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ABSTRACT

The branching ratio for the decay of the tau lepton into at least one neutral kaon
meson was measured from a sample of 201850 tau decays recorded by the OPAL
detector from 1991 to 1995. The selection yielded 305 7= — X~K?%v, candidates
(the charge conjugate is implied for all reactions), where X~ is any charged hadron

possibly accompanied by a neutral particle, giving a branching ratio of
B(t— — X K}v,) = (10.01 +0.79 4 0.64) x 103,
where the first error is statistical and the second is systematic. From the sample

of 7= — X"K%v,. decays, three exclusive decay modes were identified and their

branching ratios were measured to be

B(r— —» mK'v) = (9.1+0.9+0.6) x 1073,
B(r > K >1'%,) = (3.6+£1.3+£10)x10°3
B(r— =K K°>0r%,) = (3.3+0.9+0.7)x10°%,

where the first error is statistical and the second is systematic. The 7= — K*(892) v,
branching ratio was determined to be 0.0140+0.0013 using the 7= — W_KOVT branch-
ing ratio and assuming isospin conservation. Finally, the ratio of the non-strange

decay constant f, to the strange decay constant fx+« was measured to be 0.93 & 0.05.
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Chapter 1

Introduction

This dissertation presents the first measurement of the branching ratio of the decay of
the tau (7) lepton into a final state containing at least one K? meson by the OPAL!
collaboration. The analysis was done using data collected between 1991 and 1995
using the OPAL detector, a multipurpose experiment located at the LEP? collider
at the European Centre for Particle Physics Research (CERN) located near Geneva,
Switzerland.

The field of particle physics began just over one hundred years ago with the
discovery of the electron in 1897 by Thomson. Advancements in accelerator and
detector technology have rapidly occurred leading to the discoveries of new particles
and a better understanding of particles and their interactions. In 1975, the third
generation 7 lepton was discovered by M. Perl et al. [1] at the SPEAR e'e™ storage
ring. Subsequently, the 7 itself became the subject of intense investigation as one can
use 7 production and decays to explore several features of particle physics, including
the electromagnetic, weak and strong forces. One can test the validity of the many
features of the Standard Model of particle physics [2] and search for new physics
beyond the Standard Model.

! Omni-Purpose Apparatus for LEP
2Large Electron Positron
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The 7 is a sequential third generation charged lepton. Specifically, this means
that the 7 is a point-like spin 1/2 particle with properties and couplings which are
believed to be identical, except in mass, to those of the electron and muon. The mass
of the 7, 1777.1 MeV? [3, p. 286], is more than three thousand times greater than the
electron (me = 0.511 MeV). The 7 decays via the charged weak interaction with a
lifetime of 290.0 fs [3, p. 286]. The sample of 7 lepton pairs used in this analysis was
created through electron-positron collisions (eTe™ — 7F77) close to a centre-of-mass
energy of 91.2 GeV, the mass of the Z° boson.

The large mass of the 7 allows it to decay into both leptonic and hadronic final
states. Leptonic tau decays have final states containing either an electron (e) and
an electron neutrino (v,) or a muon () and a muon neutrino (v,) accompanied
by a 7 neutrino (v,) (see Figure 1.1(a)). Hadronic 7 decays are assumed to have
final states consisting of a single charged meson, h~ (a quark-antiquark or qq pair)
accompanied by a v, (see Figure 1.1(b)). Final states with two or more mesons
are assumed to be the result of the decay of an initial heavier meson. The charged
meson pairs are composed of up (u) and down (d) type quarks such as 7~ (uyd;) and
p(770)~ (urdy), where the arrow represents the spin of the quark. Although these two
mesons have the same quark content they have different masses due to their different
spin configurations. The spins of the two quarks in the 7~ are antiparallel giving total
spin zero. The spins of the two quarks forming the p(770)” are parallel giving total
spin one. Table 1.1 shows several mesons described in this work; their quark content
and spin alignment are shown. Note that the spins of each pair of quarks may be
reversed since the magnitude of the total spin remains the same. For completeness,
the orbital angular momentum, the total angular momentum and the parity of each

meson is shown in the table.

*Natural units (A = ¢ = 1) are used throughout this work unless otherwise specified.
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Net |Orbital| JP Strangeness = 0 Strangeness = —1
Spin | ang. Quark Content | Observed |Quark Content| Observed
mom. & Spin Meson & Spin Meson
s=0|1=0| 0 uyd, 7(140)~ w8, K (494)~
=0 | 0 |(wu —did))/v2| w(135)° di5, K(498)°
s=1|1=0 | 17 wpdy p(770)” w;S; K*(892)~
=11 1% wpdy a1(1260) " WS4 K;(1400)~

Table 1.1: The quark content and spin is shown for several different mesons.
The mesons are grouped into non-strange (Strangeness = 0) and strange (Strang-
eness = —1) mesons. The net spin (s), orbital angular momentum (), total angular
momentum (J) and the parity (P) of the qq pairs are shown. The mass of each meson
is shown in the parentheses in units of MeV followed by a superscript indicating the
electric charge.

In the hadronic 7 decay shown in Figure 1.1(b), the W~ can only decay into a
ud state due to energy conservation, where the u-quark and d’-quark are the weak
quark eigenstates [4]. In 1963, Cabibbo proposed an hypothesis exclusive to the
quark sector which states that weak quark eigenstates may be mixtures of the quark
mass eigenstates [5]. This phenomenon as defined affects only the d'-type quarks,
such that the weak d’-quark eigenstate is an admixture of the d-quark and the s-
quark mass eigenstates, whereas the weak u-quark eigenstate is equal to the u-quark
mass eigenstate. The definition is purely conventional and one could accomplish
the same purpose by introducing a u’-type quark eigenstate in lieu of the d’-type
quark eigenstate. This phenomenon allows for additional possible final state mesons
containing us quarks for 7 decays. The s quark mesons analogous to the 7~ and
p(770)" mesons are the K~ (us8;) and K*(892) (u45;). These strange mesons have
similar properties, except for mass, as the non-strange mesons. Due to the amount
of quark mixing, strange mesons are produced at a much lower rate than non-strange

mesons. For example, the branching ratio of the 7= — 7 v, decay is (11.08 £0.13)%

while the branching ratio of the 7= — K~ v, decay is only (0.71 £ 0.05)% [3, p. 286].
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(a)

Ve e-’u-
T R w
VeV,
(b)
V‘E
q
T w i
> O h
q

Figure 1.1: Feynman diagrams of the 7 decay. (a) shows the 7 leptonic decays and
(b) shows the 7 hadronic decays, where the blob at the vertex indicates the unknown
hadronic interactions that yield a meson h~.

Many of the current studies of 7 decays concentrate on understanding the 7 lep-
ton’s dominant decay modes in which the final state contains leptons or non-strange
mesons. These final decay states account for approximately 97% of the 7 decay prod-
ucts. Most of the remaining suppressed decays include kaons, i.e., mesons that contain
one strange quark. Consequently, their decay fractions are small and the decays are
more difficult to identify than the leptonic or pionic decay modes. Therefore the first
step in understanding more about the 7 decays into strange mesons is to identify
them and then to measure their branching ratios.

The decay of the 7~ into a us pair can result in a K~ or an excited K meson in the
final state. The excited K mesons then usually decay into final states involving K~
and also K mesons (or KT and K° for 7+ decays) because hadronic decays preserve

the quark flavours. The two neutral kaons, K° and KO, are not directly observed in
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nature, instead one observes the physical particles known as K% and K?.* The mass

eigenstates of these physical particles are admixtures of the K° and K eigenstates,

(1+ &K + (1 - K

Ky - e (L)
(14 €2)

where € ~ 2.3 x 1073 [3, p. 107]. The mass eigenstates would be exact even and odd
eigenstates of the CP operator® except for the very small CP violation introduced
by e. The CP even state, the K3, decays into two pions, a combination which is
also CP even, whereas the CP odd state, the K?, decays into a CP odd combination
of three pions. Consequently, any given sample of K° or K’ mesons is composed of
approximately 50% K? and 50% K3 mesons.

The discovery of the first type of neutral kaon took place in 1947 by Rochester and
Butler [6] as it decayed into two pions. The second type of neutral kaon was discovered
in 1956 by Lederman et al. [7] at Brookhaven as it decayed into three pions. The
charged kaon, K~, was discovered by Powell et al. [8] in 1949 as it decayed into a
muon antimuon neutrino pair. It has been observed that the K¢ decay into two pions
is much faster than the K decay into three pions due to phase space limitations. The

experimental lifetimes of the kaons are [3, p. 439]:

Tyxg = 89x107's
Tge = 52x107° s

T = 1.2x10°% s.

4The S and L subscripts delineate short and long, referring to the short and long decay lengths
of the two particles, respectively.

5The CP operator is a space reflection through the origin followed by a charge conjugation,
changing the sign of all the quantum numbers.
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Thus a relativistic K¢ meson will travel only a few centimeters while the K? meson
can travel many meters. For example, if the kaon had an energy of 10 GeV, then the
K2 meson would travel on average 55 cm before decaying into two pions while the K¢
meson would travel on average 325 m and the K* mesons would travel on average 75
m before decaying.

In the detectors currently used to study 7 decays, various methods have been
devised to identify the strange decay modes. Charged kaons have been identified
through measurements of their energy loss as they traverse a gas. The different life-
times of the neutral kaons allows one to distinguish a K3 from a K? using their decay
lengths. Consequently, the short-lived K3 mesons have been studied by searching
for evidence of the K% decaying into a 7~ 7" final state that is visible in a tracking
chamber, while long-lived K? mesons have been identified through their interactions
with electromagnetic and hadronic calorimeters that contain the K? meson’s energy.

Using the latter method, this analysis looked for decays containing a charged track
and at least one K? meson. Using 7 decays that have this topology, the 7= — X "K%v,
branching ratio® is measured where X ~ is either a 7~ or a K~ which may be accom-
panied by any number of neutral particles. This is the first OPAL analysis to identify
a K? meson. The 7= — XK, decays are then examined to determine the identity
of the X~. The charged hadron is identified using the energy loss of the particle as
it passes through the OPAL jet chamber and 7° mesons are identified primarily by
observing an excess of energy in the electromagnetic calorimeter. Following these ad-
ditional selections, the branching ratios of three exclusive decay modes are measured:

—o0 —o0
7 =7 Ky, -1 K >1r%, and 7 — K K° > 07%,. These decay modes

6Charge conjugation is assumed throughout this work. When quoted decay modes list only the
negative charged state, the corresponding positive charge state is implied.
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include both K? and K} mesons, by convention they are collectively labelled as K°
(or KO). These branching ratio results will be shown to be in very good agreement
with recent results from the ALEPH and L3 collaborations in which the 7 decays into
a final state containing a K? meson. In addition, the new measurements presented
here are compared to results from the CLEO and ALEPH collaborations in which the
final state contains a K3 meson. The corresponding branching ratios are expected to
be equal, as previously discussed.

As described above, the 77 can decay into a us pair giving a K™ final state or an
excited K meson final state, such as the K*(892) or K;(1400)  mesons. The excited K
mesons decay very rapidly through the strong interaction with lifetimes of order 1023
s. The lowest mass K meson, aside from the K, is the K*(892) . It is a vector (J = 1)
meson and decays into a (1K)~ final state (either 7 K or K~ 7%). Therefore, one can
use the branching ratio of the 7= — W*KOVT decay mode and isospin conservation
of the K*(892) meson with respect to its decay products to make a measurement
on the branching ratio of the 7= — K*(892) v, decay mode. The concept of isospin
conservation will be discussed further in Chapter 2. This branching ratio can then be
compared to various theoretical predictions and other experimental results, including
the analogous OPAL result using the 7~ K% final state. More information on the
various possible resonances of the three exclusive decay modes will be discussed in
Chapters 2 and 4.

In addition, existing experiments have not observed individual quarks. Currently,
physicists only have observed the final state hadron and not the processes that occur in
its creation. Consequently, one does not know how the charged weak current couples
the quarks to form hadrons. Figure 1.2 uses a blob at the vertex to show this unknown

coupling for the 7= — K*(892) v, decay; the unknown coupling strength is denoted
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a
«
A Y
A
|*

Figure 1.2: A Feynman diagram of the 7= — K*(892) v, decay.

by the form factor (decay constant) fx:. A measurement of the 7= — K*(892) v,
branching ratio can be used to calculate fx«.

A more detailed description of the Standard Model is presented in Chapter 2; this
chapter will also describe the properties of the 7 and give a description on how the
decay rates of tau hadronic decays can be predicted. Chapter 3 gives a description of
the LEP collider and the OPAL detector data processing scheme and its subdetectors.
Chapter 4 presents a detailed description of the interaction of particles with matter.
Chapter 5 describes the selection of the sample of 7 leptons used in this work created
through electron-positron collisions close to the centre-of-mass energy of 91.2 GeV, the
mass of the Z° boson. Chapter 5 also gives a description of the simulated events that
were used to describe the data. Chapter 6 describes the selection of the 7= — X "KYu,
decays and determines the composition of X~. Chapter 7 presents the branching
ratio results and the systematic errors are described. In Chapter 8, the branching
ratios are compared to other experimental results and theoretical predictions. Finally,

Chapter 9 summarises the results and presents the conclusions.



Chapter 2

Theory

This chapter will describe the Standard Model and the physics of tau hadronic decays.
The first section will give a brief review of the Standard Model. The second section will
describe how quark mixing occurs within the Standard Model. The third section will
outline the concept of isospin conservation. Finally, the fourth section will discuss tau
hadronic decays with an emphasis on the neutral kaon decays that are being studied

in this dissertation.

2.1 Standard Model

The Standard Model [2] is a highly successful description of the interactions of ele-
mentary particles. In this theory, matter is composed of point-like spin 1/2 fermions,
which interact via the strong, weak and electromagnetic forces through the exchange
of gauge bosons. Some properties of these gauge bosons and fermions are shown in
Table 2.1 [3, p. 223-348|.

Fermions can be categorised as either leptons or quarks. Leptons consist of three
charged particles: the electron (e), muon () and tau (7); and three neutral particles:
the electron neutrino (v,), muon neutrino (v,) and tau neutrino (v,). These particles
possess integer electric charge (0 or —1) and do not interact with the strong force.

There are six quarks (u,d,c,s,t and b) which have a fractional electric charge and
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interact via the strong force as well as the weak and electromagnetic forces. For
everyday matter, essentially all physics can be described using only four fermions: two
leptons (v, and e) and two quarks (u and d). These fermions are grouped together to
form the first generation of matter. Each fermion is also associated to an antiparticle
with opposite electric charge and opposite quantum numbers.

The remaining, more exotic, fundamental particles are grouped into two additional
families which are identical to the first generation in all respects except for their
masses. The three rows in the top part of Table 2.1 correspond to the three families.
Each family consists of a charged lepton and a neutrino as well as a pair of quarks
with charges +2/3 and -1/3. The weak force is able to couple members of each weak
isospin doublet to one another by charged current interactions.

The gauge bosons mediating the strong, weak and electromagnetic forces arise due
to the invariance of the Standard Model Lagrangian under a SU(3).x SU(2), xU(1)y
local gauge transformation.! The SU(3). group determines the couplings between
strongly interacting particles by the exchange of colour carrying gauge bosons called
gluons. The SU(2),xU(1)y gauge group describes the unified electroweak interaction
described by Glashow, Salam and Weinberg [2]. The subscript L on SU(2)y is due to
the experimental observation that the charged currents in weak interactions couple
only to the left-handed chiral states of particles forming doublets of weak isospin [4].
Right-handed particles are classified as singlets. As a consequence, leptons remain
unmixed within the minimal Standard Model. The final group, U(1)y, relates the
weak hypercharge Y to the electric field () and the third component of the weak
isospin T3 by Q = T3 + Y/2.

!The term gauge transformation denotes a transformation of a physical system that obeys the
symmetry of the mathematical group and leaves the physical state of the system unchanged.
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Fermions (spin = 1/2)

Leptons Quarks
Name Mass Charge | Isospin || Name Mass Charge | Isospin

(GeV) Q) (T5) (GeV) Q) (T5)
Ve <51x10°° 0 +1/2 u 0.0033 £+ 0.0018 | +2/3 +1/2
e 5.1 x 1074 -1 —1/2 d 0.0060 £+ 0.0030 | —1/3 —1/2
v, | <27x1074 0 +1/2 c 1.250 £0.150 | +2/3 | +1/2
u 0.106 -1 -1/2 s 0.115 £ 0.055 -1/3 -1/2
Vr < 0.031 0 +1/2 t 173.8 £5.2 +2/3 +1/2
T 1.777 -1 —1/2 b 4.34+0.2 -1/3 —1/2

Gauge Bosons (spin = 1)
‘ Name ‘ Mass (GeV) ‘ Charge ‘

photon () 0 0
W~ 80.22 -1
W+ 80.22 +1

Z° 91.19 0
gluon (g) 0 0

Table 2.1: Boson and fermion properties. The mass, charge and weak isospin are
shown for each fermion while the mass and charge are shown for each boson. The
particle masses are taken from reference [3, p. 223-348|.

The masses of the gauge bosons and fermions are the result of couplings between
the gauge or fermion fields and a scalar field called a Higgs field. The Higgs interac-
tion is one way to generate particle masses in a gauge invariant, Lorentz invariant and
renormalisable way. The Higgs field spontaneously breaks the local SU(2), x U(1)y
gauge symmetry to produce the separate electromagnetic and weak forces. The re-
sulting massive gauge bosons, W* and Z°, are associated with the weak interaction.
However the photon (7), which is associated with the residual remaining unbroken
U(1)g symmetry, remains massless. The gauge bosons and their properties are given

in Table 2.1. Feynman diagrams for the electromagnetic, strong, charged and neutral
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(a) (b)
f q
Y gluon
e g,
f q
(©) (d)
f f
+ 0
,,,,,,,,,,,,,,,,,, W B 2.
g gz
f f

Figure 2.1: The couplings of the electromagnetic, strong, charged and neutral weak
interactions that are permitted in the Standard Model: (a) the coupling of a photon
(7) to a fermion (f) with the coupling constant e giving the electromagnetic force;
(b) the coupling of a gluon to a quark (g) giving the strong force; (c) the weak charge
current coupling of a W* to fermions of a weak isospin doublet and (d) the weak
neutral current coupling of a fermion (f) to a Z°.

weak couplings are shown in Figure 2.1. The fourth force, gravity, is sufficiently weak
at the length and mass scales accessible to particle physicists that its effects are neg-
ligible. The coupling constants of the forces are shown on the diagrams. The electric
charge, e, couples photons to charged fermions creating the electromagnetic force.
The strong coupling constant, g,, couples gluons to quarks giving the strong force.
The neutral weak coupling constant, gz, couples the Z° boson to fermion-antifermion
(ff) pairs and the charged weak coupling constant, g, couples the W* bosons to

leptons and neutrinos or to quark-antiquark (qq’) pairs.
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2.2 Quark Mixing

The W~ couples to the fermions of a weak isospin doublet, i.e. leptons or quarks of
the same family or generation. For example, the following interactions are possible:
e~ = v+ W~ and d — u+ W~. In the case of the leptons, the coupling of the W+
takes place strictly within a particular generation and no cross-generational coupling
is observed (eg. the e~ — v, + W™ interaction does not occur). This observation has
been enshrined in the laws of conservation of electron, muon and tau lepton number.
With respect to quarks, the weak interaction does not strictly respect only inter-
family transitions, such that the cross-generational interactions s — u+ W™ occur in
addition to the d — u+ W™ interactions.

In 1963, Cabibbo suggested a solution to this paradox of the W~ decaying into
two different quark-antiquark pairs which have one quark in common [5]. Cabibbo
proposed that the quark weak eigenstates were actually mixtures of the quark mass
eigenstates. Specifically the weak u-quark eigenstate is equal to the mass u-quark
eigenstate whereas the d’-quark eigenstate is an admixture of the d-quark and the
s-quark mass eigenstates. This definition is purely conventional and one could ac-
complish the same purpose by introducing a u'-type quark eigenstate in lieu of the
d’-quark eigenstate.

To accommodate the mixing of the different quark families,2 Cabibbo proposed a
modification to the quark doublets involving a quark mixing angle 6. (now known as

the Cabibbo angle), such that [5]

d = dcosf.+ssinf.

s = —dsinf, +s cosé..

2At the time only the u,d and s quarks were known to exist.
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(@) (b)

d s

Figure 2.2: Cabibbo favoured and suppressed interactions. (a) shows the Cabibbo
favoured transitions while (b) shows the Cabibbo suppressed transitions.

The strangeness-changing processes s — u + W~ are observed to be much weaker
than the strangeness-conserving processes d — u + W~ consequently the Cabibbo
angle is small (13.1° [3, p. 103]). Figure 2.2 shows the interactions allowed under the
above scheme; diagram (a) shows the Cabibbo favoured interactions while (b) shows
the Cabibbo suppressed transitions.

