will offer for this purpose the real-time S-matrix interpretation of thermodynamics. It can be
shown in what quantitative conditions it will coincide with simpler canonical imaginary-time Matsubara
formalism. We will give also the generalization of the real-time finite-temperature perturbation theory
in the case of local temperature T = 1/β distribution, when β = β(x, t). This will allow to use the
thermodynamical description if the system is far from equilibrium.

– The particle spectrum in the VHM region is soft. It is just a situation when the collective
phenomena should be important. To describe this phenomena, the decomposition on correlators will
be adopted. The origin of this decomposition lie in the Mayer’s ‘group decomposition’. In multiple
production physics this decomposition is known also as the ‘multi-component description’ [2]. It based
on the idea that the multiple production process may include various mechanisms.

In Sec.3 we will investigate model predictions for VHM region. We would like to note two main
conclusions:

– Existing multiperipheral-type models are unable to describe the VHM region.
– The infrared region of the pQCD becomes important even if the constraint (1.2) is taken into

account.

2 Qualitative inside of the problem

In Sec.2.1 we will try to formulate the phenomenology of our problem, i.e. the way the VHM processes
may be described and what type of phenomena one may expect. The importance of thermodynamical
methods will became evident and we will offer in Sec.2.2 a general description of the corresponding
formalism.

It is important to note that we may classify the possible asymptotics over n. We will find that
there exist only three classes of asymptotics. This will simplify consideration definitely restricting the
possibilities.

In Sec.2.3 we will use the thermodynamical language to give a physical interpretation of these
classes of asymptotics. We will see in result that in our choice of the VHM final state this should
lead to reorganization of multiple production dynamics: we will get out of the habitual multiperipheral
picture in the VHM domain.

Moreover, one may assume that the semiclassical approximation becomes exact in the VHM do-
main. This naturally leads to the idea to search such a scheme of calculation which depends on the
choice of final state. Quantitative description of this idea may be realized as is described in Appendix
K.

2.1 Phenomenology of VHM processes

The VHM production phenomena includes two sub-problems. First of all it is the dynamical problem of
incident energy degradation into the secondary particle energies and the second one is the description
of the final state.

We will start discussion in Sec.2.1.1 from the second part of the problem to explain that the
statistical methods are essential for us.
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In Sec.2.1.2 we will try to outline at least qualitatively the main mechanisms of hadron production.
The peculiarity of hadron production phenomena consists in the presence of hidden constraints, the
consequence of local non-Abelian gauge symmetry. The constraints may prevent thermalization and
the incident energy dissipation is confused in this case. Just the ‘confusing’ effect is dominant in the
hadron multiple production processes if n ∼ n̄(s).

The expected change of dominant mechanism of hadron production is discussed Sec.2.1.3. It is
important that, in spite of hidden constraints, the system may freely evolve to define the VHM state.
Such a VHM state should be in equilibrium. Formal definition of the ‘equilibrium’ notion will be given
in Sec.2.2.2.

The problem described contains small parameters (n̄(s)/n) << 1 and (1 − κ) << 1. To have the
possibility of estimation of contributions in accordance with these parameters one should include them
into the formalism. This becomes possible if and only if the integral quantities are calculated. So, the
multiplicity n is an index only if the multiple production amplitudes an(p1, ..., pn) are considered. But
the cross section σn(s) is a nontrivial function of n. We will calculated by this logic mostly integrals
of |an|2, living out the consideration the amplitudes, see also Sec.2.2, where the first realization of
this idea is offered (the naive attempt to realize this idea one may find in [3]). This is a general
methodological feature of our consideration.

2.1.1 Formulation of the problem

The multiple production cross section σn(s) falls down rapidly in the discussed very high multiplicity
(VHM) domain (1.1) and for this reason the multiplicities n ∼ nmax are not accessible experimentally.
At the LHC energy n̄(s) ' 100 is valid and we will assume that n ∼ n̄(s)2 ' 10 000 is just the discussed
VHM region (nmax ' 100 000 at the LHC energy). We will explain later why

n ∼ n̄(s)2 (2.1)

is chosen for the definition of VHM region.
Generally speaking, having the state of a large number of particles, it is reasonable to depart

from an exact definition of the number n of created particles, their individual energies εi, momenta
qi, etc. since they cannot be defined exactly by experiment. Indeed, for instance, full reconstruction
of kinematics is a practically impossible task because of neutral particles, neutrinos, the more so as
n ∼ 10 000 is considered. We suppose that nothing will happen if n is measured with ∆n 6= 0 accuracy
since (∆n/n) << 1 is easily attainable in the VHM region. Besides it is practically impossible to deal
with theory which operates by the N = 3n− 4 (∼ 30 000!) variables.

Artificial reduction of the set of the necessary variables may lead to a temporary success only.
Indeed, the last thirty years of multiple production physics development was based on the inclusive
approach [4], when the measured quantities (cross sections) depend on a few dynamical parameters
only. But later on the experiment and its fractal analyses shows that the situation is not so simple,
also as, for instance, for the classical turbulence. So, the event-by-event experimental data shows that
the particle density fluctuation is unexpectedly large [5] and the fractal dimension Df is not equal to
zero [6].

We know that if the fractal dimension is non-trivial, then the system is extremely ‘non-regular’ [7].
So, Df '0.3 for the perimeter of Great Britain and Df '0.5 for Norway. The discrepancy marks the
fact that the shore of Norway is much more broken then of Great Britain [8]. It is noticeable that the
fractal dimension Df crucially depends on the type of reaction, incident energy and so on.

It is evident that one may choose from N = 3n−4 an arbitrary finite set of variables to characterize
the multiple production process. But the fractal analyses shows that such approach would lead to the
same effect as if one may hear, for example, only the first violin of Mahler’s music.

So, it is important to understand when the restricted set of dynamical variables will admit to
describe the process (state) completely. The same problem was solved in statistical physics, where the
‘rough’ description by a restricted number of (thermodynamical) parameters is a basis of its success,
see the discussion of rough variables description e.g. in the review of Uhlenbeck [9]. We will search the
same solution desiring to build a complete theory of the VHM hadron reactions.
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We want to note that just VHM process may be in this sense ‘simple’: at all evidence, the system
becomes ‘quiet’ in the VHM region and by this reason its ‘rough’ thermodynamical description is
available. It seems natural, therefore, to start investigation of multiple production phenomena from
the (extremely rare) VHM processes.

2.1.2 Soft channel of hadron production

The dominant inelastic hadron processes at n ∼ n̄(s) are saturated by production of low transverse
momentum hadrons [10]. One of the approaches explains this phenomena by the nonperturbative effect
of quarks created from vacuum.

Corresponding dynamics looks as follows. At the expanse of transverse kinetic motion color charges
may separated at large distances. Nevertheless the transverse motion is suppressed since separation
leads to increasing polarization of vacuum, because of confinement phenomenon. Then, as in QED
[11], the vacuum becomes unstable in regard to the tunneling creation of real fermions. Just on their
creation, the transverse kinetic energy is spent and, as a result, particles cannot have, with exponential
accuracy, high transverse energies. This picture is attractive being simple and transparent, but despite
numerous efforts [12], there is no quantitative description of this phenomenon till now. Briefly, the
problem is connected with the unknown mechanism of strong coloured electric fields formation among
distant colored charges, see also [13].

One may use other terms. The soft channel of multiple production means the long-range correlation
among hadron coloured constituents. Under this special correlation the non-Abelian gauge field theory
conservation laws constraint were implied. They are important in dynamics since each conservation
law decreases the number of independent degrees of freedom at least on one unity (this may explain
why hadrons n̄(s) << nmax(s)), i.e. it has the nonperturbative effect. Moreover, in so-called integrable
systems each independent integral of motion (in involution) reduces the number of degrees of freedom
on two units. As a result there is no thermalization in such systems [14] and the corresponding mean
multiplicity n̄(s) should be equal to zero, see Appendix K.

Existence of multiple production, n̄(s) >> 1, testifies the statement that the thermalization phe-
nomena exist in hadron processes, i.e. the system of Yang-Mills fields is not completely integrable. But
the most probable process with n ∼ n̄(s) did not lead to the final state with maximal entropy since
n̄(s) << nmax, i.e. the definite restrictions on the dissipation dynamics should be taken into account.
Such problems, being intermediate, are mostly complicated ones.

The quantitative theory of this phenomena may lead to deep revision of the main notions of existing
quantum field theory [15, 16], see Appendix K. So, the dynamical display of hidden conservation
laws of the hadron system are probably unstable since we expect that the system is not completely
integrable, solitary field configurations uc(x, t) [17]. Then the quantum theory should be able to
describe quantum excitations of these fields, i.e. to count the fluctuations of ‘curved’ manifolds. The
canonical perturbation theory methods, formulated in terms of creation and annihilation of particles
in the external field uc(x, t), are too complicated, see [18] and references cited therein. For this reason,
existing calculations usually do not exceed the semiclassical approximation. We hope that, as described
in Appendix K, the quantization scheme would be able to solve this problem (see also the example
described there).

Another approach assumes that the special ‘t-channel’ ladder type Feynman diagrams are able to
describe the n ∼ n̄(s) region [19]. This approach did not take into account the confinement nonper-
turbative effects introducing the hardly controllable supposition that the free quarks and gluons may
form a complete set of states. Formally this is right, but at all evidence, the decomposition on this
Fock basis is realized in the non-Abelian gauge field theories on zero measure [16, 20] (see Appendix
K). Nevertheless one may reject this argument assuming that the process is happening on a sufficiently
small distances.

Corresponding contribution came from the so called ‘hard Pomeron’ [21]. But the intrinsic problems
of the accuracy of chosen logarithmic approximations [22], the understanding of the so called non-
logarithmic corrections [23], of the fate of the infrared divergences stay unsolved till now.
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2.1.3 Multiple production as a process of dissipation

So, the multiple production of soft hadron phenomena seems unsolvable on the day-to-day level of
understanding and we may with pure conscience move it away. This is why the hadron inelastic
reactions lost some popularity, migrating the last two decades to the class of ‘non-interesting’ problems.
Yet, in a number of modern fundamental experiments, multiple production plays, at least, the role of
background to the investigated phenomena and for this reason we should be ready for the quantitative
estimation of it.

Our hope to describe such a complicated problem as the multiple production phenomenon in the
VHM conditions is based on the following idea. At the very beginning of this century, a couple P.
and T.Euhrenfest, had offered a model to visualize Boltzmann’s interpretation of the irreversibility
phenomena in statistics. The model is extremely simple and fruitful [24]. It considers the two boxes
with 2Nb numerated balls. Choosing the label of the balls randomly one must take the ball with the
corresponding label from one box and put it into another one. One may repeat this action an arbitrary
number of times t.

Starting from the highly ‘nonequilibrium’ state with all balls in one box, Nb >> 1, it is seen
stationary with t tendency to equalization of the number of balls in the boxes Fig.1. The stationarity
means that the number of balls in the other box rises ∼ t at least on an early stage of the process. This
signifies presence of an irreversible2 flow (of balls) toward the preferable (equilibrium) state. One can
hope [24] that this model reflects a physical reality of nonequilibrium processes with initial state very
far from equilibrium. A theory of such processes with (irreversible) flow toward a state with maximal
entropy should be sufficiently simple being close to the stationary Markovian.

The VHM production process may be, at least on an early stage, stationary Markovian. If this is
so then one may neglect long-range effects, non-perturbative as well, since they are not Markovian as
follows from the experience described in Sec.2.1.2.

This is possible if the VHM process is happening so fast (being the short-range phenomenon)
that the confinement forces became ‘frozen’. It can be shown that the quantitative reason for this
phenomena is a fast (exponential) reduction with n of the soft channel contribution into the hadron
production process. So, we expect a change of the multiple production dynamics in the VHM region.

Thus, the main input idea consists from two general propositions. The first of them is following:
(I) The hadron VHM production processes should be close to the stationary Markovian.
‘Freezing’ the confinement constraints, the entropy S may exceed for given energy

√
s its available

maximum in the VHM domain. Then one can assume that the VHM final state is in ‘equilibrium’, or
is close to it. So,

(II) The VHM final state should be close to equilibrium
is our second basic proposition.

We would select and appreciate particle physics models in accordance with these propositions.

2.2 S-matrix interpretation of thermodynamics

The field-theoretical description of statistical systems at a finite temperature is based usually on the for-
mal analogy between imaginary time and inverse temperature β = 1/T [26]. This analogy is formulated
by Schwinger [11] as the ‘euclidean postulate’ and it assumes that (i) the system is in equilibrium, i.e.
it should allow the arbitrary rearrangement of states of temporal sequence in the described process3,
and (ii) there is not special space-time long-range correlations among states of the process, i.e, for
instance, the symmetry constraints should not play a crucial role. We do not know ad hoc whether or
not to apply the ‘euclidean postulate’ for given n and s, even if (1.1) is satisfied. For this reason we
are forced to formulate the theory in the natural real-time terms.

The first important quantitative attempt to build the real-time finite-temperature field theory [27]
discovered the formal problem of the so called ‘pinch-singularities’. Further investigation of the theory

2One can say that the opposite flow is never seen. ‘What never? No never! What never? Well,
hardly ever.’ This dialog was taken from [25]

3In other terms, one may have the possibility to apply the ergodic hypothesis.
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has allowed to demonstrate the cancellation mechanism of these unphysical singularities [28]. This
is attained by doubling the degrees of freedom [29, 30]: the Green functions of the theory represent
2 × 2 matrix [31]. It surely makes the theory more complicated, but the operator formalism of the
thermo-field dynamics [32] shows the unavoidable character of this complication.

Notice that the canonical real-time finite temperature field-theoretical description [29, 30] of the
statistical systems based on the Kubo-Martin-Schwinger (KMS) [29, 33, 34] boundary condition for a
field is:

Φ(t) = Φ(t− iβ). (2.2)

It, without fail, leads to the equilibrium fluctuation-dissipation conditions [35] (see also [36]). By this
reason it can not be applied in our case, where the dissipation problem is solved. The origin of this
boundary condition is shown in Appendix A.

We will use a more natural microcanonical formalism for particle physics4. The thermodynam-
ical ‘rough’ variables are introduced in these approach as the Lagrange multipliers of corresponding
conservation laws. The physical meaning of these ‘rough’ variables are defined by the corresponding
equations of state.

We shall use the S-matrix approach which is natural for the description of the time evolution. (The
S-matrix description was used also in [38, 39].) For this purpose the amplitudes

< p1, p2, ..., pn|q1, q2, ..., qm >= anm(p, q) (2.3)

of the m- into n-particles transition will be introduced. The in- and out-states must be composed from
mass-shell particles [40]. Using these amplitudes we will calculate

Rnm(p, q) = |anm(p, q)|2 =

=< p1, p2, ..., pn|q1, q2, ..., qm >< q1, q2, ..., qm|p1, p2, ..., pn > . (2.4)

This will lead to the doubling of the degrees of freedom.
The temperature description will be introduced (see also [41]) noting that, for instance,

dΓn = |anm(p, q)|2dΩn(p),

dΩn(p) =
∏n

1
d3pi

(2π)32ε(pi)
, ε(p) = (p2 +m2)1/2, (2.5)

is the differential measure of the final state. It is a first example where the usefulness of the probability-
like quantity ∼ |anm|2 is seen.

The measure (2.5) is defined on the energy-momentum shell:

n
∑

i=1

pi = P. (2.6)

It should be underlined that anm(p, q) are the translationally invariant amplitudes and four equalities:

n
∑

i=1

pi =

m
∑

i=1

qi (2.7)

are obeyed identically. So, (2.6) are the constraints and to take them into account one may multiply
dΓn on

n
∏

k=1

eiαpk ,

where α is the time-like 4-vector. It is evident that integration over α with factor e−iαP gives the
constraints (2.6).

4The statistical methods for particles physics was discussed also in [37].

9



One may simplify the calculation assuming that all calculations are performed, for example, in the
CM frame P = (E,0). Then one may ignore the space components considering α = (α0,0). This is
the equivalent of the assumption that only the energy conservation law is important.

The last step is the substitution α0 = iβ, where β is our Lagrange multiplier. To define its physical
meaning one should solve the equation of state:

E = − ∂

∂β
ln

∫

dΓn

n
∏

k=1

e−βε(pk) ≡ − ∂

∂β
ln

∫

dΓn(β). (2.8)

Such a definition of temperature as the Lagrange multiplier of the energy conservation law is obvious
for microcanonical description [33].

The initial-state temperature will be introduced in the same way, taking into account (2.7). So,
we will construct the two-temperature theory. It is impossible to use the KMS boundary condition
in such a two temperatures description (the equation of state can be applied at the very end of the
calculations).

It should be notice that the ‘density matrix’ Rn,m(p, q), defined in (2.4), describes the ‘closed-path
motion’ in the functional space. So, if

< p1, p2, ..., pn|q1, q2, ..., qm >=< n, out|eiS(Φ+)|m, in > (2.9)

and

< p1, p2, ..., pn|q1, q2, ..., qm >∗=< q1, q2, ..., qm|p1, p2, ..., pn >=

=< m, in|e−iS(Φ−)|n, out > (2.10)

then, by definition,
Φ+(σ∞) = Φ−(σ∞) = Φ(σ∞), (2.11)

with some ‘turning-point’ fields Φ(σ∞), where σ∞ is the remote hypersurface. The value of Φ(σ∞)
specifies the environment of the system. We will show that (2.11) coincides with the KMS boundary
condition in some special cases. Here consequences of the vacuum boundary condition:

Φ(σ∞) = 0 (2.12)

are analyzed.
One should admit also that below boundary conditions are not unique: one can consider arbitrary

organization of the environment of the considered system. The S-matrix interpretation is able to show
the way as an arbitrary boundary condition may be adopted. This should extend the potentialities of
the real-time finite-temperature field-theoretical methods.

2.2.1 Example

It seems useful to illustrate the above microcanonical approach by the simplest example, see also [41].
By definition, the n particles production cross section

σn(s) =

∫

dΩn(p)δ(q1 + q2 −
n
∑

i=1

pi)|an(p, q)|2, (2.13)

where an(p, q) ≡ an2(p, q) is the ordinary n particle production amplitude in accelerator experiments.
Considering the Fourier transform of energy-momentum conservation δ-function one can introduce

the generating function ρn, see [41] and references cited therein5. We may find in the result that σn is
defined by the equality:

σn(E) =

∫ +i∞

−i∞

dβ

2π
eβEρn(β), E = ε(q1) + ε(q2), (2.14)

5The generating functionals method was developed in [42].
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where

ρn(β) =

∫

{

n
∏

i=1

d3pie
−βε(pi)

(2π)32ε(pi)

}

|an|2 =

∫

dΓn(β). (2.15)

Most probable value of β in (2.14) is defined by the equation of state (2.8). Inserting (2.15) into (2.14)
we find the expression (2.13) if the momentum conservation shell is neglected. The last one is possible
since the cross sections are always measured in the definite frame.

Let us consider the simplest example of noninteracting particles [41]:

ρn(β) = {2πmK1(βm)/β}n
,

where K1 is the Bessel function. Inserting this expression into (2.8) we can find that in the nonrela-
tivistic case (n ∼ nmax)

βc =
3

2

(n− 1)

(
√
s− nm)

,

i.e., we find the well known equality:

Ekin =
3

2
T, (2.16)

whereEkin = (
√
s−nm)/(n−1) is the mean kinetic energy and T = 1/βc is the temperature (Boltzmann

constant was taken equal to one).
It is important to note that the equation (2.8) has a unique real solution βc(s, n) rising with n and

decreasing with s [33].
The expansion of the integral (2.14) near βc(s, n) unavoidably gives an asymptotic series with zero

convergence radii since ρn(β) is the essentially nonlinear function of β, see also Sec.2.2.2. This means
that, generally speaking, fluctuations in the vicinity of βc(s, n) may be arbitrarily high and in this
case βc(s, n) has no physical sense. But if the fluctuations are Gaussian, then ρn(β) coincides with the
partition function of the n particle state and βc(s, n) may be interpreted as the inverse temperature.
We will put the observation of this important fact in the basis of our thermodynamical description of
the VHM region.

2.2.2 Relaxation of correlations

The notion of ‘equilibrium’ over some parameter X in our understanding is a requirement that the
fluctuations in the vicinity of its mean value, X̄ , have a Gaussian character. Notice, in this case, one
can use this variable for a ‘rough’ description of the system. We would like to show now that the
corresponding equilibrium condition would have the meaning of the correlations relaxation condition
of Bogolyubov [42]6, see also [43]. Let us define the conditions when the fluctuations in the vicinity of
βc are Gaussian [44]. Firstly, to estimate the integral (2.14) in the vicinity of the extremum, βc, we
should expand ln ρn(β + βc) over β:

ln ρn(β + βc) = ln ρn(βc) −
√
sβ +

1

2!
β2 ∂

2

∂β2
c

ln ρn(βc) −
1

3!
β3 ∂

3

∂β3
c

ln ρn(βc) + ... (2.17)

and, secondly, expand the exponent in the integral (2.14) over, for instance,

∂3 ln ρn(βc)/∂β
3
c , ...,

etc. In the result, if higher terms in (2.17) are neglected, k-th term of the perturbation series

ρn,k ∼
{

∂3 ln ρn(βc)/∂β
3
c

(∂2 ln ρn(βc)/∂β2
c )3/2

}k

Γ

(

3k + 1

2

)

. (2.18)

Therefore, because of Euler’s Γ((3k + 1)/2) function, the perturbation theory near βc leads to the
asymptotic series. The supposition to define this series formally, for instance, in the Borel sense is not

6The term ‘vanishing of correlations’ was used by N.N.Bogolyubov for this phenomena.
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interesting from physical point of view. Indeed, such a formal solution assumes that the fluctuations
near βc may be arbitrarily high. Then, by this reason, the value of βc loses its significance: arbitrary
values of (β − βc) are important in this case.

