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Analysis and Optimisation of Orbit Correction Configurations
Using Generalised Response Matrices and its

Application to the LHC Injection Transfer Lines TI 2 and TI 8

Y. - C. Chao#, V. Mertens

Abstract

The LHC injection transfer lines TI 2 and TI 8 will transport intense high-energy beams over
considerable distances. In their regular part a FODO lattice is used with 4 bending magnets per half-
cell and a half-cell length of 30.3 m, similar to that of the SPS. The relatively tight apertures in
these lines require precise trajectory control. Following an earlier study a baseline correction
scheme was chosen where two out of every four consecutive quadrupoles are complemented with
correctors and beam position monitors (“2-in-4”). With the ordering of the equipment approaching,
a further in-depth investigation has been made using a newly developed analytic method. This
method evaluates, based on the design specifications, the global performance of an orbit correction
system in terms of observability, correctability, correction range and response singularity. In
addition, orbit and error envelopes are obtained over the full beam line in an efficient and rigorous
manner, providing insights not easily accessible with conventional tools. The cost/performance ratio
of a given configuration can be optimised, both analytically through the elimination of structural
defects and numerically through fine-tuning.  Finally, features for failure mode analysis allow the
user to diagnose observed performance anomalies, and features for critical-element analysis enable
the user to identify weak spots in the configuration. The method is described in detail to facilitate
the interpretation of the results obtained for TI 2 and TI 8, and to allow their application to other
orbit correction systems.  The new, optimised 2-in-4 scheme permits some hardware economies at
comparable performance. Further exploration has identified an alternative scheme with a 1-in-3
corrector and 2-in-3 position-monitor pattern. At an overall cost comparable to the 2-in-4 scheme
this latter configuration maintains the possibility of intuitive one-to-one correction, important in the
commissioning phase, at a performance slightly above the nominal aperture budget, but allows to
reduce, using computer support, the corrected maximum trajectory excursions significantly below
those of the 2-in-4 scheme.
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1 Introduction

1.1 The LHC Injection Transfer Lines TI 2 and TI 8

The new LHC injection transfer lines TI 2 and TI 8 have a combined length of about 5.6 km
and use over 700 room-temperature magnets. The geometrical location of TI 2 and TI 8 is
given in Figure 1.

In the regular part of both lines a FODO lattice with about 90° phase advance per cell is
used with 4 bending magnets per half-cell and a half-cell length of 30.3 meters, similar to that
of the SPS. Figure 2 shows the sequence of elements with betatron and dispersion functions
for both lines. The main optical parameters and requirements are summarised in Table 1. The
main horizontal arc in TI 2 has been designed as an achromat. Space reasons dictated a
different solution for TI 8. Beam optics calculations to second order show negligible effects,
which do not require higher-order corrections. A more detailed description of these lines is
given in [1].

Figure 1: Location of TI 2 and TI 8 with respect to SPS and LHC.

1 km
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The proton beam parameters (energy 450 GeV; nominal intensity 3.17*1013 p per SPS
cycle; nominal transverse emittance 3.5 µm*rad (RMS, normalised)) dictate that the beams
must stay within the available aperture to avoid severe damage. The strongest aperture
constraint comes from the new main dipoles with their full gap height of 25 mm which leads
to a maximally tolerable vertical trajectory excursion, near the defocusing quadrupoles, of
±4.5 mm.

1.2 Earlier Study of Correction
Schemes

A first study of possible correction
schemes has been carried out in 1997 [2]
which led to the adoption of a so called
“2-in-4” configuration as the baseline
scheme. In this scheme two out of every
four consecutive quadrupoles, separately
for each plane, are complemented with
correctors. For maximum sensitivity the
monitors giving the position feedback are
placed at 90° phase advance, one cell
downstream of the correctors. In the
matching sections a full correction
scheme was implemented to improve
handling of extraction errors and to
permit precision delivery into the LHC.
The resulting configuration employed,
for both lines together, a total of 110
corrective elements, of which 94 were
assumed at that time to consist of
modified LEP correctors.

The data presented in [2] had been
obtained using a computer code initially
written for particle tracking which had
been extended to allow local trajectory
correction in transfer lines [4], i.e.
steering with one corrector and observing
the effect with one monitor (“1-to-1
steering”). The exploration of the
possible error combinations had been
done through a large number of runs
(typically 1000), using each time a
different random pattern of errors within
predefined error limits. The maximally
occurring trajectory excursion after
correction was then derived by taking the
extrema over all runs. By its nature this
method is quite time-consuming and not
very intuitive in finding the truly
optimum configuration in reasonable
time.
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Figure 2: Sequence of elements, betatron and dispersion
functions (all values in [m]) for TI 2 and TI 8.
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1.3 Present Study

With the moment of freezing the layouts and
ordering the equipment approaching it was
decided to take another look into TI 2 and TI
8 trajectory correction, taking new aspects
and modifications since the previous study
into account. One major impact comes from
the decision not to re-use the LEP correctors
for this purpose. It turned out that, besides
having to reduce their enormous gap by pole
pieces, their coils would also need to be
replaced as a result of the high irradiation in
the last years of LEP operation, which dwarfs
the economic advantage of a re-use. Instead, a
new type of corrector is being conceived [3]
offering a significantly greater bending power
of 0.12 [Tm].

Despite that their impact on the overall
results is pretty small, this new study also
offered the opportunity to incorporate all
design changes in TI 2 and TI 8 which had
occurred meanwhile (choice and positioning
of certain magnetic elements, new short
straight section layout, optics fitted to LHC
V6).

In contrast to the previous investigation the present study was performed using a much
more systematic and graphically supported, thus more intuitive and efficient method.  The
algorithms have their origin in a previous program [5] consisting of recipes for incremental
configuration improvements with a focus on observability, correctability, correction range,
response singularity and economy of elements.  These algorithms have been substantially
expanded for the current analysis to establish correspondence to the performance criteria
adopted in the previous study.  The emphasis of the latter on obtaining distributions of final
orbit errors for a given distribution of built-in and dynamic errors is echoed in the expanded
analytic program, which quantifies various error and orbit distributions at all locations of the
beam line through analytical methods. Besides retaining all previous features, the expanded
program also added features related to failure-mode and critical element analyses.

To the extent that direct comparisons can be made with the previous analysis, very good
agreement is demonstrated.

Item TI 2 TI 8 Unit
Optics
βx,max 214.2 235.6 m

βy,max 182.2 211.2 m

βx,max,lattice 102.9 103.1 m

βy,max,lattice 102.9 103.6 m

Dx,max 3.10 3.38 m

Dy,max 3.98 1.38 m

µx,total 11.3 10.8 2π

µy,total 11.4 10.4 2π
Half cell length 30.3 30.3 m
Number of half cells 95 85
Acceptance
Norm'd nominal emittance (β2/σ) 3.5 3.5 µm
Assumed beam size ±4 ±4 σ
Nominal momentum spread ±0.12 ±0.12 %
Injection precision
Deposition precision on LHC c.o. ±1.5 ±1.5 σ

including:
SPS c.o. errors at extraction
Power supply ripple / drifts

Injection kicker ripple / drifts
Table 1: Main optical parameters and requirements of
TI 2 and TI 8.
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2 Methods of Analysis and Optimisation
The analytic methods used to arrive at optimised corrector-monitor configurations are
discussed in the following in a rather condensed fashion, without too much digression into
explicit mathematical details. It is safe to say that the collection of a few key generalised
response matrices characterising the machine optics, the errors, and the orbit correction
configuration, contains all there is to know about the performance of an orbit correction
system. Furthermore, analytical methods in linear algebra, multi-dimensional vector analysis,
optimisation theory, and probability distribution theory can be brought to bear on this
collection of matrices, yielding quantitative assessments on its performance to an impressive
degree of completeness, leaving only few esoteric questions unanswerable with mathematical
tools available today. The construction of the generalised response matrices and the
application of the analytical methods will be described in the following sections.

2.1 Generalised Response Matrices

Let us first define the elements that a response matrix connects to. These elements are usually
termed “actuators” and “responders”. An actuator A imparts an action (e.g., a magnetic kick,
a coordinate shift) which has an effect on a responder R (e.g., a position change, an angle
change) described by a response coefficient CRA, as

.RAR AC= (2.1)

When there are more than one actuator or responder, (2.1) can be generalised to the
matrix form

11 12 11 1

21 22 22 2

1 2

.

    
    
    =    
            

"

%

# ## % % #

"

m

m

n n nmn m

C C CR A

C C CR A

C C CR A

(2.2)

with n responders and m actuators where the response coefficients Cij are indexed by the
corresponding actuator and responder in (2.2). As defined, the Cij can thus take on values of
elements in the ordinary optical transfer matrices (e.g., M16, the dispersion, if the actuator is
an energy offset and the responder is a position) or a combination thereof (e.g., sum over
several M22‘s, if the actuator is a “group of bending magnets” powered in series and the
responder is an angle).

When the actuators are the corrector kick angles and responders the positions at monitors,
the response matrix is just the typical one used in automated orbit correction. Our ability to
evaluate the performance of an orbit correction system lies in allowing other types of entities
to play the roles of either actuator or responder to form generalised response matrices.

Three groups of generalised actuators have been identified, listed in Table 1. The
alignment-error actuators consist of deviations from the baseline design in terms of injection
coordinate offset, alignment errors, or undesired magnetic field kicks. They can arise from the
errors associated with a long dipole and thus acquire “position offsets” at the end of these
dipoles, in addition to injection “position” errors. The all-element actuators consist of a
representative subset of all the elements in the beam line, serving as a complete representation
of the response property of the beam line, and a repository for candidate elements to be added
to the configuration. The corrector actuators consist of the familiar correction elements, with
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the possibility of acquiring “position” effects for long dipoles, and can exert combined effects
in the case of correction elements powered in series.

Likewise, we have identified two groups of generalised responders, again listed in Table
1. The all-element responders play the important role of monitoring the response of the entire
beam line to the impact of all types of errors and orbit corrections. They are made up of a
representative subset of all the elements in the beam line, possibly enhanced with angle
coordinates for complete coverage of the phase space. The monitor responders are the
familiar set of positions at monitors, possibly enhanced with angle coordinates. The responder
coordinates can, in principle, be extended to a much wider set of entities [5], but to limit the
focus to that relevant to the current report, we will not discuss this here. The discussion of the
last entry in Table 1, MMM, is deferred until the next section.

Generalised
resp. matrix

(Generalised)
actuator

(Generalised)
responder

Response
coefficients

MCM AC: correctors, dipoles, dipole
strings

RM: position & angle at
monitors

M11,M12,M21,M22 and
linear comb.

MEM AE: alignment type errors
(injection, misalignment, field, ….)

RM: position & angle at
monitors

M11,M12,M21,M22

MCA AC: correctors, dipoles, dipole
strings

RA: position & angle at all
representative elements

M11,M12,M21,M22 and
linear comb.

MEA AE: alignment type errors
(injection, misalignment, field, …)

RA: position & angle at all
representative elements

M11,M12,M21,M22

MAM AA: angle at all representative
elements

RM: position & angle at
monitors

M12,M22

MMM AM: monitor offset error RM: apparent orbit error at
monitor

δij (see Section 2.3)

Table 1: Generalised response matrices

Table 1 gives the generalised actuators and responders associated with each generalised
response matrix in the sense of (2.2) Thus, for example, for the matrix MEA, we can construct
the vector representing all alignment type errors AE, which, when acted on by MEA, yields the
vector RA representing the position (and/or angle) errors at all representative locations in the
line. Similarly, one can establish the vectors AC, AA, AM, and RM, respectively, to represent
the impact from corrector (including dipole) kicks, all (candidate) elements, monitor errors,
and response at monitors. The relations between these quantities through the matrices in Table
1 and secondary matrices, to be discussed in later sections, constitute the core of the current
analysis. The more basic relations can be readily made explicit below.

2.1.1 Alignment Type Error Effects

The impact of alignment type errors (injection, misalignment and unaccounted field errors),
including angle effects, is manifested at all locations in the beam line, and in particular at the
monitors through

.

.

A EA E

M EM E

R M A

R M A

=
=

(2.3)

2.1.2 Corrector Effects

The impact of corrector kicks (including “position” offsets caused by long dipoles and
possible combined effects) on position (and/or angle) at all locations, and monitors in
particular, can be expressed as
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.

.

A CA C

M CM C

R M A

R M A

=
=

(2.4)

2.1.3 Orbit Correction

The most straightforward realisation of an orbit correction process is through the pseudo-
inverse of the matrix MCM, denoted M†

CM:

( )
†

1†

.

. .

C M
CM

CM
CM CMCM

A M R

M M M M
−

=−

= T T
(2.5)

Equation (2.5) effectively implies a singular value decomposition (SVD) orbit correction
scheme. However, as it can be seen from subsequent sections, the adoption of the pseudo-
inverse matrices actually paves the way for discussions of observability, correctability, and
underlying errors based on division of error and corrector vector spaces by projection
operators (expressible as pseudo-inverses). This conclusion is actually inescapable regardless
of the orbit correction scheme used. This is because the SVD method, when ignoring
corrector limits, is guaranteed to maximally exploit the subspace defined by the projection
operator, and thus sets an upper bound to maximally attainable orbit correction.

2.2 Mathematical Tools

Before embarking on the core analysis, it is beneficial to review a few important
mathematical concepts heavily relied on in this analysis. The focus shall be on immediate
physical contexts of these concepts, rather than to elaborate on details, which, although
critical to the success of the analysis, have to be deferred until the Appendices. The same
theme, applied to specific matrices below, will be played on other response matrices
repeatedly in the later analysis to extract information about the orbit correction system.

It is necessary to justify here the extent to which we carried this analysis in applying
mathematical tools to realise all the analysis in terms of linear problems. In principle modern
numerical tools such as Mathematica can solve complicated non-linear systems of high order
and dimensionality, such as formally presented by the current problems, before attempting
simplification. However, for a problem of the scale as under study here, where the number of
potential error sources and monitored points runs to the hundreds or even a thousand,
repeatedly and blindly applying non-linear solvers or optimisers with dubious initial guesses
is not an option, both in terms of reliability and efficiency. Instead, all the analysis must be
realised in linear form and in terms of a limited set of realistic operations (see Appendix A),
where efficient and robust algorithms can be applied, without compromising mathematical
rigour. The emphasis here is therefore on a detailed description of recipes leading from
intuitive pictures to the input end of well-defined numerical algorithms. These recipes also
provide insight not possible through blind application of non-linear solvers. As will be seen,
linear methods can carry this analysis indeed a long way.

Most algorithms developed for this report, although not contributing in any sense to the
fundamental knowledge in linear algebra, vector calculus, and theories of optimisation or
probability distribution, are nonetheless not readily found in standard textbooks or references
under these subjects. This is probably due to their highly specialised focus on parochial
problems such as encountered here. This again justifies a detailed treatment. They can be
valuable to the analysis of other problems of similar nature. For the treatment of algorithms
more readily found in general literature, such as SVD, we limit the discussion to the
minimum.
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2.2.1 Projection Operators, Null Space and Orthogonalising Transform

The projection operators divide a vector space into complementary subspaces spanned by
collections of vectors. Taking the response matrix MCM, and construct the matrices

( ) 1†

,

CM CM CM
CM CMCM CM

CM CM

M M M M M M
−

⊥

= ⋅ = ⋅ ⋅ ⋅Π

= Ι −ΠΠ

&&

&&

T T

(2.6)

where I is the identity matrix, then CMΠ && and CM
⊥Π , respectively, project the monitor space

into the subspace spanned by the column vectors of MCM, i.e., those corresponding to
“corrector effects”, and the subspace orthogonal to the first subspace. One sees immediately
that these two operators divide the monitor space into the part correctable by correctors and
that un-correctable.

It should be noted that (2.5) and (2.6) assume that the number of monitors is equal to or
greater than that of the correctors, i.e., the system is critically or over-constrained. The
application of projection operators in the under-constrained case has to be carried out
differently and has a different significance. There is also extra complication when MCM is
degenerate. These cases will be discussed in Appendix B.

The null space of the matrix MEM is the subspace in the error vector space spanned by all
error vectors AE satisfying

0.EM EM A⋅ = (2.7)

One can also construct a “null space matrix” EM
nullM  whose rows form an orthonormal basis

of all such AEs, called “null space vectors”. It is clear, for example from (2.7), that
EM
nullM contains all error combinations that are not observable at the monitors.
One can further find an orthonormal transformation from the original error space1 to a

new basis where the null space vectors are part of the basis vectors, with the remaining basis
vectors made of those not satisfying (2.7). An efficient way to do this is given in Appendix C.
The advantage of such a transform is that it neatly breaks up response matrices such as MEM

into observable and unobservable parts, while keeping the shape of the error distribution
intact if it was already normalised.

2.2.2 Multi-Dimensional Ellipsoid, its Projection onto Higher and Lower Dimensions,
and the Inverse Projection of Solution(s)

The error distribution for the current analysis must satisfy the following criteria:

•  All errors have, or can be so grouped as to have, independent probability distributions.
•  The overall probability density of any combination of such errors, represented by the

vector AE, is a function PE of a quadratic form Q in the error vectors only.
•  The quadratic form Q, when represented as a square matrix, is symmetric and has only

non-negative eigenvalues.

                                                       
1 preferably normalised



12

•  The function PE is normalisable (integrates to a finite number), although not necessarily
monotonically decreasing.

This analysis will be valid as long as the above conditions are met. In practice one has here to
deal mainly with independent Gaussian distributions, one for each error source with distinct
σ’s, with overall probability density being the product of constituent ones.  Obviously, this
satisfies the above criteria. On the other hand, there is no need to explicitly invoke the
Gaussian distribution for the discussion of this section.

Given an error pattern represented by a vector AE, the above criteria is taken to imply that

( )
T

Q

Q

E E

E E E

=P P

.A E A= ⋅ ⋅
(2.8)

The square matrix EE then must be symmetric and have only non-negative eigenvalues.
Physically (2.8) represents a probability distribution with contours of constant probability
defined by concentric convex ellipsoidal surfaces, the principal axes of which are determined
by eigenvectors of EE. The symmetry and convexity of EE are what make the vast majority of
the subsequent analysis possible.