Cabibbo’s theory was very successful in describing decays based on the uds quarks.
However, this theory allowed the K° to decay into a p*p~ pair at a calculated decay
rate in strong disagreement with the allowed experimental limit. To explain this
discrepancy, Glashow, Iliopoulos and Maiani (GIM) [9] proposed the existence of a

fourth quark to complete the second generation quark family in analogy to the second

(#) (5)

As a consequence of the two generations, additional Feynman diagrams are possible

generation lepton family

in which the ¢ quark replaces the u quark. Consequently, the Feynman diagrams
with a u quark are cancelled by the corresponding diagrams containing a ¢ quark,

thus accounting for the absence of decays such as K® — utpu~ and K= — 7-ete™.
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Later, in 1973, before the fourth quark was even discovered, Kobayashi and
Maskawa generalised the 4 quark scheme to handle three generations of quarks in

an effort to explain C'P violation [10]:

d, Vud Vus Vub d
s =1 Vea Vs Vo s 1, (2.1)
b’ Via Vis Vi b

where d, s and b are the physical quarks and d’, s’ and b’ are the weak eigenstates.
Note that the first element, |Vyq|, is the Cabibbo angle cosf.. By convention the
three quarks with charge +§e are unmixed while mixing takes place between the —%e
charged quarks. The magnitude of the matrix elements have been experimentally

measured [3, p. 103]:

0.975 0.221 0.003
0.221 0.975 0.039 | . (2.2)
0.009 0.039 0.999

The elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix enter as a factor
into the calculation of the Feynman diagrams in determining the strength of the
coupling between the W* boson and the quarks. Consequently, as will be shown in
Section 2.4, the partial width depends quadratically on the CKM-matrix elements.
Using these elements and neglecting phase space contributions, one can estimate
the ratio of the probability of the u quark interacting with an s quark compared
to the probability of the u quark interacting with a d quark to be V2/V2 ~ 5%.
Consequently, the interaction of the u quark with an s quark is said to be Cabibbo

suppressed.

2.3 Isospin Conservation

The concept of isospin was introduced by Heisenberg [11] in 1932 to account for the

charge independence of the strong force. For example, the strong force cannot distin-
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guish between the proton and neutron or the three different states of the pion meson.
The members of an isospin multiplet are in essence the same particle appearing with
different orientations in isospin space or with different charges (Q = T3 +Y/2). Using
Noether’s Theorem [12], Heisenberg asserted that the strong force is invariant under a
rotation in isospin space implying that isospin is conserved in all strong interactions.

An important application of isospin conservation arises from the strong interac-
tions between non-identical particles. It is used in this analysis to determine the
branching ratio of the 7= — K*(892) v, decay mode from the branching ratio of the
Tm — W_KOVT decay mode measured in this work. The K*(892) meson decays into
two final states: 7 K and K~ 7°. The relationship between the K*(892)  meson and
these decay products is described below.

The isospin of a particle is commonly displayed as a Dirac ket |T' T3), where T
is the eigenvalue for the isospin operator and 73 is the eigenvalue for the projection
operator along the third direction of 7. For the particles in this example, the Dirac

kets are:
K*)=3 —3), [K)=1[3 -3, K)=[33 and |7°) =]10). (2.3)

The isospin states of the possible decay products of the K*(892)" meson can be

calculated using Clebsch-Gordon coefficients [3, p. 183] to be

7K = V135 —4) ~V2/3l5 —3) and (24)

Kor®) = V2315 -3+ V1/3l5 —3).

. . . . . . 3 1 . . . .
Requiring isospin invariance, the |3 — 3) terms are eliminated giving

K*™) = V/1/3]K™7°) — /2/3[K'n7). (2.5)
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Note that the charge conjugate state gives the same conservation relation with all
the signs reversed. As described in the next section, the decay width is proportional
to the square of the amplitudes (Dirac ket coefficients), subsequently the branching
ratio of the 7= — K*(892) v, branching ratio is equal to 1.5 times the 7= — K v,
branching ratio. The branching ratio of the 7= — K*(892) v, decay mode will be

calculated in Chapter 8.

2.4 Tau Hadronic Decays

Of the three charged leptons — the electron, muon and tau — only the latter is
massive enough to have hadronic decay modes. Thus an entirely new regime of study
is opened up, since the tau can decay into both strange and non-strange mesons. The
total width of the tau (T',) is given by the sum of the widths of each tau decay (T;)
and is inversely proportional to the 7~ lifetime (7,). The branching ratio of the tau
lepton to any given final state is defined as the ratio of the partial decay width to the

total decay width for example

Br —h )= L0 ? hv) (2.6)

where h™ represents any hadronic final state. Table 2.2 shows the average branching
ratios of the 7 divided into categories based on the topologies of the final states.

The differential decay width for a particle of mass m can be written as [2],
dr = —= | M[2dPS (2.7)
-~ 2m ’ '

where dPS is the Lorentz invariant phase space factor and M is the invariant am-
plitude for semi-leptonic decays and contains the dynamical information about the

decay which can be evaluated from a Feynman diagram. For any 7~ two-body decay
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Decay mode Branching ratio (%)
T — e Ul 17.81 £0.07
T — W Uyl 17.37 + 0.09
T —hv, 12.32 £ 0.12
= b, 25.84 + 0.14
= hm > 20, 10.79 + 0.16
7~ — (3prong) v, 15.18 £ 0.13
7~ — (bprong) v, 0.097 £+ 0.007

Table 2.2: The major decay modes of the 7. For this table, the h denotes both
charged m and K mesons. Decays with 3- and 5-prongs include those decays with 3
and 5 charged hadrons, respectively.

into a meson P and a neutrino, one gets
m2
dPS = — < — —P> dQ, (2.8)

where d) is the solid angle element, m, is the mass of the 7~ lepton and mp is the
mass of the meson. The Lorentz invariant phase space factor contains the kinematic
information of the decay. The matrix element can be written in the form of a current-

»\/_2 c ’ ’

where |Voxum| is the magnitude of the CKM matrix element and G is the Fermi
coupling constant. This factor includes all the numerical factors involved in coupling

the fermions to the gauge bosons. L, describes the leptonic tau current, and is given

by

Ly = U, u(1 = 75)tir, (2.10)

where u and u are Dirac spinors and 7, and <5 are Dirac matrices. The hadronic

transition current J, describes how the hadronic system A~ is formed from the vacuum
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by the weak current. If one is restricted to a V-A structure, J, can be written as
Ju = (h|Vu(0) — AL(0)]0), (2.11)

where V,(0) and A,(0) are the vector and axial-vector quark currents, respectively,
operating on the vacuum. The vector part of the hadronic current leads to final states
with even G-parity, or an even number of pions, while the axial-vector part couples
to odd G-parity states, or an odd number of pions.

Finally, the Lorentz invariant amplitude for the decay 7= — h™ v, is expressed as

G2 ,
dr = ﬁWeKMPLWJ“ dPS. (2.12)

In the rest frame of the A~ system, the tensor product simplifies to a sum over various
structure functions and kinematic factors. For simple 7 decays into only one hadron,
the hadronic current is easily determined using knowledge of the four vectors of the de-
cay products. If the final state contains two or more hadrons, the hadronic transition
current becomes much more complicated. For a complete explanation of the hadronic
structure functions for final states containing strange mesons see references [13,14].
The calculation of the 7 decay rate requires knowledge of the hadronic current J,,.
The simplest, most general, form of the hadronic current is ¢Vexm fp pfj for a pseu-
doscalar meson (eg. 7=, K~) and iVexm fv €, for a vector meson (eg. p~, K*(892)7),
where Vegy is the CKM matrix element for the corresponding meson. The fp and fy
are the decay constants representing the unknown coupling between the W~ boson
and the quarks, while pﬁ is the momentum four vector for the pseudoscalar mesons
and EZ is the polarization four vector for the vector mesons. The decay constants of
the pseudoscalar mesons can be determined experimentally from the leptonic decay
of the meson. This is not practical for the vector mesons, consequently a ratio of the

decay widths of two different decays is used to give an indirect measurement.
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Figure 2.3: Feynman diagrams of of 7~ decays into pseudoscalar and vector mesons.
The pseudoscalar final states are on the right while the vector final states are on the
left. The coupling constant for each decay is indicated on the diagrams. Note that
the spins of each quark-antiquark pair may be reversed giving the same magnitude
of the total spin of the meson.

Figure 2.3 shows the Feynman diagrams for four different final states of the 7.
The lefthand plots show the pseudoscalar meson final states while the righthand plots
show the vector meson final states for non-strange and strange decays, respectively.
The decay rate for any of these diagrams is evaluated by integrating equation 2.12

and averaging over the initial spin of the 7~ and summing over the final state spins.

The decay rate for a 7~ to decay into a pseudoscalar meson is

GLV2 2,3 2\ 2
[(r~ — P v,) = £ 01“6Mf”mf (1 - %> , (2.13)
s

where Vogy is the CKM matrix element, mp is the mass of the pseudoscalar meson
and fp represents the coupling of the W~ to the pseudoscalar meson. The decay
rate for the 7= — 7~ v, decay mode is obtained by replacing fp with f; and using
Veoxkum = cos 6. Similarly, the decay width for the 7= — K~ v, decay mode is obtained

by replacing fp with fx and using Vexym = sinf.. The decay constants f; and fx
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have the values 130.7 + 0.4 MeV and 159.8 + 1.5 MeV [3, p. 353], respectively.

The decay rate for a 7~ to decay into a vector meson, V', can be approximated if
one assumes the narrow-width approximation for V' and ignores radiative corrections.
The narrow-width approximation assumes that the lifetime of the vector meson is
infinite and subsequently that it does not decay. The radiative corrections can be
neglected in this work because they will cancel when the ratio of the 7= — p~ 1, and
7~ — K*(892) v, decay rates is calculated. However, the widths of the two mesons
are not negligible. Therefore, there is a small unknown theoretical uncertainty in the

calculated ratio of the decay rates. The 7= — V ~v, decay rate is [15]

2172 2,3 2\ 2 2
2
F(T_ —> V_V'r) = GFVCKvamT<]_ - ﬂ) <1 + mv> ) (214)

6472 m?2 m2
where fy represents the coupling of the W™ to the vector meson and my is the mass
of the vector meson. For the decays 7= — K*(892) v, and 7~ — p~ v, equation 2.14
can be modified by replacing my and fy with the corresponding masses (mg, and
m,) and couplings (fx, and f,). In addition, the CKM matrix element Veky is sin 6,
for the 7= — K*(892) v, decay and cosf, for the 7= — p~ v, decay.

The calculation of the decay rate for the 7~ to decay into a final state with two
or three mesons is more complicated and is not shown here; for complete details
see [13,14]. The 7= — (7K) v, decay mode, shown in Figure 2.4, proceeds through
the weak hadronic vector current. If one assumes that nearly all of the 7=—(7K) v,
decays pass through the K*(892) resonance, equation 2.14 can approximate the 7~—
(7K)~ v, decay width and subsequently the decay’s branching ratio. The 7~—(7m) v,
branching ratio can be similarly estimated using the 7= — p~ v, branching ratio. If
one imposes isospin conservation on the two possible decay modes of the K*(892)

. —0 . .
meson, then predictions of the 7= — 7~K v, and 7= — K~ 7%, branching ratios are

possible.
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A 4

Figure 2.4: A Feynman diagram of the 7= — (7K) v, decay.

Once the branching ratios are measured, the decay constants for various vector

mesons can be approximated using equation 2.14,

-1 ~1/2
fy = 8 L mi 14+ 2m?, / B(r= = V-u,) (2.15)
Y GrVexmmy? m7 m; T; 7 '

where Gp = 1.16639 x 107> GeV~2 [3, p. 69]. Using the particle masses from ref-

erence [3, p. 286 and 364| and the current world average branching ratio for the
T~ — p~ v, decay mode, B(7~ — p~v;) = 0.2532 + 0.0015 [3, p. 286], one approxi-
mates f, to be 742.4+0.84+2.2 MeV, where the first error comes the uncertainty in V4
and the second from the uncertainty in the branching ratio. Similarly, the decay con-
stant fx. can be approximated using the 7= — K*(892) v, branching ratio, B(t~ —
K*(892) v,;) = 0.0128 £ 0.0008 [3, p. 286], giving fx. = 764.8 & 13.6 & 24.3 MeV,
where the first error comes from the uncertainty in Vs and the second from the un-
certainty in the branching ratio. A new estimate of the decay constant fx,, using
the branching ratio of the 7= — K*(892) v, decay mode calculated in this work, is
presented in Chapter 8.

For the last 30 years, several authors have been studying the properties of the
decay constants of various mesons. One such study, presented by Oneda [16] shows

the calculation of several different decay constant relations using a set of sum rules



Chapter 2. Theory 23

originally derived by Das, Mathur and Okubo (DMO) [17]. Oneda predicts that in the
flavour-SU;(3) symmetry limit (m, = mq = ms), the decay constants are expected
to be equal, f, = fx+ [16]. Oneda makes a second prediction based on asymptotic

flavour-SU;(3) symmetry at high energies resulting in

Jo _ S (2.16)
m, my=

Under the narrow width assumption, this work uses the ratio of the 7= — p7v;
decay width with respect to the 7= — K*(892) v, decay width to give an independent

check on the decay constants:

fr 4 B(t= = pv,) mZ — mk. m2 + 2mz.
= tanf, — - - s T oz (2.17)
Jier B(r= — K*(892) v,) \ m; —m3 m2 + 2m?2

This ratio uses only the branching ratios, masses and the Cabibbo angle and is inde-

pendent of of the Fermi coupling constant, tau lifetime and any radiative corrections,
assuming that the two decays have the same radiative corrections. The ratio f,/ fx-
is calculated using the 7= — K*(892) v, branching ratio calculated in this work in
Chapter 8 and is compared to other recent measurements and theoretical expecta-
tions.

The decay widths of the remaining decay modes studied in this work can be esti-
mated in a manner similar to that described above. The branching ratio predictions

are compared to the measurements from this work in Chapter 8.
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Chapter 3
LEP and the OPAL Detector

This chapter will describe the experimental facility used to collect the data for this
analysis. The first section will describe the Large Electron Positron (LEP) [18] collider
facility at CERN just outside Geneva, Switzerland. The second section describes the

OPAL detector and the performance of the detector since 1991.

3.1 The LEP Collider

The LEP collider facility consists of several different particle accelerators that are
used to create high energy electrons and positrons and bring them into collision.
From 1989 to 1995 the injector chain produced and accelerated electrons and posi-
trons to 20 GeV, while the main ring accelerated the particles to approximately 45
GeV, providing the centre-of-mass energy of 90 GeV required for Z° physics. Recent
improvements to the LEP collider now allow electrons and positrons to reach energies
close to 100 GeV.

Figure 3.1 shows a schematic diagram of the LEP injector chain. Positrons are
produced by directing electrons from a 200 MeV linac onto a converter target. The
electrons and positrons are then accelerated in a 600 MeV linac and collected in the

Electron-Positron Accumulator (EPA). After accumulation in the EPA, the electrons
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and positrons are injected into the Proton Synchrotron (PS) where they are acceler-
ated to 3.5 GeV and then transferred to the Super Proton Synchrotron (SPS) which
accelerates the particles to 20 GeV. The SPS was made famous in the 1980’s for the
discovery of the Z° and W= bosons [19,20]. The final acceleration to 45 GeV is done
in the LEP ring.

The LEP ring is 26.66 km in circumference and is buried between 100 m and 150 m
underground (see figure 3.1). The LEP ring consists of a repeating set of horizon-
tally deflecting dipole magnets and alternating focusing and defocusing quadrapole
magnets. This forms a strong focusing lattice that keeps the beams circulating in
opposite directions on closed stable orbits around the ring. Radio frequency (RF)
cavities provide the accelerating force on each beam. Once the beams reach their
operating energy, set by the bending field of the dipole magnets, the RF cavities
compensate for synchrotron radiation losses. The collider successfully reached the

1 at an average beam current of 3 mA,

design peak luminosity of 1.6 x 103'cm2s~
corresponding to the production of a Z° boson approximately every second. LEP has
been operated in four and eight bunch mode. In four bunch mode there are four
equally spaced bunches each of electrons and positrons which are made to collide at

four intersection points which are instrumented with large detectors. After 1992, LEP

operated in eight bunch mode, with eight circulating bunches per beam.

3.2 The OPAL Detector

OPAL is one of four large detectors whose purpose is to detect all types of inter-
actions occurring in ete™ collisions at a centre of mass energy up to 200 GeV. A
full description of the detector can be found in reference [21] and a schematic of the

OPAL detector is shown in Figure 3.2. The detector has a cylindrical geometry and
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Figure 3.1: Schematic diagram of the CERN accelerator complex. The LEP injection

chain and the accelerators used for proton/antiproton physics and heavy ion physics
are shown.
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Figure 3.2: Cut-away view of the OPAL detector showing the various subdetector
components, the components used in this analysis are described in the text. The
OPAL coordinate system is indicated; the electron (positron) beam enters the detector
from the right (left); and the detector dimensions are approximately (12 x 12 x 12)
m?.
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is coaxial with the LEP beam pipe.

The coordinate system used by OPAL is illustrated in Figure 3.2; the z-axis is
horizontal and points toward the centre of LEP, the y axis is vertical, and the z-axis
is in the e~ beam direction. The origin of the coordinate system is at the nominal
interaction point at the centre of the detector. The polar angle, 6, is measured from
the z-axis about the z-axis, and the azimuthal angle, ¢, is measured from the z-axis
about the z-axis.

The eTe™ interactions take place in a 10.7 cm diameter evacuated beryllium beam
pipe surrounded by the inner tracking detectors (see Figure 3.3) that measure the
direction, momentum and energy loss (dE/dx) of charged particles. A solenoidal
magnet, located outside the inner tracking detectors, provides a magnetic field of
0.435 T in the direction of the electron beam. The momenta of charged particles is
determined from their curvature in the magnetic field. Outside the inner detectors
are calorimeters that measure the total energy of all particles, except neutrinos and
muons. A set of detectors for detecting muons surrounds the calorimeters. The
following sections describe the OPAL detector components used in this analysis in

order of increasing radius from the beam.

3.2.1 The Central Tracking System

The central tracking system consists of a silicon microvertex detector and three drift
chamber devices: the vertex chamber, the jet chamber and the z-chamber. The three
drift chambers operate at a pressure of 4 bar with a gas mixture of 88.2% argon,
9.8% methane and 2.0% isobutane inside a pressure vessel whose cylindrical structure
provides mechanical support to the solenoidal magnet mounted around it. Only the
vertex chamber and the jet chamber are used in this analysis. They are described

below.
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Figure 3.3: Cut-away of two quarters of the OPAL detector showing the front view
of the barrel (a) and top views (b) for both the barrel and endcap regions.
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The Central Vertex chamber (CV) is a high resolution cylindrical drift chamber
which extends radially from 88 mm to 235 mm from the interaction point. The
detector is composed of an inner layer of thirty-six axial wire cells, each composed
of twelve anode sense wires, and an outer layer of thirty six stereo cells inclined at
4°, each with six anode wires. The drift time to the axially placed sense wires can
be measured precisely enough so that the position of a track in the r — ¢ plane is
calculated with a resolution of 55 ym. The time difference between signals at either
end of the sense wires gives a relatively coarse z coordinate measurement (4 cm) which
is used by the OPAL track triggering and in pattern recognition. The combination of
the stereo layer and axially placed sense wires provides an accurate z measurement
for charged particles close to the interaction region with a resolution of 700 pm.

The Central Jet chamber (CJ) is a large cylindrical drift chamber with a length
of approximately 4 m, surrounding the beam pipe and vertex chamber. The outer
diameter is 3.7 m, the inner diameter is 0.5 m. It is divided into 24 identical sectors in
¢ each containing a sense wire plane with 159 anode wires and two cathode wire planes
that form the boundaries between adjacent sectors. The anode wires are located
between radii of 255 mm and 1835 mm, equally spaced by 10 mm and alternating
with potential wires. To resolve left-right ambiguities, the anode wires are staggered
by +100 pm alternately to the left and right side of the plane defined by the potential
wires. Similar to the vertex chamber, a measurement of the drift time determines the
coordinates of wire hits of a track in the r — ¢ plane with a resolution of 135 ym. The
ratio of the charges between the signals at either end of the wires gives a measure of
the z-position with a resolution of 6 cm. The ionization energy loss of the charged

particles, dE/dz, is measured by integrating the charge received at each end of a



Chapter 3. LEP and the OPAL Detector 31

wire, allowing identification of particles by determining the velocity and momentum
simultaneously. This technique will be discussed in more detail in Section 4.1.