Nevertheless it is important to know that our asymptotic series exists in some definite sense, i.e.
we can calculate the integral over β by expanding it over (β − βc). Therefore, if the considered series
is asymptotic, we may estimate it by first term if

∂3 ln ρn(βc)/∂β
3
c << (∂2 ln ρn(βc)/∂β

2
c )3/2. (2.19)

One of the possible solutions of this condition is

∂3 ln ρn(βc)/∂β
3
c ≈ 0. (2.20)

If this condition is satisfied, then the fluctuations are Gaussian with dispersion

∼ {∂2 ln ρn(βc)/∂β
2
c}1/2,

see (2.17).
Let us consider now (2.20) carefully. We will find by computing derivatives that this condition

means the following approximate equality:

ρ
(3)
n

ρn
− 3

ρ
(2)
n ρ

(1)
n

ρ2
n

+ 2
(ρ

(1)
n )3

ρ3
n

≈ 0, (2.21)

where ρ
(k)
n means the k-th derivative. For identical particles,

ρ(k)
n (βc) = nk(−1)k

∫

dΓn(βc)

k
∏

i=1

ε(qi), (2.22)

Therefore, the left hand side of (2.21) is the 3-point correlator K3 since dΓn(βc) is a density of states
for given β:

K3 ≡
∫

dΩ3(q)
(

<
∏3

i=1 ε(qi) >βc −3 <
∏2

i=1 ε(qi) >βc< ε(q3) >βc +

+ 2
∏3

i=1 < ε(qi) >βc

)

, (2.23)

where the index βc means that averaging is performed with the Boltzmann factor exp{−βcε(q)}.
Notice, in distinction with Bogolyubov, K3 is the energy correlation function. So, in our interpre-

tation, one can introduce the notion of temperature 1/βc if and only if the macroscopic energy flows,
measured by the corresponding correlation functions, are to die out.

As a result, to have all the fluctuations in the vicinity of βc Gaussian, we should have Km ≈ 0,
m ≥ 3. Notice, as follows from (2.19), the set of minimal conditions actually looks as follows:

Km << K2, m ≥ 3. (2.24)

If the experiment confirms this conditions then, independently from the number of produced particles,
the final state may be described with high enough accuracy by one parameter βc and the energy
spectrum of particles is Gaussian. In this conditions one may return to the statistical [1] and the
hydrodynamical models [45].

Considering βc as a physical (measurable) quantity, we are forced to assume that both the total
energy of the system,

√
s = E, and the conjugate to it, variable βc, may be measured simultaneously

with high accuracy.
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2.2.3 Connection with Matsubara theory

We would like to show now that the ordinary big partition function of the statistical system coincide
with

∑

n,m

∫

(β1,z1;β2,z2)

Rnm(p, q) = ρ(β, z), (2.25)

where Rnm(p, q) is defined by (2.4). The summation and integration are performed with constraints
that the mean energy of particles in the initial(final) state is 1/β1(1/β2). On may interpret 1/β in the
first approximation as the temperature and z1(z2) as the activity for initial(final) state.

Direct calculation, see Appendix B, gives the following expression for generating functional:

ρ(β, z) = e−iN(φ∗
i φj)R0(φ), (2.26)

where the particle number operator (φ̂(x) = δ/δφ(x))

N(φ∗i φj) = −
∫

dxdx′(φ̂+(x)D+−(x− x′, β2, z2)φ̂−(x′) −
−φ̂−(x)D−+(x − x′, β1, z1)φ̂+(x′)) (2.27)

and
R0(φ) = Z(φ+)Z∗(−φ−), (2.28)

where Z(φ) is defined in (B.10):

Z(φ) =

∫

DΦeiS(Φ)−iV (Φ+φ)

and, for the vacuum boundary condition Φ(σ∞) = 0,

D+−(x− x′, β, z) = −i
∫

dΩ1(q)e
iq(x−x′)e−βε(q)z(q) (2.29)

D−+(x− x′, β, z) = i

∫

dΩ1(q)e
−iq(x−x′)e−βε(q)z(q) (2.30)

are respectively the positive and negative frequency correlation functions at z = 1.
It is evident,

Rnm(p, q) =

n
∏

k=1

{

eβ1ε(pk) δ

δz1(pk)

} m
∏

k=1

{

eβ2ε(qk) δ

δz2(qk)

}

ρ(β, z)

∣

∣

∣

∣

∣

zi=0

. (2.31)

Notice, defining Rnm(p, q) through the generating functional we extract the Boltzmann factors e−βε

since the energy-momentum conservation δ-functions were extracted from amplitudes anm(p, q).
We suppose that Z(φ) may be computed perturbatively. As a result, (ĵ = δ/δj is the variational

derivative)

R(β, z) = e−iV (−iĵ+)+iV (−iĵ−)e
i
2

∫

dxdx′ji(x)Dik(x−x′;β,z)jk(x′), (2.32)

where Dik(x − x′) is the matrix Green function. These Green functions are defined on the Mills [46]
time contours C± in the complex time plane (C− = C∗

+), see Fig.2. This definition of the time contours
coincides with the Keldysh’ time contour [30].

The generating functional (2.32) has the same structure as the generating functional of Niemi
and Semenoff [28]. The difference is only in the definition of Green functions Dik. This choice is a
consequence of the boundary condition (B.6). So, if (B.32) is used, then the Green function is defined
by eq.(B.45). Notice also that if β1 = β2 = β then a new Green function obey KMS boundary condition,
see (B.48).

Following Niemi and Semenoff [28] one can write (2.32) in the form:

ρ(β) =

∫

DNSΦeiSNS(Φ), (2.33)
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where the functional measure DNSΦ and the action SNS(Φ) are defined on the closed complex time
contour CNS , see Fig.3. The choice of initial time ti and tf is arbitrary. Then one can perform shifts:
ti → −∞ and tf → +∞. In result, (i) if β1 = β2 = β, (ii) if contributions from imaginary parts
C+− and C−β of the contour CNS have disappeared in this limit, (iii) if the integral (2.33) may be
calculated perturbatively then this integral is a compact form of the representation (2.32).

Notice that the requirements (i) - (iii) are the equivalent of the Euclidean postulate of Schwinger.
In this frame one can consider another limit tf → ti. Then the CNS contour reduces to the Matsubara
imaginary time contour, Fig.4.

Later on we will use this S-matrix interpretation of thermodynamics. But one should take in mind
that corresponding results will hide assumptions (i) - (iii).

We would like to mention the ambivalent role of external particles in our S-matrix interpretation
of thermodynamics. In the ordinary Matsubara formalism the temperature is measured assuming
that the system under consideration is in equilibrium with the thermostat, i.e. temperature is the
energy characteristics of interacting particles. In our definition the temperature is the mean energy of
produced, i.e. non-interacting, particles. It can be shown that both definitions lead to the same result.

Explanation of this coincidence is the following. Let us consider the point of particle production
as the coordinate of fictitious ‘particle’. This ‘particle’ interacts since the connected contributions into
the amplitudes anm only are considered, and has the equal to produced particles momentum and so
on. The set of these ‘particles’ form a system. Interaction among these ‘particles’ may be described
by corresponding correlation functions, see Sec.2.3.3.

Let us consider now the limit tf → ti. In this limit (2.33) reduces to

ρ(β) =

∫

DMΦe−SM (Φ), (2.34)

where the imaginary time measure DMΦ and action SM (Φ) are defined on the Matsubara time contour.
The periodic boundary condition (2.2) should be used calculating integral (2.34). The rules and
corresponding problems in the integral (2.34) can be calculated as described in many textbooks, see
also [47].

In the limit considered the time was eliminated in the formalism and the integral in (2.34) performed
over all states of the ‘particles’ system with the weight e−SM (Φ). Notice, the doubling of degrees of
freedom has disappeared and our fictitious ‘particles’ became real ones.

On the other hand, the produced particles may be considered as the probes through which we
measure the interacting fields. As was mentioned above, their mean energy defines the temperature,
if the energy correlations are relaxed. If even one of the conditions (i) - (iii) is not satisfied then one
cannot reduce our S-matrix formalism to the imaginary time Matsubara theory. Then one can ask: is
there any possibility, staying in the frame of S-matrix formalism, to conserve the statistics formalism.
This question is discussed in the Appendix C, where the Wigner functions approach is applied. It may
be shown that the formalism may be generalized to describe the kinetic phase of the nonequilibrium
process, where the temperature should have the local meaning [49]. The comparison with the ‘local
equilibrium hypothesis’ is discussed at the end of Appendix C.

2.3 Classification of asymptotics over multiplicity

Our further consideration will based on the model independent (formal) classification of asymptotics
[50].

2.3.1 ‘Thermodynamical’ limit

We will consider the generating function:

T (s, z) =

nmax
∑

n=1

znσn(s), s = (p1 + p2)
2 >> m2, nmax =

√
s/m. (2.35)
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This step is natural since the number of particles is not conserved in our problem. So, the total cross
section and the averaged multiplicity will be:

σtot(s) = T (s, 1) =
∑

n

σn(s), n̄(s) =
∑

n

n(σn(s)/σtot) =
d

dz
lnT (s, z)

∣

∣

∣

∣

z=1

. (2.36)

At the same time, the inverse Mellin transform gives

σn =
1

n!

∂n

∂zn
T (s, z)

∣

∣

∣

∣

z=0

=
1

2πi

∮

dz

zn+1
T (s, z) =

1

2πi

∮

dz

z
e(−n ln z+ln T (s,z)). (2.37)

The essential values of z in this integral are defined by the equation (of state):

n = z
∂

∂z
lnT (z, s). (2.38)

Taking into account the definition of the mean multiplicity n̄(s), given in (2.36), we can conclude that
the solution of (2.38) zc is equal to one at n = n̄(s). Therefore, z > 1 are essential in the VHM domain.

The asymptotics over n (n << nmax is assumed) are governed by the smallest solution zc of (2.38)
because of the asymptotic estimation of the integral (2.37):

σn(s) ∝ e−n ln zc(n,s). (2.39)

Let us assume that in the VHM region and at high energies,
√
s→ ∞, there exist such a value of

zc(n, s) that we can neglect in (2.35) the dependence on the upper boundary nmax. This formal trick
with the thermodynamical limit allows to consider T (z, s) as the nontrivial function of z for finite s.

Then, it follows from (2.38) that

zc(n, s) → zs at n ∈ VHM, (2.40)

where zs is the leftmost singularity of T (z, s) in the right half plane of complex z. One can say that
the singularity of T (z, s) attracts zc(n, s) if n ∈VHM. We will put this observation in the basis of VHM
processes phenomenology.

We would like to underline once more that actually T (z, s) is regular for arbitrary finite z if s is
finite. But zc(n, s) behaves in the VHM domain as if it is attracted by the (imaginary) singularity zs.
And just this zc(n, s) defines σn in the VHM domain. We want to note that actually the energy

√
s

should be high enough to use such an estimation.

2.3.2 Classes and their physical content

One can notice from the estimation (2.39) that σn weakly depends on the character of the singularity.
Therefore it is enough to classify only the possible positions of zs. We may distinguish following
possibilities:

(A) zs = ∞ : σn < O(e−n)

(B) zs = 1 : σn > O(e−n)

(C) 1 < zs <∞ : σn = O(e−n), (2.41)

i.e., following this classification, the cross section may decrease faster (A), slower (B), or as (C) an
arbitrary power of e−n. It is evident, if all these possibilities may be realized in nature, then we should
expect the asymptotics (B).

As was explained in Sec.2.2.1, σn has the meaning of the n particle partition function in the energy
representation. Then T (z, s) should be the ‘big partition function’. Taking this interpretation into
account, as follows from Lee-Yang theorem [51], T (z, s) can not be singular at |z| < 1.

At the same time, the direct calculations based on the physically acceptable interaction potentials
give the following restriction from above:

(D) σn < O(1/n) (2.42)
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This means that σn should decrease faster than any power of 1/n.
It should be noted that our classification predicts rough (asymptotic) behavior only and did not

exclude local increase of the cross section σn.
One may notice that

− 1

n
ln

σn(s)

σtot(s)
= ln zc(n, s) +O(1/n). (2.43)

Using thermodynamical terminology, the asymptotics of σn is governed by the physical value of the
activity zc(n, s). One can introduce also the chemical potential µc(n, s). It defines the work needed for
one particle creation, ln zc(n, s) = βc(n, s)µc(n, s), where ε̄(n, s) = 1/βc(n, s) is the produced particles
mean energy. So, one may introduce the chemical potential if and only if βc(n, s) and zc(n, s) may be
used as the ‘rough’ variables.

Then the above formulated classification has a natural explanation. So, (A) means that the system
is stable with reference to particle production and the activity zc(n, s) is the increasing function of n,
the asymptotics (B) may realized if and only if the system is unstable. In this case zc(n, s) is the
decreasing function. The asymptotics (C) is not realized in equilibrium thermodynamics [52].

We will show that the asymptotics (A) reflects the multiperipheral processes kinematics: created
particles form jets moving in the CM frame with different velocities along the incoming particles di-
rections, i.e. with restricted transverse momentum, see Sec.3.1.1. The asymptotics (B) assumes the
condensation-like phenomena, see Sec.3.3. The third type asymptotics (C) is predicted by station-
ary Markovian processes with the pQCD jets kinematics, see Sec.3.2.2. The DIS kinematics may be
considered as the intermediate, see Sec.3.2.1.

This interpretation of classes (2.41) allows to conclude that we should expect reorganization of
production dynamics in the VHM region: the soft channel (A) of particle production should yield a
place to the hard dynamics (C), if the ground state of the investigated system is stable with reference
to the particle production. Otherwise we will have asymptotics (B).

2.3.3 Group decomposition

Let us consider the system with several correlation scales. For example, in statistics one should dis-
tinguish correlation length among particles (molecules) and correlation length among droplets if the
two-phase region is considered. In particle physics, one should distinguish in this sense correlation
among particles produced in result of resonance decay and correlations among resonances. In pQCD
one may distinguish correlations of particles in jet and correlation among jets.

There exist many model description of this physical picture. In statistics Mayer’s group decom-
position [25] is well known. In particle physics one should note also the many-component formalism
[2]7. We will consider the generating functions (functionals) formalism [42] considering mostly jet
correlations. In many respects it overlaps the above mentioned approaches.

The generating function T (z, s) may be written in the form:

lnT (z, s) =
∞
∑

k=1

(z − 1)k

k!
Ck(s) =

∞
∑

l=1

zlbl, (2.44)

where the coefficients Ck are the moments of the multiplicity distribution

Pn(s) = σn(s)/σtot(s). (2.45)

So,

C1(s) =
∑

n

nPn(s) = n̄(s), C2(s) =
∑

n

n(n− 1)Pn(s) − n̄(s)2 (2.46)

and so on. Using the connection with the inclusive distribution functions fk(q1, q2, ..., qk):

T (z, s) =
∞
∑

k=1

(z − 1)k

k!

∫

dΩk(q)fk(q1, q2, ..., qk; s), (2.47)

7The example considered in [48] illustrate this approach.
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it is easy to find that

C1(s) =
∫

dΩ1(q)f1(q; s) = f̄1(s),

C2(s) =
∫

dΩ2(q){f2(q1, q2; s) − f1(q1; s)f1(q2; s)} = f̄2(s) − f̄2
1 (s), (2.48)

etc. Generally,

1

k!
Ck(s) =

∞
∑

l=1

(−1)l

l

∞
∑

{k}l=0

δ

(

l
∑

i=1

ki − k

)

l
∏

i=1

{

f̄ki(s)

ki!

}

, (2.49)

where {k}l = k1, k2, ..., kl and

f̄k(s) =

∫

dΩk(q)fk(q1, q2, ..., qk; s).

One may invert formulae (2.49):

1

l!
f̄k(s) =

∞
∑

{nk}=0

δ

( ∞
∑

k=1

knk − l

) ∞
∏

k=1

1

nk!

(

Ck(s)

k!

)nk

(2.50)

The Mayer’s group coefficients bl in (2.44) have the following connection with Ck:

bl(s) =
∞
∑

k=0

(−1)k

l!k!
Ck+l(s). (2.51)

It seems useful to illustrate the effectiveness of the generating function method by the following
example. We will consider the transformation (multiplicity n → activity z) to show the origin of the
Koba-Nielsen-Olesen scaling (KNO-scaling)8.

If Cm = 0, m > 1, then σn is described by the Poisson formulae:

σn(s) = σtot(s)e
−n̄ n̄(s)n

n!
. (2.52)

It corresponds to the case of absence of correlations.
Let us consider more weak assumption:

Cm(s) = γm (C1(s))
m
, (2.53)

where γm is the energy independent constant, see also [53], where a generalization of KNO scaling on
the semi-inclusive processes was offered. Then

lnT (z, s) =
∑

m=1

γm

m!
{(z − 1)n̄(s)}m. (2.54)

To find the consequences of this assumption, let us find the most probable values of z. The equation
of state

n = z
∂

∂z
lnT (z, s)

has solution z̄(n, s) increasing with n since T (z, s) is an increasing function of z, if and only if, T (z, s)
is nonsingular at finite z. As was mentioned above, the last condition has deep physical meaning and
practically assumes the absence of the first order phase transition [51].

Let us introduce a new variable:
λ = (z − 1)n̄(s). (2.55)

8In private discussion with one of the authors (A.S.) in the summer of 1973, Z.Koba noted that the
main reason of investigation leading to the KNO-scaling was just the generating functional method of
Bogolyubov [49]
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The corresponding equation of state looks as follows:

n

n̄(s)
=

(

1 +
λ

n̄(s)

)

∂

∂λ
lnT ′(λ). (2.56)

So, with O(λ/n̄(s)) accuracy, one can assume that

λ ' λc(n/n̄(s)). (2.57)

are essential. It follows from this estimation that such scaling dependence is rightful at least in the
neighborhood of z = 1, i.e. in vicinity of main contributions into σtot. This gives:

n̄(s)σn(s) = σtot(s)ψ(n/n̄(s)), (2.58)

where
ψ(n/n̄(s)) ' T (λc(n/n̄(s))) exp{n/n̄(s)λc(n/n̄(s))} ≤ O(e−n) (2.59)

is the unknown function. The asymptotic estimation follows from the fact that λc = λc(n/n̄(s)) should
be a nondecreasing function of n, as follows from nonsingularity of T (z, s).

The estimation (2.57) is right at least at s→ ∞. The range validity of n, where solution of (2.57)
is acceptable, depends from exact form of T (z, s). Indeed, if lnT (z) ∼ exp{γλ(z)}, γ = const > 0,
then (2.57) is right at all values of n and it is enough to have the condition s→ ∞. But if lnT (z, s) ∼
(1 + aλ(z))γ , γ = const > 0, then (2.57) is acceptable if and only if n << n̄2(s).

Representation (2.58) shows that just n̄(s) is the natural scale of multiplicity n [54]. This repre-
sentation was offered first as a reaction on the so called Feynman scaling for inclusive cross section:

fk(q1, q2, ..., qk) ∼
k
∏

i=1

1

ε(qi)
. (2.60)

As follows from estimation (2.59), the limiting KNO prediction assumes that σn = O(e−n). In this
regime T (z, s) should be singular at z = zc(s) > 1. The normalization condition

∂T (z, s)

∂z
|z=1 = n̄(s)

gives: zc(s) = 1 + γ/n̄(s), where γ > 0 is the constant. Notice, such behavior of the big partition
function T (z, s) is natural for stationary Markovian processes described by logistic equations [55]. In
the field theory such equation describes the QCD jets [56].

We wish to generalize expansion (2.44) to take into account the possibility of many-component
structure of the multiple production processes [2]. Let us consider particle production through the
generation, for instance, of jets. In this case decay of a particle of high virtuality |q| >> m forms a
jet of lower virtuality particles. It is evident that one should distinguish correlation among particles in
the jet, and correlation among jets.

Let ωni(mi) be the probability that i-th jet of mass mi includes ni particles, 1 ≤ ni ≤ n, where

Nj
∑

i=1

ni = n (2.61)

The jets are the result of particles decay. Then let us assume that N̄1(mi, pi) defines the mean number
of jets of mass mi and momentum pi:

ρ
(1)
n (β) =

∑

Nj

1
Nj

∑

{n}Nj
δ
(

∑Nj

i=1 ni − n
)

×

×
∫
∏Nj

i=1

{

dmi

2mi

d3pi

(2π)3 e
−βε(pi)N̄1(mi, pi)ωni(mi)

}

, (2.62)

where {n}Nj = (n1, n2, ..., nNj ). Notice the Boltzmann factor e−βε, where ε(p) = m+p2/2m is the jets
energy, play the same role as the corresponding factor in (2.15) and introduced to take into account the
energy conservation law. We consider the VHM domain and for this reason (p2/2m) << 1 is assumed.
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It is useful to avoid the particles number conservation law (2.61). For this purpose we will introduce

ρ(1)(β, z) =
∑

n

ρ(1)
n (β) = exp

{
∫

dm

2m

d3p

(2π)3
e−βε(p)N̄1(m, p)(t(z,m) − 1)

}

, (2.63)

where
t(z,m) =

∑

n

znωn(m). (2.64)

Comparing (2.63) with (2.44) we may conclude that t(z,m) plays the role of activity of jets. Then the
generalization is evident:

ρ(β, z) =
∑

k ρ
(k)(β, z) =

= exp
{

∑

k

∫
∏k

i=1

{

dmidΩ1(pi)e
−βε(pi)(t(z,mi) − 1)

}

×

×N̄k(m1, p1, ...,mk, pk)
}

, (2.65)

where N̄k has the same meaning as Ck, i.e. N̄k is the correlation function of k jets.