The contour of constant probability density, and thus the total accumulated probability,
represented by the multi-dimensional volume enclosed in this contour, can undergo a
multitude of transformations via the primary response matrices, or the secondary response
matrices to be discussed later. During such transformations the total accumulated probability
contained in the contours in different vector spaces connected by these transformations does
not change. This means that, if we can identify rules for mapping these ellipsoidal contours
between different vector spaces, we can start with the orthonormalised probability distribution
in the error space, and, through various transformations, examine the probability distributions
in other primary or secondary spaces.

We will now briefly describe the concept of mapping an ellipsoid from space A to space
B via a matrix M, and formal equations describing these concepts. Complete mathematical
details are given in Appendix D.

•  Mapping between spaces with equal dimensionality and no rank deficiency in M: In this
case mapping of EE is as straightforward as matrix multiplication. All that is needed is the
inverse of M, which by definition exists.

TE -1 E -1.E M E M→ ⋅ ⋅ (2.9)

•  Mapping into lower dimension (including rank deficiency in M): The final mapped
ellipsoid in B is determined by a sub-contour on A which is locally perpendicular to the
null-space vectors of M. The mapped ellipsoid is an intersection between B and a “hyper-
cylinder” of null-space vectors containing this sub-contour of A.

( )

T

1

E E

K

E E
P R

,T TE'' E'
,I KT

,K E E
−

⊕

= ⋅ ⋅
=

= − ⋅

(2.10)
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where EP and ER are matrices that together make up the envelope condition in an
orthonormalised space of A based on (D.3).

•  Mapping into higher dimensions: The image space of M in B, defined by the complement
to the null space of M, must be identified first. The map MP from A to the image space
can then proceed as in the first case, with additional constraints defined by the equations
governing the image space.

TE p-1 E p-1.E M E M→ ⋅ ⋅ (2.11)

Equally important is the need to find the point(s) Z on the original ellipsoidal contour in A
that is (are) mapped into specific point(s) X in B by M. This is important since after
identifying an extremum in the mapped space one often needs to know, for example, what
error configuration(s) caused it. This inverse process is also quite involved and differs
between the modes of mapping mentioned above. We will describe the formal concept here,
using a minimum of equations, and defer again the details to Appendix E.

•  Back mapping between spaces with equal dimensionality and no rank deficiency in M:
This is again a trivial case yielding

-1 .XZ M= ⋅ (2.12)

•  Back mapping into higher dimension (including rank deficiency in M): The inversely
mapped point is determined by two sets of equations

( )
 

ik k k

k

ii
N Z

i 1 2 Nr

, i Nr+1, Nr + 2,....Nc.

0,M Z Y

S 2 E Z 0N

XMY †

, , .... .

.

=

=

⋅ − =

= ⋅ ⋅ =∇

= ⋅

∑

(2.13)

where Nr and Nc are the row and column dimensions of M, and N consists of the null
space vectors of M.

•  Back mapping into lower dimension: This is uniquely determined by

†Z X.M= ⋅ (2.14)

2.2.3 Gradient, Inscribing Points, Extrema of Arbitrary Operators on a Constrained
Contour, Hessian, and Local Curvature

For the probability distribution PE described in the last section, with the equation for the
contour of constant probability density given by (2.8), one can easily derive the gradient
vector at a given point E normal to the contour

E
EE

E

Q 2

2 2

E E E
j k jk E E

k jkijii E ijkijk i

E E E E
iik k

ik

x̂x̂

x̂ .E A

δ
∂

∑= =∇ ∑
∂

∑= = ⋅ ⋅

A A E
A E

A

E A

(2.15)
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In (2.15), we have used ix̂  for the unit vector in the i-th direction and italic letters for the
components of AE and EE. Likewise, we have used the symmetry of EE to arrive at (2.15).
The final expression is to be understood as a vector in the error space.

The gradient vector of (2.15) is critical, together with the Lagrange multiplier method, in
obtaining local tangency to hyper-planes and extreme values on the ellipsoid surface. Again,
we describe the formal concepts and formulae below, deferring further details until the
Appendices F and G.

•  Inscribing a point of the ellipsoid E to the hyper-plane equations ( )i
iVP X = ± : This is

given by coincidence of the gradient vectors of E and P

( ) ,

2

k k i
i i

k

i i

VM X P X

= .E X Mλ

⋅ = = ±

⋅

∑
(2.16)

•  Extreme values of an operator Π on the surface constrained by an ellipsoid equation E=S:
This can be solved by the eigenvalue equation

( )T .-1 = 0� ( ;� ( λ− ⋅⋅ ⋅⋅ (2.17)

•  Hessian and local curvature: Once an interesting point is identified on the ellipsoid (e.g., a
point of tangency to a plane, or an extremum), we can use the concept extended from the
linear gradient to derive curvature estimates, which indicate the persistence of the quality
(extremum, tangency, etc.) of interest. These extensions involve the Hessian HE of the
ellipsoid, and the second derivative of E taken along the direction of the gradient at the
point of interest. The “rate of recession” of the ellipsoid around such points is given by

( )2 T

2

V Det
R ,

.V

T 3

T 2

E E

XX E

XX E

⋅
=

⋅ ⋅

= ⋅ ⋅

(2.18)

2.2.4 Properties Specific to The Multiple Gaussian Distribution

We can advance the analysis further if we restrict the generic probability distribution used in
the previous sections to define the ellipsoidal constant-probability surface further to be
Gaussian in all independent dimensions. Firstly it is known that such a multiple dimensional
Gaussian distribution remains a multiple dimensional Gaussian under a linear transformation.
This allows direct translating of vectors from one vector space to another with correlated
probability density.

The N-dimensional probability density resulting from N independent 1-dimensional
Gaussian distributions is simply

( )

( )

2

2

N

1 2 N
ii

1 2 N 1 2 N

1
, ,... ,

.... , ,... 1.

i

i

x
P x x x

d d d Px x x x x x

e σ

∞ ∞ ∞

−∞ −∞ −∞

−=
π

=

σ∏

∫ ∫ ∫
(2.19)
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From (2.19) the contour of constant probability density is given by the N-dimensional
ellipsoid surface with principal axes defined by the σi’s

( )
NN 2 NT

i1 2 N2
i=1 i

2
1

2
2

2
N

E x S ln , ,... ,x

1 0 0 0

0 1 0 0
E = .
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i
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 π= ⋅ ⋅ = = − ⋅ 
 

 
 
 
 
   

σ∑ ∏

%

(2.20)

The diagonal matrix E has been encountered repeatedly as the “ellipsoid matrix” as in
(2.8), and S is the “radius” of the ellipsoid surface. When the co-ordinates x1, x2, ….xN are
mapped into a different space spanned by basis y1, y2, ….yM, not necessarily of the same
dimensionality, by a matrix M with real coefficients, the ellipsoid can be re-scaled and
sheared, namely E can develop off-diagonal terms and its magnitude will change. Nonetheless
it remains symmetric and has only positive eigenvalues. It will be shown in Appendix I that
under such a transformation, if one still demands the distribution of any of the new variables
yj in the image space with all other coordinates integrated out, the desired distribution will
still be a Gaussian with a scaled σj determined purely by M, provided care has been taken to
normalise the initial σj’s,

( )
2

2

j
1

,aP ay e−= =
π

jM

jM
(2.21)

where jM  stands for the length of the j-th row of M.

Some distributions of interest to the multi-dimensional Gaussian distribution concern
those of the extremum or length. In Appendix I we show that for uncoupled and normalised
distributions these can be evaluated in closed form as

( ) ( )2 N-12NG
erfP e−=

π
m mmmax (2.22)

for the distribution of absolute maximum and

( ) ( )
2N-1

2
2
N

P e−= Γ
rr rlength (2.23)

for the distribution of length. However, if the distribution shows correlation between the
coordinates, the problem quickly becomes intractable and in fact there may be no known
expression for the distribution of either the extremum or the length in closed form [8].

An efficient method, up to a few hundred dimensions, for obtaining the cutoff values at
which the dominant portion of a length (or RMS) distribution is included, is developed using
higher order inflection points of the distribution. This is discussed in Appendix I.
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2.2.5 Singular Value Decomposition, Condition Number, Gram Determinant, Principal
Axes, and Other Singularity Related Issues

Singular value decomposition (SVD) is the process of decomposing a matrix M into the
product of three matrices U, W and V:

TM = W V ,U ⋅ ⋅ (2.24)

where W is a diagonal matrix with monotonically decreasing diagonal elements by
convention, called singular values. The rows of U and V are orthonormal vectors in their
respective dimensions. Useful information can be extracted from U, W and V when applied to
response matrices. The rows of V represent combinations of the actuators, whose effects are
magnified by the diagonal elements of W before being realised as responder patterns
represented by the rows of U. SVD allows to decompose the response matrix into decoupled
cause-effect relations between linear combinations of the actuators and responders with well
defined magnification factors. The condition number of the matrix M can be defined as the
ratio between the largest and the smallest singular values,

SVD 11 NN
M .N W W= (2.25)

When a matrix M is near singular, it can be numerically “fixed” to prevent propagation of
numerical instabilities to later calculations. This is done by decomposing M via (2.24),
eliminating the rows of U and V and diagonal elements of W corresponding to singular values
smaller than a pre-set tolerance, then recombining them to get a non-singular matrix which is
close to M but without the near singular responses of M.

The Gram determinant GM of a matrix M is given by

( )
( )

T
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Nr Nc,

Nr Nc,
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M j

j
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MG M

G

≥

≤

= ⋅

= ⋅

 = 
 
∏

(2.26)

where Nr and Nc are the number of rows and columns of M, and Sj is the j-th singular value
of M. Being a measure of the “volume” of the matrix M, the Gram determinant can be used as
an objective cutoff value for small singular values as

1

N

cutoffV = M ,G (2.27)

where N is the smaller dimension of M.
Given a symmetric ellipsoid represented by a square symmetric matrix E, the lengths and

directions of its principal axes are simply given by the diagonal elements of W and row
vectors of V in (2.24) when an SVD is applied to E.

2.3 Secondary Generalised Response Matrices

In a sense any process of orbit perturbation or manipulation, even the idiosyncratic way in
which an operator performs orbit correction, when taken to the first order can be expressed as
a response matrix. The case of the orbit correction process is significant in that it involves a
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one-step feedback2, namely, the responder signal is used as the input back into the process. In
this case an extra set of errors, those due to the limited accuracy of the monitors, comes into
play. It is indistinguishable from the other actuators of Table 1 for the purpose of formulating
the problem. The only distinction is in their response coefficients and in their very different
effects on orbit correction [5].

We can thus construct more “response matrices” capturing the orbit correction process
under various premises. First we need to construct the trivial matrix MMM linking the monitor
offset error to the apparent error at the monitor due to the error ij ijδ=MMM , namely. MMM is

simply the N×N square identity matrix where N is the total number of monitors. Despite its
trivial form, this matrix closes the loop of the one-step feedback and enables us to formally
represent the orbit correction process and incorporate the expression of the true “underlying”
orbit error within the given framework, as will become evident in what follows.

Other response matrices are discussed in the following sub-sections. Almost all
distributions discussed in this paper can trace their origins to the actuator spaces represented
by errors, either alignment or monitor. The errors start as independent distributions with
different RMS, or σ’s. It would help the formulation considerably to re-scale the error units
such that all σ’s are equal to unity, as discussed in (I.1) of Appendix I. This will be the
assumption for the remainder of the report. In particular the identity matrix MMM discussed
above will take on diagonal entries other than 1 under this re-scaling.

2.3.1 Observability Matrix Purely due to Monitor Configuration

We define the matrices:

( )

( )( )
unobs

out

1
obs

in

,

.

EM

EM

MEA EM
M

MEA EM MM
M

M M

M M
−

= ⋅Μ

= ⋅Μ Μ
(2.28)

The definition of the decoupled matrix for matrix MEM is as given in (C.2). The significance
of the first matrix is that it maps from the (orthonormalised) sub-space of the error space that
lies outside the monitoring power of the monitors onto the all-element space. The second
matrix maps from the monitor space through the observable part of the error space onto the
all-element space, and thus represents an effect on the underlying orbit for a given observed
orbit. The matrix MMM is formally the same as discussed earlier for representing monitor
errors, but here takes on a different meaning of representing simply monitor readings. One
should bear in mind that it is not necessarily the identity matrix after the normalisation.

Because of the a priori normalisation of all axes to make the source distributions have σ’s
of 1, the orthonormalisation involved in (2.28) does not necessitate a re-examination of the
source distribution.

An alternative way to view the underlying orbit is to place the monitor offset error and
the alignment error on the same probabilistic footing by forming the direct-sum space of AE

and AM:

( )

( )
A M

DS-unobs

MM
i j i=1,2,.... j=1,2,....N N

,

,

0, , ,Z

.

MM A K

EA MM
A

MM

EM MM
M

K

K M Z

Z

K M M

⊥= ⋅Μ Π
= ⊕

= =

= ⊕

(2.29)

                                                       
2 As model error is not considered here, repetition of this feedback process is meaningless.
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The meaning of (2.29) is as follows. Assume that there is a configuration of alignment
and monitor offset errors under a combined probability distribution. The quantity

DS-unobs
MΜ projects out the unobservable part of this configuration and maps it onto all

elements, namely, the component of the combined configuration inside the range of
DS-unobs
MΜ will cause all monitors to read 0. Assume further that the physical setting is

maintained, but that the monitors are re-aligned such that they all have 0 offset, then the orbit
displayed at all monitors would be exactly equal to (minus) the original monitor offsets.
These two equivalent pictures are both described by DS-unobs

MΜ , which links the combined error
space and the underlying orbit errors at all elements. As opposed to treating the alignment and
monitor offset errors separately, this view puts them on equal probabilistic footing.

2.3.2 Corrector Response Matrix to Errors, Ultimate Limit on Correcting Power

We define the matrix

resp † .= ⋅Μ EM
CME CMM M (2.30)

This is understood as the mapping from the error space to the corrector space following an
SVD-type correction. The SVD scheme is adopted both because it reflects the fundamental
division between correctable and not correctable spaces, a property inescapable for any
correction scheme, and because it yields the minimal RMS solution in the under-constrained
case, a favourable option for the analysis of corrector limits.

We can further define

resp † .= ⋅Μ EA
CAE CAM M (2.31)

This has the same meaning as (2.30), but assuming unlimited monitoring power in the entire
line, thus is characteristic of the ultimate correction ability given the corrector configuration,
independent of that of the monitors.

2.3.3 Correctable / Uncorrectable Errors at Monitors and All-Elements and Orbit
Errors Induced by Monitor Offsets

We define the following matrices

uncorr

uncorr

corr

,

,

.

EM
CM CM

EA
CA CA

MM
CM CM

M

M

M

⊥

⊥

= ⋅Μ Π
= ⋅Μ Π
= ⋅Μ Π &&

(2.32)

The first matrix projects out the error space that is beyond correction with the given monitor
and corrector configuration. The second matrix bears the same interpretation but with
unlimited monitoring power, similar to (2.31). The third matrix projects out the monitor error
space that is correctable in the given monitor and corrector configuration, leading to
undetected steering errors.

We can also establish

†ind CA MM
MCA CMM M M= ⋅ ⋅Μ (2.33)
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as defining the orbit error at all elements induced by monitor offsets. Monitor offsets
contribute a distinct component to the eventual orbit error through correction [5]. This error
depends on the configurations of both the monitors and correctors.

2.3.4 Residue of Orbit Correction

We define the matrices

resp †resid

resp †resid

,

.

EA CA EA CA EM
CMA CM CM

EA CA EA CA EA
CAA CA CA

M M M M M M

M M M M M M

= − ⋅ = − ⋅ ⋅Μ Μ
= − ⋅ = − ⋅ ⋅Μ Μ

(2.34)

These directly link the errors to the residue orbit after steering with the given corrector
configuration. The first matrix assumes the given monitor configuration, and the second one
assumes unlimited monitoring power, thus providing a measure of the ultimate limit to the
corrector configuration.

The residue orbit at all monitors is linked to the errors through

resp †resid .EM CM EM CM EM
CMM CM CMM M M M M M= − ⋅ = − ⋅ ⋅Μ Μ (2.35)

2.3.5 Implication on Errors and Correctors from Residual Orbit

Assume the numbers of errors, monitors and correctors are NE, NM, and NC, respectively, we
define the matrix
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= ⋅ + ⋅ ⋅′Μ

 
 
 
   

= ⊕ = =′    
  

 
   

(2.36)

This matrix maps a given residual orbit pattern at the monitors, via a minimal error-corrector
combination, onto the corresponding residual orbit pattern at all elements. The matrix M’EA

and M’EM differ from MEA and MEM in that the former do not go through the normalisation
making all σ’s unity. This is because the matrix combined under the direct sum is
underdetermined; normalisation of only MEM without scaling MCM accordingly would distort
the pseudo-inverse.

Two other points worth noticing are: firstly, in using (2.36) one normally starts with a
given RMS in the residual orbit, as opposed to total orbit magnitude more relevant in other
problems. There is thus an enhancement factor of MN  associated with this part of the

analysis. Secondly, the final magnitude of the residual orbit at all elements should be limited
by the error magnitude through which the original residual orbit at the monitors is realised.
Thus one should first convert the derived residual orbits into corresponding error RMS and
scale down the former if necessary until the latter is within a reasonable range. One should
however bear in mind that for multi-dimensional error distributions, the “reasonable” cutoff
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for the error RMS can be very large, due to the shifted distribution peak discussed in
Appendix I. A well-defined method for defining this cutoff for a given NE is given there.

