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Figure 1: Lowest order contribution 8, — B, mixing in the Standard Model.

1 Introduction

Currently the prime focus of experimental elementary particle physics is the investi-
gation of the flavor sector of the Standard Model. Transitions between different fermion
generations originate from the Higgs-Yukawa sector, which is poorly tested so far. The ex-
perimental effort is not only devoted to a precise determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1], which parameterizes the flavor-changing couplings. Flavor-
changing neutral currents (FCNC) also provide an ideal testing ground to search for new
physics, because they are highly suppressed in the Standard Model: FCNC’s are loop-
induced, involve the weak coupling constant and the hé&éviposon, are suppressed by
small CKM elements or the GIM mechanism [2] and further often suffer from a helicity-
suppression, because flavor-changing couplings only involve left-handed fields. Therefore
experiments in flavor physics are much more sensitive to new physics than the precision
tests of the gauge sector performed in the LEP/SLD/Fermilab-Run-1 era. Decdys of
mesons are especially interesting: they allow us to determine three of the four CKM pa-
rameters, their rich decay spectrum helps to overconstrain the CKM matrix, they have the-
oretically clean CP asymmetries (as opposel te- w7 decays), information fron,, B,
and Bt decays can be combined usif§/ (3) - symmetry, the largé quark mass permits
the use of heavy quark symmetries and the heavy quark expansion, and in many extensions
of the Standard Model third generation fermions are most sensitive to new physics.

While B, mesons cannot be studied at tBdactories running on th& (45) resonance
[3], they are copiously produced at hadron colliders [4].mesons mix with their antipar-
ticles. Therefore the two mass eigenstdégsand B;, (for “heavy” and “light”), which are
linear combinations o3, and B, differ in their mass and width. In the Standard Model
B, — B, mixing is described in the lowest order by the box diagrams depicted in Fig. 1.
The dispersive part of thB, — B, mixing amplitude is called/;,. In the Standard Model
it is dominated by box diagrams with internal top quarks. The absorptive part is denoted
by I'1;, and mainly stems from box diagrams with light charm quarks, is generated
by decays into final states which are commorBtoand B,. While M, can receive siz-



able contributions from new physics;, is induced by the CKM-favored tree-level decay
b — ccs and is insensitive to new physics. Experimentdlly— B, mixing manifests it-
self in damped oscillations between tBe and B, states. We denote the mass and width
differences betweeRy; and B, by

Am:MH—ML, AF:FL—FH

By solving the eigenvalue problem 8f,, —iI';5 /2 one can relaté\m and AT to M, and
I's:

Am:2|M12|, Al = 2‘P12|COS¢, (1)

whereo is defined as
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Am equals theB, — B, oscillation frequency and has not been measured yet. In deriving
(1) terms of ordefT";,/M;,|? have been neglected.in (2) is a CP-violating phase, which

is tiny in the Standard Model, so thafl'sy; = 2|T"12|. Unlike in the case of3; mesons, the
Standard Model predicts a sizable width differerde in the B, system, roughly between

5 and 30% of the average total width= (I', + I'y)/2. The decay of an untagges,
meson into the final statgis in general governed by two exponentials:

Lf 8] oce ™ [(f| BL)* + e T |{f| Bu I 3)

If fis a flavor-specific final state likB; 7+ or X ¢ v, the coefficients of the two exponen-

tials in (3) are equal. A fit of the corresponding decay distribution to a single exponential
then determines the average widthup to corrections of ordefAT")?/T". In the Standard

Model CP violation inB, — B, mixing is negligible, so that we can simultaneously choose

B; andBy to be CP eigenstates and the» ¢¢s decay to conserve CP. Théh; is CP-odd

and cannot decay into a CP-even double-charm final gtate like (J/1¢) ¢ 2, WwhereL
denotes the quantum number of the orbital angular momentum. Thus a measurement of the
B, width in B, — fop, determined’;,. By comparing the two measurements one finds
AT'/2. CDF will perform this measurement with, — D, 7+ and B, — J/¢¢ in Run-II

of the Tevatron [5].