The momentum of the particle is obtained by measuring the curvature of the
particle track in the axial magnetic field. The momentum resolution for the jet

chamber is given by

Zp _ ez _ . /(0.0004 + (0.0015 x pr)?),
p br

where pr in GeV/c is the momentum component transverse to the beam direction [22].
The momentum dependent term is calculated from the momentum resolution of Z° —
pp events while the constant term is due to multiple scattering at low energies.
Note that both the momentum resolution, and the transverse momentum resolution
are identical in the barrel region of the OPAL detector, since the curvature error

(error in the z-y plane) dominates; the error of the dip angle! A can be neglected.

3.2.2 Time-of-Flight System

Surrounding the tracking detectors and magnet is the time-of-flight (TOF) system.
The TOF system covers the barrel region (TB), | cosf| < 0.82, of the OPAL detector.
It is comprised of 160 scintillation counters, at an average radius of 2.36 m. The TOF
provides a timing resolution of 460 ps for muons and a z-resolution of 5.5 cm. The
z-position is measured by comparing the time difference between the signals at the
ends of the scintillators. The timing resolution allows the TOF detector to be used
for cosmic ray rejection and as a trigger veto for events which are not synchronous

with LEP bunch crossings.

!The maximum angle in the vertical plane with respect to the z-y plane, defined as tan A = cot 6.
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3.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) of OPAL is outside both the pressure vessel
of the tracking system and the coil of the magnet. It consists of a pre-shower counter
(pre-sampler) and a lead glass calorimeter. The electromagnetic calorimeter is de-
signed to contain and measure the energy and position of electrons, positrons, and
photons.

The electromagnetic pre-sampler is located immediately in front of the electro-
magnetic calorimeter. It consists of two concentric cylinders of limited streamer tubes
with wires parallel to the beam axis and cathode strips oriented at +£45° with respect
to the wires. The pre-sampler samples the energy of a particle after it passes through
the magnetic coil, enabling one to make a correction if the shower has started in the
coil.

The barrel region (EB) of the electromagnetic calorimeter covers |cosf| < 0.82
and the endcap region (EE) covers |cosf| from 0.81 to 0.95. For this analysis, only
those events fully contained in the barrel region are used. The barrel electromagnetic
calorimeter consists of two half-ring sections that form a cylindrical array of 9440
SF57 [23] lead-glass blocks with 59 blocks in the z-direction and 160 blocks in the
¢ direction. Each block is 24.6 X, thick (where X, = 1.5 ¢cm for the lead-glass)?
with an area of approximately 10 cm x 10 cm. Located 2455 mm from the beam, this
corresponds to an angular coverage of approximately 40 mr x 40 mr. The blocks are
oriented so that they point back toward the interaction region with a slight offset to
minimise the possibility that a particle will pass through a crack between the blocks.

Cerenkov light produced by relativistic charged particles in the blocks is detected by

2Xy is referred to as the radiation length and is defined as the mean distance over which a high
energy electron loses all but 1/e of its energy by bremsstrahlung.
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phototubes at the base of each block.

The effective energy resolution of the electromagnetic calorimeter is op/E =
(1.8% + 23%/vE), where E is measured in GeV [24]. Lead-glass was chosen for
the electromagnetic calorimeter because of its excellent intrinsic energy resolution
(cg/E ~ 5%/vE), linearity, spatial resolution (~ 1 cm), granularity, electron-
hadron discrimination, hermiticity and gain stability. However, the resolution is de-
graded by the approximately 2X, of material located in front of the calorimeter, the

solenoid, central detector and pressure vessel, which usually initiate early showering.

3.2.4 Hadron Calorimeter

Outside the electromagnetic calorimeter is the iron return yoke of the magnet, which is
instrumented using streamer tubes with pads and strips to form a hadron calorimeter
(HCAL). The HCAL measures the energy of hadrons emerging from the ECAL and
can assist in the identification of muons. The HCAL is divided into three parts: the
barrel (HB) covering |cosf| < 0.81, the endcap (HE) covering 0.815 < |cos 6| < 0.91,
and the pole tip (HT) covering 0.91 < |cos 6| < 0.99.

The barrel hadron calorimeter (see Figure 3.4(a)) consists of 9 layers of chambers,
alternated with 8 iron slabs spanning radii from 3.4 to 4.4 m. In addition, another
iron slab is located beyond the last active detector layer. The slabs are 100 mm thick
and are separated by 25 mm gaps giving over four nuclear interaction lengths () of
absorber material.> Note that there is a further 2.2 of material located in front of the
HCAL. The active material, i.e. the detectors, of the calorimeter consists of nine 25
mm thick plastic streamer tubes, usually called HCAL layers (see Figure 3.4(b)). Each

streamer tube layer consists of a series of chambers, with each chamber containing

3The interaction length, )\, is defined as the mean free path of a particle before undergoing a
nuclear collision.
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Figure 3.4: The barrel hadron calorimeter. Figure (a) shows an endview of the HCAL
barrel; Figure (b) shows the cross-section of one of the barrel wedges and Figure (c)
shows the cross-section of one of the chambers in a layer.

seven or eight cells to optimise coverage depending upon the width of that layer (see
Figure 3.4(c)). Each chamber is contained within a gas envelope which is filled with
a mixture of 75% isobutane and 25% argon. Each cell has three cathode walls and an
anode wire in the centre. The signals are read out on both the upper and lower faces
of the chambers. The detected pulses are induced through the grounded cathode and
the gas envelope to the pads under the chambers and to the 4 mm aluminum strips
above the anode wires in each cell, respectively.

The HCAL Strips (HS) are read out at either end of the gas envelope providing
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57,000 individual signals. These signals can provide precise single particle tracking
and can provide the profile of the shape of a hadronic shower.

The pads are grouped together to form HCAL Towers (HT), which divide the solid
angle into 976 equal elements radiating out from the interaction region. There are 48
bins in ¢ and 21 bins in #. Unit gain analogue summing amplifiers sum the signals
from the pads in each tower to provide an estimate of the energy of the hadronic
showers.

The effective energy resolution is calculated (see Appendix A.2) using minimum
ionising pions from 7~ decays giving ogp/E = (0.165+0.024) + (0.847 +0.100)/V/E,
where F is in GeV. This measurement takes into account the probability of hadronic
interactions being initiated in the 2.2 interaction lengths of material in front of the

hadron calorimeter.

3.2.5 Muon Chambers

Most electrons, hadrons and photons are stopped by the calorimeters but muons above
a threshold energy penetrate beyond the calorimeters. Therefore, outside the hadron
calorimeter are four layers of drift chambers to identify muons. The chambers measure
the position and direction of all charged particles leaving the hadron calorimeter.
Ninety-three percent of the solid angle is covered by at least one layer of the muon
chamber, with some gaps in the acceptance due to the beam pipe, the supporting
legs and the cables. Each layer is constructed of 110 large-area drift chambers, 1.2 m
wide and 90 mm deep. The barrel region (MB) covers | cos | < 0.68 while the endcap
region (ME) covers 0.67 < | cosf| < 0.98.
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3.2.6 Trigger

The primary event selection is performed by the trigger system which uses a high level
of redundancy to provide good acceptance for studies of Z° decays. Each subdetector
component provides independent signals which are examined after each beam collision
to see if an interesting interaction or event has occurred. Two types of signals are used
by the central trigger processor to make a decision on whether the event represents a
potentially interesting physics process.

Each subdetector provides direct trigger signals that are estimates of quantities
such as the total energy or track counts. The information from each subdetector
is combined, allowing spatial coincidences between the subdetectors to be identified.
The central logic processor also uses signals from the vertex chamber, the jet chamber,
the time-of-flight detector, the electromagnetic calorimeter, the hadron calorimeter
and the muon chambers. For this analysis, trigger signals were required from both
the jet chamber and electromagnetic calorimeter to accept an event.

The jet chamber trigger provides the central trigger processor with information
on the number of hits in three regions of the detector (two rings of 12 adjacent wires
near the inner radius and one ring near the outer radius), as well as the number of
tracks that could be identified in the detector. A track is recognized in the r — z plane
if it originates from the interaction region within an adjustable range in z.

The electromagnetic calorimeter trigger is based on comparing analogue sums of
energy in defined regions of the calorimeter against a low and a high energy threshold.
The latter threshold is used for direct or stand-alone signals while the lower threshold
logic allows for spatial coincidences between the electromagnetic calorimeter and the

other subdetectors. The thresholds for the total energy in the barrel detector are 4
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GeV and 7 GeV, respectively. The trigger operated with nearly 100% efficiency at a
rate from the barrel trigger of about 0.1 Hz for the high threshold events and about

12 Hz for the low threshold events.

3.2.7 Online Data Processing

Once the trigger logic has identified an event with potentially interesting physics, the
data are read out from each of the subdetectors and transferred to an event builder
where the full event record is assembled. The event is then passed to a filter processor
which performs a fast analysis to provide preliminary event type classification (¢q pair,
lepton pair, etc.). The filter processor is also used to reject events which have been
identified as background events (those events which are not physically interesting),
which account for approximately 90% of the data selected by the trigger logic. The
filter processor writes out the events into 20 Megabyte files which are then released
to the online data reconstruction system (ROPE).

The events are processed immediately by the online reconstruction system. The
data reconstruction program consists of several subprocessors, one for each subde-
tector plus others to perform matching between the subdetectors. The quantities

measured in the detector are converted into calibrated energies and vector momenta.

3.2.8 Detector Performance

The OPAL detector collected data at LEP phase 1 (at or near the Z° pole) from
August 1989 to October 1995. Phase 2 began in October 1995 and is still ongoing.
During phase 1, 5.1 million Z° decays to detectable particles were observed at the
OPAL interaction point for a total integrated luminosity of 163 pb . The integrated

luminosity collected as a function of time at OPAL since 1991 is in shown in Fig-
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OPAL Online Data-Taking Statistics
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Figure 3.5: The integrated luminosity collected by the OPAL detector as a function
of time. The weak number is referenced to the LEP start date each year.

ure 3.5. The analysis reported here studies the ete™ — 777~ events collected at

OPAL between 1991 and 1995.
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Chapter 4

Particle Identification

This chapter will describe the key aspects of how various particles interact and are
identified using the OPAL detector. The first section describes how particles can
be identified using the OPAL drift chamber through ionization energy loss. The
second section describes the electromagnetic interactions of particles with matter and
the properties of electromagnetic showers. Finally, the third section describes the
hadronic interactions of particles with matter and presents a study of the hadronic

shower profile of various tau decays.

4.1 Ionization Energy Loss

As a charged particle travels through a gas it will lose energy as it interacts with the
atomic electrons of the gas. The atomic electrons then undergo one of two processes:
excitation or ionization. Excitation occurs when the atomic electron is lifted to a
higher energy level while ionization occurs when the atomic electron is ejected from
the atom. The total energy loss of the charged particle is given by the Bethe-Bloch
formula which approximates the average energy deposition per unit length (dE/dz)
in terms of the particle energy [27,28]:

dE 47mZ2e4[ < 2mev? )
= — |In

dz mev?

2_ 0
) ) -y
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where m, is the electron mass, Z and v are the charge and the velocity of the particle,
B = wv/c, n is the number of electrons per cm?® in the medium, F is the energy of the
particle in MeV, x is the path length measured in gcm 2, I is the mean excitation
energy which is approximately 10Z eV for absorber materials with Z > 8 and ¢ is
the density correction factor.

The energy loss of a particle is measured as it travels through the gas mixture
composed of argon (88.2%), methane (9.8%) and isobutane (2.0%) in the Central Jet
chamber (CJ). As described in section 3.2.1, the CV, CJ and CZ detectors are all
contained in a pressure vessel maintained at a pressure of 4 bar optimised to provide
the best combination of dE/dz resolution for particle separation and position and
momentum resolution. The choice of this pressure is a compromise between high
pressure which maximises the dE/dx particle identification ability and low pressure
which minimises multiple scattering.

The charge deposited on each wire is proportional to the energy loss of the particle
as it travels through the OPAL jet chamber. These independent energy loss measure-
ments are distributed according to a Landau distribution from which the mean energy
loss for each particle can be measured. The resolution of the dF/dz measurement for
the OPAL jet chamber has been determined to be [29]

o(dE/dz) 159 \**
(dB/dz) ~ 7 (Nm> ’ (42)

where Ngample is the number of wires in the CJ detector that are used to measure
dE/dz and o159 is the resolution obtained when all 159 dE/dz samples are used in the
energy loss measurements. Typically the dE/dz resolution is from 3-4%. Note that
most tracks do not have 159 dE/dx samples due to the application of quality criteria.

Figure 4.1 shows the dependence of dE/dz on momentum for tracks originating from
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Figure 4.1: The ionization energy loss (dE/dz) as a function of momentum for tracks
from 7 decays, superimposed on the plot are the theoretical prediction curves for
various particle species in the OPAL jet chamber.
various final states of the 7 lepton. The points are from the data and the solid lines
are predictions based on the energy loss parameterisation.

The energy loss drops rapidly with increasing velocity of the particle, until an
ionization minimum occurs at about § = 0.95. It starts to increase slowly after
the minimum because of relativistic effects (relativistic rise). At high momenta, the
energy loss saturates at what is known as the Ferm: Plateau.

The particle separation power S(o) versus momentum is shown in Figure 4.2 for

pairs of various particle species ¢ and 7, such that

S(o) — (4E/dx); — (AE/dz), (4.3

o

where o is the quadratic sum of the uncertainties on the energy loss of the two particle
species in question. From Figure 4.2, it is observed that the OPAL jet chamber yields,

for example, a pion/kaon separation of at least 20 for particles with a momentum
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Figure 4.2: The separation from pions in standard deviations for different particle
types as a function of momentum.
between approximately 2 and 30 GeV.

The dE/dx for a particle species can be converted into two other forms for easy
particle identification. First, the dE/dz can be normalised such that it has a mean

of zero and a width of one. The normalised dE/dz (N(dE/dz)) is defined as

E measured dE d expecte
N(dE/dz) = 2/ dmeuea = AB/dTerpecrea,

(4.4)

OdE/dzx
where dE /dZmeasured 1S the measured dE/dz, dE/dZexpected 1S the expected dE/dx for
the particle of interest at a known momentum and o4g/q, is the dE/dx resolution. The
normalised dF/dz was studied in Appendix B using one-prong tau hadronic decays;
corrections were applied where necessary to the ensure that the Monte Carlo modelled
the data. Figure 4.3 shows the normalised d£/dx for tracks using the hypothesis that
the track was a pion. This plot shows the various particle species within the one-prong
tau sample. Reasonable separation power is observed between the charged pion and
kaon mesons allowing the charged pions and kaons to be separated on a statistical

basis.
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Figure 4.3: The normalized dE /dz (N(dE/dx)) for tau decays into one-prong hadrons
with various components indicated on the plot.

The second identification variable is created when the normalised dE/dz for a
particle species P is converted into a probability weight, Wp. The weights for a
particular particle species are flat between —1 and 1. This analysis uses the dF/dz
weights to identify charged particles. The dE/dz weight, Wp, is defined to be the
x? probability for one degree of freedom of a track being consistent with a particular

particle species and is defined as [30]

We(X) = \/%7 /X e bay, (4.5)

where X = (N(dE/dz))?. The sign of the weight is extracted from the difference
dE/dZmeasured — AE/dZexpected, Where dE/dZexpectea 1S the expected value of dE/dx
according to the measured momentum of the assumed particle species. Figure 4.4
shows the dE/dx weight W, assuming that the track comes from a pion for the one-
prong tau decays. The hatched part of the plot shows the pion contribution from the
Monte Carlo and as expected a pure pion sample has a flat distribution. For more
information about the dE/dz calibration, see Appendix B. Note that most of the

charged kaons are identified as having a very small probability of being a pion.
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Figure 4.4: The dE/dz weight, W, of one-prong tau decays assuming that the track
is a pion.

4.2 Electromagnetic Showers

Particles lose energy through both electromagnetic and hadronic interactions with
matter. The electromagnetic component of a hadronic shower can be significant if
the particle interacts with the detector material creating photons or if the hadronic
shower contains 7° mesons which decay into photons; the resulting photons then initi-
ate an electromagnetic shower. These showers begin at energies above approximately
550/Z MeV when electrons lose the majority of their energy by radiating photons via
bremsstrahlung, where Z is the atomic number of the medium. If a photon has suf-
ficient energy it may interact with the detector material producing electron-positron
pairs. The newly formed electrons and positrons also lose energy by bremsstrahlung,
producing photons which continue to undergo further pair production. Therefore
while the electromagnetic shower is developing, the number of particles is increas-
ing. Consequently, the average energy of the particles in the shower decreases until

it falls below the critical energy E. (E. ~ 550/Z MeV [31]). At this point the parti-
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cle multiplication stops because the loss of energy by ionization becomes larger than
by bremsstrahlung. At energies below the critical energy, photons interact mainly
through Compton scattering and the photoelectric effect.

The lateral spread of an electromagnetic shower is mainly due to the multiple scat-
tering of the electrons that do not radiate but have a large enough energy to travel
significant distances from the initial shower axis. The multiple scattering process in-
creasingly influences the lateral spread with decreasing energy of the shower particles
causing a gradual widening of the shower. The shower radius is characterised using
the natural transverse unit of a shower — the lateral spread of an electron beam of

critical energy E. after traversing a material thickness X, [32],

E
R=2R,=22"X, and E,=21MeV, (4.6)

C
where R, is the Moliere radius, E; is the constant appearing in multiple scattering
theory [28] and X is the radiation length. A good approximation for the radiation

length [31] is given by

A _
Xo ~ 1805 gem 2, (4.7)

Inserting X, and E, into equation 4.6 gives
A
Ry ~ 142 g/cm? (4.8)

where the ratio A/Z can be estimated from the composition of the material in ques-
tion. For the OPAL detector this ratio gives, A/Z ~ 2.34, consequently, R, is about
32.8 g/cm? or 6.0 cm, given that the density of the OPAL lead glass blocks is 5.5
g/cm3.

The energy loss of the electromagnetic shower in any detector can be parameterised

in a material-independent way using the radiation length. The energy loss AE by
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radiation in length Az is written as [32],

AE E

where FE is in units of GeV and must be greater than 1 GeV. While the high energy
part of the electromagnetic shower is governed by equation 4.9, the low energy part
of the shower is characterised by the critical energy of the medium. It is defined as
the energy loss by collision of the electrons (or positrons) of energy E. in the medium

in one radiation length, i.e [31].

dFE E A
=t ~3-M 2/g. 4.1
= X 3 1 eVem®/g (4.10)

For the OPAL electromagnetic calorimeter, the energy loss by collision is 7.02
MeV c¢m?/g or 38.6 MeV /cm.
The depth at which a shower penetrates the medium is also characterised using

the critical energy. The median depth of the shower is given by the expression [32],

E 0.4 for electrons
tmea = log <E> + a, where a = { 1.9 for photons (4.11)

The median depth is related to the maximum of the shower such that ¢,,4; >~ tmeq—1.5.
The longitudinal distribution of the shower allows one to estimate the calorimeter
depth needed to contain a fixed fraction of the incident energy, i.e. L(98%) =~ 3teq-
For example, if a 50 GeV electron (photon) is incident on the OPAL electromagnetic
calorimeter, then the 98% containment level will be reached if the calorimeter has
a depth of 21.4X, (23.8X,). Recall that the OPAL electromagnetic calorimeter is
24.6 X, thick with an additional 2X, of material in front of the calorimeter.

To study the energy leakage of electromagnetic showers out of the back of the

OPAL electromagnetic calorimeter, two samples of electrons from tau decays with
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different energy ranges were studied. First, electrons with an incident energy less than
10 GeV were studied and it was observed that approximately 1% of them escaped
the electromagnetic calorimeter. The remaining higher energy (10-40 GeV) electrons
showed a leakage rate of approximately 3%. This suggests that most electromagnetic
showers will be contained within the OPAL electromagnetic calorimeter.

The resolution of the energy measurement of the electromagnetic shower is de-
termined by the fluctuations in the shower propagation. The intrinsic component of
the resolution is caused by the fluctuations in the total charged track length. This
represents the lower bound on the resolution. Additional components that affect the
resolution include the incomplete containment of the showers (energy leakage) and to
a lesser extent the transverse leakage, as well as non-uniformity in the signal collection

and imperfections in the material.