2.3.6 Actual Underlying Orbit Error Including Effects from Monitor Offsets

In the presence of monitor errors, one needs to introduce a new “actuator” and two new
“responders”. In a probabilistic picture the probability density distribution for the combined
alignment and monitor errors should simply be that obtained by taking all these errors as
independent, preferably with normalisation. Thus a combined error actuator AEM can be
constructed as (seeTable 1)

( )E M

TE E M M
1 1N N,... , ,... .A A A A= ⊕ =EM E MA A A (2.37)

On the other hand, the underlying orbit error which, as opposed to the apparent orbit error
RM observed on monitors, represents the real orbit error with respect to the design baseline,
even if the apparent orbit errors are all 0. The distinction between these two orbit errors
comes into being, of course, due to monitor offset errors that compromise orbit correction
effectiveness [5]. One can denote this RUM by:

,UM EM E MM M
CM CMR M A M A⊥= ⋅ ⋅ − ⋅ ⋅Π Π && (2.38)

These quantities would not be useful if they could not be linked through a single matrix. This
can be done through

( ) ( )UOE ,EM MM
EMM CM CMM M M⊥= ⋅ − ⋅⊕Π Π && (2.39)

where the direct sum (⊕ ) simply concatenates the two matrices column-wise.
The minus signs in (2.38) and (2.39) do not affect the answer to questions about maximal

error in underlying orbit using ellipsoidal projection methods, since the ellipsoid is
symmetric. They do however keep the correct relative sign between the two terms [5], which
is important when one wants to derive the error combinations which cause a particular type of
errors.

A more elaborate but also more useful responder is the actual underlying orbit error RUA

at all elements, and the matrix UOE
EMAM to link it to AEM:

( ) ( )

A M

†UOE

UOE

MM
i j i=1,2,.... j=1,2,....N N

,

,

0, , .Z

EA MM CA EM MM
EMA CM

UA EM
EMA

MM

M M Z M M M M

R M A

Z

= ⊕ − ⋅ ⋅ ⊕

= ⋅
= =

(2.40)
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2.3.7 Summary of Secondary Response Matrices

Table 2 summarises the secondary response matrices established so far along with the spaces
they act on and brief descriptions:

Response
Matrix

Domain Image
Space

Physical Significance

unobs
MM AE RA Unobservable error

obs
MM AM RA Effect of observed orbit

DS-unobs
MΜ AEM RA Underlying orbit at all elements under given monitor orbit

resp
CMEM AE AC Corrector strength needed for error

resp
CAEM AE AC Corrector strength needed (unlimited monitor power)

uncorr
CMM AE AE Uncorrectable error

uncorr
CAM AE AE Uncorrectable error (unlimited monitor power)

corr
CMM AM AM Correctable monitored orbit or monitor error

ind
MCAM AE RA Monitor error induced orbit at all elements

resid
CMAM AE RA Residual orbit at all elements after correction at monitors

resid
CAAM AE RA Residual orbit at all elements (unlimited monitor power)

resid
CMMM AE RM Residual orbit at monitors after correction

rms-orb
ECM AM RA Effect implied by observed orbit on error and corrector

UOE
EMMM AEM RUM Real underlying orbit error at monitors

UOE
EMAM AEM RUA Real underlying orbit error at all elements

Table 2: Secondary response matrices

2.4 Setting up the Actuator and Responder Arrays for the Transfer Lines

In this section we describe the strategy followed to establish the content of the actuator and
responder arrays. This amounts to the judicial selection of representative elements in the beam
line, determination of relevant error sources and magnitudes, and accurate representation of
the orbit correction elements involved, including possibly non-physical ones.

2.4.1 Setting up the All-Element Actuator and Responder Arrays

For a representative set of elements serving the purpose of monitoring orbit responses
throughout the beam line, we adopted the following principles in the analysis program:

•  Adjacent elements should not be separated by more than a user specified amount in
betatron phase.

•  Adjacent elements should not be separated by more than a user specified amount in
physical distance.

•  Monitors can be eliminated from the list to avoid certain artificial degeneracy in some
algorithms.

•  Trajectory angle at the exit of the beam line can be included as a special monitoring entry.

Of the above, the element set created by the first two criteria can be combined either through
a UNION or an INTERSECTION, determined by the user. For the lines analysed typical
inter-element increments of 1 meter in distance and 3.5° in betatron phase were used, as were
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the INTERSECTION option and exclusion of monitors. This resulted in a quite dense
coverage of the TI 2 line, for example, with about 350 elements out of a possible maximum of
1000. For a safety check this was compared to a scheme using increments of 1 meter in
distance and 2.0° in betatron phase, the UNION option and inclusion of monitors, resulting in
a very dense coverage of the TI 2 line with about 750 elements. No difference was observed
in all cases tested.

The exit angle element is important in revealing possible flaws in an orbit correction
system having negative impact on the exit angle of a beam line. This is not observable from
the position alone at any physical location.

Another all-element array was established as actuators representing potential candidates
for new correctors. This was simply taken to be the entire collection of beam line elements.

2.4.2 Setting up the Error Actuator Array

The source identification and magnitude assessment of errors largely follow the line of
reasoning presented in a previous analysis [2], with the notable exception of the addition of
injection position and angle errors and a conversion from a square distribution of the monitor
offset error to Gaussian. They are briefly listed in the following.

•  Injection position and angle errors: These are taken to be Gaussian distributions with an
injection position σ of 0.5 mm and an injection angle σ of 0.05 mrad. Other values have
been used for studies focused on constraints imposed by the injection condition.

•  Dipole field errors: These are taken to be Gaussian with a σ corresponding to 0.000167 of
the individual bending field. This value is selected such that when the distribution is cut
off at 3 σ, the extent of the error magnitude, which is the focus of this study, is exactly
equal to that of the distribution with the RMS (0.00025 of the field) and cutoff (2 σ)
adopted in [2]. Further processing is needed to account for the finite length effect of a
dipole field error. For this the end position effect was included

2 2P A Lδ δ= ⋅ (2.41)

where δP, δA and L are the total end position error, total end angle error, and total dipole
length, respectively. The response matrix element from the end of a dipole D to a
downstream point A due to this combined error is then

( )
( )

21 11 12 11 12
DA DA DA DA DA

22 21 22 21 22
DA DA DA DA DA

2 ,M M M M M

2 ,M M M M M

P A AL

P A AL

δ δ δ

δ δ δ

= ⋅ + ⋅ = ⋅ + ⋅

= ⋅ + ⋅ = ⋅ + ⋅
(2.42)

representing the position and angle responses at A to δA at D.

•  Dipole tilt error: These are taken to be Gaussian with a σ corresponding to 0.000267
radian. This value is selected such that when the distribution is cut off at 3 σ, the extent of
the error magnitude, which is the focus of this study, is exactly equal to that of the
distribution with the RMS (0.0002 of the field) and cutoff (4 σ) adopted in [2]. The same
processing accounting for finite dipole length as (2.42) is implemented.
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•  Quadrupole offset: These are taken to be Gaussian with a σ corresponding to 0.0002 m
and a 3 σ cutoff, again identical to the values adopted in [2]. The kick produced at each
quadrupole due to this offset is then calculated based on the quadrupole strength.

•  Monitor offset: These are taken to be Gaussian with a σ corresponding to 0.000288675 m.
In [2] it was taken to be a rectangular distribution cut off at ±0.0005 m, which amounted
to the same RMS as the Gaussian used here. We choose to align the RMS value with the
original study since in the latter the subtle effect of the square distribution in the mixed
distributions should not be easily dismissed, and it is best accounted by using its RMS.
This resulted in a 3 σ cutoff of the Gaussian distribution at 0.000866 m, which is a little
pessimistic compared to the extent of the square distribution at 0.0005 m, but it should
more faithfully reflect the probabilistic impact of the latter.

2.4.3 Setting up the Monitor Actuator and Responder Arrays

The monitor arrays as actuators and responders are established based on the monitor
configuration under study. As responders they are the position and/or angle at the monitors,
and as actuators they are the monitor offsets or resolution at the monitors.

The horizontal and vertical planes are not assumed to have the same monitor
configuration, as single-plane monitor is a valid option, allowing taking advantage of different
local lattice properties in the two planes at minimal cost.

A special “end angle” monitor can be added in case one wants to mimic the effect of
position monitors beyond the beam line being studied. Such monitors have a constraining
effect on the outgoing angle from the line which, if not taken into account, can lead to an
artificially large orbit envelope at the end.

The monitor configurations for TI 2 and TI 8 are extended into the injection sections for
the LHC to accurately reflect the performance at the end of these lines. At least two monitors
beyond the end of TI 2 and TI 8 are required to provide adequate (and correct) orbit
anchoring, or an artificially large orbit envelope would develop towards the end. In the
current analysis this potential artefact is rectified by extending the lines to encompass one
downstream monitor in the LHC injection section, and an angle monitor at the end of the
entire configuration, to represent the proper orbit-anchoring beyond the TI 2 and TI 8 lines.

The monitor array as actuators are used in two different contexts in the analysis, as
monitor offsets and resolutions, with the latter characterising the precision limit of the
monitors. The response matrices acting on these two entities are of course identical, but the
error envelopes are assigned different σ’s for different interpretations.

2.4.4 Setting up the Corrector Actuator Array

The corrector arrays as actuators are established based on the corrector configuration under
study. Further processing is needed in two cases:

•  For dipoles as correctors the finite-length effect of (2.42) must be implemented.
•  For correctors/dipoles powered in series their combined effect is entered as a single entry

in the corrector array.

For realistic systems all correctors are limited in range. For the analysis in this report the
ranges are defined as follows:

•  For standard dedicated orbit correctors a limit of ±80 µrad is used [3].
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•  For dipoles or dipole strings a range of ±120 µrad available for orbit correction is
assumed, in addition to what is needed to define the baseline geometry.

2.4.5 Establishing the Primary and Secondary Response Matrices

Once the actuator and responder arrays are identified, the primary response matrices can be
established from the optical transfer properties of the line. This can involve all four transfer
matrix elements in each plane, not only M12 and M34, as explained in the previous sub-
sections. The secondary transfer matrices follow straightforwardly from the primary ones.

2.5 Evaluating the Performance of the Orbit Correction Configuration

Equipped with the tools developed so far, we can begin to examine the performance of a
given orbit correction system, and improve it in an analytical manner if necessary. The main
theme for what remains of this report is to apply the techniques developed in Section 2.2 and
the Appendices concerning the response matrices of Table 1 and Table 2, and extract
information about the performance of an orbit correction system. As explanation of the
application of these techniques to real physical systems proceeds, examples will be freely
drawn from studies which where made on the transfer lines TI 2 and TI 8. If not noted
otherwise, numerical values used in the examples, such as σ’s for the quadrupole offset
distribution or corrector limits, are as defined in the previous section. Definition of all primary
and secondary response matrices can be found in Sections 2.1 and 2.3.

2.5.1 Ellipsoidal Surface of Constant Probability Density in the Actuator Space

The predominant part of the following analysis will start with the constant probability
ellipsoidal surface defined in (2.20)3. For most of the applications it is further normalised as
in (I.1). Thus, for example, if we start with the complete distribution in the error space AE, the
re-scaling matrix CE normalises the distribution so that the constant probability density
contours are spheres, and AE and the response matrices MEM and MEA will undergo
transformations:
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(2.43)

This normalised ellipsoidal (spherical) surface then is mapped by various primary and
secondary matrices according to the rules described in the Appendices to higher or lower
dimensional spaces. Information about tangent points, extrema of various operators, and
singularity is extracted from these projected surfaces based on techniques developed in
Appendices D, E, F, G and H, while their physical implications are studied.

                                                       
3 Although we use the Gaussian example in this equation, we are not limiting the distribution to Gaussian for the
validity of the discussion in this section, but only to those satisfying conditions mentioned in section 2.2.2, as
long as the constant probability surfaces can be re-scaled to spheres.
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Throughout the remainder of Section 2 graphical examples will be used to illustrate
various performance criteria of an orbit correction system examined by this program.  All
examples will be taken from an intermediate configuration in the TI 2 line during the course
of optimisation.
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2.5.2 Fundamental Observability, Monitor Coverage, and Effects of Residual Orbit

Given a certain distribution of errors and monitor configuration in a beam line, an important
question is whether the monitors can discern effects due to such errors. This question is
answered by the following procedures.

2.5.2.1 Unobservable Error

Taking the matrix unobs
MM and the 3

σ error ellipsoid in its domain
space (a subspace of AE by (2.28)
), we can find the boundary of its
corresponding image in RA. This
gives the orbit error unobservable
by the monitors at an extent of 3 σ
at all (representative) elements
along the line. An example is
depicted in Figure 3.

2.5.2.2 Effect of Finite
Residual RMS Orbit

Taking the matrix obs
MM and the 1

σ error ellipsoid in its domain
space (a subspace of AM by (2.28))
enhanced by a factor of MN , we

can find the boundary of its
corresponding image in RA. This
gives the maximal orbit error at all
(representative) elements along the
line, if the RMS residual orbit
observed at the monitors is equal
to the RMS value of the assumed
monitor offsets4. This value should
be further scaled at every location,
so that the corresponding error
magnitude is within a criterion
determined by the cutoff
(described in Appendix I) proper
for the N-dimensional space. This
is depicted in Figure 4.

2.5.2.3 Combined Effects of
Finite Residual RMS
Orbit

The orbit envelopes from the two
previous sections come from

                                                       
4 This may be an over-pessimistic value both due to the RMS enhancement and the use of a standard monitor
offset σ for the observed orbit. Using the assumed monitor resolution, which is smaller by a factor of 5, is an
alternative.
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Figure 3: Full line: maximally unobservable orbit error in [mm] along
the beam line in [m]; dots: position of monitors.
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Figure 4: Full line: maximal orbit error in [mm] due to residual
observed orbit along the beam line in [m]; dots: position of
monitors.

0

1

2

3

0 1000 2000 3000

Figure 5: Full line: maximal orbit error in [mm] along the beam line
in [m] (quadratic sum of Figure 3 and Figure 4 scaled by 3σ
error); dots: position of monitors.
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completely orthogonal subspaces in the error space. We can take the quadratic sum of these
two envelopes to obtain the real underlying orbit envelope at the same extent of probability
density as individual ones. This is shown in Figure 5.

2.5.2.4 Effects of the Finite
Residual RMS Orbit
(Alternative View)

As explained in (2.29), an
alternative view treating alignment
and monitored orbit errors on an
equal footing using DS-unobs

MΜ  ge-
nerates a different view on the
underlying orbit as a function of
the “total length” of the apparent
orbit. This is shown in Figure 6. It
is similar to the previous outcome,
but slightly more optimistic, as

expected.

2.5.3 Monitor Efficiency and
Redundancy

2.5.3.1 Monitor Efficiency
The efficiency of a monitor can be
measured by the projection of the
error ellipsoid EE as defined in
(2.8) along all axes in the monitor
space, using the method described
in Appendix G. An example is
given in Figure 7. Naturally, as the
errors accumulate along a beam
line, monitors will pick up
progressively larger projections
from the ellipsoid. Monitors
located where the projection is
significantly below this trend are
considered to have below-average
efficiency5. A plot such as in
Figure 7 also reveals strategic
locations and gaps in the monitor
configuration.

2.5.3.2 Redundant Monitor
Combination

Another test of the degree of
redundancy of the monitors, purely
from the standpoint of cost
                                                       
5 Of course this is not necessarily a criterion for the removal or relocation of this monitor. Special steering
concerns and cost effectiveness also should be considered, as from a pure orbit-control point of view, one could
never have too many monitors.
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Figure 6: Full line: maximal orbit error (alternative view) in [mm]
along the beam line in [m]; dots: position of monitors.
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Figure 7: Full line: projected 3σ error onto orbit space in [mm] along
the beam line in [m]; dots: position of monitors.

Figure 8: Example of orbit pattern with very small singular values,
with total magnitude normalised to 1, along the beam line
in [m].
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effectiveness, is to perform an SVD on the response matrix MEM as in (2.24), and examine the
row vectors of U corresponding to singular values smaller than the cutoff defined by (2.27).
These vectors will contain either one dominant monitor, indicating below-average efficiency
as discussed above, or a combination of a few monitors, indicating an inefficient combination
of monitors leading to unusable monitoring degrees of freedom. An iterative algorithm [5] can
be applied to this configuration to ensure eventually the elimination of unwanted redundancy.
An example output of the algorithm is shown in Figure 8 indicating a near singular
combination of two monitors. Elimination of the dominant monitor of this pair did not
compromise the monitoring power.

2.5.4 Fundamental Correctability, Correction Range and Residual Orbit

After having examined issues of observability and monitor efficiency, we need now to
examine the effectiveness of the corrector configuration6.

2.5.4.1 Corrector Range

By taking the projection of
the error ellipsoid EE onto
the corrector space via the
secondary response matrix

resp
CMEM  of (2.30), we can

derive the maximum error,
in units of the global error
distribution σ, that can be
handled by each corrector.
Conversely, for a fixed
magnitude of the global
error distribution, we can
sort the correctors in order
of increasing correction
range, thereby identifying
weak links in terms of
hardware limits in the
correctors. Figure 7
demonstrates such an
ordering, with the triangles
indicating the correction
range for each corrector in
units of the global error
distribution σ, along the
beam line TI 2. The dotted
line at 3 σ serves as
reference.

If the secondary response
matrix resp

CMAM  of (2.31) is

used instead of resp
CMEM , the

                                                       
6 The evaluation of the monitor and corrector configurations should nonetheless not be understood as
independent processes, as the configuration of one will definitely impact the effectiveness of the other in all but
a few cases. Therefore an iteration of the process discussed here can be necessary.
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Figure 9: Triangles: correction range of correctors in [σ] of the global error
distribution, along the beam line in [m].
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Figure 10: Triangles: corrector strengths in [rad] when the global error
magnitude corresponds to 3 σ, assuming unlimited monitoring
power, along the beam line in [m]; dotted line: physical corrector
limits.
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corresponding evaluation
will be basically independent
of the monitor configuration
and reflect a more
fundamental correction
range for each of the
correctors. An example of
this is shown in Figure 10.
Here the triangles represent
the corrector strength needed
in units of radian at each
corrector when the global
error magnitude corresponds
to 3 σ. The horizontal line
represents the physical
corrector limits.