2.3.4 Energy-multiplicity asymptotics equivalence

Let us consider the following ‘bootstrap’ regime when ρ(β, z) is defined by the equation:

ρ(β, z) ∝
∫

dm

2m

d3p

(2π)3
e−βε(p)N̄1(m, p)t(z,m). (2.66)

Inserting here the strict expression (2.65) we find a nonlinear equation for t(z,m).
The solution of (2.66) assumes that

∫

dm

2m

d3p

(2π)3
e−βε(p)N̄1t >>

{
∫

dm

2m

d3p

(2π)3
e−βε(p)N̄1t

}2

(2.67)

and
∫

dm

2m

d3p

(2π)3
e−βεN̄1t >>

∫
(

dm1

2m1

d3p1

(2π)3
e−βεt

)(

dm2

2m2

d3p2

(2π)3
e−βεt

)

N̄2 (2.68)

To solve eq.(2.66) in the VHM region, where the leftmost singularity over z is important, let us
consider the anzats:

t(z,m) =
ϕ(z,m)

(1 − (z − 1)a(m))κ0
, κ0 > 0, (2.69)

where ϕ(z,m) is the polynomial function of z, ϕ(z = 1,m) = 1. Using the normalization condition:

n̄j =
∂

∂z
t(z,m)

∣

∣

∣

∣

z=1

(2.70)

we can find:

a(m)κ0 = n̄j − ϕ′(1,m), ϕ′(1,m) ≡ ∂

∂z
ϕ(z,m)

∣

∣

∣

∣

z=1

. (2.71)

The partition function of the jet t(z,m) defined by anzats (2.69) is singular at

zs(m) = 1 +
1

a(m)
. (2.72)

This singularity would be significant in the VHM region if zs(m) is decreasing function of m. This
means an assumption that

ϕ′(1,m)

n̄j(m)
→ 0 at m→ ∞.
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So, in first approximation we will choose

a(m) = n̄j(m). (2.73)

This choice may be confirmed by concrete model calculations.
Taking into account the energy conservation law, conditions (2.67) and (2.68) are satisfied if

exp

{

−nn̄j(s) − n̄j(s/4)

n̄j(s)n̄j(s/4)

}

<< 1. (2.74)

at n ∈VHM. Therefore, (2.69) obey eq.(2.66) with exponential accuracy in the VHM region, i.e. if

n >>
n̄j(s)n̄j(s/4)

n̄j(s) − n̄j(s/4)
=

κ0

zs(s/4) − zs(s)
. (2.75)

We assume here that one can find so large n and s that with exponential accuracy the factors ∼ N̄k

did not play an important role. But at low energies the condition (1.2) is important and the factors
∼ N̄k should be taken into account.

Notice now important consequence of our ‘bootstrap’ solution: it means that we can leave produc-
tion of the heavy jets only, if n ∈ V HM . On the other hand, let us choose n = z0n̄j(s), where z0 > 1
is the function of s, and consider s→ ∞. Then the condition (2.75) defines z0: if

z0 >>
n̄j(s/4)

n̄j(s) − n̄j(s/4)
(2.76)

then we are able to obey the inequalities (2.67) and (2.68).
The jet mean multiplicity, see Sec.3.2.2,

ln n̄j(s) ∼
√

ln s. (2.77)

Then
n̄j(s/4)

n̄j(s) − n̄j(s/4)
=
{

eγ/
√

ln s − 1
}−1

∼
√

ln s << n̄j(s). (2.78)

at s→ ∞. Therefore, (2.76) may be satisfied outside the VHM domain.
Let us compare now the solutions of the equation of state. Inserting (2.69) into (2.38) we can find

for a jet of mass
√
s that

z1
c = z1

s − κ0

n
= 1 +

1

n̄j(s)
− κ0

n
. (2.79)

The two-jet contribution of the masses ∼ √
s/2 gives:

z2
c = z2

s − κ0

n
= 1 +

1

n̄j(s/4)
− κ0

n
. (2.80)

At arbitrary finite energies (z2
c − z1

c ) > 0 and, as follows from (2.78), they decrease ∼ (1/n̄j(s)
√

ln s)
with energy.

Noting the normalization condition, T (z = 1, s) = σtot(s), and assuming that the vacuum is stable,
i.e. σn ≤ O(e−n), we can conclude that

– if n ∈ V HM then zs attracts zc, i.e. zs → zc, and if zc − 1 << 1 then this contributions should
be significant in σtot;

– if s → ∞, then zc − 1 << 1, and if n satisfy the inequality (2.75), or if z0 satisfy the inequality
(2.76), then considered contributions are significant in σtot.
It is the (energy-multiplicity) asymptotics equivalence principle. One of the simplest consequences of
this principle is the prediction that the mean transverse momentum of created particles should increase
with multiplicity at sufficiently high energies.

This principle is the consequence of independence of contributions in the VHM domain on the type
of singularity in the complex z plane and of the energy conservation law. Just the last one shifts the
two-jet singularity to the right and zc(s) < zc(s/4).
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We would like to notice also that this effect, when the mostly ‘energetic population’ survives was
described mathematically by V.Volterra [55]. Intuitively evident is that one may find the ‘energetic
population’ searching the VHM one, or, it is the same, giving it a rich supply, i.e. to give the population
enough energy. This is our (energy-multiplicity) equivalence ((ε− n)-equivalence) principle.

Notice, if the amount of supply is too high then few populations may grow. This is the case when
the difference (z2

c − z1
c ) > 0 tends to zero at high energies.

We would like to note that singular at finite z partition functions was predicted in the (λφ3)6-
theory [57], in QCD jets [56], in the generalized Bose-Einstein distribution model [58]. In all of this
models decay of the essentially nonequilibrium initial state (highly virtual parton, heavy resonance,
etc) was described.

One may distinguish the phases of the media by a characteristic correlation length. Then the phase
transition may be considered as the process of changing correlation length. Our ‘bootstrap’ solution
predicts just such phenomena: at low multiplicities the long-range correlations among light jets is
dominant. The ‘bootstrap’ solution predicts that for VHM processes just the short-range correlations
among particles of the heavy jet become dominant. The (ε−n)-equivalence means that this transition
is a pure dynamical effect.

3 Model predictions

Multiple production phenomena was first observed more than seventy years ago [59]. During this time a
vast experimental information was accumulated concerning hadron inelastic interactions, see the review
papers [10].

Now we know that at high energy
√
s:

(i) The total cross section σtot(s) of hadron interactions is enhanced almost completely by the inelastic
channels;
(ii) The mean multiplicity of produced hadrons n̄(s) slowly (logarithmically) grows with

√
s;

(iii) The interaction radii of hadrons b̄ slowly (logarithmically) increase with energy.;
(iv) The multiplicity distribution σn(s) is wider than the Poisson distribution.;
(v) The mean value of transverse momentum k of produced hadrons is restricted and is independent
of the incident energy

√
s and produced particle multiplicity n;

(vi) The one-particle energy spectrum dσ ∼ dε/ε.
First of all, (i) means that the high energy hadron interaction may be considered as the ordinary

dissipation process. In this process the kinetic energy of incident particles is spent in produced particle
mass formation.

The VHM process takes place in the vacuum and then it was assumed on the early stages that
the multiple production phenomena reflects a natural tendency of the excited hadron system to get
to equilibrium with the environment [1]. In this way one can introduce as a first approximation the
model that the excited hadron system evolves without any restrictions. In this model we should have
n̄(s) ∼ √

s. The dissipation is maximal in this case and the entropy S exceeds its maximum. This
simple model has definite popularity up to 70-th. But the experimental data (ii) and (iii) prohibit this
model and it was forgotten.

Choosing the model we would like to hope that the considered model
–takes into account experimental conditions (i) - (vi) in the n ∼ n̄(s) domain;
– has natural asymptotics over multiplicity to the VHM region.

It is necessary to remember also that
– New channels of hadron production may arise in the VHM region.

It is impossible to understand all possibilities without those offered in Sec.2.3.2 in the classification of
asymptotics.

Thus, we will observe predictions of
– Multiperipheral models,

distinguishing the soft Pomeron models, see [60].
– The dual-resonance model

predictions for the VHM region are described also. It can be shown that this models predict asymptotics

21



(A) if n >> n̄(s)2. Just this result explains why VHM domain is defined by the condition (2.1).
We are forced since it allows to include pQCD, forbidden by the multiperipheral models, considering
– Hard Pomeron model

production of mini-jets. But we will find using Monte Carlo simulations that the pQCD Pomeron is
unable to adopt the hard channels of hadron production. Then

– The deep inelastic processes
for VHM region will be considered to generalize the DGLAP kinematics in the case of heavy QCD jets
production. The analysis shows that transition to the VHM leads to the necessity to include low-x
sub-processes. As a result we get out of the range of pQCD validity.

– Multiple reduction of jets.
We will see, that at very high energies in the VHM region the heavy jets creation should be a dominant
process if the vacuum is stable with reference to the particle production.

We will consider also decay of the ‘false vacuum’ to describe the consequence of
– Phase transition

in the VHM domain. This channel is hardly seen for n ∼ n̄(s) since the confinement constraints may
prevent cooling of the system up to phase transitions condition.

3.1 Peripheral interaction

3.1.1 Multiperipheral phenomenology

Later on multiple production physics was developed on the basis of experimental observation (iv).
The Regge pole model naturally explains this experimental data and, at the same time, absorbs all
experimental information, (i)-(vi) . At the very beginning, adopting the Regge poles notion without
its microscopical explanation, this description was self-consistent. The efforts to extend the Regge pole
model to the relativistic hadron reactions was ended by the Reggeon diagram technique, see [61] and
references cited therein, and it was used later to construct the perturbation theory for σn [62]. It was
shown that the multiplicity distribution is wider then the Poissonian because of the multi-Pomeron
exchanges.

The leading energy asymptotics Pomeron contribution reflects the created particle kinematics de-
scribed in Appendix D, where the available kinematical scenario in the frame of pQCD are described.
So, the longitudinal momentum of produced particles is large and is strictly ordered. At the same time,
particles transverse momentum is restricted.

Let us consider the inelasticity coefficient introduced in (1.3) κ = 1 − εmax/E < 1, where εmax

is the energy of the fastest particle in the laboratory frame. Then the strict ordering of particles in
the Pomeron kinematics means that κ is independent of the index of the particle. So, if the fastest
particle has the energy εmax ' (1 − κ)

√
s, then the following particle should have the energy ε1 '

(1− κ)εmax ' (1− κ)2
√
s, and so on. Following to this law, (n− 1)-th particle would have the energy

εn ' (1 − κ)n√s. In the laboratory frame the energy should degrade to εn ' m. Inserting here the
above formulated estimation of εn we can find that if the number of produced particles is

n̄(s) ' n0ξ, n0 = − ln(1 − κ)2 > 0, ξ = ln(s/m2), (3.1)

then we may expect the total degradation of energy. This degradation is the necessary condition noting
that the total cross section of slowly moving particles may depend only slightly on energy and is seems
necessary for natural explanation of the weak dependence of the hadron cross sections on the energy.
This consideration would be Lorentz-covariant if one can find the slowly moving particle in an arbitrary
frame. Resulting estimation of mean multiplicity have good qualitative experimental confirmation.

Notice that it was assumed deriving (3.1) that the energy degrades step by step. In other words,
if we introduce a time of degradation, then the time ∼ ξ is needed for complete degradation of energy.
Assuming the random walk in the normal to incident particle plane, we can conclude that the points
of particle production are located on a disk (in the moving frame) of radii b̄ ∼ ξ1/2. This means that
the interaction radii should grow with the energy of the colliding particles.
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If f(a + b → c + ...) is the cross section to observe particle c inclusively in the a and b particles
collision, then it was found experimentally that the ratio

f(π+p→ π− + ...)

σtot(π+p)
=
f(K+p→ π− + ...)

σtot(K+p)
=
f(pp→ π− + ...)

σtot(pp)
(3.2)

is universal. This may be interpreted as the direct evidence of fact that the hadron interactions have
a large-distance character, i.e. that the interaction radii should be large.

This picture assumes that the probability to have total degradation of energy is

∼ e−b2/4α′ξ , (3.3)

where α′ is some dimensional constant (the slope of Regge trajectory) and b is the 2-dimensional
impact parameter. This formulae has also the explanation connected to the vacuum instability with
reference to the real particle production in the strong colour electric field.

The above picture has natural restrictions. We can assume that each of the produced particles
may be the source of above described t-channel cascade of the energy degradation. This means that in
the frame of the Pomeron phenomenology, we are able to describe the production of

n < n̄(s)2 (3.4)

particles only. If n > n̄(s)2 then the density of particles in the diffraction disk becomes large and (a)
one should introduce short-distance interactions, or (b) rise interaction radii. It will be shown that
just (a) is preferable.

We will build the perturbation theory in the phenomenological frames (i) - (vi). Considering the
system with variable number of particles the generating function

T (z, s) =
∑

n

znσn(s) (3.5)

would be useful. One can use also the decomposition:

T (z, s) = σtot(s) exp

{

(z − 1)C1(s) +
1

2
(z − 1)2C2(s) + ...

}

, (3.6)

where, by definition,

C1(s) = n̄(s) =
∂

∂z
lnT (z, s)

∣

∣

∣

∣

z=1

(3.7)

is the mean multiplicity,

C2(s) =
∂2

∂z2
lnT (z, s)

∣

∣

∣

∣

z=1

(3.8)

is the second binomial momentum, and so on.
Our idea is to assume that all Cm, m > 1 may be calculated perturbatively choosing

P (0, s) = e(z−1)n̄(s) (3.9)

as the Born approximation ‘superpropagator’. It is evident that (3.9) leads to Poisson distribution.
Then, having in mind (ii), (iii) and (v) we will use following anzats:

P (q, s) = eα(o)−α′q2 ln se(z−1)ξ, (3.10)

where the transverse momentum q is conjugate to the impact parameter b. So, the Born term (3.10)
is a Fourier transform of the simple product of (3.9) and (3.3). It contains only one free parameter,
the Pomeron intercept α(0). On the phenomenological level it is not important to know the dynamical
(microscopical) origin of (3.10).
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For our purpose the Laplace transform of P would be useful. If n̄(s) = n0 ln s, then

P(ω, q2) =

∫ ∞

0

dξe−ωξP (q2, s) =
1

ω + α′q2 + ψ0(z)
. (3.11)

It is the propagator of two-dimensional field theory with mass squared

ψ0(z) = (1 − α) + (1 − z)n0, n0 > 0.

Knowing the Gribov’s Reggeon calculus completed by the Abramovski-Gribov-Kancheli (AGK) cutting
rules [63] one can investigate the consequences of this approach.

The LLA approximation of the pQCD [19] gives

∆ = α(0) − 1 =
12 ln2

π
αs ≈ 0.55, αs = 0.2. (3.12)

But radiative corrections give ∆ ≈ 0.2 [64]. We will call this solution as the BFKL model.
The quantitative origin of the restriction (3.4) is following. The contribution of the diagram with ν

Pomeron exchange gives, since the diffraction radii increase with s, see (3.7), mean value of the impact
parameter decreasing with ν:

b̄2 ' 4α′ ln(s/m2)/ν = aα′ n̄(s)

ν
,

where a = 4/n0. On the other hand, the number of necessary Pomeron exchanges ν ∼ n/n̄(s) since
one Pomeron gives maximal contribution (with factorial accuracy) at n ' n̄(s). In result,

b̄2 ∼ aα′ n̄(s)2

n
. (3.13)

Therefore, if the transverse momentum of created particles is a restricted quantity, i.e. µ2
0b̄

2 ∼ 1,
where µ0 is a constant, then the mechanism of particle production is valid up to

n ∼ n̄(s)2. (3.14)

Following our general idea, it will be enough for us find the position of singularity over z. Analysis
shows that (3.12) predict the singularity at infinity.

In Appendix E the Gribov’s Reggeon diagram technique with cut Pomerons is described and (3.14)
is derived. It can be shown using this technique that the model with the critical Pomeron, ∆ = 0, is
inconsistent from the physical point of view [62].

As was mentioned above, the model with ∆ = α(0)− 1 > 0 is natural for the pQCD. The concrete
value of ∆ will not be important for us. We will assume only that

0 < ∆ << 1. (3.15)

It is evident that the Born approximation (3.10) with ∆ > 0 violate the Froissart boundary condition.
But it can shown that the sum of ‘eikonal’ diagrams9 solves this problem, see [66] and references cited
therein.

The interaction radii may increase with increasing number of produced particles if ∆ > 0 and then
the restriction (3.14) is not important. In the used eikonal approximation, see Appendix F,

z ' zc = 1 +
1

n̄(s)
ln

n

n̄(s)
(3.16)

are essential. Then the interaction radii b̄2 ∼ B2 ' 4α′ξ(∆ξ + ln(n/n̄(s))) for this values of z. Notice
that

B2 ∼ ξ2 >> ξ (3.17)

9The eikonal approximation in a quantum field theory was developed in [65].
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even for n ∼ nmax ∼ √
s.

Nevertheless, using (3.16) one can find that the cross section decrease faster than any power of
e−n:

− ln

(

σn(s)

σtot(s)

)

=
n

n̄(s)
ln

n

n̄(s)
(1 +O(n̄(s)/n)) (3.18)

Generally speaking, although this estimation is right in the VHM region, there may be large corrections
because of Pomeron self-interactions. But careful analyses shows [62] that these contributions can not
change drastically the estimation (3.18).

3.1.2 Dual resonance model

The search of dynamical source of the Regge description shows the different dynamical nature of
the Regge and Pomeron poles. The established resonance-Regge pole duality, e.g. [67] led to the
Veneziano representation of the Regge amplitudes [68]. The Reggeon pole gives the decreasing ∼ s−1/2

contribution, but careful investigation shows that the mass spectrum of dual to Regge pole resonances
increase exponentially. This prediction was confirmed by experiment, see the discussion of this question
in [69].

The field theory development is marked by considerable efforts to avoid the problem of colour
charge confinement. Notice that the classical string has the same excitation spectrum. The remarkable
attempt in this direction based on the string model, in its various realizations, see e.g. [70]. But, in spite
of remarkable success (in formalism especially) there is not an experimentally measurable prediction
of this approach till now, e.g. [71].

We would like to describe in this section production of ‘stable’ hadrons through decay of resonances
[72, 73].

Our consideration will use the following assumptions.
A. The string interpretation of the dual-resonance model bring to the observation that the mass

spectrum of resonances, i.e. the total number ρ(m) of mass m resonance excitations, grows exponen-
tially:

ρ(m) = (m/m0)
γeβ0m, β0 = const, m > m0. (3.19)

Note also that the same hadron mass spectrum (3.19) was predicted in the ‘bootstrap’ approach [69, 74].
Moreover, it predicts that

γ = −5/2. (3.20)

B. The mass m resonance creation cross section σR(m) has the Regge pole asymptotics:

σR(m) = gRm0

m
, gR = const. (3.21)

It was assumed here that the intercept of the Regge pole trajectory αR = 1/2. So, only the meson
resonances would be taken into account.

C. If σR
n (m) describes the decay of a mass m resonance into the n hadrons, then the mean multi-

plicity of hadrons

n̄R(m) =

∑

n nσ
R
n (m)

σR(m)
. (3.22)

Following the Regge model,

n̄R(m) = n̄R
0 ln

m2

m2
0

. (3.23)

D. We will assume that there is a definite vicinity of n̄R(m) where σR
n (m) is defined by n̄R(m)

only. So, in this vicinity

σR
n (m) = σR(m)e−n̄R(m)(n̄R(m))n/n!. (3.24)

This is the direct consequence of the Regge pole model, if m/m0 is high enough.
Following our idea, we will distinguish the ‘short-range’ correlations among hadrons and the ‘long-

range’ correlations among resonances. The ‘connected groups’ would be described by resonances and
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the interactions among them should be described introducing for this purpose the correlation functions
among strings. So, we will consider the ‘two-level’ model of hadron creation: the first level describes
the short-range correlation among hadrons and the second level is connected to the correlations among
resonances.

The exact calculations are given in Appendix G.
Comparing A and B solutions we can see the change of attraction points with rising n: at n '

n̄2(s) = n̄R
0 ln(

√
s/m0) the transition from (A) asymptotics to (C) in (2.41) should be seen. At the

same time one should see the strong KNO scaling violation at the tail of the multiplicity distribution.
We have neglected the resonance interactions deriving these results. This assumption seems natural

since at n̄(s) << n < n̄2(s) the inequality (G.17) should be satisfied, see discussion of inequalities (2.67)
and (2.68) in Sec.2.3.4.

3.2 Hard processes

3.2.1 Deep inelastic processes

The role of soft colour partons in the high energy hadron interactions is the most intriguing modern
problem of particle physics. So, the collective phenomena and symmetry breaking in the non-Abelian
gauge theories, confinement of coloured charges and the infrared divergences of the pQCD are the
phenomena just of the soft colour particles domain.

It seems natural that the very high multiplicity (VHM) hadron interaction, where the energy of
the created particles is small, should be sensitive to the soft colour particle densities. Indeed, the aim
of this Section is to show that even in the hard by definition deep inelastic scattering (DIS), see also
[21] , the soft color particles role becomes important in the VHM region [75].

To describe the hadron production in pQCD terms the parton-hadron duality is assumed. This
is natural just for the VHM process kinematics: because of the energy-momentum conservation law,
produced (final-state) partons cannot have high relative momentum and, if they were created at small
distances, production of qq̄ pairs from the vacuum will be negligible (or did not play an important role).
Therefore, if the ‘vacuum’ channel is negligible, only the pQCD contributions should be considered
[50, 76]. All this means that the multiplicity, momentum etc. distributions of hadron and colored
partons are the same. (This reduces the problem practically to the level of QED.) xx

Let us consider now n particles (gluons) creation in the DIS [77]. We would like to calculate
Dab(x, q

2;n), where

∑

n

Dab(x, q
2;n) = Dab(x, q

2). (3.25)

As usual, let Dab(x, q
2) be the probability to find parton b with virtuality q2 < 0 in the parton a of

∼ λ virtuality, λ >> Λ and αs(λ) << 1. We may always choose q2 and x so that the leading logarithm
approximation (LLA) will be acceptable. One should assume also that (1/x) >> 1 to have the phase
space, into which the particles are produced, sufficiently large.

Then Dab(x, q
2) is described by ladder diagrams. From a qualitative point of view this means the

approximation of random walk over coordinate ln(1/x) and the time is ln ln |q2|. LLA means that the
‘mobility’ ∼ ln(1/x)/ ln ln

∣

∣q2
∣

∣ should be large

ln(1/x) >> ln ln
∣

∣q2/λ2
∣

∣ . (3.26)

But, on other hand [78],
ln(1/x) << ln

∣

∣q2/λ2
∣

∣ . (3.27)

See also Appendix D.
The leading contributions, able to compensate the smallness of

αs(λ) << 1,

give integration over a wide range λ2 << k2
i << −q2, where k2

i > 0 is the ‘mass’ of a real, i.e. time-like,
gluon. If the time needed to capture the parton into the hadron is ∼ (1/Λ) then the gluon should decay
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if k2
i >> λ2. This leads to the creation of (mini)jets. The mean multiplicity n̄j in the QCD jets is high

if the gluon ‘mass’ |k| is high: ln n̄j '
√

ln(k2/λ2).
Raising the multiplicity may (i) raise the number of (mini)jets ν and/or (ii) raise the mean value

mass of (mini)jets ¯|ki|. We will see that the mechanism (ii) would be favorable.
But raising the mean value of gluon masses, |ki|, decreases the range of integrability over ki, i.e.

violates the condition (3.26) for fixed x. One can remain the LLA taking x → 0. But this may
contradict to (3.27), i.e. in any case the LLA becomes invalid in the VHM domain and the next to
leading order corrections should be taken into account.

