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Figure 1: Lowest order contribution toBs−Bs mixing in the Standard Model.

1 Introduction

Currently the prime focus of experimental elementary particle physics is the investi-
gation of the flavor sector of the Standard Model. Transitions between different fermion
generations originate from the Higgs-Yukawa sector, which is poorly tested so far. The ex-
perimental effort is not only devoted to a precise determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1], which parameterizes the flavor-changing couplings. Flavor-
changing neutral currents (FCNC) also provide an ideal testing ground to search for new
physics, because they are highly suppressed in the Standard Model: FCNC’s are loop-
induced, involve the weak coupling constant and the heavyW boson, are suppressed by
small CKM elements or the GIM mechanism [2] and further often suffer from a helicity-
suppression, because flavor-changing couplings only involve left-handed fields. Therefore
experiments in flavor physics are much more sensitive to new physics than the precision
tests of the gauge sector performed in the LEP/SLD/Fermilab-Run-I era. Decays ofB
mesons are especially interesting: they allow us to determine three of the four CKM pa-
rameters, their rich decay spectrum helps to overconstrain the CKM matrix, they have the-
oretically clean CP asymmetries (as opposed toK → ππ decays), information fromBd,Bs

andB+ decays can be combined usingSU(3)F symmetry, the largeb quark mass permits
the use of heavy quark symmetries and the heavy quark expansion, and in many extensions
of the Standard Model third generation fermions are most sensitive to new physics.

WhileBs mesons cannot be studied at theB factories running on theΥ(4S) resonance
[3], they are copiously produced at hadron colliders [4].Bs mesons mix with their antipar-
ticles. Therefore the two mass eigenstatesBH andBL (for “heavy” and “light”), which are
linear combinations ofBs andBs, differ in their mass and width. In the Standard Model
Bs−Bs mixing is described in the lowest order by the box diagrams depicted in Fig. 1.
The dispersive part of theBs−Bs mixing amplitude is calledM12. In the Standard Model
it is dominated by box diagrams with internal top quarks. The absorptive part is denoted
by Γ12 and mainly stems from box diagrams with light charm quarks.Γ12 is generated
by decays into final states which are common toBs andBs. WhileM12 can receive siz-
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able contributions from new physics,Γ12 is induced by the CKM-favored tree-level decay
b → ccs and is insensitive to new physics. ExperimentallyBs−Bs mixing manifests it-
self in damped oscillations between theBs andBs states. We denote the mass and width
differences betweenBH andBL by

∆m = MH −ML , ∆Γ = ΓL − ΓH .

By solving the eigenvalue problem ofM12− iΓ12/2 one can relate∆m and∆Γ toM12 and
Γ12:

∆m = 2 |M12|, ∆Γ = 2 |Γ12| cosφ, (1)

whereφ is defined as

M12

Γ12
= −

∣∣∣∣M12

Γ12

∣∣∣∣ eiφ. (2)

∆m equals theBs−Bs oscillation frequency and has not been measured yet. In deriving
(1) terms of order|Γ12/M12|2 have been neglected.φ in (2) is a CP-violating phase, which
is tiny in the Standard Model, so that∆ΓSM = 2|Γ12|. Unlike in the case ofBd mesons, the
Standard Model predicts a sizable width difference∆Γ in theBs system, roughly between
5 and 30% of the average total widthΓ = (ΓL + ΓH)/2. The decay of an untaggedBs

meson into the final statef is in general governed by two exponentials:

Γ[f, t] ∝ e−ΓLt |〈f |BL 〉|2 + e−ΓH t |〈f |BH 〉|2 . (3)

If f is a flavor-specific final state likeD−
s π

+ orX`+ν, the coefficients of the two exponen-
tials in (3) are equal. A fit of the corresponding decay distribution to a single exponential
then determines the average widthΓ up to corrections of order(∆Γ)2/Γ. In the Standard
Model CP violation inBs−Bs mixing is negligible, so that we can simultaneously choose
BL andBH to be CP eigenstates and theb→ ccs decay to conserve CP. ThenBH is CP-odd
and cannot decay into a CP-even double-charm final statefCP+ like (J/ψφ)L=0,2, whereL
denotes the quantum number of the orbital angular momentum. Thus a measurement of the
Bs width in Bs → fCP+ determinesΓL. By comparing the two measurements one finds
∆Γ/2. CDF will perform this measurement withBs → D−

s π
+ andBs → J/ψφ in Run-II

of the Tevatron [5].