2.5.4.2 Uncorrectable
Orbit

 The fundamentally
uncorrectable orbit at all
monitors is defined by the
secondary response matrix

uncorr
CMM  of (2.32). This is a

function at each monitor of
both the monitor and
corrector configurations, as
shown in Figure 10 the 3 σ
error envelope. The same
fundamentally uncorrectable
orbit at all elements can be
obtained through resid

CMAM  of

(2.34). An example is shown
in Figure 12. Finally, by
using uncorr

CAM  of (2.32)
instead we can obtain the
fundamentally uncorrectable
orbit at all elements, as a
measure purely of the
corrector configuration even
independent of the monitor
configuration. An example of
this is given in Figure 13.

2.5.4.3 Monitor Offset
Induced Orbit
Error

The secondary response ma-
trix ind

MCAM  defined in (2.33)
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Figure 11: Uncorrectable orbit at all elements in [mm] along the beam line in
[m].
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Figure 12: Full line: uncorrectable orbit at all elements in [mm], using
existing monitor configuration along the beam line in [m]; dots:
location of beam position monitors.
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Figure 13: Full line: uncorrectable orbit at all elements in [mm], assuming
unlimited monitoring power along the beam line in [m]; black
dots: location of beam position monitors, grey dots: location of
correctors
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projects the normalised
monitor error ellipsoid onto
the element space, providing
an evaluation of the effect of
monitor offsets on the global
orbit error. An example is
given in Figure 14.

2.5.4.4 Orbit Error
Implied by Observed
Orbit at Monitors

Using the secondary matrix
rms-orb
ECM  described in (2.36),

we can evaluate the
implication of an observed
orbit, in terms of its RMS, for
the underlying orbit error at all
elements. The normalised
monitor error ellipsoid is
projected through rms-orb

ECM
onto the space of all elements,
which is demonstrated in
Figure 15. This result is
obtained after scaling down
the envelope such that it
corresponds to the original
alignment type errors at a
distribution not exceeding 3 σ
at each point, using the cutoff
schemes explained in section
2.3.5 and Appendix I.

We can again take the
quadratic sum of the two
envelopes of Figure 12 and
Figure 15, as they represent
orthogonal components of the
overall orbit error at
compatible definition of
probability density values.
This is shown in Figure 16.

2.5.5 Actual Underlying
Orbit Error

Using the secondary response
matrix UOE

EMAM  defined in
(2.40), we can obtain the
projection of an error
ellipsoid, containing injection,
alignment, field and monitor
errors combined in a global
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Figure 14: Full line: monitor offset induced orbit error in [mm] along the
beam line in [m]; dots: location of beam position monitors.
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Figure 15: Full line: orbit error implied by observed orbit at the monitors,
scaled by 3σ error, in [mm] along the beam line in [m]; dots:
location of beam position monitors.
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Figure 16: Full line: quadratic sum of the two previous orbit envelopes in
[mm] along the beam line in [m]; dots: location of beam
position monitors.
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probability distribution, onto
each axe of the actual
underlying orbit space RUA

defined in (2.40). This
information alone summarises
many important aspects of the
orbit correction configuration,
and can be meaningfully
linked to a simulation test. An
example is given in Figure 17
for the 3 σ envelope at all
elements, where the 3 σ value
for the exit angle distribution
is also printed.

2.5.6 Near Degeneracy in
Response Matrices

By performing an SVD as in
(2.24) on the response matrix
MCM, we can evaluate the
degree of degeneracy in a
particular monitor and
corrector configuration. The
row vectors of V
corresponding to singular
values smaller than the cutoff
defined by (2.27) represent
near degenerate corrector
combinations, as shown in
Figure 18. Such combinations
are dangerous in that they can lead to excessive correction strength and orbit error in
unobservable locations. Completely degenerate combinations, corresponding to a zero
singular value, are less likely in critically and over-constrained cases, but must be examined
using the null-space method and eliminated before SVD is applied. A well-defined procedure
[5] can be applied to eliminate degeneracy in a configuration iteratively.

2.6 Study of Failure Modes

For most of the studies described in the previous section, whether on the 3 σ maximum along
an axis or on the point of inscription between an ellipsoid and a hyper-cube, it is important to
find not only the extreme or intersecting value, but also the error combination which led to
such values. As explained in Appendices F, G and I, such configurations are obtained mostly
through solutions to eigenvalue problems or inspection of mapping for Gaussian distributions.
Examination of such error combinations provides useful insight leading to improved
configurations. Figure 19 illustrates an effort to understand the combination of injection,
alignment and monitor errors, as well as corresponding corrector responses that led to the
calculated peak value for the actual underlying orbit. It is easy to see how various errors,
including monitor error, conspire to create the extreme orbit excursion (clipped at graph
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Figure 17: Full line: actual underlying orbit error in [mm] along the beam
line in [m]; dots: location of beam position monitors.

M
C
I
A
V
2
9
5
0
4

M
C
I
A
V
2
9
1
0
4

M
C
I
A
V
2
8
9
0
4

M
C
I
A
V
2
8
5
0
4

M
C
I
A
V
2
7
9
0
4

M
C
I
A
V
2
7
3
0
4

M
C
I
A
V
2
6
7
0
4

M
C
I
A
V
2
6
1
0
4

M
C
I
A
V
2
5
5
0
4

M
C
I
A
V
2
4
9
0
4

M
C
I
A
V
2
4
3
0
4

M
C
I
A
V
2
3
7
0
4

M
C
I
A
V
2
3
1
0
4

M
C
I
A
V
2
2
5
0
4

M
C
I
A
V
2
1
9
0
4

M
C
I
A
V
2
1
3
0
4

M
C
I
A
V
2
0
7
0
4

M
C
I
A
V
2
0
1
0
4

M
D
L
V
6
1
0
3
0
4

M
D
A
V
6
1
0
0
1
3

-0.80

-0.60

-0.40

-0.20

0.00

0 500 1000 1500 2000 2500 3000

Figure 18: Example of near degenerate corrector with total magnitude
normalised to 1 along the beam line in [m].
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boundaries). Such calculations are automatically generated by the analysis program and stored
in files for later inspection.

The same studies are applied to corrector strength, observability and correctability limits.
In each case the combination of errors leading to extreme conditions is calculated and
examined as the need arises.

2.7 Configuration Optimisation

2.7.1 Improving the Configuration through Analytical Methods

Starting with a given configuration, we applied the analytical methods described in [5] to
identify major problems in terms of observability, correctability and degeneracy. Iterative
algorithms were applied to eliminate these problems to acceptable levels.

The iterative algorithms for eliminating degeneracy in monitor and corrector
configurations have been described in sections 2.5.3 and 2.5.6. We describe below an
algorithm for eliminating monitor deficiency, and two alternative algorithms for eliminating
corrector deficiency. Armed with the ability to calculate uncorrectable residual orbit at all
elements, the current approach is slightly different from that of [5].

2.7.1.1 Adding Monitors Based on the Unobservable Error-induced Orbit
First the error-to-monitor response matrix MEM is scaled so that in the actuator space all
elements are measured in the σ’s of the respective errors.  Unobservability is indicated by the
presence of null space or very small singular values of MEM.  In both cases the system fails to
meet the observability criterion.  The matrix MEM is decomposed with SVD.  Those resulting
error combinations corresponding to singular values short of a numerical criterion, defined
through operational requirements, are identified.  The error-to-all-element response matrix
MEA is then taken to act on these error combinations to get error-induced orbits at all
locations.  The largest element of each of the orbit vectors is identified and, if this number
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Figure 19: Example to study the composition of the leading underlying orbit (abscissa: beam line in [m]).
(BPM offset and initial orbit in [m], all kicks in [rad])

initial orbit

quadrupole offset kicks (*100)

dipole tilt kicks (*100)

corrector kicks (*100)

BPM offset (*100)
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exceeds a second numerical criterion for acceptable unobservable orbit, a new monitor is
added at this location or its vicinity.  The procedure is iterated until MEM no longer has
singular error combinations whose effects in the all-element space exceed the second
numerical criterion.

2.7.1.2 Adding Correctors Based on the Uncorrectable Residual Orbit
The maximal uncorrectable orbit at all locations is obtained through projection of the error
ellipsoid by uncorr

CAM  (defined in (2.32)). The eigenvalue method used for this purpose also
gives the error combination AE,P leading to such maximum at each point P. Application of

uncorr
CMM  on the AE,P corresponding to the location with the largest not correctable orbit yields

the residual orbit pattern under this particular error combination at all monitors

uncorr= ⋅ΜM,P E,P
CM .R A (2.44)

It remains to find the column vector in the generalised all-element-to-monitor response matrix
MAM having the largest projection on RM,P.

2.7.1.3 Adding Correctors Based on the Principal Axes of the Error Ellipsoid

The above method works in cases over-constrained
correction where uncorr

CMM  is meaningful. There may be
critically or even under-constrained cases in which we
would like to add correctors to enhance correcting power.
This situation is illustrated in Figure 20A, where the ellipse
represents the projection of the 3 σ error ellipsoid onto the
2-dimensional monitor space. The rectangle represents the
projection of the range of two correctors onto the monitor
space. This is a critically constrained problem and there is
no monitor subspace outside the column vectors of MCM,
thus uncorr

CMM  does not exist. The system is fully correctable
in the degree-of-freedom sense, but the corrector range is
apparently deficient.

In this case we search for additional correctors with the
purpose of enhancing the dimensionality of the hyper-cube
representing the corrector range, such that when it is
collapsed onto the monitor space (rectangular contour in
Figure 20B) the added dimensions have the largest
component along the principal axes of the projected error
ellipse. The principal axes can be easily calculated by SVD
as described in section 2.2.5. It remains to find the column
vector in the generalised all-element-to-monitor response
matrix MAM having the largest projection on the longest principal axis.

2.7.2 Exhaustive Fine Tuning of the Configuration

Analytical methods discussed thus far for improving the configuration are most effective for
fixing major defects. When the question becomes fine tuning on trade-offs between a better
beta function and a better phase advance when a corrector is moved by less than a few meters,
the interplay between optics and error propagation becomes intractable analytically. In such
cases it is best to use an automated process that scans over all possible monitor-corrector

Figure 20A: Deficient corrector
coverage of the monitor space.

Figure 20B: Extended corrector
coverage along the principal axis.
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configurations7, taking one of the quantities discussed in section 2.58 as a merit function. The
configuration optimised by such a scan includes all the intractable interplay between
observability, correctability and degeneracy based on the optics. It should be noted that such
scans are only practical with an analytical calculation, as opposed to simulation, as the former
can return a much faster and unambiguous result at each scanned configuration. It has been
extensively used in fine tuning the currently proposed configurations and has proved very
effective.

2.8 Identifying Critical Elements
Studies were made to
measure the criticality of the
elements in all proposed
configurations. This is done
by systematically deleting or
altering each element in turn
and examining the impact on
the actual underlying orbit
error. Since only analytical
calculations are involved,
scanning over all elements
using this method is quite
efficient and is routinely
included in the standard
analysis of a configuration. A
total of four tests are done.

2.8.1 Impact of Missing
Monitor

To examine the impact on the
global envelope of the actual
underlying orbit error due to a
missing monitor, we use the
secondary response matrix

UOE
EMAM  as defined in (2.40)

with the modification on
MEM, MCM, ZMM and MMM

having one of the monitor
entries deleted. The resulting
global peak in the actual
underlying orbit error is
plotted in Figure 21 as a
function of the deleted monitor. It can be seen that the global peak remains the same when
one of the monitors is missing from the entire set, except for one monitor towards the end
whose absence would cause the global peak to increase. The program also calculates the exact
global envelope in these cases to pinpoint the source of the problem, as shown in Figure 25.
This is also done for the other criticality tests discussed below.
                                                       
7 Usually we scan over only one monitor and one corrector simultaneously over a limited range in the line. More
elaborate scans would certainly be more time consuming.
8 The ideal for such a merit function is the global actual underlying orbit.
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Figure 21: Maximum underlying orbit caused by missing monitor in [m]
along the beam line in [m].
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2.8.2 Impact of Fixed Monitor Offset
To examine the impact on the global envelope of the actual underlying orbit error due to a
fixed offset ∆ at one monitor, we use the secondary response matrix UOE

EMAM  as defined in

(2.40). The fixed monitor offset introduces a shift in the global 3 σ envelope by a fixed
amount given by

† ,

0, j i,

�� M  L �

= ⋅ ⋅
≠

= 


AO CA MO
i iCM

MO
j

R M M A

A
(2.45)

The resulting global orbit error RAO, in absolute value, is then superposed to the standard
underlying orbit error at 3 σ. This is done for each monitor and the global peak is plotted as a
function of the monitor with the offset. This is illustrated in Figure 22 with ∆ = 3 mm.

2.8.3 Impact of Missing
Corrector

To examine the impact on
the global envelope of
actual underlying orbit
error due to a missing
corrector, we use the
secondary response matrix

UOE
EMAM  as defined in (2.40)

with the modification on
MCM and MCA having one
of the corrector entries
deleted. The resulting
global peak in the actual
underlying orbit error is
plotted as a function of the
deleted corrector. This is
shown in Figure 23. The
one corrector causing
drastic increase in the
global envelope is located
at the beginning of the line,
the absence of which
significantly reduces the
ability of the system to
contain injection errors, as
shown in Figure 26.

2.8.4 Impact of Fixed
Corrector Scale
Error

To examine the impact on the global envelope of actual underlying orbit error due to a fixed
scale error Σ at one corrector, we use the secondary response matrix UOE

EMAM  as defined in

M
C
I
A
V
2
9
5
0
4

M
C
I
A
V
2
9
1
0
4

M
C
I
A
V
2
8
9
0
4

M
C
I
A
V
2
8
5
0
4

M
C
I
A
V
2
7
9
0
4

M
C
I
A
V
2
7
3
0
4

M
C
I
A
V
2
6
7
0
4

M
C
I
A
V
2
6
1
0
4

M
C
I
A
V
2
5
5
0
4

M
C
I
A
V
2
4
9
0
4

M
C
I
A
V
2
4
3
0
4

M
C
I
A
V
2
3
7
0
4

M
C
I
A
V
2
3
1
0
4

M
C
I
A
V
2
2
5
0
4

M
C
I
A
V
2
1
9
0
4

M
C
I
A
V
2
1
3
0
4

M
C
I
A
V
2
0
7
0
4

M
C
I
A
V
2
0
1
0
4

M
D
L
V
6
1
0
3
0
4

MDAV610013

0.E+00

1.E-02

2.E-02

0 500 1000 1500 2000 2500 3000
Figure 23: Maximum underlying orbit caused by missing corrector in [m]

along the beam line in [m].
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(2.40) with the modification
on MCA having one of the
columns magnified by
(1+Σ). The resulting global
peak in the actual
underlying orbit error is
plotted as a function of the
anomalous corrector. This
is shown in Figure 24 with
Σ = 50 %.

2.9 Comparison with
Simulation

It is prudent, given the
reliance of our analysis on
analytical method, to
perform some simulation as
a cross-check. In the
following results from
massive simulations are
given. In each example a
total of 20,000 trajectories
are launched, subject to the
same optics and element
configurations, error
distributions, and orbit
correction schemes as used
by the analytical methods.

2.9.1 Envelope of the
Actual Underlying
Orbit Error

Figure 27 shows the 1 σ
envelope of the actual un-
derlying orbit error calcu-
lated by the analytical
method (dots) and the
simulation (full line). They
demonstrate exact agree-
ment at all elements.

2.9.2 Distribution of the
Extremum

Figure 28 shows the distri-
bution of the maximum
actual underlying orbit error anywhere in the line, calculated by simulation. As explained in
section 2.2.4 and Appendix I, no analytical method exists for evaluating this distribution. This
however has the same characteristics as that displayed in Figure A.1, and agrees very well
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Figure 25: Leading underlying orbit in [mm] along the beam line in [m],
with monitor BPIMV29504 missing.
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Figure 26: Leading underlying orbit in [mm] along the beam line in [m],
with corrector MDAV610013 missing.
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Figure 27: Maximum 1 σ underlying corrected orbit in [mm] along the
beam line in [m] (dots: analytic method; full line: simulation).



37

with an earlier simulation [2] of the extremum distribution in TI 2. Inspection of this and
similar calculations carried out on various configurations seem to indicate that the extent of
the extremum distribution is roughly 10 % - 20 % larger than the peak 3 σ envelope in the
line, again in agreement with [2]. This rule-of-thumb can be used to roughly estimate the
largest underlying orbit anywhere in the line, although there is no analytical justification for
it.

2.9.3 The Distribution of the Error RMS and the Correlation with the Extrema of the
Underlying Orbit Error

Figure 29 shows the distribution of the 20,000 maxima of the actual underlying orbit error
anywhere in the line, correlated with their corresponding error magnitude measured in σ of
the error distribution. As the total number of error sources is in the hundreds, we see the
dramatic shift of the RMS peak predicted in Figure A.2 of Appendix I.

2.9.4 Direct Comparison of Orbit Error Distribution at Specific Points between
Analytic Method and Previous Simulation

It should be noted that in
the previous simulation
study [2] the distribution
used as the measure of
performance was that of
maximum orbit error
values anywhere in the
entire line for each random
test, and thus follows a
shape resembling that of
Figure 28. Such a
distribution, as explained
earlier, cannot be
represented in closed form

analytically. A direct and
unambiguous verification
can nonetheless be made
between the analytical
results and the previous
simulation, by comparing
the 3 σ values of the orbit
error distribution associa-
ted with specific points in
the line. The 3 σ errors in
both planes, at two
representative points9 in
the TI 2 line one-in-three
configuration, were calcu-
lated using both methods.
The two methods agree on

                                                       
9 These are chosen at one focusing quadrupole and one defocusing quadrupole, resulting in four values very
different in magnitude.
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these four values to within 0.7% - 4.0%, consistent with the expected discrepancy due to
statistics and known differences in inputs to these two methods10.