Noting that the LLA gives the main contribution, that the rising multiplicity leads to the infrared
domain, where the soft gluon creation becomes dominant.

First of all, neglecting the vacuum effects, we introduce definite uncertainty to the formalism. It is
reasonable to define the level of strictness of our computations. Let us introduce for this purpose the
generating function Tab(x, q

2; z):

Dab(x, q
2;n) =

1

2πi

∮

dz

zn+1
Tab(x, q

2; z). (3.28)

At large n, the integral may be calculated by the saddle point method. The smallest solution zc of the
equation

n = z
∂

∂z
lnTab(x, q

2; z) (3.29)

defines the asymptotic over n behavior:

Dab(x, q
2;n) ∝ exp{−n ln zc(x, q

2;n)}. (3.30)

Using the statistical interpretation of zc as the fugacity it is natural to write:

ln zc(x, q
2;n) =

Cab(x, q
2;n)

n̄ab(x, q2)
. (3.31)

Notice that the solution of eq.(3.29) zc(x, q
2;n) should be an increasing function of n. At first glance

this follows from the positivity of all Dab(x, q
2;n). But actually this assumes that Tab(x, q

2; z) is a
regular function of z at z = 1. This is a natural assumption considering just the pQCD predictions.

Therefore,

Dab(x, q
2;n) ∝ exp{− n

n̄ab(x, q2)
Cab(x, q

2;n)}. (3.32)

This form of Dab(x, q
2;n) is useful since usually Cab(x, q

2;n) is a slowly varying function of n. So, for
a Poisson distribution Cab(x, q

2;n) ∼ lnn. For KNO scaling we have Cab(x, q
2;n) = const. over n.

We would like to note that, neglecting effects of vacuum polarization, we introduce into the ex-
ponent so high uncertainty assuming n ' np that it is reasonable to perform the calculations with
exponential accuracy. So, we would calculate

−µ̄ab(x, q
2;n) = ln

Dab(x, q
2;n)

Dab(x, q2)
=

n

n̄ab(x, q2)
Cab(x, q

2;n)(1 +O(1/n)) (3.33)

The n dependence of Cab(x, q
2;n) defines the asymptotic behavior of µ̄ab(x, q

2;n) and calculation
of its explicit form would be our aim.

We can conclude, see Appendix H, that our LLA is applicable in the VHM domain till

ω(τ, z) << ln(1/x) << τ = ln(−q2/λ), (3.34)

where

ω(τ, z) =

∫ τ

τ0

dτ ′

τ ′
wg(τ ′, z). (3.35)

and
wg(τ, z) =

∑

n

znwg
n(τ) (3.36)
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is the generating function of the multiplicity distribution in a gluon jet. In the frame of constraints
(3.34),

F ab(q2, x;w) ∝ exp
{

4
√

Nω(τ, z) ln(1/x)
}

. (3.37)

The mean multiplicity of gluons created in the DIS kinematics

n̄g(τ, x) =
∂

∂z
lnF ab(q2, x;w) |z=1 = ω1(τ)

√

4N ln(1/x)/ ln τ >> ω1(τ), (3.38)

where

ω1(τ) =

∫ τ

τ0

dτ1
τ1
n̄j(τ) (3.39)

and the mean gluon multiplicity in the jet n̄j(τ) has the following estimation [79]:

ln n̄j(τ) '
√
τ (3.40)

Inserting (3.40) into (3.39),
ω1(τ) = n̄j(τ)/

√
τ .

Therefore, noting (3.27),

n̄g(τ, x) ' n̄j(τ)
√

4N ln(1/x)/τ ln τ << n̄j(τ). (3.41)

This means that the considered ‘t-channel’ ladder is important in the narrow domain of multiplicities

n ∼ n̄g << n̄j . (3.42)

So, in the VHM domain n >> n̄g one should consider
(i) The ladder diagrams with a small number of rungs;
(ii) To take into account the multi-jet correlations assuming that increasing multiplicity leads to the
increasing number of rungs in the ladder diagram.
To choose one of these possibilities one should consider the structure of ω(τ, z) much more carefully.
This will be done in the Sec.3.5.

We can conclude that in the VHM domain, multiplicity production unavoidably destroys the ladder
LLA. To conserve this leading approximation one should choose x → 0 and, in result, to get to the
multi-ladder diagrams, since in this case αs ln(−q2/λ2) ∼ 1 and αs ln(1/x) ∼ 1. Such theory was
considered in [80].

3.2.2 QCD jets

As was mentioned above, the pQCD description is right if the colour particles virtuality is bounded
from below, |q2| ≥ la2, where λ is chosen so that αs(λ

2) << 1. This kinematical restriction leads to
the infrared cutoff [81, 82] and may essentially influence the particle production in the VHM region.
It is a special property of pQCD. Indeed, for example, careful investigation of this question in the
asymptotically free (ϕ3)6-theory [83] shows that this restriction is ‘unobservable’ since their inclusion
takes us beyond the LLA [84]. At the same time, the condition |q2| ≥ la2 essentially shrinks the phase
space where particles are produced.

Particle (gluons) distribution in pQCD jets was investigated firstly in [81, 85] and it was shown
that the generating function is singular at zs − 1 ∼ (1/n̄). Let us consider this solution stable with
reference to the discussed cutoff.

The explicit formulae for one jet production may be written in the form, see Appendix I:

σ(1j)
n (M) = a(1j)(M,n)e−cjn/n̄j(M), n ≥ n̄j(M), (3.43)

where a(1j)(n,M) is the polynomial function of n, n̄j(M) is the mean multiplicity in the mass M jet
and cj is a positive constant.
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The linear behavior of the exponent in (I.4) over n/n̄ has important consequences. So, let us assume
that the total energy M is divided into two jets of masses M1 and M2 equally: M1 = M2 = M/2.
If, for instance, M2 << M1 ' M then the distribution will coincide with (3.43), but the second jet
distribution would renormalize the coefficient a(1j).

Then the multiplicity distribution in the two-jet event would be

σ(2j)
n (M) = a(2j)(M,n)e−cjn/n̄j(M/2), (3.44)

where n1 + n2 = n is the total multiplicity.
Comparing (3.43) with (3.44) we can see that with exponential accuracy:

∼ exp{−cj
n̄j(M) − n̄j(M/2)

n̄j(M)n̄j(M/2)
n}

the (3.43) would dominate in the VHM domain since the mean multiplicity n̄j(M) increases with M .
The experimental observation of this phenomena crucially depends on the value of a1j , a2j ,... but

if (3.43) is satisfied then one can expect that the events in the VHM domain would be enhanced by
QCD jets and the mass of jets would have a tendency to be high with growing multiplicity.

The singular at finite z solutions arise in the field theory, when the s-channel cascades (jets) are
described [56]. By definition T (z, s) coincides with the total cross section at z = 1. Therefore, the
nearness of zc to one defines the significance of the corresponding processes. It is evident that both s
and n should be high enough to expect the jets creation.

Summarizing the above estimations, we may conclude that

O(e−n) ≤ σn < O(1/n), (3.45)

i.e. the soft Regge-like channel of hadron creation is suppressed in the VHM region in the high energy
events with exponential accuracy.

3.3 Phase transition - condensation

The aim of this section is to find the experimentally observable consequences of collective phenomena in
the high energy hadron inelastic collision [86]. We will pay the main attention to the phase transitions,
leaving out other possible interesting collective phenomena.

The statistics experience dictates that we should prepare the system for the phase transition. The
temperature in a critical domain and the equilibrium media are just these conditions. It is evident that
they are not a trivial requirement considering the hadrons inelastic collision at high energies.

The collective phenomena by definition suppose that the kinetic energy of particles of media are
comparable, or even smaller, than the potential energy of their interaction. It is a quite natural condi-
tion noting that, for instance, the kinetic motion may destroy even completely at a given temperature
T , necessary for the phase transition long-range order. This gives, more or less definitely, the critical
domain.

The same idea as in statistics seems natural in the multiple production physics. We will assume
(A) that the collective phenomena should be seen just in the very high multiplicity (VHM) events,
where, because of the energy-momentum conservation laws, the kinetic energy of the created particles
can not be high.

We will lean at this point on the S-matrix interpretation of statistics [87], see Sec.2.2. It based on
the S-matrix generalization of the Wigner function formalism of Carruthers and Zachariazen [39] and
the real-time finite temperature field theory of Schwinger and Keldysh [29, 30], see Appendices A,B
and C.

It was mentioned that the n-particle partition function in this approach coincides with the n particle
production cross section σn(s) (in the appropriate normalization condition). Then, the cross section
σn(s) can be calculated applying the n-point Wigner function Wn(X1, X2, ..., Xn). In the relativistic
case Xk = (u, q)k are the 4-vectors. So, the external particles are considered as the ‘probes’ to measure
the state of the interacting fields, i.e. the low mean energy of probes means that the system is ‘cold’.

29



The multiple production phenomena may be considered also as the thermalization process of in-
cident particle kinetic energy dissipation into the created particle mass. From this point of view the
VHM processes are highly nonequilibrium since the final state of this case is very far from the initial
one. It is known in statistics [24] that such processes aspire to be the stationary Markovian with a high
level of entropy production. In the case of complete thermalization, the final state is in equilibrium.

The equilibrium we will classify as the condition in the frame of which the fluctuations of corre-
sponding parameter are Gaussian. So, in the case of complete thermalization, the probes should have
the Gaussian energy spectra. In other terms, the necessary and sufficient condition of the equilibrium
is the smallness of the mean value of energy correlators [42, 87]. From the physical point of view, the
absence of these correlators means depression of the macroscopic energy flows in the system.

The multiple production experiment shows that the created particle energy spectrum is far from a
Gaussian law, i.e. the final states are far from equilibrium. The natural explanation of this phenomena
consist in the presence of (hidden) conservation laws in the interacting Yang-Mills fields: it is known
that the presence of sufficient number of first integrals in involution prevents thermalization completely.

But nevertheless the VHM final state may be equilibrium (B) in the above formulated sense. This
means that the forces created by the non-Abelian symmetry conservation laws may be frozen during
the thermalization process (remembering its stationary Markovian character in the VHM domain). We
would like to take into account that the entropy S of a system is proportional to number of created
particles and, therefore, S should tend to its maximum in the VHM region [1].

One may consider following the small parameter (n̄(s)/n) << 1, where n̄(s) is the mean value of
the multiplicity n at a given CM energy

√
s. Another small parameter is the energy of the fastest

hadron εmax. One should assume that in the VHM region (εmax/
√
s) → 0. So, the conditions:

n̄(s)

n
<< 1,

εmax√
s

→ 0 (3.46)

would be considered as the mark of the processes under consideration. We can hope to organize the
perturbation theory over them having there small parameters. In this sense VHM processes may be
‘simple’, i.e. one can use for their description semiclassical methods.

So, considering VHM events one may assume that the conditions (A) and (B) are satisfied and
one may expect the phase transition phenomena.

The S-matrix interpretation of statistics is based on the following definitions. First of all, let us
introduce the generating function [49]:

T (z, s) =
∑

n

znσn(s). (3.47)

Summation is performed over all n up to nmax =
√
s/m and, at finite CM energy

√
s, T (z, s) is a

polynomial function of z. Following our idea, see Sec.2.3, let us assume now that z > 1 is sufficiently
small and for this reason T (z, s) depends on the upper boundary nmax only weakly. In this case one
may formally extend summation up to infinity and in this case T (z, s) may be considered as a whole
function. This possibility is important being the equivalent of the thermodynamical limit and it allows
to classify the asymptotics over n in accordance with the position of singularities over z.

Let us consider T (z) as the big partition function, where z is ‘activity’. It is known [51] that T (z)
should be regular inside the circle of unit radius. The leftist singularity lies at z = 1. This singularity
is manifestation of the first order phase transition [51, 24, 52].

The origin of this singularity was investigated carefully in the paper [24]. It was shown that the
position of singularities over z depends on the number of particles n in the system: the two complex
conjugated singularities move to the real z axis with rising n and in the thermodynamical limit, n = ∞,
they pinch the point z = 1 in the first order phase transition case. More general analysis [52] shows
that if the system is in equilibrium, then T (z) may be singular only at z = 1 and z = ∞.

The position of the singularity over z and the asymptotic behavior of σn are related closely. Indeed,
for instance, inserting into (3.47) σn ∝ exp{−cnγ} we find that T (z) is singular at z = 1 if γ < 1.
Generally, using the Mellin transformation (2.37) one can find an asymptotic estimation (2.39):

σn ∝ e−n ln zc(n), zc > 1, (3.48)
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where zc is smallest solution of the equation of state

n = z
∂

∂z
lnT (z). (3.49)

Therefore, to have the singularity at z = 1, we should consider zc(n) as a decreasing function of n.
On the other hand, at constant temperature, ln zc(n) ∼ µc(n) is the chemical potential, i.e. is the work
necessary for creation of one particle. So, the singularity at z = 1 means that the system is unstable:
the less work is necessary for creation of one more particle if µ(n) is a decreasing function of n.

The physical explanation of this phenomena is the following, see also [88]. The generating function
T (z) has following expansion:

T (z) = exp{
∑

l

zlbl}, (3.50)

where bl are known as the Mayer’s group coefficients [25]. They can be expressed through the inclusive
correlation functions and may be used to describe formation of droplets of correlated particles, see
Sec.2.3.3. So, if droplet consist of l particles, then

bl ∼ e−βξl(d−1)/d

(3.51)

is the mean number of such droplets. Here ξl(d−1)/d is the surface energy of d-dimensional droplet.
Inserting this estimation into (3.50),

lnT (z) ∼
∑

l

eβ(lµ−ξl(d−1)/d), βµ = ln z. (3.52)

The first term in the exponent βlµ is the volume energy of the droplet and being positive it tries to
enlarge the droplet. The second surface term −βξl(d−1)/d tries to shrink it. Therefore, the singularity
at z = 1 is the consequence of instability: at z > 1 the volume energy abundance leads to unlimited
growth of the droplet.

In conclusion we wish to formulate once more the main assumptions.
(I). It was assumed first of all that the system under consideration is in equilibrium. This condition

may be naturally reached in the statistics, where one can wait the arbitrary time till the system
becomes in equilibrium. Note, in the critical domain, the time of relaxation tr ∼ (Tc/(T −Tc))

ν → ∞,
(T − Tc) → +0, ν > 0, Tc is the critical temperature.

We cannot give the guarantee that in the high energy hadron collisions the final state system is
in equilibrium. The reason of this uncertainty is the finite time the inelastic processes and presence
of hidden (confinement) constraints on the dynamics. But if the confinement forces are frozen in the
VHM domain, i.e. the production process is ‘fast’, then the equilibrium may be reached.

We may formulate the quantitative conditions, when the equilibrium is satisfied [42]. One should
have the Gaussian energy spectra of created particles. If this condition is hardly investigated in the
experiment, then one should consider the relaxation of ‘long-range’ correlations. This excludes the
usage of relaxation condition for the ‘short-range’ (i.e. resonance) correlation

(II). The second condition consists in the requirement that the system should be in the critical
domain, where the (equilibrium) fluctuations of the system become high. Having no theory of hadron
interaction at high energies we can not define where lies the ‘critical domain’ and even whether it exists
or not.

But, having the VHM ‘cold’ final state, we can hope that the critical domain is achieved.
The quantitative realization of this picture is given in Appendix J. It is important to note that

used there the semiclassical approximation is rightfully in the VHM domain.

4 Conclusion

4.1 Discussion of physical problems

It seems useful to start the discussion of models outlined the main problems, from authors point of
view.
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A. Soft colour parton problems
The infrared region of soft colour parton interactions is a very important problem of high energy

hadron dynamics. Such fundamental questions as the infrared divergences of pQCD, collective phe-
nomena in the coloured particles system and symmetry breaking are the phenomena of the infrared
domain.

The standard (most popular) hadron theory considers pQCD at small distances (in the scale of
Λ ' 0.2Gev) as the exact theory. This statement is confirmed by a number of experiments, namely
deep-inelastic scattering data, hard jets observation. But the pQCD predictions have a finite range of
validity since the non-perturbative effects should be taken into account at distances larger then 1/Λ.

It is natural to assume, building the complete theory, that at large distances the non-perturbative
effects lay on10 the perturbative ones. As a result pQCD loses its predictability screened by the
non-perturbative effects.

Notice, the pQCD running coupling constant αs(q
2) = 1/b ln(q2/Λ2) becomes infinite at q2 = Λ2

and we do not know what happens with pQCD if q2 < Λ2. There are few possibilities. For instance,
there is a suspicion [13] that at q2 ∼ Λ2 the properties of theory changed so drastically (being defined
on a new vacuum) that even the notions of pQCD disappeared. This means that pQCD should be
truncated from below on the ‘fundamental’ scale Λ. It seems natural that this infrared cut-off would
influence the soft hadrons emission.

The new possibility is described in Appendix K. This strict formalism allows to conclude that pure
pQCD contributions are realized on zero measure, i.e. it is the phenomenological theory only. The
successive approach shows that the Yang-mills theory should be described in terms of (action,angle)-like
variables. The last one means that the self-consistent description excludes such notions as the ‘gluon’.
As a result of this substitution new perturbation theory would be free from infrared divergences, i.e.
there is not necessity to introduce the infrared cutoff parameter Λ. (Moreover, in the sector of vector
fields (without quarks) the theory is ultraviolet stable.) It seems important for this reason to investigate
experimentally just VHM events, where the soft colour partons production is dominant.

It is important to try to raise the role of pQCD in the ‘forbidden’ area of large distances. The
VHM processes are at highly unusual condition, where the non-perturbative effects must be negligible.

B. Dissipation problems
The highly nonequilibrium states decay (thermalization) which means in the pQCD terms that the

process of VHM formation should be enhanced, at least in asymptotics over multiplicity and energy,
by jets. It is the general conclusion of nonequilibrium thermodynamics and it means that the very
nonequilibrium initial state tends to equilibrium (thermalized) as fast as possible.

The entropy S of a system is proportional to the number of created particles and, therefore, S
should tend to its maximum in the VHM region [1]. But the maximum of entropy testifies also the
equilibrium of the system.

C. Collective phenomena
We should underline that the collective phenomena may take place if and only if the particles

interaction energy is comparable to the kinetic one. The VHM system considered may be ‘cold’
and ‘equilibrium’. For this reason the VHM state is mostly adopted for investigation of collective
phenomena. One of possible states in which the collective effects, see a.g. [89], may be important is
the ‘could coloured plasma’ [90].

The fundamental interest presents the problem of vacuum structure of Yang-Mills theory. For
instance, if the process of cooling is ‘fast’, since the dissipation process of VHM final state forma-
tion should be as fast as possible, then one may consider formation of vacuum domains with various
properties. Then decay of these domains may lead to large fluctuations, for instance, of the isotopic
spin.

Another important question is the collective phenomena in the VHM final state. The last one
may be created ‘perturbatively’, for instance, by the formation of heavy jets. Then the colour charges
should be confined. There are various predictions about this process. One of them predicts that there
should be a first order phase transition.

10The corresponding formalism was described e.g. in [18].
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4.2 Model predictions

Now we can ask: what can models say concerning the above problems?
A. Soft coloured partons production
The multiperipheral models predict fast decreasing of topological cross section in the VHM domain

n̄(s)2 << n << nmax, σn < O(e−n). At the same time the mean transverse momentum should
decrease in this domain since the interaction radii should ‘increase’ with n.

The BFKL Pomeron predicts the same asymptotics, σn < O(e−n), but the pQCD jet predicts
σn = O(e−n). The naive attempt to insert into the BFKL Pomeron the production of particles via
(mini)jets seems impossible.

This ‘insertion’ can be done into the DIS ladder but investigation of the LLA kinematics in the
VHM domain allows the conclusion that the ‘low-x’ contributions should be taken into account.

All this experience allows the assumption that in the VHM domain no ‘t-channel ladder’ diagrams
play sufficient role. This means the existence of a transition to the processes with jet dominance. The
pQCD is unable to predict the transition mechanism.

B. Transition into ’equilibrium’
If the t-channel ladders are ‘destroyed’ in the VHM region, then jets, despite the small factor O(1/s)

in the cross sections, are the only mechanism of particle production in the VHM domain. Dominance
of heavy jets in the VHM domain may naturally explain the tendency towards equilibrium.

But the description of thermalization in terms of jets of massless gluons production destroy this
hope: the jet contribution σn = O(e−n) assumes ‘bremsstrahlung’ of soft gluons [91]. This prevents
the equilibrium since ordering without fail introduce the non-relaxing correlations.

C. Collective phenomena
Considering the collective phenomena, we proposer to distinguish (a) the collective phenomena

connected with the vacuum and (b) the collective phenomena produced in the VHM system. Following
the experience of Sec.3.3 we can conclude that the signal of vacuum instability is inequality: σn >
O(e−n).

The case (b) will not effect the cross section σn. But if the system became equilibrium in the VHM
domain then the collective phenomena may be investigated using ordinary thermodynamical methods.
For instance, noting that −{ln(T (βc, z)/T (βc, z))}/βc = F(βc, z) is the free energy one can measure
the thermal capacity

∂

∂βc
F(βc, z) = C(βc, z). (4.1)

Then, comparing capacities of hadron and γ-quanta systems we can say whether or not the phase
transition happened.

The connection of the equilibrium and relaxation of correlations is well known [42]. Continuing
this idea, if the VHM system is in equilibrium one may assume that the colour charges in the pre-
confinement phase of VHM event form the plasma. One should note here that the expected plasma is
‘cold’ and ‘dense’. For this reason no long-range confinement forces would act among colour charges.
Then, being ‘cold’, in such a system various, collective phenomena may be important.