2 QCD corrections

Weak decays o8B mesons involve a large range of different mass scales: first there is
the W boson masd/y,, which appears in the wedk— ccs decay amplitude. The second
scale in the problem is the masg of the decaying quark. Finally there is the QCD scale
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parametenqcp, Which sets the scale for the strong binding forces infheneson. QCD
corrections associated with these scales must be treated in different ways. To this end one
employs a series of operator product expansions, which factorize the studied amplitude into
short-distance Wilson coefficient and matrix elements of local operators, which comprise
the long-distance physics. Here in the first steplthenediatech — ccs decay amplitude

is matched to matrix elements of local four-quark operators. We need theNRp= 1
current-current operators

Q1 = (1 —)bis " (L —s)ei Qo= (1 —75)bisiv" (1 — v)e,  (4)
wherei, j are color indices.(); is pictorially obtained by contracting tHé” line in the

b — ccs amplitude to a point(); emerges, once gluon exchange between the two quark
lines is included. In the effective hamiltonian

Heff cb‘fﬁ< Z C QT‘ (5)

the Wilson coefficients’, are determlned in such a way that the Standard Model amplitude
is reproduced by ccs |H.¢| ) up to terms of ordern; /M7,. The Fermi constant
and the CKM elements have been factored out in (5). @l contain the short-distance
physics associated with the scalg,,. QCD corrections to the Wilson coefficients can be
computed in perturbation theory. The renormalization group evolution af'tlsedown to
the scaleu; = O(my,) sums the large logarithms(p, /My ) to all orders in perturbation
theory. The minimal way to do this is the leading log approximation which reproduces all
term of ordera? In" (u; /Mw ), n = 0,1, ..., of the full Standard Model transition ampli-
tude. The next-to-leading order (NLO) corrections to the coefficients comprise the terms
of ordera™™! In" (11 /My,) and have been calculated in [6]. We remark that there are also
penguin operators in the effective hamilton¥dpy ;. We have omitted them in (5), because
their coefficients are very small. Their impact is discussed in [7,8].

ATl'gy = 2|I'12| is related tdH. s, by the optical theorem:

AFSM = 2‘F12| =

_MLBSAbS<Bs|Z/d4x THeff( ) Eff( )‘B) (6)

Here ‘Abs’ denotes the absorptive part of the amplitude, which is obtained by retaining
only the imaginary part of the loop integration. The corresponding leading-order diagrams
are shown in Fig. 2. In the next step of our calculation we perform an operator product
expansion of the RHS in (6) in order to describg in terms of matrix elements of local
|AB| = 2 operators:

(Abs(B,|i [ d'x T Hey(x)Hep (0] B.)]

2
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Figure 2: Leading-order diagrams By

The two dimension-6 operators appearing in (7) are

Q = 5yu(1 = 75)bi5;7" (1 — 75)b; Qs = 5;(1+75)b:5;(1 + v5)b;. (8)

In the leading order of QCD the RHS of (7) is pictorially obtained by simply shrinking the
(¢,€) loop in Fig. 2 to a point. Our second operator product expansion is also beley
quark expansiofHQE), which has been developed long ago by Shifman and Voloshin [9].
The new Wilson coefficients’ and Fs also depend on the charm quark mass which is
formally treated as a hard scale of oradey, sincem, > Aqcp. Strictly speaking, the HQE

in (7) is an expansion ihqcp/\/mi — 4m2. For the calculation of” and F it is crucial

that these coefficients do not depend on the infrared structure of the process. In particular
they are independent of the QCD binding forces in the extdsnand B, states in (7), so

that they can be calculated in perturbation theory at the parton level. The non-perturbative
long-distance QCD effects completely reside in the hadronic matrix eleme@tadd) .