                                                       
10 These include different injection errors, assignments of errors to dipoles and quadrupoles in non-periodic
regions, models for monitor offset distributions, end angle constraints, position effects of dipoles used in
steering, and difference in invoking one-to-one and SVD steering methods when steering units slightly overlap.
The first three factors of the above are the more dominant ones and they all tend to make the analytical result
slightly more pessimistic than simulation.  This is indeed the tendency in the numerical differences seen in the
comparison.  The remaining factors are less dominant and their effects are more random than one-sided.  Finally,
a deviation by 4 % from the theoretical RMS in a sample of 1000 Gaussian-distributed values, equal in size to
the sample used by the simulation, is quite normal.
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3 The Result of the Analysis and the Proposed Configurations

3.1 Search for the Optimal Configuration and Evolution into the Over-
Constrained Regime in the Periodic Sections

3.1.1 Procedure of Configuration Optimisation

The analytic methods described in section 2 were systematically applied to the lattices of the
TI 2 and TI 8 lines in the following steps:

•  A baseline configuration is constructed based on first-order considerations of optical
properties such as betatron amplitude and phase advance, and reasonable balance
between cost and performance.

•  This configuration is then subjected to analysis by the program, which identifies defects in
the configuration such as unobservability, uncorrectability, and near-singularities, in the
meantime quantifying the various global performance parameters described in section 2,

•  The configuration is improved, either by analytic methods when configuration defects are
identified in the previous step or, in the case of configuration fine-tuning, through
automated configuration search using global parameters as guidelines.

In the non-periodic parts of the two beam lines this procedure was followed through, with
limited alternative, to arrive at the final configurations conforming to operational tolerances at
minimal cost. In the periodic sections, it was clear that configuring monitors and correctors
periodically in different ways could lead to interesting tradeoffs between performance and
cost. A study was made to compare the merits of viable configurations in the periodic
sections, the only requirement being their amenability to a 1-to-1 steering scheme. In other
words, each corrector has to be identified with exactly one monitor in the steering process.
The possibilities have also been studied of moving the periodic configuration boundary so
that it extends further up or down-stream, and of shifting the relative pattern between
monitors and correctors. These are summarised in Table 3.

Monitor
pattern

Corrector
pattern

Average
monitor per
period

Average
corrector
per period

3σ orbit
error peak
(H/V mm)

Note

2-in-4 2-in-4 0.50 0.50 3.2 / 3.4
2-in-4 2-in-4 0.50 0.50 3.2 / 3.4 Monitors shifted by 1 optical cell
2-in-4 2-in-4 0.50 0.50 4.0 / 4.0 Configuration extended downstream
1-in-2 1-in-2 0.50 0.50 >10.0 Near singularity due to 90° cell
1-in-3 1-in-3 0.33 0.33 4.7 / 4.7
1-in-4 1-in-4 0.25 0.25 8.0 / 8.0

Table 3: Comparison between various 1-to-1 schemes in the periodic section.

It was concluded that the 2-in-4 scheme provides a sound balance between performance and
economy insofar as 1-to-1 schemes are concerned. This is consistent with the conclusion of
the previous study [2].
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3.1.2 Evolution into the Over-Constrained Regime

In parallel with the
evaluation of various 1-to-
1 configurations, a study
into over-constrained
steering was initiated. This
was motivated by the
observation that, despite
the relative advantage
displayed by the 2-in-4
configuration, some near-
singularity in the orbit
correction was observed,
indicating an overly dense
coverage by correctors.

One such near-singular
combination is shown in
Figure 30 for TI 2. The
same pattern repeats
throughout the entire
periodic section. Such
near-singularities can
result in excessive
correction, both in terms of
corrector strength and orbit
error at locations not
equipped with beam
position monitors. These
problems are not unusual,
and are generally solved by
reducing the corrector
coverage and resorting to
software-aided over-
constrained steering.

The immediate path to
corrector reduction in the
2-in-4 pattern is either a 1-
in-3 or a 1-in-2 scheme.
The latter would present
even more severe
singularity problems due to
the 90°-per-cell optics.

Thus the most obvious
option for corrector
reduction was the 1-in-3
pattern, while maintaining
the 2-in-4 pattern for
monitors. Figure 31 shows
the resulting 3 σ orbit error
envelope for such a
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Figure 30: Triangles: corrector strengths in [rad] for a near-singular
combination in the 2-in-4 scheme (TI 2; abscissa in [m]).
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Figure 31: Full line: 3 σ orbit envelope in [mm] when applying an SVD-
style correction on a 2-in-4 monitor and 1-in-3 corrector scheme
(TI 2; abscissa in [m]); dots: position of monitors.
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Figure 32: Full line: 3σ orbit envelope in [mm] for an over-constrained 2-in-
3 monitor and 1-in-3 corrector scheme, (TI 2, abscissa in [m];
dots: position of monitors).
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configuration when an SVD-style correction is applied to minimise the RMS orbit11. The
corrector singularity has been reduced in this case, but inspection of Figure 34 reveals that,
over each super-period of 12 cells, there is a clear sign of over-correction at some monitors at
the expense of under-correction at other, mostly unmonitored locations.

The overall orbit error envelope can be improved if this imbalance is mitigated. This was
achieved by shifting the monitors at the over-corrected locations to the gaps where the orbit is
under-monitored and under-corrected, at the expense of two additional monitors per 12-cell
super-period. The outcome turned out to be exactly a 2-in-3 pattern for the monitors. The
orbit error envelope for this over-constrained configuration is shown in Figure 32, where the
peaks in the periodic section have been reduced to 2.3 mm, a reduction of nearly 30%. More
significantly, the entire periodic section is steered evenly, without unjustified emphasis and
therefore waste of correction resources in particular local regions. The new over-constrained
configuration, with a 2-in-3 scheme for the monitors and a 1-in-3 scheme for the correctors, is
presented as alternative for both lines. Per 12-cell super-period, it requires two additional
monitors but offers a reduction by two correctors. Anticipating the likely need to perform the
initial orbit set-up during commissioning without computer support, an analysis has also been
performed on a 1-to-1 variation of this scheme, with every other monitor disabled in the
periodic section to form a 1-in-3 pattern in both monitors and correctors over the entire line.

3.2 Details of the Proposed Configurations
On the following pages two plots, separately per plane, are shown for each configuration
optimised under the respective baseline theme for monitor and corrector placements. For both
TI 2 and TI 8 the following configurations were optimised:

•  2-in-4 for both monitors and correctors;
•  2-in-3 for monitors and 1-in-3 for correctors;
•  1-in-3 for monitors and 1-in-3 for correctors.

For each configuration the first plot shows the individual corrector limit in units of the
error σ that the corrector in question can handle. Triangles located below the dotted 3 σ line
indicate those correctors whose limit will be reached before the error distribution reaches the
surface corresponding to the 3 σ cutoff on all errors. It should be noted that the values above 3
σ are meaningful only if those below are “fixed” so that they no longer “max out” at 3 σ.
However the plot does give an unambiguous ordering of the relative margins of the
correctors, as explained in Appendix F.

The second plot shows the 3 σ extent at each representative element in the line of the true
underlying orbit when the combined injection, alignment, and monitor offset errors reach the
distribution surface of 3 σ. The dots along the horizontal axis mark the monitor positions. The
3σ envelope value of the outgoing angle is also given, as it is important in some cases.

                                                       
11 The effect of monitor offset errors is not included in this graph to accentuate the unbalanced orbit monitoring.
Inclusion of monitor offset errors will make the global orbit error larger than displayed.
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3.3 TI 2

3.3.1 TI 2: 2-in-4 for monitors, 2-in-4 for correctors, horizontal plane
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Figure 33: Corrector limits in error σ.
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Figure 34: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 26 [µrad].
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3.3.2 TI 2: 2-in-4 for monitors, 2-in-4 for correctors, vertical plane
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Figure 35: Corrector limits in error σ.
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Figure 36: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions).
3 σ envelope value of the outgoing angle = 22 [µrad].
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3.3.3 TI 2: 2-in-3 for monitors, 1-in-3 for correctors, horizontal plane
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Figure 37: Corrector limits in error σ.

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000

Figure 38: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 26 [µrad].
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3.3.4 TI 2: 2-in-3 for monitors, 1-in-3 for correctors, vertical plane
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Figure 39: Corrector limits in error σ.
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Figure 40: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 22 [µrad].
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3.3.5 TI 2: 1-in-3 for monitors, 1-in-3 for correctors, horizontal plane
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Figure 41: Corrector limits in error σ.
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Figure 42: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 26 [µrad].
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3.3.6 TI 2: 1-in-3 for monitors, 1-in-3 for correctors, vertical plane

M
C
I
A
V
2
9
5
0
4

M
C
I
A
V
2
9
1
0
4

M
C
I
A
V
2
8
9
0
4

M
C
I
A
V
2
8
5
0
4

M
C
I
A
V
2
7
9
0
4

M
C
I
A
V
2
7
3
0
4

M
C
I
A
V
2
6
7
0
4

M
C
I
A
V
2
6
1
0
4

M
C
I
A
V
2
5
5
0
4

M
C
I
A
V
2
4
9
0
4

M
C
I
A
V
2
4
3
0
4

M
C
I
A
V
2
3
7
0
4

M
C
I
A
V
2
3
1
0
4

M
C
I
A
V
2
2
5
0
4

M
C
I
A
V
2
1
9
0
4

M
C
I
A
V
2
1
3
0
4

M
C
I
A
V
2
0
7
0
4

M
C
I
A
V
2
0
1
0
4

M
D
L
V
6
1
0
3
0
4

M
D
A
V
6
1
0
0
1
3

0

5

10

15

20

0 500 1000 1500 2000 2500 3000

3 σ

Figure 43: Corrector limits in error σ.
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Figure 44: Resulting orbit error envelope in [mm] along TI 2 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 22 [µrad].
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3.4 TI 8

3.4.1 TI 8: 2-in-4 for monitors, 2-in-4 for correctors, horizontal plane
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Figure 45: Corrector limits in error σ.
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Figure 46: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 20 [µrad].
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3.4.2 TI 8: 2-in-4 for monitors, 2-in-4 for correctors, vertical plane
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Figure 47: Corrector limits in error σ.

0

1

2

3

4

5

0 500 1000 1500 2000 2500

Figure 48: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 20 [µrad].
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3.4.3 TI 8: 2-in-3 for monitors, 1-in-3 for correctors, horizontal plane
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Figure 49: Corrector limits in error σ.

0

1

2

3

4

5

0 500 1000 1500 2000 2500

Figure 50: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 22 [µrad].
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3.4.4 TI 8: 2-in-3 for monitors, 1-in-3 for correctors, vertical plane
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Figure 51: Corrector limits in error σ.

0

1

2

3

4

5

0 500 1000 1500 2000 2500

Figure 52: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 20 [µrad].
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3.4.5 TI 8: 1-in-3 for monitors, 1-in-3 for correctors, horizontal plane
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Figure 53: Corrector limits in error σ.
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Figure 54: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 20 [µrad].
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3.4.6 TI 8: 1-in-3 for monitors, 1-in-3 for correctors, vertical plane

M
C
I
A
V
8
8
1
0
4

M
C
I
A
V
8
7
9
0
4

M
B
I
B
V
8
7
7
1
5

M
C
I
A
V
8
7
3
0
4

M
C
I
A
V
8
6
7
0
4

M
C
I
A
V
8
6
1
0
4

M
C
I
A
V
8
5
5
0
4

M
C
I
A
V
8
4
9
0
4

M
C
I
A
V
8
4
3
0
4

M
C
I
A
V
8
3
7
0
4

M
C
I
A
V
8
3
1
0
4

M
C
I
A
V
8
2
5
0
4

M
C
I
A
V
8
1
9
0
4

M
C
I
A
V
8
1
3
0
4

M
C
I
A
V
8
0
7
0
4

M
C
I
A
V
8
0
1
0
4

M
D
S
V
4
0
0
2
9
4

M
D
M
V
4
0
0
0
9
7

0

10

20

30

40

50

0 500 1000 1500 2000 2500

3 σ

Figure 55: Corrector limits in error σ.
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Figure 56: Resulting orbit error envelope in [mm] along TI 8 (in [m]; dots: monitor positions);
3 σ envelope value of the outgoing angle = 20 [µrad].
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3.5 Overview of the Proposed Configurations

The overall element count and the maximum orbit envelope for the various optimised
configurations are summarised in Table 4. Envelope values given in parentheses and denoted
with ‘^’ represent singular, very localised peak values.

The optimised 2-in-4 scheme requires, for TI 2 and TI 8 together, 90 new correctors (with
a total of 102 corrective elements used). The same scheme in the previous study used a total
of 110 corrective elements, of which 94 were assumed at that time to consist of modified LEP
correctors. Maximum orbit excursions in the un-optimised scheme were also found to be
around 3.5 mm.

Scheme existing* new total existing* new total horizontal vertical

2-in-4 7 47 54 6 48 54 3.3 3.5
1-in-3 7 33 40 5 35 40 4.6 4.6

"2-in-3" 7 33 40 6 66 72 2.3 (^ 3.2, 3.2, 2.8) 2.4 (^ 3.0)

2-in-4 5 43 48 2 46 48 3.3 3.4
1-in-3 5 31 36 2 34 36 4.5 4.7

"2-in-3" 5 31 36 2 60 62 2.3 (^ 2.8, 2.5) 2.4

TI 2 (incl. TT60)

Maximum envelope [mm]

TI 8 (incl. TT40)

Corrective elements Monitors

Table 4: Element count and maximum orbit envelope for the various optimised schemes.

Table 5 to Table 8 give the detailed corrector-monitor configurations of the proposed
schemes. Elements with grey background denote existing elements, e.g., those installed in
beam lines from which TI 2 and TI 8 branch off, those to be located in the LHC main ring, or
those defining the line geometry (groups of dipoles).  These are elements that can be
conveniently used for trajectory correction. Elements of the last category are also marked in
boldface. One element, marked in italic, concerns a location in TT60 where we recommend
to complement the presently installed configuration with a new corrector for optimum results.
Each line in the Tables stands for a corresponding corrector-monitor pair12. A second element,
marked in italic, concerns one element in TT40 which has been proposed in addition to the
previous reference scheme for this part of TI 8.

                                                       
12 This statement does not apply to the supplementary monitors in the 2-in-3 schemes (Table 6 and Table 8), to
be used in computer-supported SVD-style correction. The placement of these monitors in their respective row is
solely meant to reflect their sequence in the beam line.
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Index Corrector Monitor
H V

1 * MDAV610013 BPCL610312
2 * MDLH610104 BPCL610211
3 * MDLH610206 BPCL610340
4 * MDLV610304 BPCK610539
5 * MDLH610337 BPMIH20204
6 * MCIAV20104 BPMIV20304
7 * MBB20150 BPMIH20404
8 * MCIAV20304 BPMIV20504
9 * MCIAH20804 BPMIH21004

10 * MCIAV20904 BPMIV21104
11 * MCIAH21004 BPMIH21204
12 * MCIAV21104 BPMIV21304
13 * MCIAH21604 BPMIH21804
14 * MCIAV21704 BPMIV21904
15 * MCIAH21804 BPMIH22004
16 * MCIAV21904 BPMIV22104
17 * MCIAH22404 BPMIH22604
18 * MCIAV22504 BPMIV22704
19 * MCIAH22604 BPMIH22804
20 * MCIAV22704 BPMIV22904
21 * MCIAH23204 BPMIH23404
22 * MCIAV23304 BPMIV23504
23 * MCIAH23404 BPMIH23604
24 * MCIAV23504 BPMIV23704
25 * MCIAH24004 BPMIH24204
26 * MCIAV24104 BPMIV24304
27 * MCIAH24204 BPMIH24404
28 * MCIAV24304 BPMIV24504
29 * MCIAH24804 BPMIH25004
30 * MCIAV24904 BPMIV25104
31 * MCIAH25004 BPMIH25204
32 * MCIAV25104 BPMIV25304
33 * MCIAH25604 BPMIH25804
34 * MCIAV25704 BPMIV25904
35 * MCIAH25804 BPMIH26004
36 * MCIAV25904 BPMIV26104
37 * MCIAH26404 BPMIH26604
38 * MCIAV26504 BPMIV26704
39 * MCIAH26604 BPMIH26804
40 * MCIAV26704 BPMIV26904
41 * MCIAH27204 BPMIH27404
42 * MCIAV27304 BPMIV27504
43 * MCIAH27404 BPMIH27604
44 * MCIAV27504 BPMIV27704
45 * MCIAH28004 BPMIH28204
46 * MCIAV28104 BPMIV28304
47 * MCIAH28204 BPMIH28404
48 * MCIAV28304 BPMIV28504
49 * MCIAH28804 BPMIH29004
50 * MCIAV28904 BPMIV29104
51 * MCIAH29004 BPMIH29304
52 * MCIAV29104 BPMIV29504
53 * MBIBH29314 BPMYB.Q5.L2
54 * MCIAV29504 BPMYB.Q4.L2

Plane

TI 2 2-in-4 scheme

Table 5: Listing of correctors and monitors in TI 2 for the 2-in-4 scheme.
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Index Corrector Monitor Monitor
H V (suppl.)