4.3 Experimental perspectives

The experimental possibilities in the VHM domain are not clear up to now. Nevertheless first steps
toward formulation of trigger system was done, see [92]. By this reason we would like to restrict
ourselves by following two general questions. It seems that these questions are mostly important being
in the very beginning of VHM theory.

I. For what values of multiplicity at a given energy the VHM processes become hard?
The answer to this question depends on the value of the incident energy. If we know the answer then
it will appear possible to estimate

– the role of multiperipheral contributions,
– the jet production rate,
– the role of vacuum instabilities.

33



It seems that the experimental answer to this question is absent since produced particles are soft,
theirs mean transverse and longitudinal momenta have the same value. In our understanding this
question means: the total transverse energy may be extremely high.

It is interesting also to search the heavy jets, i.e. to observe the fluctuations of particle density in
the event-by-event experiment, but this program seems vague since, for all evidence, fractal dimensions
tend to zero with increasing multiplicities.

II. For what values of multiplicity does the VHM final state become equilibrium?
We hope that having answer on this question we would be able

– to investigate the status of pQCD,
– to observe the phase transition phenomena directly,
– to estimate the role of confinement constraints.
The equilibrium means that the energy correlation functions mean values are small. It is interesting

also, for example, the charge equilibrium, when the mean value of charge correlation functions are small.
Notice, the effect of the phase space boundary may lead to ‘equilibrium’. Indeed, if ε(p) ' m +

p2/2m and p2 << m2 then one may neglect the momentum dependence of the amplitudes an. In this

case the momentum dependence is defined by the Boltzmann exponent e−βp2/2m, β → ∞, only and
we get naturally to the Gaussian law for momentum distribution. Correlators should be small in this
case since there is no interactions among particles (an are constants). But our question assumes that
we investigate the possibility of equilibrium when n << nmax and p2 >> m2.

A Appendix. Matsubara formalism and the KMS

boundary condition

There are various approaches to build the real-time finite-temperature field theories of Schwinger-
Keldysh type (e.g. [47]). All of them use various tricks for analytical continuation of imaginary-time
Matsubara formalism to real time [93]. The basis of the approaches is the introduction of the Matsubara
field operator

ΦM (x, β) = eβHΦS(x)e−βH , (A.1)

where ΦS(x) is the interaction-picture operator introduced instead of the habitual Heisenberg operator

Φ(x, t) = eitHΦS(x)e−itH .

Eq.(A.1) introduces the averaging over the Gibbs ensemble instead of averaging over zero-temperature
vacuum states.

If the interaction switched on at the moment ti adiabatically and switched off at tf then there is
the unitary transformation:

Φ(x, t) = U(ti, tf )U(ti, t)ΦS(x)U(t, ti). (A.2)

Introducing the complex Mills time contours [46] to connect ti to t, t to tf and tf to ti we form a
‘closed-time’ contour C (the end-points of the contours joined together). This allows to write the last
equality (A.2) in the compact form:

Φ(x) = TC{Φ(x)e
i
∫

C
d4x′Lint(x

′)}S ,

where TC is the time-ordering on the contour C operator.
The generating functional Z(j) of correlation (Green) functions has the form:

Z(j) = R(0) < TCe
i
∫

C
d4x{Lint(x)+j(x)Φ(x)}S >,

where <> means averaging over the initial state.
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If the initial correlations have a little effect, we can perform averaging over the Gibbs ensemble.
This is the main assumption of the formalism: the generating functional of the Green functions Z(j)
has the form in this case:

Z(j) =

∫

DΦ′ < Φ′; ti|e−βHTCe
i
∫

C
d4xj(x)Φ(x)|Φ′; ti >

with Φ′ = Φ′(x). In accordance with (A.1) we have:

< Φ′; ti|e−βH =< Φ′; ti − iβ|

and, as a result,

Z(j) =

∫

DΦ′e
i
∫

Cβ
d4x{L(x)+j(x)Φ(x)}

(A.3)

where the path integration is performed with KMS periodic boundary condition:

Φ(ti) = Φ(ti − iβ).

In (A.3) the contour Cβ connects ti to tf , tf to ti and ti to ti − iβ. Therefore it contains an imaginary-
time Matsubara part ti to ti − iβ. A more symmetrical formulation uses the following realization: ti to
tf , tf to tf − iβ/2, tf − iβ/2 to ti − iβ/2 and ti − iβ/2 to ti − iβ (e.g. [28]). This case also contains the
imaginary-time parts of the time contour. Therefore, eq. (A.3) presents the analytical continuation of
the Matsubara generating functional to real times.

One can note that if this analytical continuation is possible for Z(j) then representation (A.3) gives
good recipe of regularization of frequency integrals in the Matsubara perturbation theory, e.g. [47].
But it gives nothing new for our problem since the Matsubara formalism is a formalism for equilibrium
states only.

B Appendix. Constant temperature formalism

The starting point of our calculations is the n- intom-particles transition amplitude anm, the derivation
of which is well known procedure in the Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism
[94] framework, see also [95]. The (n+m)-point Green function Gnm are introduced for this purpose
through the generating functional Zj [96]:

Gnm(x, y) = (−i)n+m
n
∏

k=1

ĵ(xk)

m
∏

k=1

ĵ(yk)Zj , (B.1)

where

ĵ(x) =
δ

δj(x)
, (B.2)

and

Zj =

∫

DΦeiSj(Φ). (B.3)

The action

Sj(Φ) = S0(Φ) − V (Φ) +

∫

dxj(x)Φ(x), (B.4)

where S0(Φ) is the free part and V (Φ) describes the interactions. At the end of the calculations one
can put j = 0.

To provide the convergence of the integral (B.3) over the scalar field Φ the action Sj(Φ) must
contain a positive imaginary part. Usually for this purpose Feynman’s iε-prescription is used. But it
is better for us to use the integral on the Mills complex time contour C+ [46, 47]. For example,

C± : t→ t+ iε, ε→ +0, −∞ ≤ t ≤ +∞ (B.5)
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and after all the calculations return the time contour on the real axis putting ε = 0.
In eq. (B.3) the integration is performed over all field configurations with standard vacuum bound-

ary condition:
∫

d4x∂µ(Φ∂µΦ) =

∫

σ∞

dσµΦ∂µΦ = 0, (B.6)

which leads to zero contribution from the surface term.
Let us introduce now field φ through the equation:

−δS0(φ)

δφ(x)
= j(x) (B.7)

and perform the shift Φ → Φ + φ in integral (B.3), conserving boundary condition (B.6). Considering
φ as the probe field created by the source:

φ(x) =

∫

dyG0(x− y)j(y),

(∂2 +m2)xG0(x− y) = δ(x− y), (B.8)

only the connected Green function Gc
nm will be interesting for us. Therefore,

Gc
nm(x, y) = (−i)n+m

n
∏

k=1

ĵ(xk)

m
∏

k=1

ĵ(yk)Z(φ), (B.9)

where

Z(φ) =

∫

DΦeiS(Φ)−iV (Φ+φ) (B.10)

is the new generating functional.
To calculate the nontrivial elements of the S-matrix we must put the external particles on the mass

shell. Formally this procedure means amputation of the external legs of Gc
nm and further multiplication

on the free particle wave functions. As a result the amplitude of n- into m-particles transition anm in
the momentum representation has the form:

anm(q, p) = (−i)n+m
n
∏

k=1

φ̂(qk)
m
∏

k=1

φ̂∗(pk)Z(φ). (B.11)

Here we introduce the particle distraction operator

φ̂(q) =

∫

dxe−iqxφ̂(x), φ̂(x) =
δ

δφ(x)
. (B.12)

Supposing that the momentum of particles are insufficient for us the probability of n- into m-
particles transition is defined by the integral:

rnm =
1

n!m!

∫

dΩn(q)dΩm(p)δ(4)(

n
∑

k=1

qk −
m
∑

k=1

pk)|anm|2, (B.13)

where

dΩn(q) =
n
∏

k=1

dΩ(qk) =
n
∏

k=1

d3qk
(2π)32ε(qk)

, (B.14)

is the Lorentz-invariant phase space element. We assume that the energy-momentum conservation
δ-function was extracted from the amplitude.

Note that rnm is the divergent quantity. To avoid this problem with trivial divergence, connected
integration over reference frame, let us divide the energy-momentum fixing δ-function into two parts:

δ(4)(
∑

qk −
∑

pk) =

∫

d4Pδ(4)(P −
∑

qk)δ(4)(P −
∑

pk) (B.15)
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and consider a new quantity:

R(P ) =
∑

n,m

1

n!m!

∫

dΩn(q)dΩm(p)δ(4)(P −
n
∑

k=1

qk)δ(4)(P −
n
∑

k=1

pk)|anm|2 (B.16)

defined on the energy momentum shell (2.6). Here we suppose that the numbers of particles are not
fixed. It is not too hard to see that, up to a phase space volume,

R =

∫

d4P R(P ) (B.17)

is the imaginary part of the amplitude < vac|vac >. Therefore, computing r(P ) the standard renor-
malization procedure can be applied and the new divergences will not arise in our formalism.

The Fourier transformation of δ-functions in (B.16) allows one to write R(P ) in the form:

R(P ) =

∫

d4α1

(2π)4
d4α2

(2π)4
eiP (α1+α2)ρ(α), (B.18)

where

ρ(α) =
∑

n,m

1

n!m!

∫ m
∏

k=1

{dΩ(qk)e−iα1qk}
n
∏

k=1

{dΩ(pk)e−iα2pk}|anm|2. (B.19)

Introducing the Fourier-transformed probability ρ(α) we assume that the phase-space volume is
not fixed exactly, i.e. it is proposed that the 4-vector P is fixed with some accuracy if αi are fixed.
The energy and momentum in our approach are still locally conserved quantities since an amplitude
anm is translationally invariant. So, we can perform the transformation:

α1

∑

qk = (α1 − σ1)
∑

qk + σ1

∑

qk → (α1 − σ1)
∑

qk + σ1P (B.20)

since 4-momenta are conserved. The choice of σ1 fixes the reference frame. This degree of freedom of
the theory was considered in [11].

Inserting (B.11) into (B.19) we find that

ρ(α) = exp{−i
∫

dxdx′(φ̂+(x)D+−(x − x′, α2)φ̂−(x′) −
−φ̂−(x)D−+(x− x′, α1)φ̂+(x′))}Z(φ+)Z∗(−φ−), (B.21)

where D+− and D−+ are the positive and negative frequency correlation functions correspondingly:

D+−(x− x′, α) = −i
∫

dΩ1(q)e
iq(x−x′−α) (B.22)

describes the process of particles creation at the time x0 and its absorption at x′0, x0 > x′0, and α is
the CM 4-coordinate. Function

D−+(x− x′, α) = i

∫

dΩ1(q)e
−iq(x−x′+α) (B.23)

describes the opposite process, x0 < x′0. These functions obey the homogeneous equations:

(∂2 +m2)xG+− = (∂2 +m2)xG−+ = 0 (B.24)

since the propagation of on mass-shell particles is described.
We suppose that Z(φ) may be computed perturbatively. For this purpose the following transfor-

mations will be used (X̂ ≡ δ/δX at X = 0):

e−iV (φ) = e−i
∫

dxĵ(x)φ̂′(x)ei
∫

dxj(x)φ(x)e−iV (φ′) =

= e
∫

dxφ(x)φ̂′(x)e−iV (φ′) =

= e−iV (−iĵ)ei
∫

dxj(x)φ(x), (B.25)
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where ĵ was defined in (B.2) and φ̂ in (B.12). At the end of the calculations, the auxiliary variables j,
φ′ can be taken equal to zero. Using the first equality in (B.25) we find that

Z(φ) = e−i
∫

dxĵ(x)Φ̂(x)e−iV (Φ+φ)e−
i
2

∫

dxdx′j(x)D++(x−x′)j(x′), (B.26)

where D++ is the causal Green function:

(∂2 +m2)xG++(x− y) = δ(x− y). (B.27)

Inserting (B.26) into (B.21) after simple manipulations with differential operators, see (B.25), we may
find the expression:

ρ(α) = e−iV (−iĵ+)+iV (−iĵ−) exp{ i
2

∫

dxdx′ ×
×(j+(x)D+−(x− x′, α1)j−(x′) − j−(x)D−+(x− x′, α2)j+(x′) −

−j+(x)D++(x− x′)j+(x′) + j−(x)D−−(x − x′)j−(x′))}, (B.28)

where
D−− = (D++)∗ (B.29)

is the anticausal Green function.
Considering the system with a large number of particles, we can simplify the calculations choosing

the CM frame P = (P0 = E,~0). It is useful also [41, 33] to rotate the contours of integration over

α0,k : α0,k = −iβk, Imβk = 0, k = 1, 2.

For the result, omitting the unnecessary constant, we will consider ρ = ρ(β).
External particles play a double role in the S-matrix approach: their interactions create and

annihilate the system under consideration and, on the other hand, they are probes through which the
measurement of a system is performed. Since βk are the conjugate to the particles energies quantities
we will interpret them as the inverse temperatures in the initial (β1) and final (β2) states of interacting
fields. They are the ‘good’ parameters if and only if the energy correlations are relaxed.

Kubo-Martin-Schwinger boundary condition

The simplest (minimal) choice of Φ(σ∞) 6= 0 assumes that the system under consideration is
surrounded by black-body radiation. This interpretation restores Niemi-Semenoff’s formulation of the
real-time finite temperature field theory [28].

Indeed, as follows from (B.21), the generating functional ρ(α) is defined by corresponding gener-
ating functional

ρ0(φ±) = Z(φ+)Z∗(−φ−) =
∫

DΦ+DΦ−eiS0(Φ+)−iS0(Φ−) ×
×e−iV (Φ++φ+)+iV (Φ−−φ−), (B.30)

see (B.21). The fields (φ+,Φ+) and (φ−,Φ−) were defined on the time contours C+ and C−.
As was mentioned above, see (2.11), the path integral (B.30) describes the closed path motion in

the space of fields Φ. We want to use this fact and introduce a more general boundary condition which
also guarantees the cancelation of the surface terms in the perturbation framework. We will introduce
the equality:

∫

σ∞

dσµΦ+∂
µΦ+ =

∫

σ∞

dσµΦ−∂
µΦ−. (B.31)

The solution of eq.(B.31) requires that the fields Φ+ and Φ− (and their first derivatives ∂µΦ±) coincide
on the boundary hypersurface σ∞:

Φ±(σ∞) = Φ(σ∞) 6= 0, (B.32)

where, by definition, Φ(σ∞) is the arbitrary ‘turning-point” field.
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In the absence of the surface terms, the existence of a nontrivial field Φ(σ∞) has the influence only
on the structure of the Green functions

G++ =< TΦ+Φ+ >, G+− =< Φ+Φ− >,

G−+ =< Φ−Φ+ >, G−− =< T̃Φ−Φ− >, (B.33)

where T̃ is the antitemporal time ordering operator. These Green functions must obey the equations:

(∂2 +m2)xG+−(x− y) = (∂2 +m2)xG−+(x− y) = 0,

(∂2 +m2)xG++(x− y) = (∂2 +m2)∗xG−−(x− y) = δ(x− y), (B.34)

and the general solution of these equations:

Gii = Dii + gii,

Gij = gij , i 6= j (B.35)

contain the arbitrary terms gij which are the solutions of homogenous equations:

(∂2 +m2)xgij(x− y) = 0, i, j = +,−. (B.36)

The general solution of these equations (they are distinguished by the choice of the time contours C±)

gij(x− x′) =

∫

dΩ1(q)e
iq(x−x′)nij(q) (B.37)

are defined through the functions nij which are the functionals of the ‘turning-point’ field Φ(σ∞): if
Φ(σ∞) = 0 we must have nij = 0.

Our aim is to define nij . We can suppose that

nij ∼< Φ(σ∞) · · ·Φ(σ∞) > .

The simplest supposition gives:

nij ∼< ΦiΦj >∼< Φ2(σ∞) > . (B.38)

We will find the exact definition of nij starting from the S-matrix interpretation of the theory.
It was noted previously that the turning-point field Φ(σ∞) may be arbitrary. We will suppose that

on the remote σ∞ there are only free, on the mass-shell, particles. Formally it follows from (B.35 -
B.37). This assumption is natural also in the S-matrix framework [40]. In other respects the choice of
boundary condition is arbitrary.

Therefore, we wish to describe the evolution of the system in a background field of mass-shell
particles. The restrictions connected with energy-momentum conservation laws will be taken into
account and in other respects background particles are free. Then our derivation is the same as in [11].
Here we restrict ourselves mentioning only the main quantitative points.

Calculating the product anma
∗
nm we describe a time ordered processes of particle creation and

absorption described by D+− and D−+. In presence of the background particles, this time-ordered
picture is slurred over because of the possibility to absorb particles before their creation appears.

The processes of creation and absorption are described in vacuum by the product of operators
φ̂+φ̂− and φ̂−φ̂+. We can derive (see also [11]) the generalizations of (B.21). The presence of the
background particles will lead to the following generating functional:

Rcp = e−iN(φ∗
i φj)R0(φ±), (B.39)

where R0(φ±) is the generating functional for the vacuum case, see (B.30). The operator

N(φ∗i φj)
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describes the external particles environment.
The operator φ̂∗i (q) can be considered as the creation and φ̂i(q) as the annihilation operator and

the product φ̂∗i (q)φ̂j(q) acts as the activity operator. So, in the expansion of N(φ̂∗i φ̂j) we can leave
only the first nontrivial term:

N(φ∗i φj) =

∫

dΩ(q)φ̂∗i (q)nij φ̂j(q), (B.40)

since no special correlation among background particles should be expected. If the external (non-

dynamical) correlations are present then the higher powers of φ̂∗i φ̂j will appear in expansion (B.40).

Following the interpretation of φ̂∗i φ̂j , we conclude that nij is the mean multiplicity of background
particles.

Computing ρcp we must conserve the translation invariance of amplitudes in the background field.
Then, to take into account the energy-momentum conservation laws one should adjust to each vertex
of in-going anm particles the factor e−iα1q/2 and for each out-going particle we have correspondingly
e−iα2q/2.

So, the product e−iαkq/2e−iαjq/2 can be interpreted as the probability factor of the one-particle
(creation+annihilation) process. The n-particles (creation + annihilation) process probability is the
simple product of these factors if there is no special correlations among background particles. This
interpretation is evident in the CM frame αk = (−iβk,~0).

After these preliminaries, it is not too hard to find that in the CM frame we have:

n++(q0) = n−−(q0) =

∑

∞

n=0
ne−

β1+β2
2

|q0|n

∑∞

n=0
e−

β1+β2
2

|q0|n
=

= 1

e
β1+β2

2
|q0|−1

= ñ(|q0|β1+β2

2 ). (B.41)

Computing nij for i 6= j we must take into account the presence of one more particle:

n+−(q0) = θ(q0)

∑∞
n=1 ne

− β1+β1
2 q0n

∑∞
n=1 e

− β1+β1
2 q0n

+ Θ(−q0)
∑∞

n=0 ne
β1+β1

2 q0n

∑∞
n=0 e

β1+β1
2 q0n

=

= Θ(q0)(1 + ñ(q0β1)) + Θ(−q0)ñ(−q0β1) (B.42)

and
n−+(q0) = Θ(q0)ñ(q0β2) + Θ(−q0)(1 + ñ(−q0β2)). (B.43)

Using (B.41), (B.42) and (B.43), and the definition (B.35) we find the Green functions:

Gi,j(x− x′, (β)) =

∫

d4q

(2π)4
eiq(x−x′)G̃ij(q, (β)) (B.44)

where

iG̃ij(q, (β)) =

( i
q2−m2+iε 0

0 − i
q2−m2−iε

)

+

+2πδ(q2 −m2)

(

ñ(β1+β2

2 |q0|) ñ(β2|q0|)a+(β2)

ñ(β1|q0|)a−(β1) ñ(β1+β2

2 |q0|)

)

(B.45)

and
a±(β) = −e β

2 (|q0|±q0). (B.46)

The corresponding generating functional has the standard form:

Rp(j±) = e−iV (−iĵ+)+iV (−iĵ−)e
i
2

∫

dxdx′ji(x)Gij(x−x′,(β))jj(x
′) (B.47)

where the summation over repeated indexes is assumed.
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Inserting (B.47) in the equation of state (2.8) we can find that β1 = β2 = β(E). If β(E) is a ‘good’
parameter then Gij(x − x′;β) coincides with the Green functions of the real-time finite-temperature
field theory and the KMS boundary condition:

G+−(t− t′) = G−+(t− t′ − iβ), G−+(t− t′) = G+−(t− t′ + iβ), (B.48)

is restored. The eq.(B.48) can be deduced from (B.45) by direct calculations.

C Appendix. Local temperatures

We start this consideration from the assumption that the temperature fluctuations are large scale.
We can assume that the temperature is a ‘good’ parameter in a cell the dimension of which is much
smaller then the fluctuation scale of temperature. (The ‘good’ parameter means that the corresponding
fluctuations are Gaussian.)

Let us divide the remote hypersurface σ∞ on a Nc and let us propose that we can measure the
energy and momentum of groups of in- and out-going particles in each cell. The 4-dimension of cells
can not be arbitrary small because of the quantum uncertainty principle.

To describe this situation we decompose the δ-function of the initial state constraint (2.6) on the
product of (Nc + 1) δ-functions:

δ(4)(P −
m
∑

k=1

qk) =

∫ Nc
∏

ν=1

{dQνδ(Qν −
mν
∑

k=1

qk,ν)}δ(4)(P −
Nc
∑

ν=1

Qν),

where qk,ν are the momentum of k-th in-going particle in the ν-th cell and Qν is the total 4-momenta
of nν in-going particles in this cell, ν = 1, 2, ..., Nc. Therefore,

N
∑

ν=1

mν
∑

k=1

qk,ν = P.