It is customary to parametrize these matrix as

(BIQUo)IBY = 3. M3, ()
2

<BS’QS(M2)‘BS> = _gfésMgs(mb(MQ)]\‘/i[‘B;ls(MQ))zBS(Mz)' (9)

HereMp, andfp, are mass and decay constant of Bianeson. The quark masses and
m in (9) are defined in thaIS scheme. In the so called vacuum insertion approximation
B(uz2) and Bs(uz) are equal to 1.4 = O(my,) is the scale at which theAB| = 2
operators are renormalized. It can be chosen different fsgpmThe dependence @il
on the unphysical scalgs andu, diminishes order-by-order in perturbation theory. The
residual dependence is usually used as an estimate of the theoretical uncertainty- The
dependence cancels between|thé?| = 1 Wilson coefficients”; , in (5) and the radiative
corrections taF' and Fs in (7). The terms inF" and F's which depend om, cancel with
corresponding terms iB(u;) andBg(u2). The scale, enters a lattice calculation of these
non-perturbative parameters when the lattice quantities are matched to the continuum.
The leading-order calculation &I" requires the calculation of the diagrams in Fig. 2
and has been performed long ago [10]. Subsequently corrections of/agdgfm;, to (7)
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have been computed in [7]. The next-to-leading order calculation requires the calculation
of the diagrams depicted in Fig. 3 [8]. The motivations for this cumbersome calculation are

1) to verify the infrared safety of’ and Fs,

2) to allow for an experimental test of the HQE,

3) a meaningful use of lattice results for hadronic matrix elements,
4) a consistent use dfyg,

5) to reduce the sizabje -dependence of the LO,

6) the large size of QCD corrections, typically of ordéfs.

The disappearence of infrared effects from the Wilson coefficiehgsd F's mentioned

in point 1) is necessary for any meaningful operator product expansion. Yet early critics
of the HQE had found power-like infrared divergences in individual cuts of diagrams of
Fig. 3. In response the cancellation of these divergences has been shown [11], long ago
before we have performed the full NLO calculation. However, there are also logarithmic
infrared divergences. We found IR-singularities to cancel via two mechanisms:

¢ Bloch-Nordsiek cancellations among different cuts of the same diagram,
e factorization of IR-singularities, which end up i, |Q|B,), (Bs|Qs|Bs).

Point 2) above addresses the conceptual basis of the HQE, which is sometimes termed
quark-hadron duality It is not clear, whether the HQE reproduces all QCD effects com-
pletely. Exponential terms likexp(—xms/Aqcp), for example, cannot be reproduced by

a power series [12]. The relevance of such terms can at present only be addresses exper-
imentally, by confronting HQE-based predictions with data. The only QCD information
contained in the LO prediction foAl is the coefficients of In" My, associated with

hard gluon exchange along thié-mediatedh — ccs amplitude. The question of quark-
hadron duality, however, addresses the non-logarithmic QCD corrections, which belong to
the NLO. While it is certainly very interesting to find violations of quark-hadron duality in

B physics, it will be hard to detect them iRl in the LO diagrams in Fig. 2 the heavy

guarks recoil back-to-back against each other and are fast birést frame. The inclusive

b — ccs decay is more sensitive to uncontrolled long-distance effects, because in some
parts of the phase space the quarks move slowly in thé rest frame or with respect to

each other. Still the HQE prediction for — ccs [13] agrees with experiment [14]. If

one further takes into account thal" has an overall hadronic uncertainty associated with
f3.B and f3 Bg, it appears very unlikely that violations of quark-hadron duality can be
detected inAI'. Points 3) and 4) are related to the fact that leading-order predictions are not
sensitive to the renormalization scheme, which impedes the lattice-continuum matching of



Table 1:

e ome/2 my 2my
—Fg 0.867 1.045 1.111
—FY 1729 1513 1.341
F 0.042 0.045 0.049
FO 0.030 0.057 0.103

Table 2: Numerical values of the Wilson coefficiefitand Fis for m?2/m? = 0.085. Leading-order
results are indicated with the superscripi. The precise definition of our renormalization scheme
can be found in [8].

the non-perturbative parameters. Likewise ihalependence of this matching procedure
cannot be addressed in the leading-order. ;Tfadependence QAT is huge in the leading
order. Itis reduced in the NLO, but still remains sizable. The result$'fand F's can be
found in Tab. 2. The reduction of the dependence can be verified from the table. The
numerical values of the NLO coefficients depend on the renormalization scheme. The pre-
cise definition of this scheme involves the subtraction prescription for the ultraviolet poles
(dimensional regularization witRIS subtraction [15]), the treatment of (for which we
have used the NDR scheme) and the chosen definitions of the evanescent operators [16],
which can be found in [8]. The lattice-continuum matching must be done in the same
renormalization scheme, so that all scheme dependences cancel in the predichon for
Including the corrections of ordétocp/my, [7] our NLO prediction reads