4.3 Hadronic Showers

Hadronic interactions between a particle and matter are more complex than electro-
magnetic interactions because there are many more possible reactions involved. An
energetic hadron loses its energy in matter through elastic and inelastic scattering
with the nuclei of the medium. In an elastic scattering process, the energy of the
incident particle changes due to the recoil of the scattering nuclei in the medium, but
the nuclear state of the particle remains the same. The fraction f of the incident

particle energy transferred to the medium is given by [34],

1

f

where A is the nuclear mass of the medium. Consequently, if the nuclei in the material

are light, the recoil energy becomes an important factor.
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In an inelastic scattering processes, the nuclei and/or incident particle may become
excited, break up, or produce additional particles. These may in turn lose their kinetic
energy by ionization or initiate new reactions, continuing the process of hadronic
shower development. Therefore hadronic showers are characterised by multiparticle
production and particle emission by spallation from nuclei.

Spallation proceeds via two processes [33]:

1: Intranuclear cascade: This process occurs when an incoming particle interacts
with a nucleon inside the nucleus; the particle may transfer enough energy to the
nucleon to cause it to interact with other nucleons. Pions or other mesons are often
produced from these interactions, and some of the faster nucleons (p, n) can be
emitted with enough energy to cause further intranuclear cascades.

2: Evaporation: The highly excited nucleus remaining from each intranuclear
cascade then decays by liberating neutrons, photons and possibly other nucleons, until
the excitation energy is smaller than the binding energy (a few MeV per nucleon) of
the nucleons. Subsequently, the nucleus decays by emitting y-rays.

Neutral pions are often produced as secondary mesons in inelastic collisions and
charge exchange interactions by charged pions; they decay into two photons with
a branching ratio of about 99%. These photons initiate electromagnetic showers.
Therefore, hadronic showers contain an electromagnetic component that is generated
at the particle level. The effect causes a large variation in the response of calorimeters
to hadrons depending on how much of the incident hadron energy is converted into
energy observed as an electromagnetic shower.

The typical hadronic shower dimension scales with the nuclear absorption (or in-

teraction) length \; the mean free path length of a particle before undergoing inelastic
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nuclear scattering. It is often approximated by [31]
A~ 35A4Y3gcm 2. (4.13)

Hadronic showers differ from electromagnetic showers by their longer longitudinal
dimension. This effect can be seen by comparing the nuclear absorption length A,
which is proportional to AY/3, with the radiation length X, which is proportional to
A/Z?. The interaction length of pions and kaons in the OPAL hadronic calorimeter
is estimated to be approximately 18 cm. About half the energy in a hadronic shower
deposited through ionization is due to fast secondaries. The average transverse mo-
mentum of these secondary hadrons is about 350 MeV /¢ [34]. Thus, a hadronic shower
is more spread out than an electromagnetic one. In addition, a hadronic shower can
start much deeper in the medium than an electromagnetic shower.

The full incident energy of a hadronic shower may not be detected due to several
processes. A sizable amount of the available energy is used to liberate slow neutrons
from the nucleus during nuclear evaporation, this effect is known as binding energy
loss. Some of this lost energy may be recovered when neutrons are captured by other
nuclei.

Slow charged pions produced in the nuclear reactions may also contribute to the
undetectable energy. The low-energy charged pions decay into muons and muon
neutrinos via the weak interaction. The muon only ionizes minimally and nearly
always escapes due to its long lifetime of 2.2 us. The neutrino being a neutral lepton
does not interact in the calorimeters. Finally, the ionization from the slow nucleon
fragments is usually so dense that it can saturate the active medium or fail to leave the
absorber material, and thus does not contribute efficiently to the energy measurement

in the calorimeters.
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4.3.1 Hadron Shower Profile

The longitudinal depth of a hadronic shower is very important in determining the size
of a hadronic calorimeter and in determining if the calorimeter can contain the energy
from the hadronic shower. The longitudinal depth profile of the OPAL hadron calori-
meter is investigated using three 7 decay channels and two single hadron Monte Carlo
simulations. The three tau decays examined in this analysis included the 7= — 771,
7= — p vy and 77 — X "K?v, decay modes. The two single hadron Monte Carlo
samples are created in which charged pions and K{ mesons are simulated interacting
with the OPAL detector.

The energy of the hadronic showers is determined by summing over the energy
of the individual clusters in the hadronic calorimeter within a 35° cone around the
direction of the 7. The longitudinal profile mapping (depth) is obtained by summing
over the number of hits in each layer by counting the strip signals within the cone,
until a prescribed level of containment is reached. Longitudinal energy deposition
profiles are characterised by a sudden onset at the first interaction point followed by

a more gradual development with a maximum at a depth [3, p. 159]

;: 0.21nE + 0.7, (4.14)
where F is the energy in the shower in GeV.

The depth profiles should be identical for any hadron at the same incident energy.
To test this hypothesis, a Monte Carlo sample of single charged pions and single
K? mesons were generated at an incident energy of 10 GeV and passed through
the OPAL detector simulation routines. Figure 4.5 shows the longitudinal depth at a
containment level of 80 and 95% for this Monte Carlo. As expected, the shower profiles

are very similar. Figure 4.6 shows the longitudinal hadronic shower development for
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Figure 4.5: The longitudinal shower depth for the Monte Carlo sample of single
charged pion mesons and K? mesons at an incident energy of 10 GeV at the 95% and
80% shower containment levels.

tau decays into final states containing pion, tho and X K mesons. The showers are
fully contained at the 80% containment level while some of the shower energy may
be lost at the 95% containment level. Small differences in the shower shapes for the
three final states are due to biases introduced by the different algorithms used to
select the three different tau decays, for example, all X "K? final states must have a
minimum energy in the hadron calorimeter of 7.5 GeV, while no such requirement is
imposed on the other two final states.

On average, most tau hadronic showers are contained within the OPAL hadron
calorimeter; the average shower penetrates about 3.2 interaction lengths (~ 60 cm).
For very energetic particles in the hadron calorimeter, the longitudinal measurement
may not be accurate because the OPAL hadron calorimeter depth is only 4.77 inter-
action lengths. Note that the combined electromagnetic and hadronic calorimeters
have a depth of approximately 7 interaction lengths. It can be shown [3, p. 159] that

for hadrons with an incident energy greater than 50 GeV, approximately 6 interaction
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Figure 4.6: The layer in which the shower is stopped is plotted for the 95% (top plots)

and 80% (bottom plots) containment levels. The shower profiles are different due to

the biases introduced in the selection of the various 7 decays. The data are the points
and the stars are the MC.

lengths are required for 95% energy containment. It will be shown in Chapter 7 that

this leakage of energy out of the back of the hadron calorimeter has no significant

impact on the calibration of the hadronic energy.
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Chapter 5

Tau-Pair Selection

This chapter will present the selection of the tau events used in this analysis. The
first section describes the OPAL data as well as the Monte Carlo simulated data
samples that were used to estimate efficiencies and backgrounds in the data sample.
The second section discusses the selection of tau-pair decays of the Z° from the full

data set.

5.1 Event Samples

5.1.1 OPAL Data Sample

The data used in this analysis were taken during the 1991-1995 running periods of
LEP. The integrated luminosity per year is given in Table 5.1. Approximately 89.6%
of the data was collected at the Z° peak centre-of-mass energy (Ecy = 91.2 GeV),
4.4% are approximately 2 GeV below the Z° peak and the remaining 6.0% are ap-
proximately 2 GeV above the Z° peak. The OPAL detector information is recorded
for each subdetector when the trigger identifies some activity that coincides with the
beam crossing [21]. The raw data are processed in real time so that background from
beam-gas interactions and cosmic rays are reduced. The data are then passed through
ROPE [35] which converts the raw information (eg. drift times) to physical quantities

(eg. tracks).
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Year | Integrated
Luminosity
1991 | 13pb~!
1992 | 24pbt
1993 | 34pb!
1994 | 59pb !
1995 | 33pb !
Total | 163 pb~'

Table 5.1: Integrated luminosity per year.

Cv | CJ|TB | PB|EB|EE | HS | HT | MB
detector | 3 3 3 2 3 3 3 2 3
trigger - 2 - - 2 3 - - -

Table 5.2: Detector and Trigger Status Requirements.

It is important that only reliably measured quantities be used for the selection
criteria. Therefore the subdetectors used to make the measurements are required to
be in good running order during the data taking period. There are four status levels
defined for each subdetector: 0 indicates that the subdetector status is unknown, 1
indicates that it is off, 2 means that the detector is partly on, and 3 indicates the
detector is fully on. Table 5.2 shows the minimum levels required for each detector and
trigger used in this analysis; if there is no status level indicated then no requirement

was placed on that particular detector or trigger.

5.1.2 Monte Carlo Event Sample

Monte Carlo simulated data were used to estimate the selection efficiency and back-
grounds in this analysis. The primary Monte Carlo event sample of four-vector quanti-
ties for the reaction ete™ — 777~ were generated using the KORALZ [36] simulation

program. The Monte Carlo samples used for the ete™ processes discussed in this
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Interaction MC run Generator Luminosity
(pb™")
ete” — 77" 1520 KORALZ [36] 405.1
1536 KORALZ 253.1
1560 KORALZ 539.5
1565 KORALZ 337.8
ete” — T~ 1620 KORALZ 404.3
1636 KORALZ 253.1
ete” — efe” 1320 BABAMC [40] 151
1335 BHWIDE [41] 72.2
ete™ — qq 2291-2292 JETSET [42] 60.8
2790-2793 JETSET 121.6
ete” — (ete )utu~ 1716 VERMASEREN [43] 461.7
1745 VERMASEREN 456.0
efe” — (efe )eTe” 1717 VERMASEREN 392.5
1746 VERMASEREN 392.5
efe” — (efe )T 7™ 1744 VERMASEREN 678

Table 5.3: The Monte Carlo samples used in this analysis to model 7 decays and
non-7 backgrounds in the 7 event sample.
dissertation are shown in Table 5.3.

KORALZ simulates tau-pair production and decays at the Z° centre-of-mass en-
ergy, including higher order corrections. Decays of the taus produced by KORALZ
were simulated using the Tauola [37] program. The branching ratios used in KO-
RALZ were the world averages at the time that the Monte Carlo sample was created,
however the selection method does not rely on their particular values.

The four vectors of the particles created by the various generators were processed
by the OPAL detector simulation program, GOPAL [38], which uses the program

GEANT [39] to track the particles through the volume of the OPAL detector. GOPAL
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produces output in an identical format (with the addition of the initial four vectors)
as the data that are extracted from the OPAL detector. The Monte Carlo samples are
then passed through the same reconstruction procedure as the real data. Comparisons
between Monte Carlo and data of the distributions of physics quantities are used to
ensure the accuracy of the Monte Carlo modeling, and corrections are applied to the
Monte Carlo distributions where necessary. These corrections are discussed in the

following chapters.

5.1.3 Monte Carlo Modelling

Experimental evidence suggests that when the 7 decays into a hadronic final state it
does so via a single particle or resonance (7~ — X v;). The particle X~ could be a
long lived particle, such as a 7~ or K, or it could be a short lived particle (resonance)
such as the p(770)~ or K*(892)". The Tauola generator uses this information when
generating the 7 decays. If such information is not known, the decays are generated
using phase space distributions. New information on the decays into final states
with kaons has recently become available and this section describes how this new
information has been incorporated into Tauola. Table 5.4 shows the tau decay final
states that are detected in this analysis. The production processes are also shown for
each final state.

The 7~ — W*KOVT decay has the largest branching ratio of the decay modes
selected in this analysis. The 7 K final state mesons are generated via the K*(892)
resonance by Tauola. This final state is well understood and no additional Monte
Carlo was made. The 7= — K K%/, decay mode was generated by Tauola using
phase space only.

The 77 — W_KO’]TOI/T decay mode was generated by Tauola through the K;(1400)
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Final state

Production Process

=Ko, K*(892)
7~ — K K%, phase space

e K, (1270)

K, (1400)

™ — K K%, a;(1260)

p(1700)

- ——0
7~ =71 K 1'%,

7~ = K K77,

phase space

phase space

Table 5.4: The final states observed in this analysis are shown in the first column.
The intermediate resonances that are used by the Monte Carlo to simulate these
decays are shown in the second column. For some decays the final state is created
using phase space only, because the intermediate structure of these decays is not well

understood.

intermediate resonance using two decay chains:

T~ — K;(1400) v, — (K*(892)7) v, — K ',

T = Ky (1400) v, — (p(TT0)K) vy — 7 K 7.

Several recent analyses and theoretical studies have indicated that the 7= — W*KOWOVT

decay can also proceed via the K;(1270) resonance [13,44,45]. The K;(1270) meson

decays primarily to K*(892)m, K(1430)7 and p(770)K, which in turn decay some of

the time to final states including neutral kaons. The K;(1270) meson can decay into

meson pairs heavier than itself, i.e p(770)K, due to its broad width which is estimated

to be between 50 and 200 MeV [3, p. 474]. The possible branching ratios of the

K;(1270) meson are also taken from [3, p. 474]. The various decay possibilities will

give different momenta and energy spectra of the final decay products, consequently

: : : —0 :
affecting the selection efficiency of the 7= — 7K n’v, decay. To examine these

differences, a modified version of Tauola created by S. Towers [44,46] was used to
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generate the following decays that include the K;(1270) resonance:
T~ — Ki(1270) v, — (K*(892)7) v, — K ',
T Ky (1270) v — (K5(1430)7) v — 7K 70,
T = K (1270) v — (p(TT0)K) v, — 1 K 7'v,.

Also, an additional sample of 7= — W‘KOWOVT decays was generated in which the
K;(1400) resonance decays only to K*(892)m, since experimental evidence indicates
that this decay dominates over the p(770)K and K§(1430)7 modes [13].

The 7= — K K°%, decay is generated in Tauola through a mixture of the

a1(1260) and p(1700) intermediate resonances:
T~ — 2a1(1260) v, — (K*(892)7) v, — K K'7'v,
= = p(1700) v — (K*(892)1) v, — K K°7%;.

Special samples of Monte Carlo were generated separately for each of these decay
modes [44, 46].

070, and

In addition, special Monte Carlo samples were generated for the Kor
K°K 7%, decays which were not included in Tauola [44,46]. Since the interme-
diate structure of these decays is not well understood theoretically and experimental

information is sparse, these decays were generated through phase space only.

5.2 Tau Selection

At LEP, electron and positron beams collide and form a Z° boson which in turn can
decay into lepton-antilepton, neutrino-antineutrino or quark-antiquark pairs;! the

quark pairs give rise to multihadronic events.? This section will describe the analysis

!Note that the Z° is too light to decay into t¢ pairs.
2Multihadronic events contain several hadrons which are created through hadronization of the
quark-antiquark pair.
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Requirements | Variable Description
Track definition| N > 20 hits | NBS: number of hits in the jet chamber.

Pr: momentum transverse to the beam

PT Z 0.1 GeV

direction.

|do|: point of closest approach of the track
[do] < 2 em to the interaction point in the x — y plane.
20 < 75 em |20]: point of closest approach of the track

to the interaction point in the z-direction.
Roin < 75 cm Rumin: radius of the first jet chamber hit.

ECAL cluster Npjocks: number of ECAL calorimeter
Nblocks Z 1

blocks in the cluster.
Eusters = 0.1 GeV| Egusters: total ECAL energy in the cluster.

definition

Table 5.5: Good track and cluster definitions. Those tracks and clusters that satisfy
the inequalities are accepted.

that is used to select the efe™ — Z° — 777~ events from the total event sample. At
LEP, the Z° boson decays at rest in the laboratory frame producing pairs of 7 leptons
that have equal and opposite momenta and hence appear to be back-to-back. The
7 leptons are highly relativistic (8 = 0.9992) and have a lifetime of only 290.0 + 1.2
fs [3, p. 286], consequently only the 7 decay products are seen and they are highly
collimated in a narrow cone about the 7 direction of motion.

The charged decay products produce tracks in the inner tracking detectors while
both charged and neutral decay products can deposit energy in the electromagnetic
and possibly the hadronic calorimeters. Figure 5.1 shows a typical tau decay. Tracks
and clusters must pass several requirements to ensure that they are not from cosmic
rays or beam-gas interactions. These criteria are shown in Table 5.5.

Complete details of the tau selection algorithm are described in references [47,48|
and are outlined in Tables 5.6 and 5.7. Each ete™ — Z° — 777~ event is subjected

to a jet finding algorithm, where a jet is defined to be a collimated concentration of
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Run:event 6233: 14746 Date 950623 Time 200525Ctrk(N= 2 Sump= 18.3) Ecal (N= 18 SumE= 13.9) Hcal (N=12 SumE= 62.6)
Ebeam 45.663 Evis 81.4 Emiss 9.9 Vix ( -.04, A1 .71) Muon(N= 1) Sec Vtx(N= 0) Fdet(N= 0 SumE= .0)
Bz=4.350 Bunchlet 1/1 Thrust= .9984 Aplan= .0001 Oblat= .0247 Spher= .0007

.....

®

Figure 5.1: A typical OPAL event, showing two back-to-back 7 jets. The view is along
the beam direction, showing the transverse plane. The concentric rings correspond
to the outer edges of the beam pipe, vertex chamber, jet chamber, electromagnetic
calorimeter, hadron calorimeter and muon chambers. The lines in the vertex and
jet chambers represent the tracks. The rectangles in the calorimeters represent en-
ergy deposits with the rectangle height being proportional to the amount of energy
deposited, while the arrow indicates that muon chambers were hit.

activity in the detector caused by the passage of energetic particles. Typical ete™ —
Z° — 777 events produce two jets, where the jets are the 7 leptons. The jet direction
is initially defined to be the highest energy good track or electromagnetic cluster. The
next highest energy good track or cluster within a 35° cone is added to the first track,

and the jet direction is redefined by the vector sum. The second step is repeated until

there are no more tracks or clusters that fall within a 35° cone.
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Requirements Variable Description
Good event Njet: number of jets satisfying the
Njet = 2 E .
jet Tequirement.
_ | cosf|: average value of | cos | for
| cos 0| < 0.68 .
the 2 jets.
FEie: total track and
Eiet > 0.01 Bheam cluster energy in the jet.
Eyeam: the LEP beam energy.
ete™ — qq Nirack: number of good tracks in
. . 2 S Ntrack S 6 .
rejection the 7-pair event.

Nepusters: number of good clusters in

N <10 :
clusters = the 7-pair event.

ete” = ete™ > Eeuster < 0.8y Euster: energy of ECAL clusters in event.
rejection or Eoun = 2Fhcam
> Eeustert0.3 Y Eirack<Fom| Eirack: energy of charged tracks in event.
efe” = utp~ D iets(Bencter + Eirack) < 0.6Ecy and both jets are muons.
rejection A jet is a muon if one of the following is true:
MUON. L
NM;;?SN > 9 Nigyers : total layers hit in the barrel

or endcap muon detector.

ESareed. energy of the ECAL cluster

luster
Echarged < 2 eV ¢ )
cluster associated to the track.

NEB . number of HCAL layers with

layers*
NiB >4 , _
layers = signals associated to the track.
NFHCAL Niriorslayers: umber of signals in the 3
>1
outer 3 layers = outer HCAL layers.
NHCAL . number of HCAL hits
HCAL hits/layers
and Nhits/layers <2

per layer for the jet.

Table 5.6: Tau-pair selection requirements. The events are accepted if they satisfy
the listed conditions.
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Requirements Variable Description
Two-photon <15 Bacol: the supplement of the angle
rejection acol = between the 2 jets in the 7 pair event.

Evis > 003ECM Evis - Zcone MaX(Eclustera Etrack)
If Evis S OQOECM then
Pr(cluster): sum of ECAL energy

Pr(cluster) > 2.0 GeV
or
Pr(track) > 2.0 GeV

in the event.
Pr(track): scalar sum of track

momenta in the event.

Cosmic ray |do|min: minimum dy for all tracks
|d0|min S 5 mm

rejection in the event.

|20|min: minimum zq for all tracks
|Z0|min S 20 cm .
in the event.

|20]ave: average zo for all tracks
|20]ave < 20 cm X
in the event.

t and tex,: measured and expected TOF
|tmeas - texp| S 10 ns e o P

assuming the event is created at the origin.
If |¢; — ¢j| > 165° then reject the event if |¢; —¢;] > 10 ns.

Table 5.7: Tau-pair selection requirements (continued). The events are accepted if
they satisfy the listed conditions.

The tau-pair selection begins, by selecting candidates that contain exactly two
jets, each with at least one charged track and with a total track and cluster energy
that exceeds 1% of the beam energy. The average value of | cos 6| for the two charged
jets must satisfy |cosf| < 0.68 to avoid the interface region between the barrel and
endcap of the lead-glass calorimeter, thus restricting the selection to the barrel.