The same decomposition will be used for the second δ-function of outgoing particle constraints.
We must take into account the multinomial character of particle decomposition on N groups. This will
give the coefficient:

n!

n1! · · ·nN !
δK(n−

N
∑

ν=1

nν)
m!

m1! · · ·mN !
δK(m−

N
∑

ν=1

mν),

where δK is the Kronecker’s symbol. The summation over

{n1, n2, ..., nNc} = {n}Nc, {m1,m2, ...,mNc} = {m}Nc

is assumed.
In result, the quantity

RNc(P,Q) =
∑

{n,m}Nc

∫

|anm|2 ×

×∏Nc

ν=1

{

dΩmν (qk)
mν ! δ(4)(Qν −∑mν

k=1 qk,ν)
dΩnν (pk)

nν ! δ(4)(Pν −∑nν

k=1 pk,ν)
}

(C.1)

defines the probability to find in the ν-th cell the fluxes of in-going particles with total 4-momentum
Qν and of out-going particles with the total 4-momentum Pν . The sequence of these two measurements
is not fixed.

The Fourier transformation of δ-functions in (C.1) gives:

RNc(P,Q) =

∫ N
∏

k=1

d4α1,ν

(2π)4
d4α2,ν

(2π)4
ei
∑N

ν=1
(Qνα1,ν+Pνα2,ν)ρNc(α),
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where
ρNc(α) = ρNc(α1,1, α1,2..., α1,Nc ;α2,1, α2,2, ..., α2,N )

has the form:

ρNc(α) =

∫ Nc
∏

ν=1

{

mν
∏

k=1

dΩmν (q)

mν !
e−iα1,νqk,ν

nν
∏

k=1

dΩnν (p)

nν !
e−iα2,νpk,ν

}

|anm|2. (C.2)

Inserting

anm(p, q) = (−i)n+m
m
∏

k=1

φ̂(qk,ν)

n
∏

k=1

φ̂∗(pk,ν)Z(−φ).

into (C.2) we find:

ρNc(α) = exp
{

i
∑Nc

ν=1

∫

dxdx′[φ̂+(x)D+−(x− x′;α2,ν)φ̂−(x′)−

−φ̂−(x)D−+(x− x′;α1,ν)φ̂+(x′)]
}

ρ0(φ), (C.3)

where D+−(x−x′;α), and D−+(x−x′;α) are the positive and negative frequency correlation functions.
We must integrate over sets {Q}Nc and {P}Nc if the distribution of momenta over cells is not fixed.

In the result,

R(P ) =

∫

D4α1(P )D4α2(P )ρNc(α), (C.4)

where the differential measure

D4α(P ) =

Nc
∏

ν=1

d4αν

(2π)4
K(P, {α}Nc)

takes into account the energy-momentum conservation laws:

K(P, {α}Nc) =

∫ N
∏

ν=1

d4Qνe
i
∑Nc

ν=1
ανQνδ(4)(P −

Nc
∑

ν=1

Qν).

The explicit integration gives that

K(P, {α}Nc) ∼
Nc
∏

ν=1

δ(3)(α− αν),

where ~α is 3-vector of the CM frame. Choosing CM frame, α = (−iβ,~0),

K(E, {β}Nc) =

∫ ∞

0

Nc
∏

ν=1

dEνe
∑

Nc

ν=1
βνEνδ(E −

Nc
∑

ν=1

Eν).

In this frame

ρNc(P ) =

∫

Dβ1(E)Dβ2(E)ρNc(β),

where

Dβ(E) =

Nc
∏

ν=1

dβν

2πi
K(E, {β}Nc)

and ρNc(β) was defined in (C.3) with αk,ν = (−iβk,ν ,~0), Reβk,ν > 0, k = 1, 2.
We will calculate integrals over βk using the stationary phase method. The equations for the most

probable values of βk:

− ∂

∂βk,ν
lnK(E, {β}Nc) =

∂

∂βk,ν
ln ρNc(β), k = 1, 2, (C.5)
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always have unique positive solutions βc
k,ν(E). We propose that the fluctuations of βk near βc

k,ν are
small, i.e. are Gaussian. This is the basis of the local-equilibrium hypothesis [97]. In this case 1/βc

1,ν

is the temperature in the initial state in the measurement cell ν and 1/βc
2,ν is the temperature of the

final state in the ν-th measurement cell.
The last formulation (C.4) implies that the 4-momenta {Q}Nc and {P}Nc cannot be measured.

It is possible to consider another formulation also. For instance, we can suppose that the initial set
{Q}Nc is fixed (measured) but {P}Nc is not. In this case we will have a mixed experiment: βc

1,ν is
defined by the equation:

Eν = − ∂

∂β1,ν
ln ρNc

and βc
2,ν is defined by the second equation in (C.5).

Considering the continuum limit, Nc → ∞, the dimension of the cells tends to zero. In this case
we are forced by quantum uncertainty principle to assume that the 4-momenta sets {Q} and {P} are
not fixed. This formulation becomes pure thermodynamical: we must assume that just {β1} and {β2}
are measurable quantities. For instance, we can fix {β1} and try to find {β2} as a function of the total
energy E and the functional of {β1}. In this case eqs.(C.5) become the functional equations.

In the considered microcanonical description, the finiteness of temperature does not touch the
quantization mechanism. Indeed, one can see from (C.3) that all thermodynamical information is
confined in the operator exponent

eN(φ∗
i φj) =

∏

ν

∏

i6=j

ei
∫

φ̂iDij φ̂j

the expansion of which describes the environment, and the ‘mechanical’ perturbations are described by
the functional ρ0(φ). This factorization was achieved by the introduction of the auxiliary field φ and is
independent from the choice of boundary conditions, i.e. from the choice of the systems environment.

Wigner functions

We will adopt the Wigner functions formalism in the Carruthers-Zachariazen formulation [39]. For
the sake of generality, the m into n particles transition will be considered. This will allow the inclusion
of the heavy ion-ion collisions.

In the previous section, the generating functional ρNc(β) was calculated by means of dividing the
‘measuring device’ on the remote hypersurface σ∞ into Nc cells

ρNc(α) = e−iN(φ;β,z)ρ0(φ), (C.6)

where

N(φ;β, z) =
{

∑Nc

ν=1

∫

dxdx′ ×

× (φ̂+(x)D+−(x− x′;β2,ν , z2)φ̂−(x′) −
−φ̂−(x)D−+(x− x′;β1,ν , z1)φ̂+(x′))

}

(C.7)

is the particle number operator. The frequency correlation functions D+− and D+− are defined by
equalities:

D+−(x− x′;β2,ν , z2) = −i
∫

dΩ1(q)e
iq2,ν (x−x′)e−β2,νε(q2,ν)z2(q2,ν) (C.8)

D−+(x− x′, β1,ν , z1) = i

∫

dΩ1(q)e
−iq1,ν (x−x′)e−β1,νε(q1,ν)z1(q1,ν) (C.9)

It was assumed that the dimension of the device cells tends to zero (Nc → ∞). Now we wish to specify
the cells coordinates. In the result we will get to the Wigner function formalism.
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Let us introduce Wigner variables [98]:

x− x′ = r, x+ x′ = 2y : x = y + r/2, x′ = y − r/2. (C.10)

Then

N(φ;β, z) = −i∑Nc

ν=1

∫

dΩ(q)dr ×
×
(

φ̂+(y + r/2)φ̂−(y − r/2)z2(q2,ν)eiq2,νre−β2,νε(q2,ν) +

+ φ̂−(y + r/2)φ̂+(y − r/2)z1(q1,ν)e−iq1,νre−β1,νε(q1,ν)
)

dy (C.11)

The Boltzmann factor, e−βi,νε(qi,ν), can be interpreted as the probability to find a particle with the
energy ε(qi,ν) in the final (i = 2) or initial (i = 1) state. The total probability, i.e. the process of
creation and further absorption of n particles, is defined by multiplication of these factors. Besides
eiq2,νr is the out-going particle momentum measured in the ν-th cell.

Generally it is impossible to adjust the 4-index of cell ν with coordinate y. For this reason the
summation over ν and the integration over r are performed in (C.11) independently. But let us assume
that the 4-dimension of the cell L is higher then the scale of the characteristic quantum fluctuations
Lq,

L >> Lq . (C.12)

One can divide the 4-dimensional y space into the L dimensional cells. Then, because of (C.12), the
quantum fluctuations can not take away particles from this cell. Then we can adjust the index of the
measurements cell with the index of the y space cell.

As a result,

N(φ;β, z) = −i
∫

dy
∫

dΩi(q)dr ×
×
(

φ̂+(y + r/2)φ̂−(y − r/2)z2(q2, y)e
iq2re−β2(y)ε(q2)+

+φ̂−(y + r/2)φ̂+(y − r/2)z1(q1, y)
)

e−iq1re−β1(y)ε(q1), (C.13)

where
∫

dy =
∑

ν

∫

C(ν)

dy, (C.14)

and C(ν) is the dimension L of the y space cell with index ν. Notice that the momentum q did not
carry the index ν (or the index y of the space cell).

Our formalism allows the introduction of more general ‘closed-path’ boundary conditions. The
presence of external black-body radiation will only reorganize the differential operator exp{N̂(φ∗i φj)}
and a new generating functional ρcp has the same form:

ρcp(β, z) = e−iN(φ;β,z)ρ0(φ).

The calculation of operator N̂(φ∗i φj) is strictly the same as in Appendix B. Introducing the cells we
will find that

N̂(φ∗i φj) =

∫

drdyφ̂i(r + y/2)ñij(y)φ̂j(r − y/2),

where the occupation number ñij carries the cell index y:

ñij(r, y) =

∫

dΩ1(q)e
iqrnij(y, q)

and (q0 = ε(q))

n++(y, q0) = n−−(y, q0) = ñ(y, (β1 + β2)|q0|/2) =
1

e(β1+β2)(y)|q0|/2 − 1
,
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n+−(y, q0) = Θ(q0)(1 + ñ(y, β2q0)) + Θ(−q0)ñ(y,−β1q0),

n−+(y, q0) = n+−(y,−q0).
For simplicity the CM system was used. Other calculations are the same as the constant temperature
case.

D Appendix. Multiperipheral kinematics

First of all [21], two light-like 4-momenta

p1,2 = P1,2 − P2,1m
2/s

are introduced. Here P1,2 are momenta of colliding particles. The final state particles momenta have
the following representation:

p′1 = α′
1p2 + β′

1p1 + p′1⊥, p
′
2 = α′

2p2 + β′
2p1 + p′2⊥,

ki = αip2 + βip1 + ki⊥. (D.1)

Sudakov’s parameters, α, β, are not independent. The mass shell conditions and the energy-momentum
conservation laws give:

sα′
1β

′
1 = m2 + (p′1⊥)2 = E2

1⊥, sα
′
2β

′
2 = E2

1⊥, sαiβi = E2
i⊥,

α′
1 + α′

2 +
∑

αi = 1, β′
1 + β′

2 +
∑

βi = 1, (D.2)

where Ei⊥ is the transverse energy.
We have for the multiperipheral kinematics:

1 ≈ β′
1 >> β1 >> ... >> βn >> β′

2 ∼ m2

s
,

m2

s
<< α′

1 << α1 << ... << αn << α′
2 ∼ 1 (D.3)

and the transverse momenta are restricted:

|p′i⊥| ∼ |ki⊥| ∼ m. (D.4)

It corresponds to small production angles in the considered CM frame:

θi =
|ki⊥|√
sβi

, |βi| >> |αi|, (D.5)

if the particle moves along P1, and a similar expression exists for particles moving in the opposite
direction, where |βi| << |αi|. In the ‘central region’ of the CM frame |βi| ∼ |αi| ∼ (Ei⊥/E) << 1
the angles of produced particles are large and energies are small. It should be underlined that all this
excludes the (mini)jets formation.

The final-state particles phase space volume element is

dσ2→2+n = (2αs)2+n

16π2n Cn
V

d2q1

q2
1+m2

d2q2

(q1−q2)2+λ2 · · · d2qn+1

(qn−qn+1)2+λ2
1

q2
n+1

+λ2 ×

×dα1

α1
Θ(α2 − α1) · · · dαn

αn

∏n+1
i=1

(

si

s0

)2α(q2
i )

= 1
q2

n+1
+λ2 dZn, (D.6)

where CV = 3 and the 4-momentum of produced particle

ki = (αi − αi+1)p2 + (βi − βi+1)p1 + (qi − qi+1)⊥ = −αi+1p2 + βip1 + (qi − qi+1)⊥.
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The square of pairs invariant mass:

s1 = (p′1 + k1)
2 = s|α2|, sn+1 = (kn + p′2)

2 =
E2

n⊥
αn

, si = E2
(i−1)⊥

αi+1

αi−1
.

The energy conservation law takes the form:

s1s2 · · · sn = sE2
1⊥ · · ·E2

n⊥.

The trajectory of reggeized gluon is

α(q2) =
q2αs

2π2

∫

d2k

(k2 + λ2)((q − k)2 + λ2)
,

where λ is the gluon ‘mass’. If this virtuality is large, λ >> m, then the gluon decay creating a pQCD
jet. But the constraint on the multiperipheral kinematics prevent this possibility.

Deep inelastic reactions

For the pure deep inelastic case, when one of the initial hadrons is scattered at the angle θ have the
energy E′ in the cms of beams whereas the another is scattered at small angle and the large transfer
momentum Q = 4EE′ sin2(θ/2) >> m2, is distributed to the some number of the emitted particles
due to evolution mechanism we have [91] (θ is small):

dσDIS
n = 4α2E

′2

Q4M dDndE
′d cos θ,

dDn = (αs

4π )n
∫ Q2

m2

dk2
n

k2
n

∫ k2
n

m2

dk2
n−1

k2
n−1

· · ·
∫ k2

m2

dk2
1

k2
1

∫ 1

x dβnΘ
(1)
n

∫ 1

βn
dβn−1Θ

(1)
n−1...

×
∫ 1

β2
dβ1Θ

(1)
1 P ( βn

βn−1
)...P (β1), P (z) = 2 1+z2

1−z , (D.7)

where Θ(i) = Θ(θi+1 − θi) and the emission angle θi = |ki|/(Emax(αi.βi)).

Large angle production

For the large-angle particle production process the differential cross section (as well as the total
one) fall down with CM energy

√
s. Let us consider for definiteness the process of annihilation of

electron-positron pairs to n photons [99]:

dσDL
n = 2πα2

s dFn,

dFn =
(

α
2π

)n∏n
i=1 dxidyiΘ(xi − yi)Θ(yi − yi−1)Θ(yi)Θ(xi) ×

×Θ(ρ− xn)Θ(ρ− yn), yi = ln 1
βi
, ρ = ln s

m2 , (D.8)

The similar formulae takes place for subprocess of quark-antiquark annihilation into n large-angle
moving gluons.

At the end, one can consider the following possibilities:
a) Pomeron regime (P);
b) Evolution regime (DIS);
c) Double logarithmic regime (DL);
d) DIS+P regime;
e) P+DL+P regime.
The description of every regime may be performed in terms of effective ladder-type Feynman diagrams.
This can be done using the blocks dZn, dDn and dFn.
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E Appendix. Reggeon diagram technique for gen-

erating function

We will consider, see (3.11)

P(q, ω; z) =

∫ ∞

0

dξe−ωξP (q, ξ; z) =
1

ω + α′
0q

2 + ψ0(z)
, ξ = ln(s/m2). (E.1)

as the ‘propagator of the cut Pomeron’. It will be assumed also that

ψ0(z) = −∆ + (1 − z)n0, n0 > 0.

So, the resonance short range correlations will be ignored in this definition or propagator. It was
assumed also that the ‘bare’ slope α′ is z independent.

It should be underlined that the ‘propagator’ (E.1) is written phenomenologically. It absorbs the
assumptions that (i) the diffraction cone shrinks with energy and (ii) the inclusive cross sections are
universal, see (3.2)

The set of principal rules concerning multiperipheral kinematics of Feynman diagrams is given in
Appendix D. The reggeon calculus supposes that the virtuality of each line of the Feynman diagram is
restricted. This ignores ‘hard jets’, later known as the pQCD jets.

Then the ν Pomeron exchange eikonal diagram has only (ν + 1) ways of being cut. If the cut line
goes through µ Pomerons, then the corresponding contributions are:

Φµ
ν (ω, q) =

∫

dΩν (Mµ
ν (q1, ..., qν))

2 Yµ
ν

µ
∏

l=1

P(qi, ωi; z)

ν
∏

i=µ+1

P(qI , ωi; z = 1), (E.2)

where Mµ
ν (q1, ..., qν) is the ‘vertex function’, the combinatorial coefficient is

Yµ
ν =

(−1)(ν−µ)2νν!

µ!(ν − µ)!

and the phase space element is

dΩν =
ν
∏

i=1

dωld
2ql

(2π)3i
δ(ω −

ν
∑

l=1

ωl)δ
2(q −

ν
∑

i=1

ql). (E.3)

As usual, the contribution (E.2) leads to the following mean multiplicity of produced particles:

n̄(s)µ
ν =

∂

∂z
ln

∫

dΩν(s/m2)ωΦµ
ν (ω, q = 0)

∣

∣

∣

∣

z=1

∼ µn̄(s). (E.4)

Therefore,
µ ∼ n̄(s) (E.5)

is essential in the VHM region, where n ∼ n̄(s)2 is assumed.
The impact parameter representation:

ϕµ
ν (s, q) =

∫

dΩ
( s

m2

)ω d2q

(2π)2
eiqbΦµ

ν (ω, q) (E.6)

would be useful also. The contribution (E.2) describes interactions with impact parameter

< b2 >' 4α′ ln(s/m2)/ν. (E.7)

Notice < b2 > is the number of cut pomerons independent of µ. But, remembering that µ ≥ ν and
that the Regge model is only able to describe large distance interactions, m2 < b2 >≥ 1, one can
conclude that the Regge pole description is valid only for

n ≤ n̄(s)2. (E.8)

Thus is why the VHM region is defined by n̄(s)2.
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F Appendix. Pomeron with ∆ > 0

Then the cut Pomeron propagator in the impact parameter representation

g̃(b, ξ; z) = g(b, ξ)e(z−1)n̄(s), (F.1)

where

g(b, ξ) =
1

2α′ξ
e∆ξe−b2/4α′ξ (F.2)

is the uncut Pomeron profile function. Using this definition one can find that the contribution of the
eikonal diagrams gives a contribution:

F0(b, ξ; z) =
(

1 − e−λ2g(b,ξ)
)

− 1

2

(

1 − e2λ2g(b,ξ)(e(z−1)n̄(s)−1)
)

, (F.3)

where λ is a constant.
First bracket is essential for b2 ≤ 4α′∆ξ2. So, with exponential accuracy, the first term is equal to

Θ(4α′∆ξ2 − b2).

Let us now consider the second bracket. For z < 1

b2 ≤ 4α′∆ξ2
{

1 +
1

ξ
ln
(

1 − e(z−1)n̄(s)
)

}

= 4α′∆ξ2γ(ξ, z) (F.4)

are essential. It is not hard to see that γ(ξ, z) decreases if z → 1 and γ(ξ, z) is equal to zero for z = 1.
In this case, by the definition of the generating function, the integral over b of F0(b, ξ; z = 1) defines
the contribution to the total cross section. So, the model predicts the production of particles in the
ring:

4α′ξ2γ(ξ, z) ≤ b2 ≤ 4α′ξ2∆. (F.5)

if z < 1, i.e. if n < n̄(s). Notice also that γ(ξ, z = 0) = ∆ +O(e−ξ). Then,

F0(b, ξ; z = 0) =
1

2
F0(b, ξ; z = 1). (F.6)

So, the elastic part of the total cross section is half of the total cross section. This means, using the
optical analogy, that the scattering on the absolutely black disk is well described.

The last conclusion means that the interaction radii should increase with n in the VHM region.
Indeed, as follows from (F.3),

F0(b, ξ; z) '
1

2

(

e2λ2g(b,ξ)(e(z−1)n̄(s)−1) − 1
)

, (F.7)

at z > 1 and, therefore,
0 ≤ b2 ≤ B2 = 4α′ξ(∆ξ + (z − 1)n̄(s)) (F.8)

are essential.

G Appendix. Dual resonance model of VHM events

Our purpose is to investigate the role of the exponential spectrum (3.19) in the asymptotic region over
multiplicity n. In this case one can validate heavy resonance creation and such formulation of the
problem have definite advantages.

(i) If creation of heavy resonances at n→ ∞ is expected, then one can neglect the dependence on
the resonance momentum qi . So, the ‘low-temperature’ expansion is valid in the VHM region.

(ii) Having the big parameter n, one can construct the perturbations expanding over 1/n.
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(iii) We will be able to show at the end the range of applicability of these assumptions.
For this purpose, the following formal phenomena will be used. The grand partition function

T (z, s) =
∑

n

znσn(s), T (1, s) = σtot(s), n ≤
√
s/m0 ≡ nmax(s), (G.1)

will be introduced, see (2.35). Then the inverse Mellin transformation, see (2.37)

σn(s) =
1

2πi

∫

dz

zn+1
T (z, s). (G.2)

will be performed expanding it in the vicinity of the solution zc > 0 of the equation of state, see (2.38):

n = z
∂

∂z
lnT (z, s). (G.3)

It is assumed, and this should be confirmed at the end, that the fluctuations in the vicinity of zc are
Gaussian.

It is natural at first glance to consider zc = zc(n, s) as an increasing function of n. Indeed, this
immediately follows from the positivity of σn(s) and the finiteness of nmax(s) at finite s. But one can
consider the ‘thermodynamical limit’, see Sec.2.3.1, or the limit m0 → 0. Theoretically, the last one is
right because of the PCAC hypotheses and nothing should happen if the pion mass m0 → 0. In this
sense T (z, s) may be considered as the whole function of z. Then, zc = zc(n, s) would be an increasing
function of n if and only if T (z, s) is a regular function at z = 1.

The proof of this statement is as follows. We should conclude, as follows from eq.(G.3), that

zc(n, s) → zs at n→ ∞, and at s = const, (G.4)

i.e. the singularity point zs attracts zc in asymptotics over n. If zs = 1, then (zc − zs) → +0, when
n tends to infinity [50]. The concrete realization of this possibility is shown in Sec.3.3. But if zs > 1,
then (zc − zs) → −0 in VHM region, see Secs.3.1, 3.5.