1 * MDAV610013 BPCL610312
2 * MDLH610104 BPCL610211
3 * MDLH610206 BPCL610340
4 * MDLV610304 BPCK610539
5 * MDLH610337 BPMIH20204
6 * MCIAV20104 BPMIV20304 BPMIV20504
7 * MBB20150 BPMIH20604 BPMIH20404
8 * MCIAV20704 BPMIV20904 BPMIV21104
9 * MCIAH20804 BPMIH21004 BPMIH21204

10 * MCIAV21304 BPMIV21504 BPMIV21704
11 * MCIAH21404 BPMIH21604 BPMIH21804
12 * MCIAV21904 BPMIV22104 BPMIV22304
13 * MCIAH22004 BPMIH22204 BPMIH22404
14 * MCIAV22504 BPMIV22704 BPMIV22904
15 * MCIAH22604 BPMIH22804 BPMIH23004
16 * MCIAV23104 BPMIV23304 BPMIV23504
17 * MCIAH23204 BPMIH23404 BPMIH23604
18 * MCIAV23704 BPMIV23904 BPMIV24104
19 * MCIAH23804 BPMIH24004 BPMIH24204
20 * MCIAV24304 BPMIV24504 BPMIV24704
21 * MCIAH24404 BPMIH24604 BPMIH24804
22 * MCIAV24904 BPMIV25104 BPMIV25304
23 * MCIAH25004 BPMIH25204 BPMIH25404
24 * MCIAV25504 BPMIV25704 BPMIV25904
25 * MCIAH25604 BPMIH25804 BPMIH26004
26 * MCIAV26104 BPMIV26304 BPMIV26504
27 * MCIAH26204 BPMIH26404 BPMIH26604
28 * MCIAV26704 BPMIV26904 BPMIV27104
29 * MCIAH26804 BPMIH27004 BPMIH27204
30 * MCIAV27304 BPMIV27504 BPMIV27704
31 * MCIAH27404 BPMIH27604 BPMIH27804
32 * MCIAV27904 BPMIV28104 BPMIV28304
33 * MCIAH28004 BPMIH28204 BPMIH28404
34 * MCIAV28504 BPMIV28704 BPMIV28904
35 * MCIAH28604 BPMIH28804 BPMIH29004
36 * MCIAV28904 BPMIV29104
37 * MCIAH29004 BPMIH29304
38 * MCIAV29104 BPMIV29504 BPMIV29204
39 * MBIBH29314 BPMIH29404 BPMYB.Q5.L2
40 * MCIAV29504 BPMYB.Q4.L2

Plane

TI 2 1(2)-in-3 scheme

Table 6: Listing of correctors and monitors in TI 2 for the 1(2)-in-3 schemes.
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Index Corrector Monitor
H V

1 * MDMV400097 BP400307
2 * MDMH400104 BP400207
3 * MBHC400107 BP400407
4 * MDSV400294 BPMIV80104
5 * MBHA400309 BPMIH80204
6 * MCIAV80104 BPMIV80304
7 * MCIAH80204 BPMIH80404
8 * MCIAV80704 BPMIV80904
9 * MCIAH80804 BPMIH81004

10 * MCIAV80904 BPMIV81104
11 * MCIAH81004 BPMIH81204
12 * MCIAV81504 BPMIV81704
13 * MCIAH81604 BPMIH81804
14 * MCIAV81704 BPMIV81904
15 * MCIAH81804 BPMIH82004
16 * MCIAV82304 BPMIV82504
17 * MCIAH82404 BPMIH82604
18 * MCIAV82504 BPMIV82704
19 * MCIAH82604 BPMIH82804
20 * MCIAV83104 BPMIV83304
21 * MCIAH83204 BPMIH83404
22 * MCIAV83304 BPMIV83504
23 * MCIAH83404 BPMIH83604
24 * MCIAV83904 BPMIV84104
25 * MCIAH84004 BPMIH84204
26 * MCIAV84104 BPMIV84304
27 * MCIAH84204 BPMIH84404
28 * MCIAV84704 BPMIV84904
29 * MCIAH84804 BPMIH85004
30 * MCIAV84904 BPMIV85104
31 * MCIAH85004 BPMIH85204
32 * MCIAV85504 BPMIV85704
33 * MCIAH85604 BPMIH85804
34 * MCIAV85704 BPMIV85904
35 * MCIAH85804 BPMIH86004
36 * MCIAV86304 BPMIV86504
37 * MCIAH86404 BPMIH86604
38 * MCIAV86504 BPMIV86704
39 * MCIAH86604 BPMIH86804
40 * MCIAV87104 BPMIV87304
41 * MCIAH87204 BPMIH87404
42 * MCIAV87304 BPMIV87504
43 * MCIAH87404 BPMIH87604
44 * MBIBV87715 BPMIV87904
45 * MBIAH87833 BPMIH88004
46 * MCIAV87904 BPMIV88104
47 * MCIAH88004 BPMYB.Q5.R8
48 * MCIAV88104 BPMYB.Q4.R8

Plane

TI 8 2-in-4 scheme

Table 7: Listing of correctors and monitors in TI 8 for the 2-in-4 scheme.
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Index Corrector Monitor Monitor
H V (suppl.)

1 * MDMV400097 BP400307
2 * MDMH400104 BP400207
3 * MBHC400107 BP400407
4 * MDSV400294 BPMIV80104
5 * MBHA400309 BPMIH80204 BPMIH80404
6 * MCIAV80104 BPMIV80304 BPMIV80504
7 * MCIAH80604 BPMIH80804 BPMIH81004
8 * MCIAV80704 BPMIV80904 BPMIV81104
9 * MCIAH81204 BPMIH81404 BPMIH81604

10 * MCIAV81304 BPMIV81504 BPMIV81704
11 * MCIAH81804 BPMIH82004 BPMIH82204
12 * MCIAV81904 BPMIV82104 BPMIV82304
13 * MCIAH82404 BPMIH82604 BPMIH82804
14 * MCIAV82504 BPMIV82704 BPMIV82904
15 * MCIAH83004 BPMIH83204 BPMIH83404
16 * MCIAV83104 BPMIV83304 BPMIV83504
17 * MCIAH83604 BPMIH83804 BPMIH84004
18 * MCIAV83704 BPMIV83904 BPMIV84104
19 * MCIAH84204 BPMIH84404 BPMIH84604
20 * MCIAV84304 BPMIV84504 BPMIV84704
21 * MCIAH84804 BPMIH85004 BPMIH85204
22 * MCIAV84904 BPMIV85104 BPMIV85304
23 * MCIAH85404 BPMIH85604 BPMIH85804
24 * MCIAV85504 BPMIV85704 BPMIV85904
25 * MCIAH86004 BPMIH86204 BPMIH86404
26 * MCIAV86104 BPMIV86304 BPMIV86504
27 * MCIAH86604 BPMIH86804 BPMIH87004
28 * MCIAV86704 BPMIV86904 BPMIV87104
29 * MCIAH87204 BPMIH87404 BPMIH87604
30 * MCIAV87304 BPMIV87504 BPMIV87704
31 * MCIAH87604 BPMIH87804
32 * MBIBV87715 BPMIV87904
33 * MBIAH87833 BPMIH88004
34 * MCIAV87904 BPMIV88104
35 * MCIAH88004 BPMYB.Q5.R8
36 * MCIAV88104 BPMYB.Q4.R8

Plane

TI 8 1(2)-in-3 scheme

Table 8: Listing of correctors and monitors in TI 8 for the 1(2)-in-3 schemes.
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3.6 Corrector Limits

From the results presented in the previous two sections it can be concluded that the
predominant part of the correctors, including dipole groups, can correct orbit excursion
caused by error distributions up to 3 σ. Exceptions are found in the correctors in both planes
responsible for compensating injection errors, assumed to be Gaussian-distributed with RMS
equal to 0.5 mm in position and 50 µrad in angle as described in section 2.4.2.

This deficit in corrector range becomes less severe, and eventually vanishes, as the
injection error magnitudes are progressively reduced. A difference in the severity of such
deficits can also be seen between the horizontal and vertical planes. In both TI 2 and TI 8, the
vertical correctors responsible for injection-fix are advantageously located, both in terms of
betatron amplitude and phase advance. A doubling of the range in these correctors will enable
them to contain the assumed injection error with few adverse consequences. In the horizontal
plane, on the other hand, optimal locations for correctors have to be found upstream of the
injection point.

The horizontal correctors in all proposed schemes for injection-fix are located at
compromised locations to mitigate, but not correct to within the specification, the injection
error effects. The situation is further exacerbated by space constraints in this area. In any case
it is not advisable to blindly increase the correction range of these horizontal correctors,
because their less-than-optimal locations will result in excessive correction if they are forced
to fix the injection errors. The rational solution should be strategically located horizontal
corrector(s) in the extraction channel from the SPS to the TI 2 and TI 8 lines. Similar
correctors in the vertical plane upstream would make it unnecessary to double the strengths of
the vertical correctors for the injection-fix.

3.7 Analysis of Critical Elements
The method described in section 2.8 for identifying critical monitors and correctors, which
uses as a measure the adverse impact on orbit error envelopes due to various failure modes,
was applied to the configurations presented in sections 3.3 and 3.4. The five leading critical
elements for each failure mode in each configuration are listed in Table 9 for TI 2 and Table
10 for TI 8. Apart from very few elements of relatively real concern, most of the large
numbers seen in these Tables reflect artefacts of trivial configuration singularities or boundary
effects, which can be summarised as follows:

In all 1-to-1 steering schemes, a missing monitor would immediately lead to a singular
steering configuration and excessive correction can result if handled improperly. In such cases
disabling one corrector would resolve the problem13. This applies also to the non-periodic
sections of the over-constrained steering schemes, where the steering is actually 1-to-1. This
can be demonstrated in the case of an over-constrained TI 8 line steering with BPMIH88204
in the horizontal or BPMIV80304 in the vertical plane missing. Table 10 shows orbit peaks of
586 mm and 686 mm respectively due to such singularities. By disabling the correctors
MCIAH88404 and MCIAV80304, both peaks are reduced to around 3 mm. Similar solutions
work for the 497-mm peak with missing BPMIV88304 in the vertical TI 8 steering, and the
106-mm peak with missing BPCL61340 in the horizontal TI 2 steering, as well as most of the
other large numbers in the Tables due to missing monitors.

In the case of over-constrained steering in the periodic sections, the configurations are
in general less susceptible to excessive corrections due to missing monitors. Minor
susceptibility is seen in the vertical steering in TI 2, with a missing BPMIV28704 causing a
12-mm peak, and in TI 8, with a missing BPMIV87904 causing a 23-mm peak. The cause of

                                                       
13 A more effective algorithm for solving this problem can be found in [5].
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these peaks is no longer the onset of singularity, but direct coupling between correctors and
monitors almost 180° apart in phase. This problem can again be remedied by disabling
correctors: MCIAV27704 in TI 2 and MCIAV88504 in TI 8, which reduced the orbit peaks to
3.5 mm and 4.5 mm respectively.

The large orbit peaks associated with missing BPMYB.Q5.L2(R8) in both TI 2 and TI 8
lines are only artefacts near the section boundary. As explained in section 2.4.3, these
monitors, located beyond the end of TI 2 or TI 8, are used in the analysis to represent orbit-
anchoring by monitors in the LHC injection area. The absence of such anchoring effects
would undoubtedly create steering problems.

The large orbit peaks associated with individual monitor offset errors cannot be dismissed
as artefacts, but should be regarded as potential sources of orbit correction problem.
Prioritised preventive measures, such as BPM alignment and calibration, should be taken with
these numbers in mind.

Almost all significant orbit peaks associated with missing correctors come from a single
source: insufficient leverage in fixing injection errors. This problem is particularly severe in
the horizontal plane, with a much smaller βx than βy.  This has been obvious from the plots of
corrector range in units of error σ’s shown in the previous two sections. Both lines will be
susceptible to this problem unless the solutions discussed in the previous section, namely
horizontal orbit control upstream of the injection point, and enhanced vertical corrector range
or upstream orbit control, are implemented. The corrector MCIAH80404, which is the leading
offender in all other cases in TI 8 horizontal steering because of this injection error problem,
does not appear in the list for missing correctors in the 1-in-3, 1-to-1 steering case. This is
only because in this case the orbit peak caused by any one missing corrector in the periodic
section is slightly (less than 1 %) larger than that caused by a missing MCIAH80404.

The limited correcting power at the beginning of the TI 2 and TI 8 lines for fighting
injection errors is also responsible for the sensitivity of the orbit error to the correction
process. This explains the large orbit peaks associated with corrector scaling errors being all
caused by the same correctors responsible for fixing injection error. Again this sensitivity can
be fixed only by orbit control upstream of the injection point.

The above discussion, especially that on monitor anomalies, helps illustrate the
importance of an intelligent orbit correction algorithm. Independent of the degree of
perfection of an orbit correction system14, with monitors going out of service or presenting
erratic data during operation, the difference between a competent algorithm and a
questionable one can translate into a difference in orbit errors by a factor of 100 in the worst
case. Actually the best way to deal with a missing monitor is not always to disable correctors,
as suggested above, but to disable singular combinations of correctors [5], achievable only
through an intelligent real-time algorithm.

3.8 Aperture Constraints
The analytical methods described in this report afford the possibility of further examining the
performance of an orbit correction system in specific, localised areas. The entrance region
into a horizontal dipole group towards the end of TI 8 required exactly such a close
examination, due to the high βy and higher-than-average ηy in this area, and the vertical
aperture imposed by the horizontal dipole. The vertical underlying orbit error after correction
was examined. It was found that, with all error sources taken into account, the 3 σ envelope
was less than 1 mm in this localised region, within the stringent orbit excursion budget set

                                                       
14 Realistically speaking, making an orbit correction system too perfect can result in vulnerability to other
problems, with monitor offset errors being the most intransigent example. Such problems can only be addressed
through intelligent steering algorithms.
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specifically for it. Under normal operating condition this “tight spot” should therefore not
present a problem.

Disabled Monitor Fixed Monitor Offset of
3 mm

Disabled Corrector Fixed Corrector Scale
Error of 50 %

2-in-4 Monitor and Corrector (Horizontal)
BPCL610211   9.65* BPMIH20404     7.10 MDLH610104 10.18¶ MDLH610206     8.99¶

BPCL610340   7.17* BPMIH28404     6.37 MDLH610206   6.96¶ MDLH610104     8.82¶

BPMIH29304   6.86* BPMIH25204     6.22 MCIAH21004    4.47 MDLH610337     4.37
BPMYBQ5L2    5.20‡ BPMIH22004     6.21 MCIAH28204    4.01 MCIAH28204     4.21
BPMIH29004     4.84 BPMIH25804     6.21 MCIAH25004    3.96 MCIAH25004     4.15

2-in-4 Monitor and Corrector (Vertical)
BPMIV29504    6.40* BPCK610539     7.52 MDAV610013 17.65¶ MDAV610013     9.62¶

BPCL610312    4.63* BPMIV20504     6.45 MCIAV24904   4.14 MCIAV24904     4.32
BPMIV25304     3.46 BPMIV25104     6.37 MCIAV24304   4.10 MCIAV24304     4.28
BPMIV24504     3.45 BPMIV23704     6.30 MCIAV24104   4.09 MCIAV24104     4.27
BPMIV25904     3.45 BPMIV24504     6.30 MCIAV23504   4.07 MCIAV23504     4.26

2-in-3 Monitor, 1-in-3 Corrector (Horizontal)
BPCL610340 105.61* BPCL610340     5.81 MDLH610104 10.18¶ MDLH610206     9.12¶

BPMYBQ5L2   10.53‡ BPMIH20204     4.49 MDLH610206   7.24¶ MDLH610104     8.94¶

BPCL610211    9.65* BPMIH28204     4.15 MCIAH21404    4.69 MDLH610337     4.88
BPMIH28804     5.84 BPMIH20404     4.12 MCIAH23804    3.94 MCIAH21404     4.14
BPMIH22804     4.59 BPMIH21204     4.08 MCIAH24404    3.91 MCIAH22604     4.01

2-in-3 Monitor, 1-in-3 Corrector (Vertical)
BPCK610539  19.06* BPCK610539     7.74 MDAV610013 17.65¶ MDAV610013     9.81¶

BPMIV28704   11.74† BPCL610312     4.82 MCIAV21304    4.51 MDLV610304     5.04
BPMIV29504    6.14† BPMIV28104     4.02 MCIAV24304    4.08 MCIAV24304     4.17
BPCL610312    5.05* BPMIV20304     3.89 MCIAV24904    4.07 MCIAV23704     4.16
BPMIV24504    4.76 BPMIV21104     3.88 MCIAV23704    4.07 MCIAV23104     4.13

1-in-3 Monitor and Corrector (Horizontal)
BPCL610211     9.65* BPMIH25804     7.51 MDLH610104 10.18¶ MDLH610206     9.86¶

BPCL610340     7.24* BPMIH21604     7.49 MDLH610206   6.97¶ MDLH610104     8.96¶

BPMYBQ5L2     7.11‡ BPMIH24604     7.48 MCIAH21404    5.56 MCIAH25604     5.44
BPMIH28204     5.76* BPMIH23404     7.48 MCIAH25604    5.30 MCIAH24404     5.43
BPMIH28804     5.60 BPMIH24004     7.48 MCIAH24404    5.30 MCIAH23804     5.43

1-in-3 Monitor and Corrector (Vertical)
BPMIV29504    7.70* BPMIV20304     7.82 MDAV610013 18.35¶ MDAV610013     9.62¶

BPMIV23904    4.76* BPMIV25104     7.67 MCIAV21304    5.77 MCIAV24304     5.65
BPMIV24504    4.76* BPMIV23304     7.67 MCIAV24304    5.52 MCIAV24904     5.64
BPMIV25104     4.76 BPMIV24504     7.67 MCIAV24904    5.51 MCIAV23704     5.63
BPMIV22704     4.75 BPMIV23904     7.67 MCIAV23704    5.50 MCIAV23104     5.58
* Artefact caused by near singularity easily correctable by disabling correctors.  See main text.
† Artefact caused by phase anomaly, easily correctable by disabling correctors.  See main text.
‡  Artefact caused by loss of anchoring point downstream. See main text.
¶  Artefact caused by insufficient leverage for correcting injection error. See main text.

Table 9: TI 2 peak 3 σ underlying orbit error envelope in [mm] due to element failure
(5 most critical elements listed for each failure mode).

3.9 Tilted Elements

A few dipoles in the beam lines are tilted, resulting in off-axes baseline co-ordinates in the
local XY plane. This has no effect on the analysis presented in this report. The reason is that
the analysis is entirely based on first order transfer matrices derived from the model, with no
rotated quadrupoles, reflecting the actual alignment situation in the machine. Fixed co-
ordinate change, even if off-axes, in the baseline trajectory caused by a tilted dipole is
transparent to first order optics, and thus the analysis. Care must be given, on the other hand,
to cases where monitors and correctors downstream of a tilted dipole are also rotated in
accordance with the tilt, in which case mixing between the orbit error envelopes in the two
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planes at a constant combined probability density should be adopted instead. But this is not
the case with the lines studied in this report.