Algy _ < fB,

2
= o Mev> [(0.234 4 0.035) Bs(my) — 0.080 +0.020].  (10)

Here my(my) + my(my,) = 4.3GeV (in theMS scheme) andn?/m? = 0.085 has been
used. Sincé’ is small, the uncertainty i3 is irrelevant, and the term involving B has
been absorbed into the constar.080 + 0.020 in (10). Recently the KEK—Hiroshima
group succeeded in calculatirfg, in an unquenched lattice QCD calculation with two
dynamical fermions [17]. The result j§, = (245 + 30) MeV. A recent quenched lattice
calculation has foundss(m;) = 0.87 & 0.09 [18] for the MS scheme. A similar result has
been obtained in [19]. With these numbers one finds from (10):

Algy
T

= 0.12+0.06. (11)
Here we have conservatively added the errors from the two lattice quantities linearly.
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3 New physics

In the presence of new physiasg M, and thereby in (2) can assume any value.
Non-standard contributions t can be measured from CP-asymmetries, which requires
the resolution of the rapié,— 5, oscillations and tagging, i.e. the discrimination between
B, and B, mesons at the time = 0 of their production. From (1) one verifies that a
non-vanishingy also affectsAI', which can be measured from untagged data samples and
therefore involves better efficiencies than tagged studies. Of course in the search for new
physicsATI is only competitive with CP asymmetries, which determinep, if ¢ is not
too close to 0 or:-w. Nevertheless the information ahfrom both tagged and untagged
data should be combined.

As discussed at the end of SectAll; is most easily found from the lifetimes measured
in the decays of an untaggdel sample into a flavor-specific final state and into a CP-
specific final statef-p, respectively. In the presence of a non-zero CP-violating phase
the mass eigenstatét, and By are no more CP eigenstates, so that now both exponentials
in (3) contribute to the decai, — fcp. Then this method determines [20,21]:

AT cos ¢ = AT'gy cos? ¢. (12)

As first pointed out in [20], one can determih@s ¢| without using the theoretical input

in (10): if one is able to resolve both exponentials of (3) in the time evolution Bf a
decay into a flavor-specific final state, one will measure the thig]. By comparing

with (12) one can then solve fdros ¢|. This method, however, requires to distinguish
cosh((AT'")t/2) from 1 and is very difficult to carry out. In [21] a different method has
been proposed, which only requires to measure lifetimes and branching ratios: first define
CP eigenstateB® and B&*"such thatB°¥ —» D} D, . Then define

Alcp = T (B®®") —T'(B%%). (13)
ATl'cp is related td';, as
AFCP - 2‘1112’

HenceAl'cp equalsAl'sy, but is not affected by the new physics phasat all! By
measuring bothAT'cp and AT cos ¢ one can infel cos ¢| from (12). Loosely speaking,
ATl'cp is measured by counting the CP-even and CP-odd double-charm final sté&tes in
decays:

AT

Alcp = 2rf§czBr((§ﬁ £)(1—2z)) [1 + O(T)} (14)

Here Br ( (1_3)5—> f) is the branching ratio of an untaggéd meson into the final statg,
I' is the averages, width, the sum runs over all double-charm final states anes the

7



CP-odd component of the final stafee.g.z; is O for a CP-even state and equals 1 for a
CP-odd state. In the Shifman-Voloshin limit [22] one can show thiB¢p is exhausted by

the D+ D)~ final states [23]. Moreover these four final states are purely CP-even in this
limit. ALEPH has measured the sum of these branching ratios [24] and found, relying on
the SV limit,

ATep ~ 2Br( By DW*DH-) = 02670 (15)

In the future one can extend this method by including all detected double-charm final states
into the sum in (14) and determine the CP-odd fractipiof each final state by measuring
the B, lifetime in the studied mode [21].
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Figure 3: Next-to-leading-order diagrams for,. Qs is the chromomagnetic penguin operator.
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