2 QCD corrections

Weak decays ofB mesons involve a large range of different mass scales: first there is
theW boson massMW , which appears in the weakb→ ccs decay amplitude. The second
scale in the problem is the massmb of the decayingb quark. Finally there is the QCD scale
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parameterΛQCD, which sets the scale for the strong binding forces in theBs meson. QCD
corrections associated with these scales must be treated in different ways. To this end one
employs a series of operator product expansions, which factorize the studied amplitude into
short-distance Wilson coefficient and matrix elements of local operators, which comprise
the long-distance physics. Here in the first step theW -mediatedb→ ccs decay amplitude
is matched to matrix elements of local four-quark operators. We need the two|∆B| = 1
current-current operators

Q1 = c̄iγµ(1− γ5)bj s̄jγ
µ(1− γ5)ci Q2 = c̄iγµ(1− γ5)bis̄jγ

µ(1− γ5)cj, (4)

wherei, j are color indices.Q2 is pictorially obtained by contracting theW line in the
b → ccs amplitude to a point.Q1 emerges, once gluon exchange between the two quark
lines is included. In the effective hamiltonian

Heff =
GF√

2
VcbV

∗
cs

2∑
r=1

CrQr (5)

the Wilson coefficientsCr are determined in such a way that the Standard Model amplitude
is reproduced by〈 ccs |Heff | b 〉 up to terms of orderm2

b/M
2
W . The Fermi constantGF

and the CKM elements have been factored out in (5). TheCr’s contain the short-distance
physics associated with the scaleMW . QCD corrections to the Wilson coefficients can be
computed in perturbation theory. The renormalization group evolution of theCr’s down to
the scaleµ1 = O(mb) sums the large logarithmsln(µ1/MW ) to all orders in perturbation
theory. The minimal way to do this is the leading log approximation which reproduces all
term of orderαn

s lnn(µ1/MW ), n = 0, 1, . . ., of the full Standard Model transition ampli-
tude. The next-to-leading order (NLO) corrections to the coefficients comprise the terms
of orderαn+1

s lnn(µ1/MW ) and have been calculated in [6]. We remark that there are also
penguin operators in the effective hamiltonianHeff . We have omitted them in (5), because
their coefficients are very small. Their impact is discussed in [7,8].

∆ΓSM = 2|Γ12| is related toHeff by the optical theorem:

∆ΓSM = 2|Γ12| =

∣∣∣∣∣− 1

MBs

Abs〈B̄s| i
∫
d4x T Heff(x)Heff (0)|Bs〉

∣∣∣∣∣ . (6)

Here ‘Abs’ denotes the absorptive part of the amplitude, which is obtained by retaining
only the imaginary part of the loop integration. The corresponding leading-order diagrams
are shown in Fig. 2. In the next step of our calculation we perform an operator product
expansion of the RHS in (6) in order to describeΓ12 in terms of matrix elements of local
|∆B| = 2 operators:

|Abs〈B̄s| i
∫
d4x T Heff (x)Heff(0)|Bs〉|

= −G
2
Fm

2
b

12π
|V ∗

cbVcs|2 ·[
F

(
m2

c

m2
b

)
〈B̄s|Q|Bs〉+ FS

(
m2

c

m2
b

)
〈B̄s|QS|Bs〉

] [
1 +O

(
ΛQCD

mb

)]
. (7)
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Figure 2: Leading-order diagrams forΓ12

The two dimension-6 operators appearing in (7) are

Q = s̄iγµ(1− γ5)bis̄jγ
µ(1− γ5)bj , QS = s̄i(1 + γ5)bis̄j(1 + γ5)bj . (8)