Disabled Monitor Fixed Monitor Offset of
3 mm

Disabled Corrector Fixed Corrector Scale
Error of 50 %

2-in-4 Monitor and Corrector (Horizontal)
BPMIH20404  19.84* BPMIH27804     6.79 MDMH400104   4.73¶ MDMH400104  13.35¶

BPMIH20604  12.15* BPMIH21404     6.18 MCIAH27604    4.30 MBHC400107  11.79¶

BPMIH28404    7.29* BPMIH23204     6.17 MCIAH23004    3.94 MCIAH27604    4.41
BPMYBQ5R8   5.84‡ BPMIH24804     6.17 MCIAH25404    3.94 MCIAH26804    4.30
BPMIH20204    4.82 BPMIH25604     6.17 MCIAH24604    3.94 MCIAH26004    4.30

2-in-4 Monitor and Corrector (Vertical)
BPMIV20304    6.04* BPMIV20504     6.86 MCIAV20104    15.79¶ MCIAV20104   13.03¶

BPMIV27904    5.36* BPMIV23104     6.31 MCIAV22904     4.11 MCIAV22904     4.29
BPMIV27704    3.65* BPMIV25504     6.31 MCIAV25304     4.11 MCIAV23704     4.29
BPMIV23904     3.61 BPMIV23904     6.31 MCIAV24504     4.11 MCIAV25304     4.29
BPMIV22904     3.61 BPMIV22304     6.31 MCIAV26904     4.11 MCIAV26904     4.29

2-in-3 Monitor, 1-in-3 Corrector (Horizontal)
BPMIH28204 585.68* BPMIH27204     4.63 MDMH400104   4.80¶ MDMH400104   13.37¶

BPMIH20204     4.83 BPMIH20604     4.10 MCIAH21604    4.23 MBHC400107   12.10¶

BPMIH21404     4.68 BPMIH21404     4.03 MCIAH22804    3.95 MCIAH21604     4.12
BPMIH27204     4.64 BPMIH21804     3.82 MCIAH25204    3.92 MCIAH26404     4.01
BPMIH21804     4.62 BPMIH22604     3.82 MCIAH24604    3.92 MCIAH23404     4.01

2-in-3 Monitor, 1-in-3 Corrector (Vertical)
BPMIV20304 685.92* BPMIV27304     4.19 MCIAV20104    15.79¶ MCIAV20104    13.03¶

BPMIV28304 497.16* BPMIV28104     3.94 MCIAV22904     4.12 MCIAV23504     4.18
BPMIV27904   22.76† BPMIV22704     3.92 MCIAV21704     4.10 MCIAV25904     4.18
BPMIV27304     4.99 BPMIV21904     3.92 MCIAV25304     4.09 MCIAV24704     4.18
BPMIV21904     4.80 BPMIV26104     3.88 MCIAV24704     4.09 MCIAV24104     4.18

1-in-3 Monitor and Corrector (Horizontal)
BPMIH20404  19.67* BPMIH26604     7.48 MCIAH21604     5.38 MDMH400104   13.35¶

BPMIH20604  12.89* BPMIH24204     7.48 MCIAH24004     5.30 MBHC400107   11.79
BPMIH28404    5.60* BPMIH26004     7.48 MCIAH26404     5.30 MCIAH23404    5.44
BPMIH27204    5.50* BPMIH23604     7.48 MCIAH25804     5.30 MCIAH26404    5.44
BPMIH20204    4.82 BPMIH24804     7.48 MCIAH23404     5.30 MCIAH25804    5.44

1-in-3 Monitor and Corrector (Vertical)
BPMIV27904    6.84* BPMIV24304     7.68 MCIAV20104    15.79¶ MCIAV20104    13.03¶

BPMIV20304    6.04* BPMIV26704     7.68 MCIAV23504     5.53 MCIAV24104     5.66
BPMIV27304     4.83 BPMIV26104     7.68 MCIAV26504     5.53 MCIAV26504     5.66
BPMIV26704     4.77 BPMIV23704     7.68 MCIAV25904     5.53 MCIAV25904     5.66
BPMIV23704     4.77 BPMIV23104     7.68 MCIAV24104     5.53 MCIAV24704     5.66
* Artefact caused by near singularity easily correctable by disabling correctors.  See main text.
† Artefact caused by phase anomaly, easily correctable by disabling correctors.  See main text.
‡  Artefact caused by loss of anchoring point downstream. See main text.
¶  Artefact caused by insufficient leverage for correcting injection error. See main text.

Table 10: TI 8 peak 3 σ underlying orbit error envelope in [mm] due to element failure
(5 most critical elements listed for each failure mode).
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4 Conclusions

4.1 The Proposed Configurations for TI 2 and TI 8

The orbit correction configuration for the LHC injection transfer lines TI 2 and TI 8 have
been studied using newly developed analytic methods. As a result, two candidate hardware
configurations are proposed for each line. The first of the two is a 2-in-4 scheme capable of
containing the nominal corrected orbit within envelopes of 3.3 - 3.515 mm at the 3 σ cutoff of
total error distribution.  It operates under a one-to-one (critically constrained) scenario.  The
second is a 2-in-3 monitor, 1-in-3 corrector scheme.  It has two operating scenarios. One can
use all the monitors and correctors in a (software-assisted) over-constrained steering to
achieve evenly distributed 3 σ error-induced corrected orbit envelopes of 2.3 - 2.4 mm, with a
few isolated peaks at no more than 3.2 mm. This can be the scenario for routine orbit
correction once the lines are commissioned. Alternatively, during the commissioning phase,
where intuitive one-to-one steering may be necessary, one can disable every other monitor in
the periodic section to effectively perform such an operation, achieving 3 σ error-induced
corrected orbit envelopes of 4.5 - 4.7 mm. The overall costs of the two proposed hardware
configurations are comparable.

Besides the 3 σ error-induced corrected orbit envelope, many other performance criteria have
been examined for each hardware configuration and steering scenario. The most important
ones are as follows.

•  Corrector range: The ability of the correctors (taking design specifications into account) to
handle orbits caused by an overall error distribution cutoff at 3 σ has been examined.  The
analysis indicates that no design correction limits are encountered at a 3 σ error for the
predominant majority of the correctors in TI 2 and TI 8.  The only exceptions concern
those cases where the assumed 3 σ injection errors pose strong demands on the first
correctors.  In the vertical plane this is rather a straightforward issue of strengths of the
first correctors, already reasonably located, not being able to handle injection error extrema
at 3 σ.  Increasing their strengths appears to be the correct solution.  In the horizontal
plane, on the other hand, it is not possible to find advantageous locations within TI 2 / TI 8
proper for fixing injection errors.  Indeed it is not recommended to force a very strong
corrector in a poorly chosen location in this case.  The solution must be found at a high βx

point upstream in the SPS-to-TI 2 / TI 8 extraction channels.
•  Critical elements: The criterion of the 3 σ error-induced corrected orbit envelope is used

to measure the impact of various element failures.  These include monitors taken off-line
or having excessive offsets, and correctors taken off-line or having excessive scaling
errors.  This analysis helps identify areas where particular attention must be paid to ensure
stable operation.  The leading critical elements in various failure modes are listed in Tables
9 and 10, of which the following are especially worth mentioning.
  Singularity or phase anomaly: These adverse effects caused by missing monitors can
be mitigated in all cases by proper disabling of correctors, for which an intelligent
steering algorithm will be useful.
  Monitor offset: The most serious cases can lead to non-trivial steering problems.
Such problems have to be prevented mainly through hardware check, and can be
mitigated to a smaller extent by an intelligent steering algorithm.

                                                       
15 See Table 7 for more details differentiating between planes and configurations.
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  Insufficient leverage for injection-fix: This can result in considerable sensitivity to
correctors at the beginning of the lines, either by their absence or errors in scaling.  Apart
from making sure that these very important correctors are functioning properly, the
solutions proposed earlier to eliminate such deficiencies are also indispensable.

Overall, the two hardware configurations proposed for both TI 2 and TI 8 present different
advantages in terms of the corrected orbit envelope.  Their performances in terms of the other
criteria are quite comparable, presuming the exceptions discussed above are correctly
addressed.

4.2 The Analytic Method

The method developed for the current study has been presented in detail in this report. At the
core this method relies on various generalised response matrices to completely characterise
the performance of an orbit correction system based on inputs of optics and design
specifications.  The main advantage of this approach lies in its ability to present unambiguous
answers in an efficient manner, which is useful when it comes to comparing different
configurations, or improving existing ones. Its functionality can be grouped into the following
categories.

•  Performance criteria: These are various measures developed to quantify the observability,
correctability, range, and singularity of a configuration, as well as its global behavior at
arbitrary locations quantified in the form of various orbit and error envelopes. This
provides a detailed and quantitative picture of the performance of a given configuration.

•  Algorithms for configuration optimization: This can be invoked in two modes:
  Analytic methods applied to detect and correct structural configuration defects based
on quantitative criteria,
  Numerical configuration fine-tuning used to optimize configurations where no
structural defects are present and competing numerical factors make analytic comparison
impractical.

The second mode nonetheless relies on the analytic algorithms for measuring the
performance of the intermediate configurations, without which efficient fine-tuning would
be impossible.

•  Other functions: The following methods are also developed:
  Method to decompose a performance defect into its contributing error components,
important for understanding the defect and finding its remedy,
  Algorithm to identify critical elements and evaluate their impacts,
  Efficient simulation taking advantage of the generalised response matrices in case
results are needed that cannot be analytically evaluated.

The study of the TI 2 / TI 8 lines has been the first full-scale application of the expanded
program, with nearly all the features applied. The physical properties and requirements of
these lines in return provide useful reality checks and feature guidelines for the program itself.
This exercise is thus beneficial to both endeavors. It should be noted that in scope the
program is developed to deal with a generic orbit correction system. Application to other
systems, in terms of both evaluation and optimization, should be straightforward16.

                                                       
16 The program takes optics outputs from MAD, BeamOptics, or Optim. A suite of BeamOptics functions is
being developed to set up the initial input templates and connect to the graphical displays of this program.  An
extension of this program to handle finite numbers of re-circulation and multiple lines with common elements
has also been developed.
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Appendices

A Focus of Mathematical Recipes in these Appendices

These appendices are mainly devoted to realise all calculations needed for solving the current
set of problems through linear methods and recipes implementable through efficient and
robust numerical algorithms. As mentioned in section 2, most calculations encountered here
cannot be realistically carried out before being phrased in linear terms amenable to mature
numerical algorithms, such as supported by Mathematica. Fortunately this is largely possible.
We can enumerate this limited set of realistic operations:

•  Matrix addition, multiplication, permutation, transpose, sub-matrices and direct sum (⊕ );
•  Inversion of non-degenerate square matrices;
•  Matrix pseudo-inverse;
•  Null space vectors;
•  Eigenvalues and eigenvectors;
•  Singular value decomposition (SVD).

Thus a detailed description is required of the recipes followed, from intuitive pictures to the
input end of this limited set of algorithms, which is the main purpose of the following
sections. Experience shows that these recipes allow us to reliably carry out calculations
involving up to 750 dimensions (in a beam line consisting of over 1000 elements), in a time
frame of less than 5 minutes for one complete set of analyses18. The same reliability and
speed would be unthinkable if done through a non-linear solver or optimiser of Mathematica.

These recipes are given in enough detail that their translation into any programming
language or numerical package is straightforward. For the current work Mathematica is
employed to realise these recipes. The production version has been subjected to analytical and
numerical tests to considerable length that led to our confidence in the outcome.

B Various Projection Operators
For a critically or over-constrained response matrix MCM the projection operators are given,
as discussed in section 2.2, by
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In the special case where the response matrix MCM is rank-deficient such that even if the
number of correctors is larger than that of the monitors, the corrector range still does not span
the entire monitor space, we have to do this differently as follows
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where CM
nullM is as defined in section 2.

                                                       
18 This is timed on a Pentium III 600 MHz PC running Mathematica 4.0.
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For under-constrained response matrices, the purpose of the projection operators is to
divide up the actuator space, rather than the responder space, into a subspace that has an
impact on the responders and one that does not. One way to express these operators is
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satisfying
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One can also obtain them along the line of null space vectors, as must be clear from the last
line in (B.4).

C Orthonormal Transformation and Decoupling of General
Matrices

To find the orthonormal transformation that maps the existing vector space onto one spanned
by a new basis consisting of two disjoint sets of unit vectors UI and UO, representing
respectively the subspaces including and excluding the row vectors of, for example, MEM, the
easiest approach is via the null space vectors

O EM
null
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null

I OEM
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(C.1)

The symbol TEM in (C.1) represents the orthonormal transformation, a direct sum of the two
matrices UI and UO, which transforms the existing vector space into one where the first N
basis vectors span the same subspace as the row vectors of MEM, while the rest of the basis
vectors are orthogonal to MEM.

For convenience of later notation, we define the decoupling, via the above ortho-
normalisation, of any S×C mapping N from a C-dimensional space into the direct sum of two
sub-matrices in

MN  and out
MN , respectively inside and outside the row-vector space of another

R×C (C≥R) matrix M which shares the C-dimensional domain of N,
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It can be easily verified that when N=M, thus R=S, in
MN  is invertable by construction and

out
MN is identically 0. In more complicated cases where M may be rank deficient, special care

must be taken to ensure correct decoupling of these matrices.

D Projection of an Ellipsoid onto Lower and Higher Dimensions
We describe in the following how to obtain projections of an ellipsoid defined in (2.8) by

T
S E E EA E A= ⋅ ⋅ (D.1)

where S is the “radius” of the ellipsoid, to lower and higher dimensions via a transformation
M. We discuss three possible cases below.

- Critically constrained

If M is critically constrained, namely square with full rank, then the mapping is trivially given
by

TE -1 E -1.E M E M→ ⋅ ⋅ (D.2)

- Under-Constrained (Higher to Lower Dimension)

If M is under-constrained, namely the row rank Nr is lower than the column rank Nc19, the
projection is more involved because the ellipsoid is “collapsed” onto a lower dimensional
space. The projection onto the lower space is defined by the “footprint” of the ellipsoid20,
reducing the Nc X Nc matrix EE into an Nr X Nr matrix. To do this we form the set of Np=Nc-
Nr equations
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(D.3)

The geometric picture of (D.3) is that these equations define the points on the ellipsoid
where the gradient vectors normal to the constant-radius contour are also normal to the null
space vectors defined by M. Therefore, when these points are mapped along the null space
vectors onto the lower dimension, their projection defines the outer boundary of the mapped
ellipsoid. In principle (D.1) and (D.3) together already define the target ellipsoid in the lower
dimension “back mapped” onto the original one.

In practice however, it is better to go a few extra steps to cast the problem in a solid
matrix form. We can do this by first rotating the ellipsoid EE into a new basis by the
transformation (C.1) such that in the new basis the first Nr basis are aligned with the image
space of M (i.e., UI of (C.1)) and the last Np basis are aligned with the null space of M21. In

                                                       
19 This can happen even if the matrix is taller than wide.
20 In this respect the assumption of convexity of the ellipsoid is crucial to the validity of our analysis.
21 This ortho-normalisation is not essential but makes the picture clear.



69

the new basis the ellipsoid equation becomes E’E, and it is clear that the Np equations in (D.3)
simply become the last Np rows of E’E. These equations together with (D.1), with EE and AE

replaced by E’E and A’E, define the projected ellipsoid “back mapped” onto the original
ellipsoid in the new basis, which is an Nc-Np-1 (=Nr-1) dimensional object described by the
intersection between the original ellipsoid and an Nr (=Nc-Np) dimensional hyper-plane. This
suggests an elimination of the last Np variables in the ellipsoid equation since they are made
dependent on the first Nr variables through the Np equations.

The outcome of this is the equation for the back-mapped sub-contour that directly
corresponds to the mapped ellipsoid in the lower dimension. The elimination can be carried
out using the Np equations (dropping the primes in E for simplicity)
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from which we can readily see that the elimination of the Np variables Xp in terms of Xr in
the ellipsoid equation can be realised through
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(D.5)

and
TE ET TE'' E'= ⋅ ⋅ (D.6)

where we recovered the primes on E’E. The ellipsoid E’’E of equation (D.5) is a function of
only Nr co-ordinates, which are coincident with the Nr co-ordinates in the lower dimension
by construction. It follows that E’’E is the projection of E’E onto the lower dimension, with
the superfluous co-ordinates in the null space “squashed out” by T of (D.4). We need to
remember that all this has been done in the ortho-normalised basis, so a trivial rotation back
to the original basis is necessary.
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- Over-constrained (Lower to Higher Dimension)

The need for projecting an ellipsoid into a higher dimensional space arises when we need to
find the extreme values of certain operators in the higher dimensional space on ellipsoidal
surfaces defined by lower dimensional distributions. The image of a lower dimensional
ellipsoid by a map M (with numbers of rows and columns being Nr and Nc) into a higher
dimension cannot be simply expressed by a symmetric matrix similar to (D.1), since it does
not have enough rank and needs additional constraint equations. An alternative is to map it
into a subspace of the higher space spanned by column vectors of M, which can be obtained
more cleanly by rotating the higher space to align with this subspace as demonstrated earlier
in (C.1). The map M into the rotated space becomes

( )TT T MM M T→ ⋅ (D.7)

where all superscripts T denote matrix transpose. Taking only the first Nc rows22 of M gives
an invertable square matrix MP, which allows us to apply the method for the critically
constrained case

TE p-1 E p-1.E M E M→ ⋅ ⋅ (D.8)

Equation (D.8) gives the projection of the ellipsoid onto the subspace in the higher space. One
can then take this projection, as well as the mapping between this subspace and the complete
original un-rotated higher space, to explore various extreme values on this mapped ellipsoid.

E Inverse Projection of Point(s) onto an Ellipsoid
When performing the mapping M of an ellipsoid E, as described in (D.1), onto another lower
or higher dimensional space, once a point of interest X (e.g., the point with the longest length
or the largest component along an axis) is identified on the mapped ellipsoid, we often need to
find the point(s) Z on the original ellipsoid that mapped into this point. This is a problem of
inverse mapping and again the algorithm differs between over-constrained and under-
constrained maps.

- Critically constrained

In this case Z is trivially related to X by

-1 .XZ M= ⋅ (E.1)

- Under-Constrained (Higher to Lower Dimension)
Again this is more involved, with the row rank Nr lower than the column rank Nc of M. In
fact for arbitrary X in the mapped ellipsoid there should be more than one Z in the original
ellipsoid E that are mapped into X, unless X itself lies on the boundary of the mapped
ellipsoid, in which case there is only one corresponding Z. Fortunately for our analysis, and
because of convexity of the ellipsoid as a premise, all points of interest do lie on the boundary
of the mapped ellipsoid.