On may use the estimation, see also (2.39):

− 1

n
ln

σn(s)

σtot(s)
= ln zc(n, s) +O(1/n), (G.5)

where zc is the smallest solution of (G.3). It should be underlined that this estimation is independent
of the character of singularity, i.e. the position zs is only important with O(1/n) accuracy.

Partition function

Introducing the ‘grand partition function’ (G.1) the ‘two-level’ description means that

ln T (z,β)
σtot(s)

=
∑

k
1
k!

∫
∏k

i=1

{

dΩk(q)dmiξ(qi, z)e
−βεi

}

×
×Nk(q1, q2, ..., qk;β) ≡ −βF(z, s), (G.6)

where ε(qi) = (q2i +m2
i )

1/2. This is our group decomposition. The quantity ξ(q, z) may be considered
as the local activity. So,

δT

δξ(q, z)

∣

∣

∣

∣

ξ=1

∼ σtotB1(q) (G.7)

If the resonance decay forms a group of particles with total 4-momentum q, then B1(q) is the mean
number of such groups. The second derivative gives:

δ2T

δξ(q1, z)δξ(q2, z)

∣

∣

∣

∣

ξ=1

∼ σtot{B2(q1, q2) −B1(q1)B1(q2)} ≡ σtotK2(q1, q2) (G.8)
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where K2(q1, q2) is the two groups correlation function, and so on. One can consider Bk as Mayer’s
group coefficients, see Sec.2.3.3.

The Lagrange multiplier β was introduced in (G.6) to each resonance: the Boltzmann exponent
exp{−βε} takes into account the energy conservation law

∑

i εi = E, where E is the total energy of
colliding particles, 2E =

√
s in the CM frame. This conservation law means that β is defined by

equation:
√
s =

∂

∂β
lnT (z, β). (G.9)

So, to define the state one should solve two equations of state (G.3) and (G.9).
The solution βc of the eq.(G.9) has the meaning of inverse temperature of the gas of resonances if

and only if the fluctuations in vicinity of βc are Gaussian, see Sec.2.2.2.
On the second level, we should describe the resonance decay into hadrons. Using (3.24) we can

write in the vicinity of z = 1:

ξ(q, z) =
∑

n

znσR
N (q) = gR(

m0

m
)e(z−1)n̄(m). (G.10)

The assumptions B and D, see (3.21), were used here
So,

−βF(z, s) =
∑

k

∫ k
∏

i=1

{dmiξ(mi, z)}B̃k(m;β), (G.11)

where m = (m1,m2, ...,mk) ξ was defined in (G.10) and

B̃k(m;β) =

∫ k
∏

i=1

{

dΩk(q)e−βεi(qi)
}

Bk(m; q). (G.12)

Assuming now that |qi| << m are essential,

B̃k(m;β) ' Bk(m)

k
∏

i=1

{
√

2mi

β3
e−βmi

}

(G.13)

Following the duality assumption, one may write:

Bk(m) = B̄k(m)

k
∏

i=1

{

mγ
i e

β0mi
}

(G.14)

and B̄k(m) is a slowly varying function of m = (m1,m2, ...,mk):

N̄k(m) ' bk

In the result, the low-temperature expansion looks as follows:

−βF(z, s) =
∑

k

2k/2mk
0(g

R)kbk
β3k/2

{
∫ ∞

m0

dmmγ+3/2e(z−1)n̄R(m)−(β−β0)m

}k

. (G.15)

We should assume that (β − β0) ≥ 0. In this sense one may consider 1/β0 as the limiting temperature
and the above mentioned constraint means that the resonance energies should be high enough.

Thermodynamical parameters
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Remembering that the position of the singularity over z is essential, let us assume that the resonance
interactions can not renormalize it, i.e. that the sum (G.15) is convergent. Then, leaving the first term
in the sum (G.15),

−βF(z, s) =
m0g

RC1

β3/2

∫ ∞

m0

dm(m/m0)
γ+3/2e(z−1)n̄R(m)−(β−β0)m. (G.16)

We expect that this assumption is satisfied if

∫∞
m0

dmmγ+3/2e(z−1)n̄R(m)−(β−β0)m >> 21/2m0(g
R)b2

b1β3/2 ×

×
{

∫∞
m0

dmmγ+3/2e(z−1)n̄R(m)−(β−β0)m
}2

(G.17)

for
n→ ∞, s→ ∞,

nm0√
s

≡ n

nmax
<< 1 (G.18)

So, we would solve our equations of state with the following free energy:

−βF(z, s) =
α

β3/2

∫ ∞

m0

d(
m

m0
)(
m

m0
)γ′−1e−∆(m/m0), (G.19)

where, using (3.20),

γ′ = γ + 2(z − 1)n̄R
0 + 5/2 = 2(z − 1)n̄R

0 , ∆ = m0(β − β0) ≥ 0, α = const. (G.20)

We have in terms of these new variables the following equation for z,

n = z
2αn̄R

0

β3/2

∂

∂γ′
Γ(γ′,∆)

∆γ′ . (G.21)

The equation for β takes the form:

nmax =
αm0

β3/2

Γ(γ′ + 1,∆)

∆γ′+1
, (G.22)

where nmax = (
√
s/m0) and Γ(∆, γ′) is the incomplete Γ-function:

Γ(γ′,∆) =

∫ ∞

∆

dxxγ′−1e−x.

Asymptotic solutions

Following physical intuition, one should expect the cooling of the system when n → ∞, for fixed√
s, and heating when nmax → ∞, for fixed n. But, as was mentioned above, since the solution of

eq.(G.22) βc is defined by the value of the total energy, one should expect that βc decreases in both
cases. So, the solution

∆c ≥ 0,
∂∆c

∂n
< 0 at n→ ∞,

∂∆c

∂s
< 0 at s→ ∞ (G.23)

is natural for our consideration.
The physical meaning of z is activity. It defines at β = const the work needed for one particle

creation. Then, if the system is stable and T (z, s) may be singular at z > 1 only,

∂zc

∂n
> 0 at n→ ∞,

∂zc

∂s
< 0 at s→ ∞. (G.24)
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One should assume solving equations (G.21) and (G.22) that

zc∆
γ′

c+1 ∂

∂γ′c

Γ(γ′c,∆c)

∆
γ′

c
c

<< Γ(γ′c + 1,∆c). (G.25)

This condition contains the physical requirement that n << nmax. In the opposite case, the finiteness
of the phase space for m0 6= 0 should be taken into account.

As was mentioned above, the singularity zs attracts zc at n→ ∞. For this reason one may consider
the following solutions.

A. zs = ∞: zc >> ∆, ∆ << 1.
In this case

∆−γ′

Γ(γ′,∆) ∼ eγ′ ln(γ′/∆). (G.26)

This estimation gives the following equations:

n = C1γ
′ ln(γ′/∆)eγ′ ln(γ′/∆),

n

nmax
= C2∆γ

′ ln(
γ′

∆
) << 1, (G.27)

where Ci = O(1) are the unimportant constants. The inequality is a consequence of (G.25).
These equations have the following solutions:

∆c ' n

nmax lnn
<< 1, γ′c ∼ lnn >> 1. (G.28)

Using them one can see from (G.5) that it gives

σn < O(e−n). (G.29)

B. zs = +1: zc → 1, ∆c << 1.
One should estimate Γ(γ ′,∆) near the singularity at z = 1 and in the vicinity of ∆ = 0 to consider

the consequence of this solution. Expanding Γ(γ ′,∆) over ∆ at γ′ → 0,

Γ(γ′,∆) = Γ(γ′) − ∆γ′

e−∆ +O(∆γ′+1) ' 1

γ′
+O(1). (G.30)

This gives the following equations for γ ′:

n = C ′
1

γ′ ln(1/∆) − 1

γ′
eγ′ ln(1/∆). (G.31)

The equation for ∆ has the form:
nmax = C ′

2e
(γ′+1) ln(1/∆). (G.32)

Where C ′
i = O(1) are unimportant constants.

At
0 < γ′ ln(1/∆) − 1 << 1, i.e. at ln(1/∆) << n << ln2(1/∆), (G.33)

we find:

γ′c ∼
1

ln(1/∆c)
. (G.34)

Inserting this solution into (G.32):

∆c ∼ 1

nmax
. (G.35)

It is remarkable that ∆c in the leading approximation is n independent. By this reason γ ′c becomes n
independent also:

γ′c ∼
1

ln(nmax)
: zc = 1 +

1

n̄R
0 ln(nmax)

. (G.36)

This means that
σn = O(e−n) (G.37)

and obeys the KNO scaling with mean multiplicity n̄ = n̄R
0 ln(nmax).
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H Appendix. Correlation functions in DIS kine-

matics

Considering particle creation in the DIS processes, one should distinguish correlation of particles in
the (mini)jets and the correlations between (mini)jets. We will start from the description of the jet
correlations. One should introduce the inclusive cross section for the ν jets creation

Φ(r)ν
ν (k1, k2, ...., kν ; q2, x),

where ki, i = 1, 2, ..., n are the jets 4-momentum in the DIS kinetics, −q2 >> λ2. Having Φν we can
find the correlation functions

N (r)
ν (k1, k2, ...., kν ; q2, x),

where (r) = r1, ..., rν and ri = (q, g) defines the sort of created colour particle. It is useful to introduce
the generating functional

F ab(q2, x;w) =
∑

n

∫

dΩn(k)

n
∏

i=1

wri(ki)
∣

∣aab
n (k1, k2, ...., kn; q2, x)

∣

∣

2
, (H.1)

where aab
n is the amplitude, dΩn(k) is the phase space volume and wri(ki) are the arbitrary functions.

It is evident that
F ab(q2, x;w) |w=1 = Dab(q2, x). (H.2)

The inclusive cross sections

Φ(r)
ν (k1, k2, ...., kν ; q2, x) =

ν
∏

i=1

δ

δwri(ki)
F ab(q2, x;w) |w=1 . (H.3)

The correlation function

N (r)
ν (k; q2, x) =

ν
∏

1=1

δ

δwri(ki)
lnF ab(q2, x;w) |w=1 . (H.4)

We can find the partial structure functions Dab(q2, x;n), where n is the number of produced (time-like)
gluons, using there definitions.

It will be useful to introduce the Laplace transform over the variable ln(1/x):

F ab(q2, x;w) =

∫

Rej<0

dj

2πi

(

1

x

)j

fab(q2, j;w) (H.5)

The expansion parameter of our problem αs ln(−q2/λ2) ∼ 1. For this reason one should take into
account all possible cuts of the ladder diagrams. So, calculating Dab(q2, x) in the LLA all possible cuts
of the skeleton ladder diagrams are defined by the factor [78]:

1

π

{

Γab
r GrΓ

ab
r

}

, (H.6)

i.e. the cut line may not only get through the exact Green function Gr(k
2
i ) but through the exact

vertex functions Γab
r (qi, qi+1, ki) also (q2i , q

2
i+1 are negative). We have in the LLA (see Appendix D)

λ2 << −q2i << −q2i+1 << −q2

and
x ≤ xi+1 ≤ xi ≤ 1.

Following our approximation, see previous section, we would not distinguish the way in which the cut
line goes through the Born amplitude

aab
r =

{

(Γab
r )2Gr

}

.
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We will simply associate wrImaab
r to each rung of the ladder.

Considering the asymptotics over n, the time-like partons virtuality ki ' −q2i /yi should be maxi-
mal. Here yi is the fraction of the longitudinal momentum of the jet. Then, slightly limiting the jets
phase space,

ln k2
i = ln |qi+1|2 (1 +O(ln(1/x)/|qi+1|2)). (H.7)

As a result, introducing τi = ln(q2i /Λ
2), where αs(q

2) = 1/βτ , β = (11N/3)− (2nf/3) in the LLA
variable, we can find the following set of equations:

τ
∂

∂τ
fab(q

2, j;w) =
∑

c,r

ϕr
ac(j)w

r(τ)fab(q
2, x;w), (H.8)

where

ϕr
ac(j) = ϕac(j) =

∫ 1

0

dx

x
xjPac(x) (H.9)

and Pac(x) is the regular kernel of the Bethe-Salpeter equation [78]. At w = 1 this equation is the
ordinary one for Dab(q2, x).

We will search the correlation functions from eq.(H.8) in terms of the Laplace transform

n
(r)ν

ab (k1, k2, ...., kν ; q2, j) = n
(r)ν

ab (k; q2, j)

Let us write:

fab(q
2, j;w) = dab(q

2, j) exp

{

∑

ν

1

ν!

∫ ν
∏

i=1

(

dτi
τi

(wri(τi) − 1)

)

n
(r)ν

ab (k; q2, j)

}

(H.10)

Inserting (H.10) into (H.8) and expanding over (w − 1) we find the sequence of coupled equations.
Omitting the cumbersome calculations, we write in the LLA that

φ
(r)ν

ab (τ1, τ2, ...., τν ; q2, j) =

= dac1(j, τ1)ϕ
r1
c1c2

(j)dc2c3(j, τ2) · · ·ϕrν
cνcν+1

(j)dcν+1b(j, τν+1). (H.11)

One should take into account the conservation laws:

τ1 · τ2 · · · τν+1 = τ, τ1 < τ2 < . . . < τν+1 < τ. (H.12)

Computing the Laplace transform of this expression we find

Φ
(r)ν

ab (τ1, τ2, ...., τν ; q2, x).

The kernel dab(j, τ) was introduced in (H.11). Let us write it in the form:

dab(j, τ) =
∑

σ=±
σ
dab(j)

ν+ − ν−
τνσ(j), (H.13)

where
dσ

qq = νs − ϕgg , d
σ
qg = νs − ϕqq , d

σ
qg = ϕgq , d

σ
gq = ϕqg (H.14)

and

νσ =
1

2

{

ϕqq + ϕgg + σ
[

(ϕqq − ϕgg)
2 − 4nfϕqgϕgq

]1/2
}

. (H.15)

If x << 1, then (j − 1) << 1 are essential. In this case [78],

ϕgg ∼ ϕgq >> ϕqg ∼ ϕqq = O(1). (H.16)

This means the gluon jets dominance and

ng
gg = ϕgg + O(1). (H.17)
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One can find the following estimation of the two-jet correlation function:

nr1r2

ab (τ1, τ2; , τ) = O (max{(τ1/τ)ϕgg , (τ2/τ)
ϕgg , (τ1/τ2)

ϕgg}} . (H.18)

This correlation function is small since in the LLA τ1 < τ2 < τ . This means that the jet correlation
becomes high if and only if the mass of the correlated jets are comparable. But this condition shrinks
the range of integration over τ and for this reason one may neglect the ‘short-range’ correlations among
jets. Therefore, as follows from (H.10),

fab(q
2, j;w) = dgg(τ, j) exp

{

ϕgg

∫ τ

τ0

dτ ′

τ ′
wg(τ ′)

}

(H.19)

We will use this expression to find the multiplicity distribution in the DIS domain.

Generating function

To describe particle production, one should replace:

wrImaab
r → wr

nImaab
r ,

where wr
n is the probability of n particle production,

∑

n

wr
n = 1. (H.20)

Having ν jets, one should take into account the conservation condition n1 +n2 + ...+ nν = n. For this
reason, the generating functions formalism is useful. In the result, one can find that if we take (H.19)

wg = wg(τ, z), wg(τ, z) |z=1 = 1, (H.21)

then fab(q
2, j;w) defined by (H.19) is the generating functional of the multiplicity distribution in the

‘j representation’. In this expression wg(τ, z) is the generating function of the multiplicity distribution
in the jet of mass |k| = λeτ/2.

In the result, see (H.5),

F ab(q2, x;w) ∝
∫

Rej<0

dj

2πi
(1/x)jeϕggω(τ,z) (H.22)

where

ω(τ, z) =

∫ τ

τ0

dτ ′

τ ′
wg(τ ′, z). (H.23)

Noting the normalization condition (H.21),

ω(τ, z = 1) = ln τ. (H.24)

The integral (H.22) may be calculated by the steepest descent method. It is not hard to see that

j ' jc = 1 + {4Nω(τ, z)/ ln(1/x)}1/2
(H.25)

is essential. Notice that j − 1 << 1 should be essential but we find, instead of the constraint (3.26),
that

ω(τ, z) << ln(1/x). (H.26)

In the frame of this constraint,

F ab(q2, x;w) ∝ exp
{

4
√

Nω(τ, z) ln(1/x)
}

. (H.27)
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Generally speaking, there exist such values of z that jc − 1 ∼ 1. This is possible if ω(τ, z) is a
regular function of z at z = 1. Then zc should be an increasing function of n and consequently ω(τ, zc)
would be an increasing function of n. Therefore, one may expect that in the VHM domain jc − 1 ∼ 1.

Then j ' 1 +ω(τ, z)/ ln(1/x) would be essential in the integral (H.22). This leads to the following
estimation:

F ab(q2, x;w) ∝ e−ω(τ,z).

But this is impossible since F ab(q2, x;w) should be an increasing function of z. This shows that the
estimation (H.27) has a finite range of validity.

Solution of this problem with unitarity is evident. One should take into account correlations among

jets considering the expansion (H.10). Indeed, smallness of n
(r)ν

ab may be compensated by large values
of
∏ν

i w
ri(τi, z) in the VHM domain.

I Appendix. Solution of the jets evolution equation

One may neglect quark jets in the VHM region since the gluons mean multiplicity n̄g > n̄q - quarks
multiplicity [81, 85] and in the VHM region the leftmost singularities are important. Then we can
write [84]:

∂

∂τ
Tj(τ, z) =

12

11
Tj(τ, z)

∫ τ

τ0

dτ ′(Tj(τ
′, z) − 1), (I.1)

where τ = ln(q2/λ2) and Tj(τ, z) is the generating function of the distribution over the number of
gluons wn(tau):

Tj(τ, z) =
∑

n

znwn(τ), Tj(τ, z = 1) = 1. (I.2)

We search a solution in the VHM region, where

n >> nj ∝ exp{
√
aτ}, a = 12/11. (I.3)

Let us consider the following solution:

wn =

(

n

n̄j

)γ

e−αn/n̄j . (I.4)

It is useful to introduce

αk(τ) =
1

k!

∞
∑

n=1

nk−1wn(τ) (I.5)

for this solution. Inserting (I.4) in this expression,

αk(τ) = n̄k(τ)βk , (I.6)

where βk (i) should be positive and (ii) τ independent.
These conditions are satisfied for the following values of k. Indeed,at k >> 1,

βk =
1

k!

∞
∑

n=1

1

n

(

n

n̄j

)k+γ

e−αn/n̄j ' α−(k+γ) Γ(k + γ)

Γ(k + 1)
. (I.7)

The generating function Tj has the following form in terms of αk:

Tj(τ, z) =

∞
∑

n=1

(ln z)kαk(τ). (I.8)

Inserting (I.8) into (I.1) and assuming that βk is a τ independent quantity, we find the following
recurrent equation for βk:

βk =
4

k

k
∑

k1=1

1

k1
βk1βk−k1 − 2

√
aτ

k
βk. (I.9)
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Therefore, if
k >>

√
aτ (I.10)

then we can neglect last term in the right hand side of (I.9) and in this case βk are positive and τ
independent. Noting that in (I.7) n ∼ kn̄j are essential the inequality (I.10) means that the solution
(I.4) is correct if

n >> n̄j ln n̄j , (I.11)

i.e., only for this value of n wn has the form (I.4) and the corresponding generating functional has
singularity at

zs = 1 +
α

n̄j
. (I.12)

J Appendix. Condensation and type of asymptotics

over multiplicity

It is important for the VHM experiment to have an upper restriction on the asymptotics. We wish to
show that σn decreases faster than any power of 1/n:

σn < O(1/n). (J.1)

To prove this estimation, one should know the type of singularity at z = 1.
One can imagine that the points, where the external particles are created, form the system. Here

we assume that this system is in equilibrium, i.e. there is not in this system macroscopical flows of
energy, particles, charges and so on.

The lattice gas approximation is used to describe such a system. This description is quite general
and does not depend on details. Motion of the gas particles leads to the necessity to sum over all
distributions of the particles on cells. For simplicity we will assume that only one particle can occupy
the cell.

So, we will introduce the occupation number σi = ±1 in the i-th cell: σi = +1 means that we have
no particle in the cell and σi = −1 means that a particle exists in a cell. Assuming that the system
is in equilibrium, we may use the ergodic hypothesis and sum over all ‘spin’ configurations of σi, with
the restriction: σ2

i = 1. It is evident that this restriction introduces the interactions [100].
The corresponding partition function in temperature representation [52]

ρ(β,H) =

∫

Dσe−Sλ(σ) (J.2)

where integration is performed over |σ(x)| ≤ ∞ and, considering the continuum limit, Dσ =
∏

x dσ(x).
The action

Sλ(σ) =

∫

dx

{

1

2
(∇σ)2 − ωσ2 + gσ4 − λσ

}

(J.3)

where

ω ∼
(

1 − βcr

β

)

, g ∼ βcr

β
, λ ∼

(

βcr

β

)1/2

βH. (J.4)

and 1/βcr is the critical temperature.

Unstable vacuum

We start this consideration from the case ω > 0, i.e. assuming that β > βcr. In this case the ground
state is degenerate if H = 0. The extra term ∼ σH in (J.3) can be interpreted as the interaction with
external magnetic field H . This term regulates the number of ‘down’ spins with σ = −1 and is related
to the activity:

z1/2 = eβH , (J.5)
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i.e. H coincides with the chemical potential.
The potential

v(σ) = −ωσ2 + gσ4, ω > 0, (J.6)

has two minima at
σ± = ±

√

ω/2g.

If the dimension d > 1, no tunnelling phenomena exist. But choosing H < 0 the system in the correct
minimum (it corresponds to the state without particles) becomes unstable. The system tunneling into
the state with an absolute minimum of energy.