In the leading order of QCD the RHS of (7) is pictorially obtained by simply shrinking the
(c, c) loop in Fig. 2 to a point. Our second operator product expansion is also calledheavy
quark expansion(HQE), which has been developed long ago by Shifman and Voloshin [9].
The new Wilson coefficientsF andFS also depend on the charm quark massmc, which is
formally treated as a hard scale of ordermb, sincemc � ΛQCD. Strictly speaking, the HQE

in (7) is an expansion inΛQCD/
√
m2

b − 4m2
c . For the calculation ofF andFS it is crucial

that these coefficients do not depend on the infrared structure of the process. In particular
they are independent of the QCD binding forces in the externalBs andBs states in (7), so
that they can be calculated in perturbation theory at the parton level. The non-perturbative
long-distance QCD effects completely reside in the hadronic matrix elements ofQ andQS.
It is customary to parametrize these matrix as

〈B̄s|Q(µ2)|Bs〉 =
8

3
f 2

Bs
M2

Bs
B(µ2)

〈B̄s|QS(µ2)|Bs〉 = −5

3
f 2

Bs
M2

Bs

M2
Bs

(mb(µ2) +ms(µ2))2
BS(µ2). (9)

HereMBs andfBs are mass and decay constant of theBs meson. The quark massesmb and
ms in (9) are defined in theMS scheme. In the so called vacuum insertion approximation
B(µ2) andBS(µ2) are equal to 1.µ2 = O(mb) is the scale at which the|∆B| = 2
operators are renormalized. It can be chosen different fromµ1. The dependence of∆Γ
on the unphysical scalesµ1 andµ2 diminishes order-by-order in perturbation theory. The
residual dependence is usually used as an estimate of the theoretical uncertainty. Theµ1-
dependence cancels between the|∆B| = 1 Wilson coefficientsC1,2 in (5) and the radiative
corrections toF andFS in (7). The terms inF andFS which depend onµ2 cancel with
corresponding terms inB(µ2) andBS(µ2). The scaleµ2 enters a lattice calculation of these
non-perturbative parameters when the lattice quantities are matched to the continuum.

The leading-order calculation of∆Γ requires the calculation of the diagrams in Fig. 2
and has been performed long ago [10]. Subsequently corrections of orderΛQCD/mb to (7)
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have been computed in [7]. The next-to-leading order calculation requires the calculation
of the diagrams depicted in Fig. 3 [8]. The motivations for this cumbersome calculation are

1) to verify the infrared safety ofF andFS,

2) to allow for an experimental test of the HQE,

3) a meaningful use of lattice results for hadronic matrix elements,

4) a consistent use ofΛMS,

5) to reduce the sizableµ1-dependence of the LO,

6) the large size of QCD corrections, typically of order30%.

The disappearence of infrared effects from the Wilson coefficientsF andFS mentioned
in point 1) is necessary for any meaningful operator product expansion. Yet early critics
of the HQE had found power-like infrared divergences in individual cuts of diagrams of
Fig. 3. In response the cancellation of these divergences has been shown [11], long ago
before we have performed the full NLO calculation. However, there are also logarithmic
infrared divergences. We found IR-singularities to cancel via two mechanisms:

• Bloch-Nordsiek cancellations among different cuts of the same diagram,

• factorization of IR-singularities, which end up in〈B̄s|Q|Bs〉, 〈B̄s|QS|Bs〉.
Point 2) above addresses the conceptual basis of the HQE, which is sometimes termed
quark-hadron duality. It is not clear, whether the HQE reproduces all QCD effects com-
pletely. Exponential terms likeexp(−κmb/ΛQCD), for example, cannot be reproduced by
a power series [12]. The relevance of such terms can at present only be addresses exper-
imentally, by confronting HQE-based predictions with data. The only QCD information
contained in the LO prediction for∆Γ is the coefficients ofαn

s lnnMW , associated with
hard gluon exchange along theW -mediatedb → ccs amplitude. The question of quark-
hadron duality, however, addresses the non-logarithmic QCD corrections, which belong to
the NLO. While it is certainly very interesting to find violations of quark-hadron duality in
B physics, it will be hard to detect them in∆Γ: in the LO diagrams in Fig. 2 the heavyc,c
quarks recoil back-to-back against each other and are fast in theb rest frame. The inclusive
b → ccs decay is more sensitive to uncontrolled long-distance effects, because in some
parts of the phase space thec,c quarks move slowly in theb rest frame or with respect to
each other. Still the HQE prediction forb → ccs [13] agrees with experiment [14]. If
one further takes into account that∆Γ has an overall hadronic uncertainty associated with
f 2