Background events from the Z° decays involving quark-antiquark (qg), eTe™ or

p o final states must be removed from the tau-pair sample. The requirements are:

e Multihadronic events, ete™ — ¢g are reduced by limiting the number of tracks

and clusters in the event. It is required that the number of good charged tracks
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in the event be between two and six and that the number of good ECAL clusters

be no more than ten.

e Electron-pair final states, e"e™ — ete™, can be identified by the presence of
two high-momentum, back-to-back charged particles with the full centre-of-mass
energy (Ecum) deposited in the electromagnetic calorimeter. This background
can be reduced by requiring tau-pair candidates to satisfy either » Euster <

0.8Fcm or Y, Eauster + 0.3 Erack < Ecm, where Egysier s the total energy in

the ECAL and FEj,aq is the total energy of the charged tracks in the event.

e Muon-pair final states, ete™ — u™p~, can be identified by the presence of
two high-momentum, back-to-back charged particles but with very little energy
deposited in the electromagnetic calorimeter. These events are removed by
matching activity in the muon chambers or hadronic calorimeter with tracks in
the jet chamber, and then requiring that the total momentum deposited in the

jet chamber plus the total energy deposited in the ECAL is less than 0.6 Ecy.

In addition to the background from two fermion events, two-photon events, ete™ —
(ete™) X, where X = ete™, uTu™, 7777, ¢q, must also be removed. Two photon
events contain a final state electron and positron that escape undetected at small
angles. These backgrounds are not significant because they lack the enhancement to
the cross-section from the Z° resonance and because the visible energy (the sum of
the charged track and ECAL cluster energies) of the two-photon system is in general
much smaller than that from a tau-pair event. In addition, the detected particles
tend to have a large acollinearity® angle with respect to each other. These events are

rejected by requiring the acollinearity to be less than 15°, and the visible energy E;

3The acollinearity angle is the supplement of the angle between the two jets.
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Background Contamination
ete” —efe” 0.0041 + 0.0007
ete” — putu~ 0.0072 £ 0.0005
ete” — qq 0.0028 + 0.0004

ete” — (efe7)ete™ | 0.0007 £ 0.0002
ete” — (ete”)utp™ | 0.0008 + 0.0002
Total 0.0156 + 0.0010

Table 5.8: The fraction of the non-tau background in the tau-pair sample [49].

to be less than 3% of the centre-of-mass energy. The visible energy is the maximum
of either the jet energy measured in the ECAL, or the jet energy in the jet chamber.
Finally, if F,;; < 0.20E¢,, then the event must have energy greater than 2.0 GeV
deposited in either the ECAL or the jet chamber for it to be rejected.

The final background contamination of the tau-pair sample that was considered
comes from cosmic rays. These events are removed with simple requirements on the
time-of-flight detector and on the location of the primary event vertex.

The tau-pair selection applied to all data between 1991 and 1995 yielded 201850
individual taus. To ensure consistent comparisons between the Monte Carlo and the
data, the Monte Carlo was also passed through the same selection as for the data.
Studies of this selection using the Monte Carlo give a tau-pair selection efficiency
of 54.3 + 0.1%, which corresponds to an efficiency of 93% within the geometrical
acceptance of the detector. The study of the background contamination in the tau-
pair sample was made in another analysis [49] using the same tau selection as this
work; the background fraction was estimated to be 0.0156 4+ 0.0010. The results are

summarised in Table 5.8.
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Chapter 6

Neutral Kaon Selection

This chapter will describe the selection of the 77 — X ~K?v, decay. The first section
will describe the selection of the 7= — X ~"K?%v, decays, where X ~ includes a charged

0 or another

hadron possibly accompanied by any number of neutral hadrons (eg. 7
K%). The second section describes the exclusive selections. First, the identity of
the charged hadron is determined and secondly, the decays that contain a charged

pion are passed through an additional selection which separates out the decays that

contain a 7% meson.

6.1 Selection of 7= — X "Kv, decays

The lifetime of the K? is such that it will not decay in the OPAL detector, instead
it will interact with the material in the electromagnetic and hadronic calorimeters.
The momentum of the charged hadron present in the decay can be measured using
the track curvature in the jet chamber while both the charged hadron combination,
X~, and the K? will deposit energy in the hadron calorimeter. Consequently, the
selection used in this analysis looks for a significant excess of energy in the hadron
calorimeter compared to the momentum of the charged hadron determined from the

curvature of the track.
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The 7= — X K?v, selection requirements used in this analysis are listed below

and a discussion of each requirement will follow:
= Only one charged track is allowed in the jet chamber.

= The momentum (p) of the charged track divided by the beam energy (Epeam)

must be less than 0.5.
= No secondary vertices are allowed in the jet.

= The energy, Eyp, measured in the hadron calorimeter must be larger than

7.5 GeV.

= The significance factor Sgg must be greater than 2.0.

Each decay was required to have only one track pointing towards the primary
vertex that satisfies the track requirements given in Section 5.2 and has a momentum
divided by the beam energy (p/Egeam) less than 0.5. This requirement removes high
momentum pion decays from the data sample. Figure 6.1(a) shows p/Egeam for the
decays after all the other selection requirements (except Syg) have been applied.

In addition, some jets may still contain tracks that have failed the good track
requirements. These additional tracks may be from photon conversions or 7 decays
that have a K in the final state, where the K2 decays to a #*7~ pair. Photon
conversions and 7~ — X ~KZ2v, decays are identified if a pair of oppositely charged
tracks form a secondary vertex in the r — ¢ plane of the jet chamber [50]. If a jet
contains one of these secondary vertices, then it is rejected. Approximately 5% of the
7 decays are removed by this requirement.

In order to ensure that the decay has a well-measured energy deposition in the

hadron calorimeter and to reduce leptonic background, it was required that there be
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Figure 6.1: Histogram (a) shows the momentum divided by the beam energy
(p/ EBeam) and histogram (b) shows the hadron calorimeter energy (Egg). These
plots show the number of decays for the one-prong 7 sample and ee™ — (q events
after the other selection requirements (except Sgg) have been applied. The solid dots
show the data, the open histogram shows the Monte Carlo and the hatched histogram
shows the K? component of the Monte Carlo.
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at least one cluster in the hadron calorimeter and that the total energy deposited
in the hadron calorimeter be greater than 7.5 GeV. Figure 6.1(b) shows the total
hadron calorimeter energy (Egg) for the one-prong sample after the other selection
requirements, except Sgg, have been applied. The hatched region of the plot shows
the K? candidates in this sample. The energy calibration of the hadron calorimeter

is discussed in Appendix A.
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Decay mode Background (%)
T = X Kiv, 9.8+0.5
7~ = h 1, 6.5+0.4
T —=h v, 42404
T~ = h™ > 21%, 2.5+0.3
other 7 decays 0.24+0.1
ete” — qq 5.54+0.4
total 28.6 +0.8

Table 6.1: The background contributions in the 7= — X~K?%v, sample, including
decays that contained K3 mesons. The quoted errors are the statistical uncertainties.

The decay, 7~ — X Klv,, on average will deposit more energy in the hadron
calorimeter than most other tau decays due to the neutral hadron K? present in the
final state. The hadronic energy measurement is exploited in the selection using a
variable known as the significance factor, Sgg. This variable is defined as

E’ _
Sy = B P (6.1)

OHB

where Eyg is the total energy deposited in the hadron calorimeter for the jet, p is the
momentum of the track and ogg is the hadron calorimeter resolution at the energy
Fug. The K? X~ decays are selected by requiring that Syg > 2.0. Figure 6.2 shows
Sup after the remaining requirements have been applied. Further details concerning
Sup, Pup and ogp are discussed in Appendix A.

A total of 305 candidates are selected using the above requirements. The back-
ground is estimated to be 24% from other 7 decays (including K2 final states) and 6%
from ete™ — qq events. Table 6.1 shows the contributions of the major background
components in the 7= — X ~K?v, sample.

Further, it should also be noted that some K2 mesons will be selected by the K}
selection. Approximately one-third of the K2 mesons will decay into 27° mesons.
These are unlikely to be selected as the total energy deposited in the hadron calori-

meter is small. The remaining K% mesons decay into 7 "7~ pairs. The decay length
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Figure 6.2: A histogram Sy is plotted for the K{ candidates after the other selection
requirements have been applied. The upper plot is linear and the lower plot is log-
arithmic. The solid dots show the data, the open histogram shows the Monte Carlo
and the hatched histogram shows the K? component of the Monte Carlo.

of some K2 mesons will be sufficiently long that they will be indistinguishable from
K? mesons. For the inclusive selection, these K% mesons will be considered to be
background which is estimated from the Monte Carlo. For the exclusive selections,
described in the next section, these K3 mesons are included as part of the signal.
Subsequently, the exclusive branching ratios are quoted as the sum of the branching
ratios of the 7= — X Klv, and 7~ — X Klv, decay modes. Figure 6.3 shows

the K% decay length plotted for the Monte Carlo K2 candidates selected after the

7~ — X"K?v, selection algorithm (except Sgp) was applied to the 7 sample (open
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Figure 6.3: The open histogram shows the transverse decay length of the K% decays
after the selection requirements, except Sgg, have been applied to the 7 sample. The
K2 decays to both the 777~ and 797 final states are shown. The hatched histogram
shows the K3 decays after all the selection requirements were imposed on the 7 sample.
The various detector radii ranges are shown across the top of the plot.

histogram) and after the entire K? selection (hatched histogram). Following the K¢
selection, the Monte Carlo predicts that the sample is composed of 86% K{ and 14%

K3 mesons.

6.2 Exclusive K Decay Modes

The inclusive 7= — X~K%v,. candidate sample is divided into two sets using the
energy loss (dE/dz) of the track in the jet chamber. The first sample contains
decays where the charged track has been identified to be a pion, while the second
sample contains decays in which the track has been identified as a kaon. The sample
with charged pions is then passed through an additional selection which separates
out the decays that include a 7° meson. These selections will yield three decay
modes: T — W’KOVT, T = K > 17%, and 7= — K K° > 0n%;,. The
7= — KK® > 0n%, decay mode is not subdivided further into decays with and

without 7% mesons because of the very low statistics of the charged kaon decay modes.
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6.2.1 Charged Hadron Separation

In this analysis, charged kaons are identified on a statistical basis using the energy
loss of the charged track, dE/dz, in the jet chamber. This technique is applied
to the 7= — X K?%v, candidate sample to distinguish 7= — K "K?(7%)v, decays
from 77 — W*KE(WO)VT decays. The identification of the charged hadron uses the

normalised dE/dx which is defined to be

N (dE) _ dE/dz(measured) — dE/dz(expected)

o , (6.2)

OdE/dzx

where dE/dz(measured) is the measured dE/dz for the particle of interest at a given
momentum, dF/dz(expected) is the expected value of the dE/dz for the particle
of interest at a given momentum and o4p/q, is the momentum dependent dE/dx
resolution. As shown in Figure 4.1, the dE/dx provides the best separation for
charged pion and kaon mesons, at the level of 20, in the momentum range of 2-30 GeV.
Figure 6.4(a) shows the number of dE'/dx hits that were used in the measurement and
Figures 6.4(b) and (c) show the normalised dE/dx for the pion and kaon hypotheses,
respectively, for those events selected as 7= — X "K?v, candidates.

The actual selection criteria to separate charged pions and kaons is made using
a signed dE/dz probability variable (W), which is calculated from the normalised
dE/dx variable for each particle species. The probability variable (or weight) is a
flat distribution between -1 and 1 for a pure particle species (see Section 4.1 for
more information). The probability of selecting pions or kaons is done using two new

variables created from the weights:
P(r) = W,/(W,+ Wx) (6.3)
P(K) = Wx/(W, + Wk).

Thus P() is the probability of selecting pions and P(K) is the probability of selecting
kaons. Figures 6.4 (d) and (e) show P(7) and P(K) for the 7= — X K?v, decays. In
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Figure 6.4: The normalised dE/dz variables for 7= — X K?%v, decays. Histogram
(a) shows the number of hits used in the dE/dz measurement for those events selected
as 7~ — X"K?%v, decays. Histograms (b) and (c) show the normalised dE/dx for
the pion and kaon hypotheses, respectively. Histograms (d) and (e) show P(7) and
P(K), respectively, and histogram (f) shows P(7) — P(K) for jets that pass the K{
selection. The points are the OPAL data, the open histogram shows the Monte Carlo
simulation of the 7= — W*KO(WO)VT decays, the single hatched histogram shows the
7= — K K%#°)v, decays and the double hatched histogram shows the background
contamination in the selected sample of decays.
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Figure 6.4(f), P(7) —P(K) is shown; a track is considered to be a pion if P(r) > P(K)
and a kaon otherwise. The selection yields 39 7= — K K? (7°)v, candidates and 261

7 — 1 Ky (7%, candidates.

6.2.2 7° Finding Algorithm

0 mesons that

The 7 decays that are selected in this analysis involve only those 7
decay into two photons due to the one-prong nature of the selection. At LEP, the 7°
mesons from 7 decays are highly relativistic and the two photons from the 7% — v
decay will be very close to each other. Hence, the two photons will usually form one
electromagnetic cluster, although at low energies two clusters can sometimes result.
Some photons may also travel close to the charged hadron, thus the energy deposited
by the photons and the charged hadron merge and form one cluster. Further, the
K? can leave energy in the electromagnetic calorimeter that can be misidentified as
a m° meson. Thus any electromagnetic clusters in the jet may have energy from both
the Kg and the 7°. Consequently, this analysis used a neural net algorithm to select
decays with 7% mesons, instead of trying to identify the individual 7° mesons in the
decays.

The neural net algorithm used in this analysis was constructed using the JETNET

3.4 [51] algorithm. The variable selection is described in Appendix C. The neural

network used seven variables, which are described below:

e The total energy of the jet in the electromagnetic calorimeter divided by the

beam energy, E/Epeam-

e The total energy of the jet in the electromagnetic calorimeter divided by the

momentum of the track, E/p.

e The number of electromagnetic clusters in the jet with FEusters > 1 GeV.
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Figure 6.5: The variables used in the neural network routine for identifying 7° mesons
in the K? selection: Histogram (a) shows the electromagnetic energy divided by the
beam energy; plot (b) shows the ratio of the electromagnetic cluster energy (FE)
with the momentum of the track (p); plot (c) shows the number of electromagnetic
calorimeter clusters (IV); plot (d) shows the fraction of lead glass blocks in the elec-
tromagnetic calorimeter with over 90% of the energy in the jet; plot (e) shows angle
between the position of the track at the presampler and the presampler cluster fur-
thest away from the jet axis; plots (f) and (g) show the difference in theta (Af) and
phi (A¢) between the track and the vector obtained by adding all the clusters in the
electromagnetic calorimeter; and plot (h) shows the output of the neural network.
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e The minimum fraction of active lead glass blocks which together contains more

than 90% of the total electromagnetic energy of the jet, Fyo.

e The difference in the azimuthal angle between the track and the presampler

signal farthest away from the track but still within the jet, ¢ps.

e The difference in theta (Af) and phi (A¢) between the track and the vector ob-

tained by adding together all the electromagnetic calorimeter clusters in the jet.

The variables used in the neural network and the output are shown in Figure 6.5. If
the neural network output is larger than 0.2 then the decay is considered to contain
a 7 meson. The cut was chosen to maximise the 7~ — 7 K. > 17, signal
while reducing as much as possible the 7= — W*KOVT contamination in the 7= —
W_KO > 17%, sample. The variation of the cut on the neural network output is
discussed further in Section 7.3.6 where it is observed that the branching ratios remain
consistent when the cut is varied between 0.1 and 0.8. This selection gives 178 7= —

W_KOVT decays and 81 77 — W_KO > 17, decays. For more information about the

neural network algorithm see Appendix C.
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Chapter 7

Results

This chapter describes the calculation of the inclusive branching ratio of the 7= —
X~K%, decay mode and the exclusive decay modes 7= — W_KOVT, 5K >
17%, and 7= — K"K° > 07%,. The first section describes the measurement of
the inclusive branching fraction. The second section describes the calculation of the

branching ratios of the three exclusive decay modes.

7.1 Inclusive Branching Ratio

7.1.1 Branching ratio for a single decay channel

The branching ratio to a final state X (eg. 7= — X v, ) is defined as

Bx = (7.1)

where Nx is the number of 7= — X v, decays in a sample containing N, taus.
In practice, the sample of tau decays will contain background from other events.

Consequently, the true number of taus in the sample (N, ) is given by

NT — (1 _ fnon—r)N:el, (72)
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where f"°7 is the fraction of background events present in a sample of N taus.

The number of true 7= — X v, decays, Ny, is given by

NX _ (1 _ fnoan)N)s(el (73)

€

where N is the number of selected 7= — X v, decays, f % is the fraction of
background events present in the selected sample of 77 — X v, decays and € is the
selection efficiency of the 7= — X "1, decays determined by the Monte Carlo. Finally,

equation 7.1 is rewritten as

B 1 N;?l(l _ fnoan)

By = - .
X € N7s_el(1 _ fnon—r)

(7.4)

The 7 pair selection does not select all decay modes equally and introduces relative
biases between 7 decays. These biases were studied using the Monte Carlo sam-
ples. The bias factors are used to correct the biases in the branching ratios from the
T pair selected sample, such that the true branching ratio is obtained by dividing

equation 7.4 by its bias factor (FP#s):

e _ _Bx
By = Tbias” (7.5)
The bias factor for the 7= — X~K?v, decays is measured to be 0.991 4+ 0.007. A

more thorough description of the bias factors is given in Appendix D.

7.1.2 Results

The inclusive analysis selected 305 7= — X ~K?v, candidates. The selection efficiency

e and 7 background (f*» X X%) are summarised in Table 7.1. For the inclusive
selection, the decays containing K2 are included as part of the background which is

determined by the Monte Carlo. Evaluating equation 7.4 and correcting for the bias
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factor, F;ii‘sKo, yields the branching ratio:
L

B(r~ — X K%,) = (10.01 + 0.79 + 0.64) x 102, (7.6)

where the first error is the statistical uncertainty and the second error is the systematic
uncertainty. The statistical uncertainty is given by the binomial error on the ratio
Nx-xo/N:, where Nx ko is the selected number (N5Y of 7= — X Klu, decays.

Systematic uncertainties are discussed in Section 7.3.

N, 201850

Nx-xo 305

€ 0.110 & 0.002

fron—7 0.016 = 0.001
fron—X"Kjp 0.286 + 0.008

F%0 0.991 =+ 0.007

B(r— — X K%,) | (10.01 £0.79 £ 0.64) x 10 ®

Table 7.1: Summary of results for the inclusive 7= — X "K?%v, selection. The quoted
errors on the efficiency, backgrounds and bias factor are given by the statistical un-
certainty. The first error on the branching ratio is the statistical uncertainty while
the second is the systematic uncertainty.

7.2 Exclusive Branching Ratios

In this analysis, three decay modes (channels) were identified: 7= — Ko, 7 —
K > 17%. and 7~ — K"K° > 0n0,. However, the selection algorithms did
not select each mode exclusively, therefore each selected sample contains some decays
from the other two decay modes. For example, the 77 — W_KOVT decay mode includes
some 7= — T K. > 1m%, and 7= — K~K°® > 07%, decays as well as other 7 decays
(background decays). As a result, the branching ratios for the three decay modes are
calculated simultaneously to take these correlations into account.

The number of observed decays for each channel can be written in terms of the

number of true (signal) decays, background from other 7 decays and background from
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non-7 events as
Nsel — ZNEGI + ZNgel 4 Nmon—T (77)
s b
or alternatively, using equation 7.3 this equation can be written as

N =Y "eN,+ Y 6N, + N7, (7.8)

s b

where s is the index over all signal channels, b is the index over all background
channels, Ny (V) is the number of signal (background) decays, € (€;) is the efficiency
to select signal (background) decays and N™"~7 is the number of non-7 events in the
selected sample. Dividing equation 7.8 by N, and substituting equations 7.1 and 7.2

gives

Nsel _ ymon—7
Z €sBs + Z e By = (1 — fIIOn*T)NSel’ (79)
b T

s

where B, and B, are the branching ratios of the signal and background decays.
The formalism can be extended into three selections, 7= — W*KOVT, s K >

17%, and 7= — K K° > 0%/, by adding an index i to equation 7.9,

M

N§e1 _ N~n0n_T
€1B1 + €28y + €383 + Z € By = . :
k=4

Nﬁel(l _ fnon—r) )

(7.10)

where €;; (j = 1, 3) are the efficiencies for selecting signal j using selection 7 and e,
(k =4,...) are the efficiencies for selecting the 7 background modes using selection .
The branching ratios of the signal channels and backgrounds are B; (j = 1,3) and
By, (k = 4,...), respectively. The number of data events that pass the selection ¢ is
Nl and NP7 is the non-7 background present in each selection i. The fraction of
non-tau events in the tau pair sample is f™" 7 and N*¢ is the total number of data

7’s that pass the tau pair selection.
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The selection efficiencies (e;;) for both signal and background are determined di-

rectly from the Monte Carlo. The efficiency for detecting decay channel j in selection

7 is defined as

(7.11)

(7.12)

where Nj; is the number of j decays identified by selection ¢ and N; is the total
number of j decays.