The partition function ρ(β, z) becomes singular at H = 0 because of this instability. The square
root branch point gives

Imρ(b, z) =
a1(β)

H4
e−a2(β)/H2

, ai > 0. (J.7)

Note, Imρ(b, z) = 0 at H = 0. Deforming the contour in the Mellin integral over z on the branch line,

ρn(β) =
1

π

∫ ∞

1

dz

zn+1

8a1β
4

ln4 z
e−4a2β2/ ln2 z. (J.8)

In this integral

zc ∝ exp

{

8a2β
2

n

}1/3

(J.9)

is essential. This leads to the following estimation:

ρn ∝ e−3(a2β2)1/3n2/3

< O(1/n). (J.10)

It is useful to note at the end of this section that
(i) The value of ρn is defined by Imρ(b, z) and the metastable states, the decay of which gives a
contribution into Reρ(b, z), are not important.
(ii) It follows from (J.9) that in the VHM domain

H ∼ Hc ∼ ln zc ∼ (1/n)1/3 → 0. (J.11)

So, the calculations are performed for the ‘weak’ external field case, when the degeneracy is weakly
broken. It is evident that the life time of the unstable (without particles) state is large in this case and
for this reason the semiclassical approximation is correct. This is an important consequence of (3.46).

Stable vacuum

Let us consider now ω < 0, i.e. β < βcr. The potential (J.6) has only one minimum at σ = 0 in
this case. The inclusion of an external field shifts the minimum to the point σc = σc(H). In this case
the expansion in the vicinity of σc should be useful. As a result,

ρ(β, z) = exp{
∫

dxλσc −W (σc)}, (J.12)

where W (σc) can be expanded over σc:

W (σc) =
∑

l

1

l

∫

∏

k

{dxkσc(xk;H)}b̃l(x1, ..., xl). (J.13)

In this expression, b̃l(x1, ..., xl) is the one-particle irreducible Green function, i.e. b̃l is the virial
coefficient. Then σc can be considered as the effective activity of the correlated l-particle group.
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The sum in (J.13) should be convergent and, therefore, |sc| → ∞ if |H | → ∞. But in this case
the virial decomposition is equivalent to the expansion over the inverse density of particles [25]. In the
VHM region it is high and the mean field approximation becomes correct. In result is

σc ' −
( |λ|

4g

)1/3

: |sc| → ∞ if |λ| → ∞, (J.14)

and

ρ(β, z) ∝ e
3|λ|4/3

(4g)1/3

{

12g

( |λ|
4g

)2/3
}−1/2

. (J.15)

We can use this expression to calculate ρn. In this case

zc ∝ e4gn3 → ∞ at n→ ∞, (J.16)

is essential and in the VHM domain

ρn ∝ e−4gn4

< O(e−n). (J.17)

This result is an evident consequence of vacuum stability. It should be noted once more that the
conditions (3.46) considerably simplify calculations.

K Appendix. New multiple production formalism

and integrable systems

S-matrix unitarity constraints

To explain our idea, let us consider the spectral representation of the one-particle amplitude:

A1(x1, x2;E) =
Ψ∗

n(x2)Ψn(x1)

E −En − iε
, ε→ +0, (K.1)

It describes the transition of a particle with energy E from point x1 to x2. According to our general
idea, see introduction to Sec.2.1, we will calculate

R1(E) =

∫

dx1dx2A1(x1, x2;E)A∗
1(x1, x2;E). (K.2)

The integration over the end points x1 and x2 is performed only for the sake of simplicity.
Inserting (K.1) into (K.2) and using ortho-normalizability of the wave functions Ψn(x) we find that

εR1(E) = ε
∑

n

∣

∣

∣

1
E−En−iε

∣

∣

∣

2

= 1
2i

∑

n

{

1
E−En−iε − 1

E−En+iε

}

=

= Im
∑

n
1

E−En−iε = π
∑

n δ(E −En). (K.3)

On other hand, the closed-path amplitude, offered for calculation in [101],

C1(E) =
∑

n

∫

dx
Ψ∗

n(x)Ψn(x)
E−En−iε =

∑

n
1

E−En−iε =

=
∑

n

{

P 1
E−En

+ iπδ(E −En)
}

=
∑

n P 1
E−En

+ iεR1(E). (K.4)

So, we wish to calculate only the imaginary part of the closed-path contribution:

εR(E) = ImC1(E).
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Notice the extra factor ε in the left hand side.
The reason for this choice is evident: the real part of C1(E) is equal to zero at E = En, i.e. did

not contribute to the measurable. To calculate the bound states energy spectrum, it is enough to know
the only imaginary part of the closed-path amplitude.

This property is not accidental. It is known as the optical theorem and is the consequence of
the total probability conservation principles. Formal realization of it is the unitarity condition for the
S-matrix: SS+ = I. In terms of the amplitudes A, S = I + iA, the unitarity condition presents an
infinite set of nonlinear operator equalities:

iAA∗ = A −A∗. (K.5)

Notice that expressing the amplitude by the path integral one can see that the left hand side of this
equality offers the double integral and, at the same time, the right hand side is the linear combination
of integrals. Thus, the continuum contributions into the amplitudes should be canceled to provide the
conservation of total probability. In this sense it is a necessary condition.

Indeed, to see the integral form of our approach, let us use the proper-time representation:

A1(x1, x2;E) =
∑

n

Ψn(x1)Ψ
∗
n(x2)i

∫ ∞

0

dTei(E−En+iε)T (K.6)

and insert it into (K.2):

R1(E) =
∑

n

∫ ∞

0

dT+dT−e
−(T++T−)εei(E−En)(T+−T−). (K.7)

We will introduce new time variables instead of T±:

T± = T ± τ, (K.8)

where, as follows from the Jacobian of transformation, |τ | ≤ T, 0 ≤ T ≤ ∞. But we can put |τ | ≤ ∞
since T ∼ 1/ε→ ∞ is essential in the integral over T . As a result,

ρ1(E) = 2π
∑

n

∫ ∞

0

dTe−2εT

∫ +∞

−∞

dτ

π
e2i(E−En)τ . (K.9)

In the last integral, the continuum of contributions with E 6= En are canceled. Note that the product
of amplitudes AA∗ was ‘linearized’ after the introduction of ‘virtual’ time [103] τ = (T+ − T−)/2.

We wish to calculate the density matrix ρ(β, z) including the consequence of the unitarity condition
cancelation of unnecessary contributions. Here we demonstrate the result and the intermediate steps we
will formulate, without proof, as the statements offered in [16, 15], where the formalities are described.

Dirac measure

The statement, see [15] and references cited therein,

S1. The unitarity condition unambiguously determines contributions in the path integrals for ρ

looks like a tautology since eiS(x), where S(x) is the action, is the unitary operator which shifts a
system along the trajectory11. So, it seems evident that the unitarity condition is already included in
the path integrals.

The rule as the path integrals should be calculated is weel known, see e.g. [102]. Nevertheless
the general path-integral solution contains unnecessary degrees of freedom (unobservable states with
E 6= En in the above example). We would define the path integrals in such a way that the condition

11It is well known that this unitary transformation is the analogy of the tangent transformations of
classical mechanics [103].
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of absence of unnecessary contributions in the final (measurable) result be loaded from the very begin-
ning. Just in this sense, the unitarity looks like the necessary and sufficient condition unambiguously
determining the complete set of contributions.

S2. The m- into n-particles transition (unnormalized) probability Rnm would have on the Dirac
measure the following symmetrical form:

Rnm(p1, ..., pn, q1, ..., qm) =<
∏m

k=1 |Γ(qk;u)|2
∏n

k=1 |Γ(pk;u)|2 >u=

= e−iK(j,e)
∫

DM(u)eiSO(u)−iU(u,e)
∏m

k=1 |Γ(qk;u)|2∏n
k=1 |Γ(pk;u)|2 ≡

≡ Ô(u)
∏m

k=1 |Γ(qk;u)|2∏n
k=1 |Γ(pk;u)|2. (K.10)

Here p(q) are the in(out)-going particle momenta. It should be underlined that this representation is
strict and is valid for arbitrary Lagrange theory of arbitrary dimensions. The eikonal approximation
for inelastic amplitudes was considered in [104]

The operator Ô contains three element. The Dirac measure DM , the functional U(x, e) and the
operator K(j, e).

The expansion over the operator

K(j, e) =
1

2
Re

∫

C+

dxdt
δ

δj(x, t)

δ

δe(x, t)
≡ 1

2
Re

∫

C+

dxdtĵ(x, t)ê(x, t) (K.11)

generates the perturbation series. We will assume that this series exist (at least in Borel sense).
The functionals U(u, e) and SO(u) are defined by the equalities:

SO(u) = (S0(u+ e) − S0(u− e)) + 2Re

∫

C+

dxdte(x, t)(∂2 +m2)u(x, t), (K.12)

U(u, e) = V (u+ e) − V (u− e) − 2Re

∫

C+

dxdte(x, t)v′(u), (K.13)

where S0(u) is the free part of the Lagrangian and V (u) describes interactions. The quantity SO(u) is
not equal to zero if u have nontrivial topological charge (see also [105]).

According to S1, considering motion in the phase space (u, p) the measure DM(u, p) has the Dirac
form:

DM(u, p) =
∏

x,t

du(x, t)dp(x, t)δ

(

u̇− δHj(u, p)

δp

)

δ

(

ṗ+
δHj(u, p)

δu

)

(K.14)

with the total Hamiltonian

Hj(u, p) =

∫

dx{1

2
p2 +

1

2
(∇u)2 + v(u) − ju}. (K.15)

This last one includes the energy ju of quantum fluctuations.
The measure (K.14) contains following information:
a. Only strict solutions of equations

u̇− δHj(u, p)

δp
= 0, ṗ+

δHj(u, p)

δu
= 0 (K.16)

with j = 0 should be taken into account. This ‘rigidness’ of the formalism means the absence of
pseudo-solutions (similar to multi-instanton, or multi-kink) contribution.

b. ρnm is described by the sum of all solutions of eq.(K.16), independently from their ‘nearness’
in the functional space;

c. ρnm did not contain the interference terms from various topologically nonequivalent contribu-
tions. This displays the orthogonality of corresponding Hilbert spaces;

d. The measure (K.14) includes j(x) as the external adiabatic source. Its fluctuation disturbs the
solutions of eq.(K.16) and vice versa since the measure (K.14) is strict;
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e. In the frame of the adiabaticity condition, the field disturbed by j(x) belongs to the same
manifold (topology class) as the classical field defined by (K.16) [105].

f. The Dirac measure is derived for real− time processes only, i.e. (K.14) is not valid for tunneling
ones. For this reason, the above conclusions should be taken carefully.

g. It can be shown that theory on the measure (K.14) restores ordinary (canonical) perturbation
theory.

The parameter Γ(q;u) is connected directly with external particle energy, momentum, spin, po-
larization, charge, etc., and is sensitive to the symmetry properties of the interacting fields system 12.
For the sake of simplicity, u(x) is the real scalar field. The generalization would be evident.

As a consequence of (K.14), Γ(q;u) is the function of the external particle momentum q and is a
linear functional of u(x):

Γ(q;u) = −
∫

dxeiqx δS0(u)

δu(x)
=

∫

dxeiqx(∂2 +m2)u(x), q2 = m2, (K.17)

for the mass m field. This parameter presents the momentum distribution of the interacting field u(x)
on the remote hypersurface σ∞ if u(x) is the regular function. Notice, the operator (∂2 +m2) cancels
the mass-shell states of u(x).

The construction (K.17) means, because of the Klein-Gordon operator and the external states being
mass-shell by definition [40], the solution ρnm = 0 is possible for a particular topology (compactness
and analytic properties) of quantum field u(x). So, Γ(q;u) carries the following remarkable properties:

– it directly defines the observables,
– it is defined by the topology of u(x),
– it is the linear functional of the actions symmetry group element u(x).
Notice, the space-time topology of u(x, t) becomes important in calculating integral (3.2) by parts.

This procedure is available if and only if u(x, t) is the regular function. But the quantum fields
are always singular. Therefore, the solution Γ(q;u) = 0 is valid if and only if the quasiclassical
approximation is exact. Just this situation is realized in the soliton sector of sin-Gordon model.

Despite evident ambiguity Γ(q;u) carries the definite properties of the order parameter since the
opposite solution ρnm = 0 can only be the dynamical display of an unbroken symmetry13, i.e. of the
nontrivial topology of interacting fields, as the consequence of unbroken symmetry.

If (K.16) have nontrivial solution uc(x, t), then this ‘extended objects’ quantization problem [107]
arises. We solve it by introducing convenient dynamical variables [15]. The main formal difficulty, see
e.g. [108], of this program consists of transformation of the path-integral measure which was solved in
[105]14.

Then
S3. The measure (K.14) admits the transformation:

uc : (u, p) → (ξ, η) ∈ W = G/Gc. (K.18)

12The following trivial analogy with ferromagnetic may be useful. So, the external magnetic field
H∼ µ̄, if µ̄ is the magnetics order parameter, and the phase transition means that µ̄ 6= 0. Γ(q, u) has
just the same meaning as H.

13The S-matrix was introduced ‘phenomenologically’, see also the example considered in [106, 95],
postulating the LSZ reduction formulae, see eq.(B.1). So, the formal constraints, e.g. the Haag theorem,
would not be taken into account on the chosen level of accuracy.

14Number of problems of quantum mechanics was solved using also the ‘time sliced’ method [109].
This approach presents the path integral as the finite product of well defined ordinary integrals and,
therefore, allows perform arbitrary space and space-time transformations. But transformed ‘effective’
Lagrangian gains additional term ∼ h̄2. Last one crucially depends from the way as the ‘slicing’
was performed. This phenomena considerably complicates calculations and the general solution of
this problem is unknown for us. It is evident that this method is especially effective if the quantum
corrections ∼ h̄ play no role. Such models are well known. For instance, the Coulomb model in
quantum mechanics, the sine-Gordon model in field theory, where the bound-state energies are exactly
quasiclassical.
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and the transformed measure has the form:

DM(u, p) =
∏

x,tC

dξ(t)dη(t)δ

(

ξ̇ − δhj(ξ, η)

δη

)

δ

(

η̇ +
δhj(ξ, η)

δξ

)

, (K.19)

where hj(ξ, η) = Hj(uc, pc) is the transformed Hamiltonian.

It is evident that (ξ, η) are parameters of integration of eqs.(K.16) and they form the factor space
W = G/Gc. For instance, if one particle dynamics is considered, then one may choose ξ = x(0) and
η = p(0). One may consider also the following possibility:

ξ =

∫ x du
√

2(η − v(u))

and
η = p2/2 + v(x)

In this terms hj = η − j(t)uc(ξ, η) and new Hamilton equations have the form:

ξ̇ = 1 − j
∂uc(ξ, η)

∂η
, η̇ = j

∂uc(ξ, η)

∂ξ
. (K.20)

So, we have at j = 0: ξ = t+ t0 and η = η0. By this reason
S4. The (action, angle)-type variables are mostly useful.

According to (K.18) there exists transformation of the perturbation generating operator:
S5. The operator K has following transformed form:

2K =

∫

dt{ĵξ · êξ + ĵη · êη}, (K.21)

in the factor space, where jX , eX , X = ξ, η, are new auxiliary variables.
As a result of mapping of the perturbation generating operator K on the manifold W the equations

of motion became linearized:

DM =
∏

t

δ

(

ξ̇ − δh(η)

δη
− jξ

)

δ (η̇ − jη) . (K.22)

Then
S6. If the Feynman’s iε-prescription is adopted, then the Green function of eq.(K.22)

g(t− t′) = Θ(t− t′) (K.23)

Later on we will consider the soliton sector of sin-Gordon model. In this case ξi is the coordinate
and ηi is the momentum of i-th soliton and N is the number of solitons.

Expansion of exp{K(je)} gives the ‘strong coupling’ perturbation series. Its analysis shows that
S7. Action of the integro-differential operator Ô leads to the following representation:

Rnm(p, q) =
∫

W

{

dξ(0) · ∂
∂ξ(0)R

ξ
nm(p, q) +

dη(0) · ∂
∂ξ(0)R

η
nm(p, q)

}

. (K.24)

This means that the contributions into Rnm(p, q) are accumulated strictly on the boundary ‘bifurcation
manifold’ ∂W [110], i.e. depends directly on the topology of W .

Multiple production in sin-Gordon model
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Let us consider now the completely integrable sin-Gordon model. For the sake of simplicity the
integral:

R2(q) = e−iK̂(j,e)

∫

DM(u, p)|Γ(q;u)|2eis0(u)−iU(u,e), (K.25)

where Γ(q;u) was defined in (3.2), will be calculated.
The effective potential of the sin-Gordon model

U(uN ; ec) = −2m2

λ2

∫

dxdt sin λuN (sinλe− λe) (K.26)

with

ec = eξ ·
∂uc

∂η
− eη · ∂uc

∂ξ
. (K.27)

Performing the shifts in (K.22):

ξi(t) → ξi(t) +

∫

dt′g(t− t′)jξ,i(t
′) ≡ ξi(t) + ξ′i(t),

ηi(t) → ηi(t) +

∫

dt′g(t− t′)jη,i(t
′) ≡ ηi(t) + η′i(t), (K.28)

we can get the Green function g(t− t′) into the operator exponent:

K(ej) =
1

2

∫

dtdt′Θ(t− t′){ξ̂′(t) · êξ(t
′) + η̂′(t) · êη(t′)}. (K.29)

Note the Lorentz noncovariantness of our perturbation theory with Green function (K.23).
As a result:

DNM(ξ, η) =

N
∏

i=1

∏

t

dξi(t)dηi(t)δ(ξ̇i − ω(η + η′))δ(η̇i), ω(η) =
∂h

∂η
(K.30)

with
uN = uN (x; ξ + ξ′, η + η′). (K.31)

Using the definition:
∫

Dxδ(ẋ) =

∫

dx(0) =

∫

dx0,

the functional integrals on the measure (K.30) are reduced to the ordinary integrals over initial data
(ξ, η)0. These integrals define zero modes volume. Notice that the zero-modes measure was defined
without the Faddeev-Popov anzats.

We would divide the calculations into two parts. First of all, we would consider the quasiclassical
approximation and then we will show that this approximation is exact.

This strategy is necessary since it seems to be important to show the role of quantum corrections
noting that for all physically acceptable field theories Rnm = 0 in the quasiclassical approximation.

The N -soliton solution uN depends upon 2N parameters. Half of them, N , can be considered as
the position of solitons and the other N as the solitons momentum. Generally at |t| → ∞ the uN

solution decomposed on the single solitons us and on the double soliton bound states ub [111]:

uN(x, t) =

n1
∑

j=1

us,j(x, t) +

n2
∑

k=1

ub,k(x, t) +O(e−|t|)

Note that this asymptotic is achieved if ξi → ∞ or/and ηi → ∞. This last one defines the bifurcation
line of our model. So, the one soliton us and two-soliton bound state ub would be the main elements
of our formalism. Its (ξ, η) parametrizations have the form:

us(x; ξ, η) = − 4

λ
arctan{exp(mx coshβη − ξ)}, β =

λ2

8
(K.32)
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and

ub(x; ξ, η) = − 4

λ
arctan{tan

βη2
2

mx sinh βη1

2 cos βη2

2 − ξ2

mx cosh βη1

2 sin βη2

2 − ξ1
}. (K.33)

Performing last integration we find:

R2(q) =
∑

N

∫ N
∏

i=1

{dξ0dη0}ie
−iK̂eiSO(uN )e−iU(uN ;eξ,eη)|Γ(q;uN )|2 (K.34)

where
uN = uN (η0 + η′, ξ0 + ω(t) + ξ′). (K.35)

and

ω(t) =

∫

dt′θ(t− t′)ω(η0 + η′)(t′) (K.36)

In the quasiclassical approximation ξ′ = η′ = 0 we have:

uN = uN(x; η0, ξ0 + ω(η0)t). (K.37)

Notice that the surface term
∫

dxµ∂µ(eiqxuN ) = 0. (K.38)

Then
∫

d2xeiqx(∂2 +m2)uN(x, t) = −(q2 −m2)

∫

d2xeiqxuN (x, t) = 0 (K.39)

since q2 belongs to the mass shell by definition. The condition (K.38) is satisfied for all qµ 6= 0 since
uN belongs to Schwarz space (the periodic boundary condition for u(x, t) do not alter this conclusion).
Therefore, in the quasiclassical approximation R2 = 0.

Expanding the operator exponent in (K.34) we find that action of operators ξ̂′, η̂′ creates terms

∼
∫

d2xeiqxθ(t− t′)(∂2 +m2)uN (x, t) 6= 0. (K.40)

So, generally, if the quantum corrections are included, R2 6= 0.
Now we will show that the quasiclassical approximation is exact in the soliton sector of sin-Gordon

model. The structure of the perturbation theory is readily seen in the ‘normal-product’ form:

R2(q) =
∑

N

∫ N
∏

i=1

{dξ0dη0}i : e−iU(uN ;ĵ/2i)eis0(uN )|Γ(q;uN )|2 :, (K.41)

where

ĵ = ĵξ ·
∂uN

∂η
− ĵη · ∂uN

∂ξ
= ΩĵX

∂uN

∂X
(K.42)

and

ĵX =

∫

dt′Θ(t− t′)X̂(t′) (K.43)

with the 2N -dimensional vector X = (ξ, η). In eq.(K.42) Ω is the ordinary symplectic matrix.
The colons in (K.41) mean that the operator ĵ should stay to the left of all functions in the pertur-

bation theory expansion over it. The structure (K.42) shows that each order over ĵXi is proportional
at least to the first order derivative of uN over the variable conjugate to Xi.

The expansion of (K.41) over ĵX can be written [105] in the form (omitting the quasiclassical
approximation):

R2(q) =
∑

N

∫ N
∏

i=1

{dξ0dη0}i{
2N
∑

i=1

∂

∂X0i
PXi(uN )}, (K.44)
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where PXi (uN) is the infinite sum of ‘time-ordered’ polynomials (see [105]) over uN and its derivatives.
The explicit form of PXi (uN) is complicated since the interaction potential is nonpolynomial. But it
is enough to know, see (K.42), that

PXi(uN ) ∼ Ωij
∂uN

∂X0j
. (K.45)

Therefore,
R2(q) = 0 (K.46)

since (i) each term in (K.44) is the total derivative, (ii) we have (K.45) and (iii) uN belongs to Schwarz
space.
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Figure 1: Predictions of Euhrenfest model. Four simulations are displayed.
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Figure 2: Keldysh time contour.
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Figure 3: Niemi-Semenoff time contour.
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Figure 4: Matsubara time contour.
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