Bs
B andf 2

Bs
BS, it appears very unlikely that violations of quark-hadron duality can be

detected in∆Γ. Points 3) and 4) are related to the fact that leading-order predictions are not
sensitive to the renormalization scheme, which impedes the lattice-continuum matching of
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Table 1:

µ1 mb/2 mb 2mb

−FS 0.867 1.045 1.111

−F (0)
S 1.729 1.513 1.341

F 0.042 0.045 0.049

F (0) 0.030 0.057 0.103

Table 2: Numerical values of the Wilson coefficientsF andFS for m2
c/m

2
b = 0.085. Leading-order

results are indicated with the superscript(0). The precise definition of our renormalization scheme
can be found in [8].

the non-perturbative parameters. Likewise theµ2 dependence of this matching procedure
cannot be addressed in the leading-order. Theµ1-dependence of∆Γ is huge in the leading
order. It is reduced in the NLO, but still remains sizable. The results forF andFS can be
found in Tab. 2. The reduction of theµ1 dependence can be verified from the table. The
numerical values of the NLO coefficients depend on the renormalization scheme. The pre-
cise definition of this scheme involves the subtraction prescription for the ultraviolet poles
(dimensional regularization withMS subtraction [15]), the treatment ofγ5 (for which we
have used the NDR scheme) and the chosen definitions of the evanescent operators [16],
which can be found in [8]. The lattice-continuum matching must be done in the same
renormalization scheme, so that all scheme dependences cancel in the prediction for∆Γ.

Including the corrections of orderΛQCD/mb [7] our NLO prediction reads

∆ΓSM

Γ
=

(
fBs

245 MeV

)2

[ (0.234± 0.035)BS(mb)− 0.080± 0.020 ] . (10)

Heremb(mb) + ms(mb) = 4.3 GeV (in theMS scheme) andm2
c/m

2
b = 0.085 has been

used. SinceF is small, the uncertainty inB is irrelevant, and the term involvingFB has
been absorbed into the constant−0.080 ± 0.020 in (10). Recently the KEK–Hiroshima
group succeeded in calculatingfBs in an unquenched lattice QCD calculation with two
dynamical fermions [17]. The result isfBs = (245± 30) MeV. A recent quenched lattice
calculation has foundBS(mb) = 0.87± 0.09 [18] for theMS scheme. A similar result has
been obtained in [19]. With these numbers one finds from (10):

∆ΓSM

Γ
= 0.12± 0.06. (11)

Here we have conservatively added the errors from the two lattice quantities linearly.
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3 New physics

In the presence of new physicsargM12 and therebyφ in (2) can assume any value.
Non-standard contributions toφ can be measured from CP-asymmetries, which requires
the resolution of the rapidBs−Bs oscillations and tagging, i.e. the discrimination between
Bs andBs mesons at the timet = 0 of their production. From (1) one verifies that a
non-vanishingφ also affects∆Γ, which can be measured from untagged data samples and
therefore involves better efficiencies than tagged studies. Of course in the search for new
physics∆Γ is only competitive with CP asymmetries, which determinesin φ, if φ is not
too close to 0 or±π. Nevertheless the information onφ from both tagged and untagged
data should be combined.