Equation 7.10 can be written in matrix form as
[€][B] = [n] (7.13)

where [e] is a 3 x 3 matrix of all signal efficiencies, [B] is a 3 x 1 dimensional matrix
of the signal branching ratios and [n] is a 3 x 1 dimensional matrix with entries

N_sel _ Jynon—T7 M
n; = L L — — fikBk (714)
NT(]_ _ fnon T) kz:;

containing the fraction of events in each selection after the background is subtracted.

If [¢] is a nonsingular matrix, the branching ratios [B] can be solved as

[B] = [e] 7" [n] (7.15)

-1

where [¢] ' is the inverse of the efficiency matrix. Finally, each branching ratio is

divided by its bias factor (F"@%) to correct for the fact that the tau-pair selection
favours some decay modes over others (see Appendix D).

The branching ratio B; can be written explicitly using equation 7.13 as,

3 sel non—r M
1 (NN
Bi - F_bias Z Eij ((1 _ fnonfT)Nsel - Z EjkBK

i 4= k=4

(7.16)
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The statistical uncertainty on B; comes from the first term inside the parentheses in

equation 7.16. It is calculated to be

1 1 _stat)?
O'%i (stat) = m Z (Eijlo']s a ) y (717)
7=1
where
stat __ al 7
oStat — R (7.18)

More information on how to calculate the error on an inverse matrix is described

in Appendix E. The systematic uncertainties due to the Monte Carlo statistics is

described in Section 7.3.1. These uncertainties arise from the errors on each element
1

of the inverse efficiency matrix €;; .

7.2.1 Results

The selections for the 7= — W’KOVT, = K> 17%, and 7 — K K° > 0n%,
decays yielded 178, 81 and 41 events, respectively. These decay modes include both
K} and K2 mesons which are collectively called K°. The selection efficiencies ¢;; for
both signal and background are determined directly from the Monte Carlo and are
given in the top part of Table 7.2. The central part of Table 7.2 gives the results of
this analysis. The uncertainties on the backgrounds and bias factors are the binomial
errors due to the Monte Carlo statistics only. The quoted efficiencies are calculated

for observing a K°. The branching ratios obtained using this analysis are
B(r— =1 Kuv) = (9.1+09+06)x10°°

B(r- > 7K >1r'%,) = (3.6£13£10)x10°

B(rm - K K> 07%,) = (334£0.94+0.7) x 1073,
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where the first uncertainty is statistical and the second is systematic. The statistical
correlation coefficients between the three branching ratios are shown in Table 7.2.

The correlation coefficients p;; were calculated using

COV;j

pij = (7.19)

0;0; ’
where cov;; is the covariance between branching ratio ¢ and j, and o; (o) is the

statistical error on branching ratio ¢ (j). The statistical error matrix between the

three branching ratios is given by [52]

§B; 5B;
< On, )
5nz- J 5nj

(7.20)

COVi; =

where cov;; is the covariance between branching ratio ¢ and j, §B;;/0n;; is the un-
certainty on branching ratio j (i) due to fraction n; (n;) and oy, is the statistical
error on fraction n; given by equation 7.18. In addition, if ¢ = j then cov;; = o; is the
statistical error on branching ratio :. Finally, the systematic uncertainty is discussed

in the next section.

7.3 Systematic error evaluation

This section discusses the systematic errors of the branching ratios. There are two
kinds of systematic errors. The first type, although considered a systematic error, is
statistical in nature as it arises from the finite size of the Monte Carlo sample. The
second type of systematic error includes instrumental uncertainties associated with
the modelling of the physical processes or the modelling of the detectors response.
The estimated systematic errors on the branching ratio measurements are shown
in Table 7.3. The statistical uncertainties will be described first, followed by the

instrumental uncertainties.
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Efficiency Matrix

Selection

Decay Channel

—0
T -1 K,

1K > 17%;,

77 = KK > 07%;,

=0
T =71 Ky,

0.0736 + 0.0018

0.0081 =+ 0.0009

0.0028 + 0.0006

—
7~ =1 K >171%;,

0.0105 + 0.0007

0.0360 £ 0.0019

0.0008 += 0.0003

7~ = KK > 07%;,

0.0043 += 0.0005

0.0019 =+ 0.0004

0.0353 £ 0.0021

Exclusive Results

T — W*KOVT T — W*KO >11%, | 77 = K K> 0n%;,
NE 178 81 41
N, 201850 201850 201850
fron=r 0.016 £+ 0.001 0.016 £+ 0.001 0.016 £+ 0.001
f“‘m*KO 0.218 +£0.009 0.448 +£0.016 0.215+0.019
Fbias 0.986 + 0.009 0.995 £+ 0.015 0.999 +0.015
BR(x107?) | 9.1+0.9+0.6 3.6+13+1.0 3.3+£09+0.7

Statistical Correlation Coefficients

=0
T =71 K,

=
7~ =71 K >17%;,

—)
7 =1 K >171%;,

—.349

7 — K K> 0n;,

—.133

—.041

Table 7.2: Summary of results for the exclusive K° selections. The first table gives the
efficiencies for identifying the signals for each selection. The second table shows the
number of selected events for each channel, the background fraction, the bias factor
and the branching ratios. The third table gives the statistical correlation coefficients
between the three branching ratios.

7.3.1 Monte Carlo statistics

The error on the branching ratios due to the Monte Carlo statistics is calculated di-

rectly from the statistical uncertainties on the elements of the inverse efficiency matrix

[e] ! for the exclusive channels, and the statistical uncertainty of the efficiency for

the inclusive channel. The systematic uncertainty on B; is found from equation 7.15
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Systematic Selection

Error K%X_VT KUT('_VT Ko > 17%, | K°K~ > 07,
K? Selection +0.55 +0.40 +0.68 +0.42
Background +0.24 +0.29 +0.50 +0.31
MC Statistics +0.22 +0.24 +0.28 +0.24
Bias Factor +0.07 +0.14 +0.05 +0.05
dE/dz modeling +0.21 +0.11 +0.33

70 Selection +0.14 +0.27 —

MC modelling — +0.00 +0.39 +0.17
Total +0.64 +0.62 +1.02 +0.68

Table 7.3: Systematic errors on the branching ratios for the inclusive and exclusive

decay channels. All values in the table should be multiplied by 1073.

and is given by

3
(0, 1,2 (7.21)

=1

J

Each element of the inverse efficiency matrix has a covariance matrix which is made
up of contributions from all the statistical errors in the efficiency matrix. A more

thorough description of o1 is given in Appendix E.
ij

7.3.2 Bias factor

A small correction, as described in Appendix D, must be applied to the branching
ratios to correct for the slight bias introduced by the 7-pair selection criteria. The
systematic error on each branching ratio is calculated using the bias factor error.
The factors are found to be relatively insensitive to the branching ratios and detector
configurations used in the Monte Carlo sample. Further, minor variations in the tau

pair selection are found to have little impact on the values of the bias factors.
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7.3.3 K selection efficiency

The K} selection efficiency was sensitive to the calibration of the momentum, the
energy measured by the hadron calorimeter and the resolution of the hadron calori-
meter. A recent OPAL result estimated that the momentum scale was measured to
better than 1% [53]. Consequently the systematic error on the K? selection efficiency
was estimated by varying the momentum of the track of the charged hadron by +1%.
After the momentum was varied, the branching ratio was recalculated and the dif-
ference between this value and the nominal value was taken as the systematic error.
The uncertainty in the energy calibration of the hadron calorimeter was obtained by
studying a sample of single charged hadrons from tau decays (see Appendix A) and
agreement between data and Monte Carlo was good at the 1.5% level. The energy
measured by the hadron calorimeter was varied by +1.5% and the branching ratios
were recalculated, the difference between these results and the nominal branching
ratios were taken as the systematic errors. The uncertainty due to the measurement
of the resolution of the hadron calorimeter was estimated by varying the resolution
within its uncertainties and recalculating the branching ratios; the differences between
these branching ratios and the nominal branching ratios were taken as the system-
atic errors. The contributions to the systematic error from the various sources are
shown in Table 7.4. Several consistency checks were done by varying the cut values
on p/Egeam, Eup and Sup: p/Epeam Was varied between 0.3 and 0.7; Exp was varied
from 0.0 GeV to 15.0 GeV; and Syp was varied from 1.6 to 2.4. The results were

within the systematic uncertainty for each branching ratio.
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Systematic Selection
Error KgX_I/T KUT(_I/T Ko > 17%, | KK~ > 07%;
p scale +0.24 +0.14 +0.24 +0.12
FEygp scale +0.43 +0.48 +0.50 +0.31
Resolution (ogp) | +0.24 +0.23 +0.42 +0.36
Total +0.55 +0.40 +0.68 +0.42

Table 7.4: Systematic errors on the branching ratios for the K{ selection efficiency.
The values in the table should be multiply by 1073.

7.3.4 Background

The systematic error due to the background in the K¢ selection includes the un-
certainty in the branching ratios of the background decays as well as the Monte
Carlo statistical uncertainty. This background includes the 7= — 7~ K°K%v, and
7~ = 7 K°K°7%, decay modes in which the two K° mesons appear as one K° me-
son in the selected sample. The uncertainty in the background due to these branching
ratios includes the Monte Carlo statistical uncertainty plus a contribution due to the
uncertainty in the branching ratios of these decays [3, p. 286] [54]. The non-K°
background consists primarily of 7, p(770)~ and a;(1260)~ decays.

To investigate this background, the Syp selection cut was reversed and the in-
variant mass spectra were studied for each decay mode (see Figure 7.1). The ratios
of the data to the Monte Carlo simulation: 0.97 + 0.02, 1.04 + 0.02 and 0.94 + 0.06
for the W_KO, 7K > 17° and K"K > 0 selections, respectively, are consistent.
The errors on the ratios are taken as contributions to the systematic uncertainty on
the background. The various contributions to the total systematic error from the

background are added in quadrature.
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Figure 7.1: The jet mass is plotted for those decays that are rejected by the KY
selection when the requirement on Syg is reversed. The plots, (a), (b) and (c) respec-

tively, are shown for the decays rejected by the 7= — 7 K v, 7~ — K > 171%,
and 7= — K~K° > 07%;, selections. The data are the points while the various tau

background decays are shown on each plot.

7.3.5 dF/dx Modeling

The dE/dx pion and kaon probabilities are obtained from the normalized pion and

kaon dFE/dz, respectively. The Monte Carlo parameterization of the normalized

dE/dx distributions was studied using a sample of single charged hadrons from tau

decays. The systematic error on the branching ratios associated with the dE/dz mod-

elling, see Appendix B, was obtained by varying the means of the normalised dF /dz
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distributions by 4+1 standard deviation from their central values. In addition, to ac-
count for possible differences in the dF/dz modelling, the widths of the normalised
dE/dz distributions are varied by +£30%. Varying the mean of the normalised dF /dz
distributions for the pion hypothesis gave errors of 0.00008, 0.00007 and 0.00022 on
the 7K', 7K > 1% and K-K® > 07 modes, respectively. Similarly, varying
the mean of the normalised dE/dx distributions for the kaon hypothesis gave errors
of 0.00010, 0.00005 and 0.00014, while varying the widths gave errors of 0.00015,
0.00007 and 0.00019 for the three decay modes, respectively. The errors are added in

quadrature and are shown in Table 7.3.

7.3.6 7¥ Identification

The analysis used a neural network algorithm to separate 7= — W*KOVT from 77 —
K > 17%, decays. The most powerful variable for distinguishing between these
two decays is the energy deposited in the electromagnetic calorimeter. The systematic
error on the branching ratios is evaluated by shifting the electromagnetic energy scale
by +1.0% based on studies of tau 3-prong decays [55]. The branching ratios were
recalculated using the different energy scales and the difference between these results
and the nominal branching ratios were taken as the systematic errors: 0.00007 and
0.00013 for the 7 K- and 7 K. > 17% decays, respectively.

The uncertainty on the m° identification also includes the maximum difference
when each of the remaining variables (except the ones that depend on the energy)
are individually dropped from the neural network algorithm. The contributions to
the error are 0.00014 and 0.00027 for the 7 K_ and 7 K > 17° decays, respectively.
These uncertainties are added in quadrature with those obtained from the energy scale

uncertainty. Several consistency checks on the branching ratios were conducted. For
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Figure 7.2: The branching ratio of the 7= — W_KOVT and 77 — W_KO > 17%, decay
modes is plotted against the output of the neural network. The solid line give the
nominal branching ratio and the dotted lines show the systematic error.

example, the neural net output cut was varied between 0.1 and 0.8 (see Figure 7.2).
Another check consisted of removing each of the variables starting with the least
sensitive until only two variables remained. The results were consistent with the full

neural net algorithm. For more information about the systematic errors for the 7°

finding algorithm see Appendix C.
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7.3.7 Monte Carlo modelling

The models used in the Monte Carlo generator can effect both the pion and kaon
momentum and energy spectra. This effect can produce biases when determining
the K° identification efficiency, the momentum dependent K/ separation and the 7°
identification. The dynamics of the K decay mode is well understood and it is
generated by Tauola via the K*(892)~ resonance. The K~KO final state is generated
by Tauola using phase space only.

As discussed in Chapter 5, the 77 — K > 17%, decay mode is composed of
T = W_KOTI'OI/T and 77 — W_KOTI'OT(OI/T decays. The 7= — W_KOTFOVT channel is
modelled by Tauola assuming that the decay proceeds via the K;(1400) resonance.
Recent results from ALEPH [45], on one-prong 7 decays with kaons, and OPAL [44],
using 7~ — K 7 7tv, decays, suggest that the 7= — W’KOWOVT decay will also
proceed via the K;(1270) resonance. A special Monte Carlo simulation was generated
in which the final state was created using the K;(1270) and K;(1400) resonances, using
the algorithm developed for the analysis described in references [44,46]. The selection
efficiency of the 7= — W*KOWOVT final state is estimated from the special Monte Carlo
for both resonances. The efficiencies are found to agree at a level of 10% giving a
systematic error of 0.00037.

The 7~ — 7~ K 7%, decay mode is not modelled by Tauola. The branching
ratio of this mode was recently measured to be (0.26 4+ 0.24) x 1072 [54]. A special
Monte Carlo sample of the 7= — W_KOTFOWOI/T decay mode is generated using flat
phase space [46] and it is found that the efficiency of this mode is within 30% of
the efficiency of the 7= — W_KOWOVT decay mode. For the systematic uncertainty
associated with this decay mode, 30% of the 7= — K om0n, branching ratio is

used.
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The 7= — K K° > 07%;, decay mode is composed of 7= — K K°r%. and
7~ — K K°7%7%, decays. The 7= — K K°r%,. decay mode is generated by Tauola
through a combination of the p(1700) and a; (1260) resonances. A special Monte Carlo
sample of these two modes was generated separately using the algorithm developed
for the analysis described in [44,46]. The selection efficiencies of the 7= — K=K’
decay mode is calculated for these two samples and are found to be equivalent within
statistical error. No systematic uncertainty is included for this channel. The 7= —
K~K°r%7%, decay mode is not modelled by Tauola. The Particle Data Group [3, p.
286 give a limit of 0.18 x 1073 for this channel. A special Monte Carlo sample of the
7~ — K"K%7%7%, decay mode is generated using flat phase space [46] and it is found
that the efficiency of this mode is within 30% of the efficiency of the 7= — K- K%,
decay mode. For the systematic uncertainty associated with this decay mode, 30%
of the 7= — K K%, branching ratio limit is used.

Finally, the 7= — K K° > 07, selection efficiency may depend on the relative
7= — K K%, and 7= — K K°rv, branching ratios. Using the current world
averages from [3, p. 286], the relative contribution of each channel is varied by
+25%. The branching ratio is observed to change by up to 0.00015 from the nominal

value; this is included as a systematic error for this channel.

7.3.8 Additional checks

Potential detector-related systematic biases to the branching ratios were evaluated
by comparing the branching ratio measurements obtained in different regions of the
detector or with different detector requirements. The parity invariance of the detector
was tested by comparing the branching ratios in the two hemispheres (cos# > 0) and

(cosf < 0) of the detector. The charge dependence, and hence the invariance under
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Selection K)X v, Krv |Kr >11'%, | KK~ > 07,
Charge conjugation | +0.12 +0.28 +0.30 +0.08
Parity +0.49 +0.15 +0.17 +0.27
Nggjdx > 80 —0.11 —0.16 +0.14 —0.03
CZ acceptance —0.32 —0.16 +0.09 +0.05
HCAL leakage —0.11 —0.40 —0.39 +0.40

Table 7.5: The shift in the branching ratio measurements resulting from changes to
the selection procedures (x107%).

the assumption of invariance under charge conjugation, was checked by comparing the
branching ratios for 7= and 71 decays. In both cases, the branching ratio variations
were within the statistical errors. These results were shown in Table 7.5. The effect
of the dE/dx quality requirement of at least 40 wires was tested by increasing the
threshold to 80 wires per track. This change was found to have a negligible effect on
the branching ratio measurements.

The CZ detector has two small regions, corresponding to about 7% of the geomet-
rical acceptance, which were inoperative for part of the data collection period. The
T Monte Carlo modelled these regions as if they were inoperative for the entire data
collection period, leading to a slight difference in CZ acceptance between data and
Monte Carlo. This may lead to differences in the calibration of the dE/dz, since non-
gaussian effects may be present in the data without CZ hits. The sensitivity of the
branching ratio determination to the Monte Carlo modelling of this effect was eval-
uated by recalculating the branching ratios excluding any decays that pass through
an inoperative region of the CZ detector.

The energy calibration of the hadron calorimeter does not take into account the
leakage of energy out the back. This leakage may change the energy calibration of

those decays not fully contained. Figure 7.3 shows the number of decays that have
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Figure 7.3: The number of muon chamber hits for tau decays into rho and X K¢
final states. The top plots show all the decays while the bottom plots only show those
decays that have muon chamber hits.

muon hits for tau decays into rho mesons and X "K? final states. These plots show
that approximately 4% of rho final states are not contained while about 8% of X K}
final states have muon hits. To check the calibration of the hadron calorimeter, tau
decays to rho mesons that have muon chamber hits are studied. The top plot in
Figure 7.4 shows Fyug/p versus p for data and Monte Carlo, while the bottom plot
shows the ratio of the data to Monte Carlo. It is observed that even if the decay is

not completely stopped by the hadron calorimeter the total energy deposited by the
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where muon hits are required. The points in the second plot are fit to a flat distribu-
tion.

decay is well described by the Monte Carlo. To check the sensitivity of the branching
ratios to this effect, the branching ratios are recalculated requiring that each decay
be stopped by the hadron calorimeter (ie. the decay does not have any muon hits).
As a final check on the calibration of the hadron calorimeter, the significance
factor Syg is plotted for samples of 7= — K v, and 7" — K7, decays to check the
response of the hadron calorimeter to strangeness enhanced hadronic showers (see
Figure 7.5). The selection uses the algorithm outlined in Appendix A and uses the

dE/dx separation procedure described in Chapter 6 for the X K? analysis. Both
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plots show good agreement between the data and Monte Carlo.
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Chapter 8

Discussion

The inclusive 7~ — X ~K?v, branching ratio was measured to be (10.0140.79+0.64) x
1073, where the first error is statistical and the second is systematic. Recalling that
the K° (K°) meson can be composed of 50% K? and 50% K¢ mesons, the branching
ratios of both the 7= — X K?v, and 7= — X ~KZv, decay modes are expected
to be equal. Figure 8.1 shows that the 7= — X K?v, branching ratio result is in
agreement with the published results [56,57] involving the K& meson. The solid band
on the plot is the average of the two previous results involving the K& meson and is
9.70 + 0.67.

The 7~ — 7 K v, branching ratio includes both the K® and K2 mesons, as do the
remaining exclusive decay modes. The branching ratio of this mode was measured
to be (9.1 4 0.9 4 0.6) x 1073 and is in good agreement with the analogous OPAL
branching ratio measurement involving the K3 meson of (9.6 +1.0 £ 0.7) x 1073 [58]
and the world average of (8.64 + 0.42) x 1073, Figure 8.2(a) shows these results
and other experimental results [45,56,57,59] and theoretical predictions. The anal-
yses are labelled with either K? or K% depending upon the primary component in
the decay. The theoretical predictions of the 7= — W_KOVT branching ratio have

been estimated by several authors in recent years. For example, Finkemeier and
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CLEO Kg 9.70 £ 0.90 £ 0.60
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Figure 8.1: Branching ratios of the 7= — X Klv, and 7= — X K3v, decay modes
measured to date. The solid band is the average branching ratio of the two previous
measurements.