                                                       
22 In fact the remainder of M must be all 0.
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We observe that the point Z in the higher space is uniquely determined by Nc

independent equations. These can be identified as follows. First we operate on X with the
pseudo-inverse of M

† XMY= ⋅ (E.2)

Y is not necessarily the desired solution Z on the original ellipsoid E, but it is connected to Z
by a combination of null space vectors of M.  This means

( )
( )ik k k

k

i 1 2 Nr

M Z Y 0,

0,M Z Y , , .... .=

− =

⋅ − =∑

<<

(E.3)

Also, the gradient vector at Z must be normal to the null space vectors of M so that its
projection onto the lower dimension falls on the ellipsoid boundary. Thus
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This is basically (D.3), and we also used (2.15). It is clear that (E.2), (E.3) and (E.4) provide a
total of Nc independent equations sufficient to determine Z.

-Over-constrained (Lower to Higher Dimension)

This case is again somewhat trivial since Z is uniquely determined by X through the pseudo-
inverse of M

†Z X.M= ⋅ (E.5)

Many different X’s can lead to the same Z, but there is no ambiguity about the latter.

F Tangent Point between an Ellipsoid and an Arbitrary Hyper-
Plane

The goal here is to find the “radius” S of an ellipsoid surface specified by the matrix E in an
N-dimensional space defined by (D.1) at which it “inscribes”, or is tangent to, each face of a
hyper-parallelogram23 P. P is enclosed by Np pairs of hyper-planes, each consisting of two N-
1 dimensional hyper-planes symmetric about the origin. These hyper-planes are represented
by 2 X Np equations
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, ,.... , , , .... ,

VM X P X
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⋅ = = ±
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∑

∑
(F.1)

with the Np numbers Vi’s providing a measure of the distances at which the hyper-planes are
from the origin. In (F.1) we also showed that the gradient vector of the i-th hyper-plane is
simply the vector with its components given by the elements of Mi, the i-th row of M.

                                                       
23 The method discussed here should in fact work for more general cases not requiring symmetry of the hyper-
polygon P, the only requirement for this method to be valid is that P be convex. We limit our model to the
parallelogram here though, since that is all we encounter for the current analysis.
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The ellipsoid and the i-th hyper-plane are tangent at points where their gradient vectors
are parallel. From (2.15) and (F.1) this implies

2 i i=E X Mλ⋅ (F.2)

where λ i is an undetermined scalar.  It can be determined by taking (F.2) as an equation for X
parameterised by λ i, which when substituted into (F.1) fixes the value of λ i, and thus the
tangent point X, as a function of Vi.  Finally the corresponding radius of the ellipsoid surface
containing this tangent point can be trivially calculated by substituting X back into the
ellipsoid equation.

In the special case where the parallelogram is a rectangle, i.e., all rows of M have only
one non-zero element, the algebra described above is even further simplified.

This technique is used mainly in exploiting limits on correctability due to finite ranges
imposed on correctors. One can find all the “radii” of the ellipsoid at which successive
corrector ranges will be violated, and order the correctors by their “vulnerability”. Thanks to
convexity again in both the ellipsoid and the parallelogram, one never needs to worry about
ambiguity in the ordering. That is, when we increase the radius of the ellipsoid from zero
gradually and when at some point the ellipsoid touches a particular face of the parallelogram,
it may be protruding out of another face even more already. But one can be absolutely sure
that we did not miss that other face, the tangency to which must have happened earlier at a
smaller radius. Thus the ordering of progressively less vulnerable correctors can be done
unambiguously.

G Extreme Values of Arbitrary Operators on a Constrained
Surface

We describe here the method for obtaining extreme values of the length of an operator on a
constrained surface in N dimensions. To avoid complication due to exceptions caused by non-
symmetry and non-convexity, we limit the treatment to ellipsoidal surfaces defined by E as in
(D.1), which is all we need for the current analysis. The method itself is valid however for any
constrained surfaces when exceptions are properly dealt with.

The operator of interest in N-dimension is of the form

T T TY XY X

X=Y

LΠ

Π

Π Π

⋅
= ⋅ = ⋅ ⋅ ⋅

(G.1)

where X and Y are N-vectors and LΠ is a short hand for the length-squared of the product Π
and X. The quantity LΠ now as a function of X is itself a scalar function in the N dimensional
space with constant-value contours whose extreme value is what we seek to solve for, under
the constraint of another scalar function for the ellipsoid as in (D.1). This is essentially an
optimisation problem where the method of Lagrange multiplier can be useful. We first
calculate the gradient of the scalar function LΠ.
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The Lagrange multiplier method states that the extremum of LΠ, constrained by the
ellipsoid E, occurs when the two gradient vectors (G.2) and (2.15) are parallel, namely
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=� ; ( ;�

= 0� ( ;� (

λ
λ
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− ⋅⋅ ⋅⋅

(G.3)

where λ is an undetermined scalar, and we have cast (G.3) in the form of an eigenvalue
problem for the composite operator T -1

�� (⋅ ⋅ . Solving for the real eigenvectors in (G.3)
immediately leads to the solution for X up to a scale factor. Imposing the “radius” S of the
ellipsoid then uniquely determines the point where the extremum occurs.

Some examples of the operator Π help illustrate the applicability of this technique:

Distance from origin: � ,

Projection onto the null space of MEM: EM�� 
⊥

Component along the i-th axis: T

ii� ˆ ˆx x⋅

Component along the i-th axis inside null space of MEM: T
EM ii�� ˆ ˆx x⊥ ⋅ ⋅                  (G.4)

Component along a vector V: T
� 9 V⋅

Component along a vector V in higher dimension: T TK� . 9 V⋅ ⋅ ⋅

In the last example K is the matrix whose rows consist of the basis vectors in the lower
space expressed in terms of the coordinates of the higher space under the (over-constrained)
map.

We note that the number of real solutions of the eigenvalue problem depends on the rank
of the operator Π. For example, the operator projecting out the component along the i-th axis
is of rank 1, and can afford only one extremum, while more complicated operators can have a
few local extrema on the ellipsoid E. In the latter case the global extremum is determined
among the few local extrema trivially.

H Hessian and the Curvature of an Ellipsoid
Apart from the gradient type quantities such as (2.15), (D.3) and (E.4) for an ellipsoid, we can
examine its second order behaviour at a given point. This is known as the Hessian of a matrix
and roughly speaking gives a measure of the combined magnitude of the curvature around the
point of interest.
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(H.1)

Thus the Hessian of the ellipsoid is simply the ellipsoid matrix itself, due to its symmetry.  It
is a constant independent of the point of evaluation. The physical meaning of the Hessian is
that it represents a measure of all the N second order derivatives of the constant-value contour
along the N “principal axes” at any point.  The Gram determinant (2.26) of HE is a constant
under orthonormal transformations24, and gives the product of all the second order derivatives
                                                       
24 This would be obvious if the ellipsoid matrix is diagonalised in (H.1).
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of E in the basis where all the basis vectors are aligned along the principal axes of E. This
property allows us to estimate how fast the value of an operator recedes from the extremum
when moving away from it on the constant-probability ellipsoidal contour. If this number is
large, indicating a very sharp tangent point between the ellipsoid and the operator contour
defined by (G.2), then the extremum may not be as persistent as that corresponding to a small
rate of recession of the operator value from the extremum, which indicates a “smooth”
tangency.  This “recession rate” from the extremum can be calculated as follows.  We rotate
the ellipsoid into a co-ordinate system such that one axis 1V̂  is coincident with the gradient

vector of E at the point of tangency, and the remaining axes are orthogonalised so as to make
all cross terms in the Hessian zero25. The product of the second order derivatives along all the
axes is, from (2.26)
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where we have singled out the first basis vector 1V̂ , made distinction between the original

coordinates Xi and the rotated coordinates Vi, and factored the easily calculated quantity EHG
into the product of 

EHG��  and another easily calculated quantity
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where

2
,V T T T T 211 E X XX E X EV V= = ⋅ =⋅ ⋅⋅ ⋅ ⋅ (H.4)

and we used the fact that V1 is the gradient vector of E, and repeatedly the symmetry of E. It
then follows from (H.2) and (H.3) that if 

EHG��  is the measure of the “recession rate” from the

extremum, it can be calculated in a straightforward manner. A large 
EHG��  corresponds to a

less persistent extremum.
                                                       
25 This can always be done locally for a point on the ellipsoid.
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I Issues Specific to Multi-Dimensional Gaussian Distribution

- Probability Density Distribution in the Mapped Space

Here we set out to confirm the relations given in (2.21). We first impose a trivial
normalisation procedure on the map M such that we are free to assume that all σi’s in (2.20)
are 1. This is done by
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(I.1)

In other words, we express the original coordinates in units of their respective σ’s, and re-
scale M accordingly. Thus the ellipsoid matrix E in this new coordinate system is just the
identity matrix, and the contour of constant probability density a sphere of radius S. From the
third line of (I.1) we see that this change of variable does not affect the image space, nor its
probability distribution.

Thus under the (new) map M, the (new) ellipsoid E is mapped into the same twisted
ellipsoid F as before the transformation (I.1) took effect:

MT Tx E x y F y →⋅ ⋅ ⋅ ⋅ (I.2)

with F obtained through one of the algorithms for ellipsoid projection discussed earlier
depending on whether M is under, critically, or over-constrained. It will most likely develop
off-diagonal elements as opposed to E. If we look along an axis ŷ j  in the image space Y and

ask for the probability distribution along this axis, we need to integrate out all the dimensions
orthogonal to it. Namely,
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(I.3)

where G is a normalising factor, retained since the map M from x to y will change the
measure of the normalisation integral.

It is in fact easier to calculate this quantity in the original space of x. We notice that for a
particular value of yj = a, its probability density comes from corresponding set of points in the
x-space that was mapped by M so as to have the j-th component of its image equal to a.

.a⋅ =∑ jj k
k

k

x xM = M< (I.4)
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This set of points is determined by two constraints: the null space vectors in the x-space for
the j-th row of M, and any point in the x-space whose image under M gives the point on the j-
th axis in the y-space at a distance a from the origin. The second constraint can be taken, for
example, to be the pseudo-inverse of the j-th row of M acting on the point â = (0,…0, a,
0,…0) in y-space. Thus the equation for this set of points is
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jM
nullx a PM N
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(I.5)

which basically states that x is connected to the pseudo-inverse (back mapped image) of
â through a linear combination of the N-1 null space vectors of the j-th row of M. Thus this
point set is simply an N-1 dimensional hyper-plane in the x-space. The probability P(yj=a) of
(I.3) can be alternatively evaluated using the corresponding point set in the x-space defined in
(I.5). The advantage of the latter is that, since we have normalised the co-ordinates in the x-
space to make the probability contour a sphere, integration of probability density on the N-1
dimensional hyper-plane depends only on the distance of the plane from the origin, and not its
orientation. From (I.4) it is clear this distance for the point set (I.5) is

,
a=j

jD
M

(I.6)

where the denominator is simply the length of the j-th row of M. Integrating the probability
density of a normalised spherical Gaussian distribution over such a hyper plane can be
trivially done in the x-space, if without the loss of generality we rotate the coordinates so that
the hyper plane is perpendicular to the first axis x1:
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G can be easily determined as
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Thus from (I.7) and (I.8) the probability density along the j-th axis in the y-space is simply
that given in (2.21). It is still a Gaussian but with its RMS value magnified by a factor of

jM , with a reduction in amplitude by the same factor.

Back in the original x-space on a spherical surface of constant probability density with
radius b, or b times the σ (=1) of the single axis distribution, the maximum projection from
any point x in this spherical surface onto the j-th axis in the y-space is easily seen to be
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where j
yσ  is the RMS of the distribution along the j-th axis in the y-space, or simply jM  by

(I.7). Equation (I.9) states the important result that the maximal projection onto the y-space,
from the distribution in the x-space contained within a contour corresponding to b times the
single-axis RMS for each axis26, is still b times the single-axis RMS for each axis after
remaining dimensions are integrated out.

This result is especially powerful, thanks to the fact that the multi-dimensional Gaussian
distribution can be factored, in that it is valid no matter whether M is critically, over, or under
constrained. In some sense we only deal with the null space of one row of M at a time, which
is always under-constrained. We should also emphasise that although (2.21) gives the per-axis
distribution, the overall distribution as a function of all co-ordinates in the y-space is in
general no longer the product of these distributions.

- Probability Density Distribution of Extrema and Length

In an N-dimensional Gaussian distribution one can look into two other types of distribution of
physical significance and relevant to the current analysis. These are the distributions of
overall extrema and length:
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(I.10)

subject to normalising conditions. Due to the symmetry present in all distributions
encountered in the current analysis, it is more relevant to discuss the maximum of the absolute
values than Pmax and Pmin of (I.10):

( ) ( )( )1 2, ,.... .NP P max x x x=mmax (I.11)

For completely normalised and orthogonal N-dimensional Gaussian distributions, these can
be evaluated in closed form as follows.

Distribution of Absolute Maximum:

We will focus on the definition of (I.11). This can be done, for a given value m, by forming a
hyper-cube whose 2N faces are contained in the hyper-planes x1=±m, x1=±m, …. xN=±m. It is
easy to see that if and only if a point lies on this hyper-cube would the maximum of the
absolute values of all its co-ordinates be equal to m. This leads to the probability density
distribution of m, which is simply the integration of the probability density over the cube
surface for progressively larger cubes

                                                       
26 Of course ortho-normalisation is assumed in the x-space.
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where we retained the normalising factor G and erf is the error function. This distribution,
when N is large, leads to a shift of the peak away from the origin.  However for orthogonal
and normalised distributions this shift does not cause the majority of the distribution to lie
much beyond 3 σ even for N=1000,
as can be seen in Figure A.1.
However, the equivalent of (I.12) for
general correlated distributions,
namely, distributions corresponding
to an ellipsoid matrix with off-
diagonal elements, cannot be
computed in closed form [8]. An
attempt to derive its possible range
containing a given fraction of the
total distribution, similar to the
differentiation scheme to be
discussed below for distributions of
length, soon leads to intractable
algebra. At this point for such
general cases we can mostly rely on massive simulation, which shows that for most cases
studied the 99% cutoff points for such distributions are at most 10 - 15 % beyond the 3 σ
values. They also bear strong resemblance to the characteristics of Figure A.1 [2].

Distribution of Length:

Again, the distribution of the length of x can be done in closed form only for orthogonal
distributions. This fact is however more relevant than in the case of distribution of the
maximum, because we will use this closed form to perform certain cut-offs on the initial error
distribution, which is orthogonal.

This distribution Plength in (I.10) then, in the orthonormal case, is computed by integrating
over an (N-1)-sphere with radius r.  The result is well known:
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with the understanding that r now runs only in the positive axis. Figure A.2 shows such
distributions for various values of N.  It can be seen that unlike with Pmax, at much smaller
values of N the shift away from centre is already severe for Plength.
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Figure A.1 Distribution of the absolute maximum in N
dimensions (curves from left to right for N = 1, 10,
100 and 1000; abscissa: multiple of σ)
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Cutoff on Distribution of Length:

From Figure A.2 it is apparent that
when one is dealing with a high
dimensional Gaussian distribution
numerically and wants to include the
dominant portion of the probability
distribution of length or RMS into a
certain calculation, the conventional
99% cutoff at 3 σ for single
dimension must be extended. This
extension can be drastic with large
N.  It is on the other hand awkward
to solve for the cutoff for a given
value of accumulated distribution by
integrating (I.13) and inverting the
resulting gamma function. An
efficient way to obtain such cut-offs, with N up to a few hundred, is by repeatedly
differentiating (I.13) for higher order inflection points, which include progressively more of
the distribution and the process converges rapidly within the first few steps. Table A.1
illustrates this technique on an RMS distribution over 500-dimensions. More than 98 % of the
distribution is sandwiched between the two 4th order inflection points, as is evident from both
Figure A.2 and Table A.1. The computation takes less than 10 seconds27. This technique was
used in determining the magnitude of the overall input orbit RMS in the main analysis.

                                                       
27 This is timed on a Pentium III 600 MHz PC running Mathematica 4.0. The next order includes > 99.5% of the
distribution after 12.5 seconds of computation.
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Figure A.2: Distribution of the length in N dimensions (curves
from left to right for N = 1, 10, 100 and 500);
abscissa: multiple of σ)

Order of
Derivative

1 2 3 4

Lower Bound
Cutoff (σ)

15.795569 15.295504 14.932080 14.634732

Integral below
Low Cutoff

0.495789 0.154742 0.039693 0.009072

Upper Bound
Cutoff (σ)

15.795569 16.295630 16.664324 16.969316

Integral below
High Cutoff

0.495789 0.837593 0.956548 0.989548

Table A.1 Inclusion of a 500-dimensional RMS distribution based on 4th order
derivative cut-offs.
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J Exception Handling due to Rank Deficiency
In all algorithms discussed above one occasionally encounters degenerate or near- degenerate
configurations due to the large dimensionality involved in the calculations. Many of the
inversion operations fail when this happens and special attention must be paid to handle such
cases. Two cases are of particular interest:

Rank deficiency:

It is granted that in an over-constraint projection the mapping matrix takes the actuator into a
subspace of the responder space, and the algorithms developed above can evaluate this
subspace. On the other hand, due to rank deficiency in the map, sometimes even critically or
under-constrained maps can project into a subspace of the responder space, and matrix
inversions fail in the absence of special exception handling. This problem has been addressed
in this analysis by monitoring the true dimensionality of the image subspace of all critically or
under-constrained maps. If this is found to be less than the rank of the matrix, a different
algorithm is used which works in the true image subspace of a lower dimensionality.

Near-singularity:

This happens especially with large numbers of elements making singular combinations more
likely. It does not imply rank deficiency but can cause the same problem when the finite
numerical accuracy cannot maintain linear independence. The algorithm used in the current
analysis monitors a potential near-degeneracy of such projections using SVD, and eliminates
the singularity [7] to pre-empt such problems.