As discussed at the end of Sect. 1,∆Γ is most easily found from the lifetimes measured
in the decays of an untaggedBs sample into a flavor-specific final state and into a CP-
specific final statefCP , respectively. In the presence of a non-zero CP-violating phaseφ
the mass eigenstatesBL andBH are no more CP eigenstates, so that now both exponentials
in (3) contribute to the decayBs → fCP . Then this method determines [20,21]:

∆Γ cosφ = ∆ΓSM cos2 φ. (12)

As first pointed out in [20], one can determine| cosφ| without using the theoretical input
in (10): if one is able to resolve both exponentials of (3) in the time evolution of aBs

decay into a flavor-specific final state, one will measure the true|∆Γ|. By comparing
with (12) one can then solve for| cosφ|. This method, however, requires to distinguish
cosh((∆Γ)t/2) from 1 and is very difficult to carry out. In [21] a different method has
been proposed, which only requires to measure lifetimes and branching ratios: first define
CP eigenstatesBodd

s andBeven
s such thatBodd

s →/ D+
s D

−
s . Then define

∆ΓCP = Γ (Beven
s )− Γ(Bodd

s ). (13)

∆ΓCP is related toΓ12 as

∆ΓCP = 2|Γ12|.
Hence∆ΓCP equals∆ΓSM, but is not affected by the new physics phaseφ at all! By
measuring both∆ΓCP and∆Γ cosφ one can infer| cosφ| from (12). Loosely speaking,
∆ΓCP is measured by counting the CP-even and CP-odd double-charm final states inBs

decays:

∆ΓCP = 2 Γ
∑

f∈Xcc

Br (
(−)

B s→ f ) (1− 2 xf)
[
1 + O

(
∆Γ

Γ

)]
. (14)

HereBr (
(−)

B s→ f ) is the branching ratio of an untaggedBs meson into the final statef ,
Γ is the averageBs width, the sum runs over all double-charm final states andxf is the
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CP-odd component of the final statef , e.g.xf is 0 for a CP-even state and equals 1 for a
CP-odd state. In the Shifman-Voloshin limit [22] one can show that∆ΓCP is exhausted by
theD(∗)

s
+D(∗)

s
− final states [23]. Moreover these four final states are purely CP-even in this

limit. ALEPH has measured the sum of these branching ratios [24] and found, relying on
the SV limit,

∆ΓCP ≈ 2Br (
(−)

B s→ D(∗)
s

+D(∗)
s

− ) = 0.26
+0.30
−0.15. (15)

In the future one can extend this method by including all detected double-charm final states
into the sum in (14) and determine the CP-odd fractionxf of each final state by measuring
theBs lifetime in the studied mode [21].

Acknowledgments

I thank Gudrun Hiller for inviting me to this conference. I gratefully appreciate the financial
support from the conference.

References

[1] N. Cabibbo, Phys. Rev. Lett.10 (1963) 531. M. Kobayashi and T. Maskawa, Prog.
Theor. Phys.49 (1973) 652.

[2] S. L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).

[3] D. Boutigny et al.,BaBar technical design report, SLAC-R-0457. M.T. Cheng et al.
(Belle collab.),A study of CP violation inB meson decays: Technical design report,
BELLE-TDR-3-95.

[4] K. Pitts (for Fermilab D0 and CDF collab.), Proceedings of the 4th Workshop on
Heavy Quarks at Fixed Target (HQ 98), Batavia, USA, 1998. R. W. Gardner (BTeV
Collaboration), Nucl. Instrum. Meth.A446 (2000) 208. P. Krizan et al.,HERA-B,
an experiment to study CP violation at the HERA proton ring using an internal tar-
get, Nucl. Instrum. Meth.A351 (1994) 111. David Websdale,LHC-B: A dedicated B
physics detector for the LHC, Nucl. Phys. Proc. Suppl.50 (1996) 333.

[5] F. Azfar, L. Lyons, M. Martin, C. Paus and J. Tseng, CDF note no. 5351. Report of
the workshopB Physics at the Tevatron — Run-II and Beyond, eds. R. Jesik et al., to
appear.

[6] A. J. Buras and P. H. Weisz, Nucl. Phys. B333, 66 (1990).

8



[7] M. Beneke, G. Buchalla and I. Dunietz, Phys. Rev.D54 (1996) 4419.

[8] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, Phys. Lett.B459(1999)
631. U. Nierste, hep-ph/0009203. M. Beneke and A. Lenz, hep-ph/0012222.