Mirkes [13] calculate the hadronic matrix element, M, in terms of form factors which
are predicted using low-energy effective Lagrangians using SU(3)r x SU(3)g chiral
symmetry, supplemented by information about any possible low-lying resonances in
the different channels. They also take the isospin symmetry relations into account.
Braaten, Oakes and Tse [14] use a similar approach to predict the tau semi-leptonic
branching ratios. They use a U(3) x U(3) chiral symmetry and take into account
symmetry breaking effects by using the measured value of the meson masses in cal-
culating phase space and the vector meson propagators. Finkemeier and Mirkes [13]
predict that the branching ratio is in the range of (6.6 — 9.6) x 10~% while Braaten et
al. [14] predict a range of (8.9 — 10.3) x 107%. Both predictions agree with the new
OPAL result and are shown on the last two rows of Figure 8.2(a).

Tt is known that the 7~ — 7~ K v, decay mode is dominated by the K*(892)~

) =0 _ . ) e
resonance. This can be observed from the K 7~ invariant mass distribution shown
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Figure 8.2: Branching ratios of the 7= — W_KOI/T and 7~ — 1K > 17%, decays
measured and predicted to date. The solid band is the average branching ratio of
the previous measurements. The 7= — K > 1m%, results include both the
T — W*KOWOVT and 77 — W*KOWOWOVT measurements. The theoretical estimates
are shown for the 7= — W’KOWOVT decay mode only. The open points show the
new OPAL results, the solid points show other experimental results and the bounded
region shows the theoretical predictions of the branching fractions.
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Figure 8.3: The jet mass is plotted for the data and Monte Carlo for the 7= — W*KOVT
and 7~ — 7K > 17%, decay modes. Each mass plot assumes that the charged
track is a pion. Histogram (a) shows the invariant mass of the 7 K° mesons from the
T — W*KOVT decay. Histogram (b) shows the invariant mass of the K system
from the 7= — W*KOVT decay.

in Figure 8.3(a). The data agree with the Monte Carlo simulation which assumes
that this channel proceeds through the K*(892)~ resonance. Using the 7= — W_KOI/T

1

branching ratio measured in this analysis and isospin conservation,” an estimate of

the 7= — K*(892) v, branching ratio is calculated, giving
B(r~ — K*(892) v,) = 0.0137 = 0.0016. (8.1)

The analogous OPAL result involving primarily K¢ final states give 0.00144 + 0.0018
[58]. Finally, the combined OPAL result, including both the K and K3 studies is

B(r~ — K*(892) ;) = 0.0140 + 0.0013. (8.2)

This value is consistent with the current world average 0.0128 + 0.0008 [3, p. 286].

1Recall that the isospin conservation relation for the K*(892)~ decay is |[K*~) = 1/1/3|[K~7°) —

V2J3IK ™).
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The decay constant of the 7= — K*(892) v, decay, fx-, is estimated using equa-

tion 2.15:

fre = 87 {_ mZ.\ "' 1 2m¥. ml/ B(r~ — K*(892) ;) 8.3
K* = 3/2 2 R— . (83)
GrVoem: m m T,

T T

Inserting the branching ratio of the 7= — K*(892) v, decay into this equation gives
fir = 799.8 +14.2 + 38.0 MeV, where the first error comes from the uncertainty on
Vis and the second error comes from the uncertainty on the branching ratio.
Predictions of the decay constant fx« using various theoretical models have been
made. These models predict the fx- decay constant by relating it to the f, decay
constant using sum rule relations between the spectral functions based on assumptions
of SU(3) symmetry derived by Oneda [16] using a set of sum rules originally derived
by Das, Mathur and Okubo (DMO) [17]. At the flavour-SU(3); symmetry limit
(my = mg = ms), the decay constant ratio is unity fx- = f,. If asymptotic SU(3)s
symmetry becomes exact at high ¢ where its breaking can be explained by the

production of few resonances at low mass one estimates [16]

o mp
-— = ——=0.86. 8.4
fx= mK-« ( )

Recalling equation 2.17, the ratio of the decay constants, f,/fx-, can be deter-

mined using the decay widths of the 7= — p~ v, decay with respect to the 7= —

K*(892) v, decay:

B(t— = p v, m2 — mi. m2 + 2mZ.
P t 0 T K T K (8 5)
= tan 6, = _ ,
fx+ B(t— — K*(892) v,) \ mZ —m2 m2 +2m3

To estimate this ratio, the OPAL measurement of the branching ratio of the 7= —

h~ v, decay mode is used, B(t~ — h 7’v,;) = 0.2589 + 0.0034 [49]. The 7~ —

h~ 7%, decay mode is the sum of the decay modes 7= — 7 7%/, and 7= — K 7%,.
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Figure 8.4: Decay constant ratios f,/fx- using results from tau decays and the DMO
sum rules [17]. The first DMO result uses the assumption that the flavour-SU(3)y
symmetry limit is reached while the second ratio assumes asymptotic flavour-SU(3)
symmetry. The solid band in the average of the previous measured decay constant
ratios.

The branching ratio of the 7= — K~ 7%, decay mode can be calculated using isospin
conservation from the 7= — W_KOI/T branching ratio giving (4.67 & 0.42) x 1073;
consequently the branching fraction of the 7= — 7~ 7%, decay mode is estimated to
be 0.2543 + 0.0034. Using the Cabibbo angle 8. and the particle masses from [3, p.
103, 286, 364 and 472|, the decay constant ratio is

Jo _ 0934005 (8.6)
Jx

Figure 8.4 shows this measurement together with other measurements of the decay
constant ratio [45,57]. This result does not indicate which theoretical assumption is

better.

Ther~ — 7 K > 17%, branching ratio was measured to be (3.34+0.94-0.7) x 1073
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and is shown in Figure 8.2(b) in comparison with other measurements. The result
is in good agreement with the world average of (3.83 4+ 0.45) x 1073, If one assumes
that the decay only contains one 7° meson, then the decay can be compared to the-
oretical predictions. Note that the current branching ratio of the 7~ — 7~ K %7,
is measured to be only (0.26 +0.24) x 1073 [54]. Finkemeier and Mirkes predict that
the branching ratio will be in the range of (0.81 — 0.96) x 107% [13] and Braaten
et al. predict a range of (0.9 — 3.7) x 1073 [14]. The 7~ — 7K 1, branching
ratio by Finkemeier and Mirkes is significantly higher than the experimental results,
however they argue that the widths of the K; resonance [3, p. 474] used in their
calculation are unusually narrow and that increasing the K; width would give a pre-
diction that agrees with the experimental measurements [60]. The invariant mass of
the 7~ — 7 K_ > 1%, system is plotted in Figure 8.3(b).

The 7= — K "K® > 07, branching fraction was measured to be (3.3 + 0.9 +
0.7) x 1073, Figure 8.5 shows this measurement in comparison with other recent
results. The results shown are the sum of the 7= — K K%, 7= — K K%, and
7= — K7K%°%7%., branching ratios for the experimental results. The results from
this study agree well with the world average branching ratio of (3.08 4 0.42) x 1073,
The theoretical predictions are the sum of the 7= — K~K%/, and 7= — K~K%z,
branching ratios, since no predictions of the 7= — K"K°7%7%,. decay mode have
been made. The current upper limit of the 7= — K-K°%%7%, branching ratio is
0.18 x 1073 [3, p. 286]. Finkemeier and Mirkes predict the branching ratio should
be in the range of (2.3 — 2.7) x 1073 [13] while Braaten et al. predict a range of
(2.4—4.0) x 1073 [14]. Predictions of the 7= — K~ K%, decay mode are possible using
the charge vector current (CVC) hypothesis [61] using low energy ete™ — 77~ data

scaled by a kinematic factor to take into account the 7 — K mass difference, estimates
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Figure 8.5: Branching ratios of the 7= — K~ K° > 0%, decay mode measured and
predicted to date. The solid band is the average branching ratio of the previous
measurements. The 7= — K~K® > 07%, results are the sum of the 7= — K~K%,,
7= = K K%, and 7= — K~K°7%7%, decays. There are no theoretical predictions
for the 7= — K K% %7%, decay mode. The open points show the new OPAL
results, the solid points other experimental results and the bounded lines show two
theoretically predicted ranges of the branching fractions.

of (1.14+0.3) x 1073 [62] and (1.6 +0.2) x 10~* are obtained. These predictions are

approximately one-half of the 7= — K~K°® > 0%, branching ratio as expected.
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Chapter 9

Conclusion

This dissertation presents evidence for the first observation of the K? meson using
data collected between 1991 and 1995 with the OPAL detector at LEP. Using this
observation, the first OPAL measurement of a branching ratio of the 7 lepton decaying
into a final state containing at least one K? meson was made. The branching ratio

for the inclusive 7 decay to the K¢ meson is measured to be:
B(t— — X Klv,) = (10.01 +0.79 4+ 0.64) x 103,

where X~ represents a 7~ or K~ meson accompanied by any number of neutral
mesons. The first error is statistical and the second is systematic. This is the first
inclusive measurement using the OPAL detector of the 7 decaying into a K¢ meson.

The decays from the inclusive selection are then subjected to additional criteria
to identify the particles accompanying the K? meson. These criteria identify three
exclusive decay modes: 7~ —>7T_KOI/T, K > 1m%,, and 7~ = K"K > 070,

The branching ratios of these modes are measured to be

B(r —» 7 Kuw) = (9.1+0.9+0.6) x 1073,
B(r— =K >1n'%,) = (3.6+1.3+1.0)x107%,
B(r~ - K-K° > 07%,) = (3.3+0.9+0.7) x 103,

where the first error is statistical and the second is systematic. The exclusive decays

include K? mesons and a small component of K mesons which have a sufficient
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lifetime to remain in the selected sample. These exclusive branching ratios are the
first OPAL measurements involving 7 decays into K? mesons.

The branching ratio of the 7= — W*KOVT decay mode and isospin conservation
of the K*(892) meson were subsequently used to calculate the branching ratio of the
7= — K*(892) v, decay, giving B(7~ — K*(892) v,) = 0.0140 = 0.0013. This result
is in good agreement with other current results.

Finally, using the branching ratio of the 7= — K*(892) v, decay mode calculated
in this analysis, the ratio of the p(770) decay constant, f,, to the K*(892) decay
constant, fx-, was measured to be f,/fx- = 0.93 £ 0.05. This ratio was predicted
using the DMO sum rules to have two different values depending upon the theoretical
model used, either f,/fx« = 1.0 or f,/fx+» = 0.86. The ratio measured in this analysis

is consistent with either theoretical prediction.
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Appendix A
HCAL Significance Factor

A new variable called the significance factor and denoted by Syg, was created to help
select K? candidates from 7 decays. This variable is defined as
Spgp = ——, (A.1)
UHB
where Eyg is the total energy deposited in the hadron calorimeter (HCAL) for the
jet, p is the momentum of the charged track and oyg is the hadron calorimeter energy
resolution. The first section describes the Monte Carlo simulation of Exg and the

second section describes the measurement of the HCAL resolution.

A.1 Monte Carlo Simulation of the HCAL

The Monte Carlo simulation of the hadron calorimeter energy, Eyg, is studied to
ensure that the Monte Carlo agrees well with the data. The HCAL energy of the
Monte Carlo was studied using isolated hadrons that leave a small amount of energy
in the electromagnetic calorimeter through ionization and consequently leave almost
all of their energy in the hadronic calorimeter. These hadrons will be referred to
as minimum ionizing pions (mips) throughout the remainder of this Appendix. The

mips used in this study of Sgg come from the 7= — 7 v, decay. Each decay is
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required to be within the barrel region of the OPAL detector, |cosf| < 68°, to ensure
that the HCAL energy is well measured. Each decay is required to have a presampler
multiplicity, the sum of hits in the presampler, less than 4 and to have only one
track accompanied by one cluster in the electromagnetic calorimeter with an energy
less than 1.5 GeV. The decays were required to have a difference in the azimuthal
angle between the track and presampler cluster farthest away from the track to be
less than 0.5°. To reject electrons, the electromagnetic cluster energy divided by the
momentum was required to be less than 0.8. Finally, to remove muons, the 7= — A7 v,
candidates were not allowed to have any hits in the muon chambers.

The Monte Carlo simulation was checked using tau decays into pion and rho
meson final states. The 7= — 7 1, decays were selected as above without the elec-
tromagnetic calorimeter requirement. The 7= — p~ v, decays were selected following
the algorithm described in [63], which selected decays within the barrel region of the
OPAL detector. Each decay was allowed to have only one track and up to three
clusters in the electromagnetic calorimeter in which two of the clusters are not asso-
ciated with the track. The energy of the cluster closest to the track divided by the
momentum was required to be less than 0.9 and the neutral clusters were required
to deposit at least 1.2 GeV of energy in the electromagnetic calorimeter. Finally, the
mass of the reconstructed 7° meson had to be less than 0.28 GeV to be consistent
with the true 7° mass.

The momentum and hadron calorimeter energy for the mips in each jet is shown
in Figure A.1. Plot (a) shows that the momentum is well modelled by the Monte
Carlo, whereas plot (b) shows some discrepancies between the Monte Carlo and data
for the hadron calorimeter energy (Fup). To explore this discrepancy further, a

profile histogram of Fyg/p is shown in Figure A.2. Figure A.2 shows that the Monte
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Figure A.1: (a) shows the momentum and (b) shows the hadron calorimeter energy
for mips with Fgg < 1.5 GeV.
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Figure A.2: Hadron calorimeter energy study for mips. The top plot shows the ratio
Eug/p for mips. The bottom plot shows the ratio between the data and Monte Carlo.
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Carlo underestimates the hadron calorimeter energy by up to 5%, and is momentum
dependent. To correct the Monte Carlo, a ratio of the Monte Carlo and data profile

histograms is computed, giving a correction factor of

(Eng/p)M°

(B /) — 0852+ 000265 . (A.2)
HB

To check the Monte Carlo simulation of Exp after it has been corrected, the ratio of
FEug/p is plotted as a function of p for tau decays into mips, pion and rho meson final
states in Figure A.3 for data and Monte Carlo. The ratio of (Eyxg/p)P*® for the data
to (Eup/p)MC for the Monte Carlo is plotted for the three selections in Figure A.4.
If the modelling of the HCAL energy is adequate, then (Exp/p)P*?/(Exp/p)MC
should be unity. Indeed, in all three cases the ratios of ratios are approximately one.
The uncertainties on the fits suggest that the Monte Carlo simulates HCAL energy
to better than 1.5% for the three selections. The y? per degree of freedom, shown on
the plots, is close to unity for all three samples.

With the components of Syg checked for consistency, Sygp is plotted to ensure
that the Monte Carlo agrees with the data. Figure A.5(a) shows Sgp for the mips
sample that was used to correct Eyg, while Figure A.5(b) shows a similar plot for the
T~ — p~ v, decays. The dotted line in both plots shows the Monte Carlo Eyxg before
it was corrected while the solid line gives the energy after it has been corrected. It
can be observed that the corrected Monte Carlo agrees well with the data for the two
control samples; the y? difference between the data and Monte Carlo is shown on the

plots.
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points are the data and the shaded areas are background in the two control samples.
The x? difference between the data and Monte Carlo is shown for both decays.

A.2 FEup Resolution

The finite resolution of the hadron calorimeter limits the precision of the reconstructed
hadron calorimeter energy. The resolution of the hadronic calorimeter was studied
using the minimum ionizing pions selected in Appendix A.1. An analogous study
of the resolution was also conducted on the 777~ Monte Carlo sample used in this
analysis.

The resolution is measured by comparing the difference between the measured
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energy (Exg) and the incident energy (p) of the isolated hadrons. The resulting energy
resolution, oup/Eus, follows the expected A + B/v/E form [33], where the constant
term includes the sampling and shower fluctuations of the hadron calorimeter and
the energy dependent term includes the detector response imperfections and noise.
It should also be noted that in principle the width of the distributions is a function
of both the momentum and the energy. This can be written as ofg , = ofig + 0.
However oxg >> 0p, thus ogg_, can be approximated as oup.

The actual resolution of the hadron calorimeter is estimated by comparing the
difference between the incident energy and the energy deposited in the hadron calori-
meter in eight momentum bins between 2 and 50 GeV. Figure A.6 shows the Fgg —p
distributions for each momentum bin for the data and Monte Carlo. Each plot is
fitted with a gaussian distribution to calculate the mean and the width of the peaks.
The gaussian fits are performed within +20 of the mean to reduce the effects of the
non-gaussian tails. The means of the Egg — p distributions may not be exactly zero
as expected since the momentum distributions may not be uniform within the bin
range. The means and widths of the eight distributions are listed in Table A.1 for
the data and Monte Carlo.

Figure A.7 shows the plot of o/E versus E for the data (filled dots) and Monte
Carlo (open dots) with E = Ey;, + 0E, where Ey, is given by the midpoint of each
bin and d F is the shift in the mean from zero of the gaussian fit to the Fgg —p peak as
given in Table A.1. The plot shows the expected A+ B/v/E behaviour. The measured
resolution of the hadron calorimeter from the data is (0.165 £+ 0.024) + (0.847 £
0.100)/v/E. The resolution of the Monte Carlo is (0.2044-0.023)+(0.69640.097) /vVE.
It is observed that the data agree with the Monte Carlo within statistical errors on
the fits, consequently the same resolution function is applied to both the data and

Monte Carlo.
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Figure A.6: The Fxg — p resolution spectra for the 1991-1995 data plotted (filled dots
and solid line) and Monte Carlo (open dots and dashed line). The distributions are
fit with gaussians around 420 of the mean. The statistics shown in the legend are
for the data only.
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Bin Range (GeV) Data Monte Carlo
Mean (6E) | Width (0) | Mean (6E) | Width (o)

2.0-7.5 —1.08£0.16 | 231 £0.18 | —1.12+0.16 | 2.27 £ 0.17
7.5-15.0 —220£0.18 | 415£0.18 | —1.59+0.16 | 3.86 £0.15
15.0-20.0 —1.46+0.40 | 7.00£0.36 | —0.97+0.40 | 6.86£0.35
20.0-25.0 0.10£0.50 | 8.08+£0.44 | —0.04+0.49 | 8.00+0.43
25.0-30.0 —0.98+£0.61 | 9.55£0.52 | 0.48+0.61 | 9.58 £0.53
30.0-35.0 —-0.27£0.70 | 9.75£0.61 | 1.234+0.85 | 11.12+0.83
35.0-40.0 0.62+0.81 |10.74+0.70 | 1.85+0.97 | 12.16 = 0.93
40.0-50.0 —1.71£1.03 | 1227+ 092 | 0.51£1.17 | 13.22+£1.11

Table A.1: Fitting parameters of the Fyg — p distribution for the 1991-1995 OPAL
data and Monte Carlo
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Figure A.7: The HCAL energy resolution. The plot shows o/FE versus E. The
resolution for the data are shown using the filled dots while the Monte Carlo is
shown with the open dots and the error bars give the statistical uncertainty for each

measurement.
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Appendix B
dE /dx Modelling

Using the energy loss to distinguish pions from kaons requires an accurate dF/dz
parameterisation. This appendix checks the parameterisation of the Monte Carlo
with respect to the data and computes any correction factors that may be required
to improve the Monte Carlo modelling. The dE/dz modelling was studied using
7 one-prong hadronic decays. These decays were selected by requiring one charged
track, the hadronic energy measured in the hadron calorimeter to be no less than 2.5
GeV and no hits in the muon chambers. These last two requirements remove nearly
all of the leptonic tau decays. The normalised dE/dz, N(dE/dz), is plotted in bins
of —In(1 — (%), where 8, = p/E and E? = p?> + m?2 for the pion hypothesis. The
binning parameter comes directly from the first term inside the parenthesis of equa-
tion 4.1. Any differences observed between the means and widths of the N(dE/dz)
distributions for the data and Monte Carlo are corrected and the results are shown.

Figures B.1 and B.2 show the N(dE/dz) distributions for the pion hypothesis.
The plots on the left show the Monte Carlo distributions while the plots on the right
show the data distributions. Similarly, Figures B.3 and B.4 show the N(dE/dz)
distributions for the kaon hypothesis. The distributions are fit with gaussians around

approximately +2¢ of the mean to reduce some of the effects of the non-gaussian
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tails. These tails are due to the charged kaon component in the 7 one-prong hadronic
decays which makes up approximately 5% of the one-prong sample. The presence of
these charged kaons results in high x? values per degree of freedom (dof) in some of
the distributions. The resulting fits have 18 dof, except for the top plots in Figure B.3
which have 28 dof. For the 95% (99%) confidence level, the fits should have x? <
29 (42) for 18 dof and x* < 41 (48) for 28 dof [52]. Approximately half of the
distributions satisfy these requirements at the 95% confidence level while 85% of the
distributions satisfy these requirements at the 99% confidence level.