[9] M. Voloshin and M. Shifman, Sov. J. Nucl. Phys.41 (1985) 120; J. Chay, H. Georgi
and B. Grinstein, Phys. Lett.B247(1990) 399. I.I. Bigi, N.G. Uraltsev and A.I. Vain-
shtein, Phys. Lett.B293 (1992) 430 [(E) Phys. Lett.B297 (1993) 477]; I.I. Bigi,
M. Shifman, N.G. Uraltsev, and A. Vainshtein, Phys. Rev. Lett.71 (1993) 496. A.V.
Manohar and M.B. Wise, Phys. Rev.D49 (1994) 1310; B. Blok, L. Koyrakh, M. Shif-
man and A.I. Vainshtein, Phys. Rev.D49 (1994) 3356; T. Mannel, Nucl. Phys.B413
(1994) 396. M. Neubert and C. T. Sachrajda, Nucl. Phys.B483(1997) 339.

[10] J.S. Hagelin, Nucl. Phys.B193, 123 (1981); E. Franco, M. Lusignoli and A. Pugliese,
Nucl. Phys.B194, 403 (1982); L.L. Chau, Phys. Rep.95, 1 (1983); A.J. Buras, W.
Słominski and H. Steger, Nucl. Phys.B245, 369 (1984); M.B. Voloshin, N.G. Uralt-
sev, V.A. Khoze and M.A. Shifman, Sov. J. Nucl. Phys.46, 112 (1987); A. Datta, E.A.
Paschos and U. T¨urke, Phys. Lett.B196, 382 (1987); A. Datta, E.A. Paschos and Y.L.
Wu, Nucl. Phys.B311, 35 (1988).

[11] I. Bigi and N. Uraltsev, Phys. Lett.B280, 271 (1992).

[12] see e.g.M. Shifman, hep-ph/9505289.

[13] E. Bagan, P. Ball, B. Fiol and P. Gosdzinsky, Phys. Lett. B351, 546 (1995).

[14] L. Gibbonset al. [CLEO Collaboration], Phys. Rev. D56, 3783 (1997). D. Buskulic
et al. [ALEPH Collaboration], Phys. Lett. B388, 648 (1996).

[15] W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev.D18 (1978) 3998.

[16] S. Herrlich and U. Nierste, Nucl. Phys.B455, 39 (1995)

[17] S. Hashimoto, Nucl. Phys. Proc. Suppl.83-84(2000) 3.

[18] N. Yamada et al. (JLQCD coll.), contr. to the18th Intern. Symposium on Lattice Field
Theory (Lattice 2000), Bangalore, India, 17-22 Aug 2000, hep-lat/0010089.

[19] D. Becirevic, D. Meloni, A. Retico, V. Gimenez, V. Lubicz and G. Martinelli, Eur.
Phys. J. C18 (2000) 157.

[20] Y. Grossman, Phys. Lett.B380(1996) 99.

[21] I. Dunietz, R. Fleischer and U. Nierste, Phys. Rev. D63, 114015 (2001).

[22] M. A. Shifman and M. B. Voloshin, Sov. J. Nucl. Phys.47 (1988) 511.

9



[23] R. Aleksan, A. Le Yaouanc, L. Oliver, O. P`ene and J. C. Raynal, Phys. Lett.B316
(1993) 567.

[24] R. Barateet al. [ALEPH coll.], Phys. Lett.B486(2000) 286.

10



r]

12

E
1

b s

s b
E

2

b s

s b
E

3

b s

s b
E

4

b s

s b

b s

s b

c c
D

1

b s

s b

c c
D

2

b s

s b

c c
D

3

b s

s b

c c
D

4

b s

s b

c c

D
5

b s

s b

c c
D

6

b s

s b

c c
D

7

b s

s b

c c
D

8

b s

s b

c c
D

9

b s

s b

c c
D

10

b s

s b
c

c
D

11

b s

s b

c

Q
8

D

Figure 3: Next-to-leading-order diagrams forΓ12. Q8 is the chromomagnetic penguin operator.
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