In order to check the calibration of the data by the Monte Carlo, the difference
in the means of the data and Monte Carlo from the N(dE/dz) distributions for the
pion and kaon hypotheses are plotted as a function of — In(1— 32) in Figure B.5. The
plots show that the difference is independent of — In(1 — 32) up to 8.5 (p = 20 GeV).
Above 8.5, a 3, dependent correction is required. The N(dE/dz) offsets for the pion

distributions are:

if —In(1— (42) <85 then —0.0687 4 0.0143

if —In(1— (%) > 8.5 then (—0.82=+0.13)+ (0.088 £ 0.013)(—In(1 — 52)).
Similarly, the N(dE/dz) offsets for the kaon distributions are:

if —In(1— (%) <85 then —0.23454 0.0172

if —In(1— (%) > 8.5 then (—1.343+0.0172)+ (0.133 & 0.015)(— In(1 — 32)).

The resolutions of the N(dF/dz) distributions are plotted versus —In(1 — 32) in
the left-hand plots in Figure B.6 for the pion and kaon hypotheses. The filled points
show the data resolutions while the open points show the Monte Carlo resolutions.

The right-hand plots show the ratio of the resolutions of the data with respect to the
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Figure B.1: The N(dE/dz), distributions for the tau one-prong hadronic decays.
The Monte Carlo plots are on the left and the data distributions are on the right.
The legend gives the x? and the gaussian fit parameters.
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Figure B.2: The N(dE/dz), distributions for the tau one-prong hadronic decays
(continued). The Monte Carlo plots are on the left and the data distributions are on
the right. The legend gives the x? and the gaussian fit parameters.
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Figure B.3: The N(dE/dz)x distributions for the tau one-prong hadronic decays.
The Monte Carlo plots are on the left and the data distributions are on the right.
The legend gives the x? and the gaussian fit parameters.
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Figure B.4: The N(dE/dz)x distributions for the tau one-prong hadronic decays
(continued). The Monte Carlo plots are on the left and the data distributions are on
the right. The legend gives the x? and the gaussian fit parameters.
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Figure B.5: The difference between the means of the data and Monte Carlo from the
N(dE/dx) distributions versus — In(1 — 32).
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Figure B.6: The resolutions of the N(dE/dz) distributions versus —In(1 — 32) are
plotted in the left-hand plots. The filled dots show the data and the open points show
the Monte Carlo. The right-hand plots show the ratio of the data and Monte Carlo
resolutions.
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Figure B.7: The difference of the means of the data and Monte Carlo N(dE/dz)

distributions versus — In(1 — (32) after the Monte Carlo has been corrected.
Monte Carlo. Both plots show that if —In(1—/32) > 7 (p > 5 GeV) then the resolution
of the Monte Carlo is larger than that of the data. The resolution of the pion and
kaon N(dE/dz) distributions are consequently scaled by 2.5% and 5%, respectively.
The results after the corrections have been applied to the Monte Carlo are shown in
Figure B.7. The plots show the difference in the means of the N(dE/dx) distributions
after the corrections have been applied to the Monte Carlo as a function of — In(1—/42).
The plots show that the means of the Monte Carlo N(dE/dz) distributions are now
consistent with the data. The y? difference between the Monte Carlo and data for
the pion hypothesis is x?/dof = 3.7/7 and for the kaon hypothesis is x?/dof = 6.3/7.
The resolutions of the N(dF/dz) distributions are plotted versus —In(1 — 32) in
Figure B.8 after the Monte Carlo has been corrected. The data are the filled dots
and the Monte Carlo are the open dots in the left hand plots. The right hand plots
show the ratio of the resolution of the data with respect to the Monte Carlo. The
plots show that the resolutions of the Monte Carlo are now consistent with the data.
Finally, to show that the corrected Monte Carlo models the data, several variables

are plotted in Figure B.9. The number of hits, the normalised dE/dz distributions
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Figure B.8: The resolution of the N(dE/dz) distributions versus —In(1 — 82) after
the corrections have been applied to the Monte Carlo are plotted in the left-hand
plots. The filled dots show the data and the open dots show the Monte Carlo. The
right-hand plots show the ratio of the data and corrected Monte Carlo resolutions.

for the pion and kaon hypotheses and the particle separation probability variables
are plotted for the one-prong sample. Fits are are also shown on the N(dE/dz)
distributions. The hatched part of the plots shows the charged kaon contribution of

the one-prong hadron sample. Good agreement is observed between the data and

Monte Carlo for the six variables.
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Figure B.9: Important dE/dz variables for the one-prong sample. (a) shows the
number of dE/dz hits; (b) and (c) show the normalised dE/dz distributions for the
pion and kaon hypotheses, respectively; and (d) — (f) show the particle separation
probability variables for the one-prong sample.
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Appendix C

The 7' Finding Algorithm

The first section of this appendix describes the selection of the variables that are used
in the neural network algorithm. The second section discusses the systematic studies

that are performed to check the consistency of the neural network output.

C.1 Variable Selection

The first step in this analysis is to select variables that appear to have some separation
power for decays containing 7° mesons. These variables are then subjected to a
statistical test to ensure that they do have separation power and to ensure that
they are minimally correlated. Although there is no restriction on the number of
variables, it is obvious that a small number will lead to more manageable and less
time consuming algorithms. Various methods exist to quantify the usefulness of
a variable with respect to its discriminating power and its correlation with other
variables. This analysis used the F-test statistic as described in reference [64] which
will now be outlined below.

Consider a set £ of n events e; divided into k classes, and described by [ variables.
Then all of the events are contained in a matrix z;; with7 =1,... ,nandj =1,... L.

For an arbitrary variable j, one can define g;, the barycentre (gravity) of the entire



Appendix C. The 7° Finding Algorithm 127

event sample and h; the barycentre of the events belonging to an arbitrary class Cp,

with n,, events:

1 n
T TR NS C.1

:—Zm”, m=1,...,k (C.2)

lECm
The within vector W describing the dispersion within a class can now be calculated

using the above quantities

k

m=1¢{eCy,
Similarly, the between vector B describes the distance of a class to the overall barycen-

tre g;:

1k
Bj== nm(h;—g;)*. 4
n £ m (R 97 (C4)

Large values of B; and small values of W} characterise well separated and compact
classes. Therefore the discriminating power of variable j is summarised in the F-
test [64]:

_(n—Fk) By

The variables having high F-test values are considered to be those with the most
discriminating power. For this analysis, the denominator gives 6 degrees of freedom
while the numerator gives oo degrees of freedom, consequently any variable with an
F-test value greater than 6.88 [52] would have adequate discriminating power.

For this analysis, the event sample is divided into two classes: class 1 (7= —

K > 1%, decays) and class 2 (77 — K, decays). The seven variables
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Variables
E/EBeam E/p N FQO ¢PS Af A¢
Class 1 Gravity 0.357 | 0.838 | 0.207 | 0.492 | 0.112 | 0.162 | 0.210
Class 2 Gravity 0.192 | 0.659 | 0.156 | 0.552 | 0.075| 0.122 | 0.166

Total Gravity 0.237| 0.171| 0.170| 0.536 | 0.085| 0.133 | 0.178
Within Vector 0.015 | 0.033 | 0.007| 0.013 | 0.007 | 0.015| 0.036
Between Vector 0.0054 | 0.0031 | 0.0005 | 0.0007 | 0.0003 | 0.0003 | 0.0004
F-test 790.0 | 199.0 | 168.0 | 118.0 82.8 46.5 23.4

Table C.1: F-test results of the neural network variables.

described in Section 6.2.2 are subjected to the F-test and the results are shown in
Table C.1. Note that the variables are normalised to be between zero and one, and
are ordered according to the size of their F-test values. The results of the F-test show
that the seven variables selected for the m° separation are statistically significant.
The correlations between the selected variables was checked to ensure that the
seven variables were minimally correlated. Each element of the correlation matrix

was calculated using [52]

COVj
;= — C.6
Pij G0, (C.6)
where
N
(zi5 — 1) (Yrj — i)

covy = 3 )0 ©0

k=1

is the covariance of the pair of variables ¢j in question with z;; representing the value
of one of the variables with mean y; and yi; representing the second variable with
mean fx. In addition, o;; is the variance of the variables ¢ and j. The correlation
matrix is shown in Table C.2. The largest correlation is between E/FEgean and E/p
at 0.544, which is below the recommended cutoff of 0.55 suggested in reference [64].

The seven variables that appear to have some 7° separation ability are now input
into the JETNET [51] neural net algorithm. The neural net was trained using the

two classes of data as predicted by the Monte Carlo. The training was done using
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E/EBeam E/p N FQO ¢PS Ae A¢
E/EBeam 1.000 | 0.544 | 0.241 | -0.393 | 0.176 | 0.032 | 0.078
E/p 0.544 | 1.000 | 0.134 | -0.265 | 0.303 | 0.398 | 0.532
N 0.241 | 0.134 | 1.000 | -0.294 | 0.270 | 0.138 | 0.162
Fyy -0.393 | -0.265 | -0.294 | 1.000 | -0.061 | -0.071 | -0.103
Ops 0.176 | 0.303 | 0.270 | -0.061 | 1.000 | 0.178 | 0.455
A6l 0.032 | 0.398 | 0.138 | -0.071 | 0.178 | 1.000 | 0.372
A¢ 0.078 | 0.532 | 0.162 | -0.103 | 0.455 | 0.372 | 1.000

Table C.2: The correlation matrix for the 7 variables.

three layers, including 7 input nodes, 12 internal neurons and 1 output node. The
neural network was trained until the figure of merit (FOM) of the training sample
was constant. The FOM measures the separation achieved between the two classes —
values close to zero indicate no separation, whilst one indicates complete separation.
A total of 40 epochs were used to train the neural net. The FOM versus the epoch
number is shown for the training and test sample in Figure C.1. Additionally, the
purity of the class 1 (7~ — K > 17%,) decays is plotted versus the neural
network output — for a properly trained network this should be linear, with the
network output representing the signal purity; good agreement is observed between

the training and test samples.

C.2 Systematic Studies

Several systematic studies were done to verify that the neural network algorithm
adequately identifies decays containing 7° mesons. The first test involved changing
the energy scale of the Monte Carlo of the electromagnetic calorimeter by +1%. This
affects two variables: E/Epeqm and E/p. The systematic errors were estimated by cal-
culating the branching ratios for the scaled energy and taking the difference between
these values and the nominal branching ratios. The systematic errors were 0.00007

and 0.00013 for the 7= — W*KOVT and 7~ = 1K > 17, decays, respectively.
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Figure C.1: The FOM versus the epoch number is shown on the left plot while the
purity versus the neural network output of the 7= — K > 17%, decays is shown
in the right plot.

7K° | 7K° > 17°
Nominal 0.00912 0.00357
Drop Ngys | +0.00011 |  —0.00020
Drop Fyg +0.00002 | —0.00003
Drop ¢ps —0.00006 | +0.00013
Drop Af —0.00012 | +0.00024
Drop A¢ —0.00004 | +0.00007

Table C.3: The change in the branching ratios when each non-energy dependent
variable is dropped from the neural network.

For the next test, each non-energy dependent variable was dropped from the
neural network and the differences calculated between these results and the nominal
branching ratios. The results of these tests are shown in Table C.3. The largest
change from the nominal branching ratios are taken as the systematic uncertainties.

The following checks are not included as part of the systematic uncertainties,
but were done to ensure that the neural network output was stable within systematic
uncertainties. The first check involved dropping each variable from the neural network

until only the two most significant variables remained. The results of this check, along
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+Fy 0.00869
+Netus 0.00889

0.00103
0.00108

0.00397(0.00161
0.00396(0.00169

TK° 7K° > 170
Nominal | 0.00912(0.00094) | 0.00357(0.00131)
Drop A¢ | 0.00900(0.00094) | 0.00365(0.00133)
+A6 0.00908(0.00098) | 0.00351(0.00141)
+ps 0.00881(0.00103) )

( ) )

( ) )

(

(
0.00408(0.00157
(

(

Table C.4: The branching ratios and statistical uncertainties when each of the vari-
ables are removed from the neural network until only two variables remain.

with the statistical errors on the branching ratios are shown in Table C.4. The table
shows the expected results, such that as the variables are removed from the neural
network the statistical uncertainty increases.

The correlation matrix coefficients of the 7= — X K%, selected decays were
calculated for the data and Monte Carlo. The Monte Carlo was divided into ten
equal samples and the correlation matrix was calculated each time; these results were
then averaged. In Table C.5 the correlation between each variable is shown for the
data and Monte Carlo. The minimum and maximum correlation coefficients of the
ten Monte Carlo samples is also shown. The uncertainty shown on the Monte Carlo
coefficients is the standard deviation of the ten samples. The 2 is calculated for each
pair of coefficients and the total x?/dof is 21.1/20, indicating that the seven variables
chosen for the 7° identification are well modelled by the Monte Carlo.

A final test of the neural networks ability to identify 7° mesons was done by
calculating the one-prong branching ratios: 7= — h v, and 7~ — h~ > 17%,. This
was done using the one-prong sample selected for the K? analysis. In order to remove
leptons, it was required that the hadronic energy be greater than 2.5 GeV. Using this

requirement the following results were obtained: B(7~ — h™v,;) = 0.1157 £ 0.0022
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Variables | Data | MC(mean/sigma) | MC(min/max) | (D — M)?/o?
E/E,-E/p| 0.70 0.65(0.05) 0.58] 0.72 1.00
E/Ey- Ny | 025 0.23(0.04) 0.15| 0.30 0.25
E/Ey - Fy | —0.35 —0.39(0.06) —0.49 | —0.33 0.44
E/E, - ¢ps | 0.36 0.28(0.04) 0.20 | 0.36 4.00
E/E,- A6 | 0.10 0.18(0.06) 0.10 | 0.32 1.78
E/E,-A¢ | 0.26 0.21(0.04) 0.14 | 027 1.56

E/p-Ng | 023 0.18(0.03) 0.13| 0.24 2.78

E/p- Fy | —0.21 —0.22(0.06) —0.32 | —0.14 0.03
E/p-d¢ps | 043 0.38(0.03) 0.32| 0.44 2.78

E/p-A8 | 0.29 0.33(0.04) 0.25 | 0.42 1.00

E/p-A¢ | 061 0.55(0.04) 0.51| 0.63 2.25

Ny - Fy | —0.32 —0.24(0.05) —0.34 | —0.17 2.56

Ny - ¢ps 0.38 0.36(0.08) 0.28| 051 0.06

N - A6 0.26 0.22(0.04) 0.17 | 0.32 1.00

N - A 0.31 0.28(0.06) 0.13| 0.34 0.25

Fyo - ¢ps | —0.04 —0.07(0.07) —0.20 | 0.03 0.18

Fyo - A8 | —0.10 —0.10(0.04) —0.14 | —0.02 0.00

Fyo - A¢ | —0.10 —0.11(0.06) —0.22 | —0.02 0.03

dps - A 0.23 0.27(0.06) 0.14 0.35 0.44

dps - A 0.51 0.54(0.05) 0.47 |  0.62 0.64

Af - Ad 0.39 0.35(0.05) 0.28 | 0.43 0.64

Total (x?/dof): 21.1/20

Table C.5: The correlation coefficients for the 21 pairs of variables of the data (second
column) and Monte Carlo (third column) for 7= — X ~K?v, decays. The fourth col-
umn shows the minimum and maximum correlations for the 10 Monte Carlo samples
and the fifth column shows the y? difference between the Monte Carlo and the data.
The total x?/dof is shown in the last line of the table.

and B(r~ — h~ > 17°%;,) = 0.3882 + 0.0044. The current world averages for these
decay modes are [3, p. 286]: B(t~ — h v;) = 0.1179 + 0.0012 and B(r~ — h~ >
17%,) = 0.3691 £ 0.0017. The difference between the two decay modes were 2% and
5%, respectively. These errors are within the systematic errors quoted above for the

K? decays (2% and 7%), thus confirming the ability of the neural network to identify

decays containing 7% mesons.



133

Appendix D

The Bias Factor

The 7 pair selection, discussed in Section 5.2, does not select all 7 decay modes with
an equal probability. This leads to a bias on the 7 pair selection which selects certain
decay modes over others. This is quantified as a set of bias factors for each decay
mode in the Monte Carlo. The bias factors are calculated from the set of Monte

Carlo samples used in this analysis, shown in Table D.1. The Monte Carlo samples

Run Detector T pair events generated
Number | Configuration at Ecy = 91.2 GeV

1520 1994 600000

1536 1995 375000

1560 1994 800000

1565 1992 500000

Table D.1: The Monte Carlo samples used in the bias factor calculation.

used three different detector configurations, slightly different branching ratios and run
1520 used a different electromagnetic shower algorithm than the other Monte Carlo
samples. These differences will be shown to have a negligible effect on the decay
modes between the four different Monte Carlo samples.

The bias factor of decay mode i (FP"#) is defined as

) Bafter
bias 7
}71' *= Bbefore ’ (D ]-)
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where BPefore (Bafter) g the branching ratio of decay i before (after) the 7 pair sele-
ction. The branching ratios are defined by equation 7.1, thus equation D.1 is written

as

after after
Fbias o N i / N T
i o before before
Nbefore /\TE

(D.2)

where N2fter (NPefore) i the number of decays i after (before) the T pair selection and
Nafter (ybefore) i the total number of taus after (before) the 7 pair selection. The
uncertainty on the bias factor is calculated as the binomial error on the numerator
and denominator of equation D.2. However, this estimate slightly overestimates the
true error, as correlations between the branching ratios in the numerator and denom-
inator are ignored. The bias factors from each Monte Carlo simulation are shown in
Table D.2. In general, the bias factors from the four different Monte Carlo samples
are consistent with each other within their statistical uncertainties. The bias factors
for the decay modes measured in this work are shown in Table D.3.

The Monte Carlo used in this analysis was created with a centre-of-mass energy
of 91.2 GeV, the Z° mass. However, some of the data collected by the OPAL detector
between 1991 and 1995 was at energies slightly below and above the Z° mass. Conse-
quently, to estimate any possible systematic variations on the bias factor due to the
different energies, the requirements dependent on the centre-of-mass energy in Monte
Carlo run 1560 were varied. This was done by rescaling the centre-of-mass energy by
up to £1.0% and recalculating the bias factor for each decay mode. The results are
shown in Table D.4. Similar results were observed for the other Monte Carlo samples.
As the centre-of-mass energy is scaled, the central values of the Monte Carlo 1560
bias factors change less than the statistical error. As a result, the statistical errors

on the bias factors are considered sufficient to describe the total bias factor errors.
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Decay Mode MC1520 MC1536 MC1560 MC1565

T — e Devs 1.004 4 0.003  1.004 +0.004 1.007 £0.003  1.003 & 0.004
A Tt 77 0.983 +0.004 0.987 £0.004 0.985 +0.003 0.984 + 0.004
TT ST 0.987 £ 0.004 0.991 £0.005 0.992 +£0.004 0.994 & 0.005
= =1 70, 1.0214+0.003 1.019 +0.003 1.018 £0.002 1.018 + 0.003
T~ s atrTu, 0.993 + 0.005 0.990 +0.006 0.988 +0.004  0.987 & 0.005
7~ = r 20, 1.016 +0.005 1.013 +0.006 1.011 +£0.004 1.016 & 0.005
T~ =K v, 1.008 +0.019  1.017 +0.023  0.996 +0.016  0.990 + 0.020
= s rtr a0, 0.959 + 0.007  0.958 £0.009 0.964 +0.006 0.971 & 0.008
7~ = 7 310, 1.008 +-0.012  0.998 +0.016  1.003 £0.011  1.006 & 0.014
T~ = 3r 21ty 0.782+0.063 0.793 £0.079 0.779 £0.054  0.753 & 0.067
7= = 3n2ntn0u, 0.827+0.114 0.625+0.149 0.799 +£0.103  0.758 & 0.132
7~ > r atr 2n0, 0.944 +£0.026  0.967 £0.030 0.934 £0.021  0.947 £ 0.027
= »r atn 370, 0.832+0.075 0.928 £0.060 0.9344+0.041 0.912 4 0.051
7~ = K270, 1.01140.072  1.042+0.067 1.035 +£0.047 1.014 £ 0.060
7~ =+ K KIn0u, 1.010 4+ 0.054  1.027 £ 0.075  0.957 £0.053  1.020 + 0.067
= = K=K§(270)n00, 0.992 +0.103 1.109 +0.147 0.955 +0.102 1.128 4+ 0.123
7~ — K™K (other)n%u, 1.002 4 0.066  0.952 +0.094 0.975 £0.065  0.937 £ 0.077
7= = 7~ 70n(2Y)v- 1.090 4+ 0.062  1.044 +0.076  0.991 +£0.052  1.047 & 0.068
= = 7~ 70370, 1.037+0.067 1.013 +0.084 0.960 +0.058 1.035 =+ 0.072
7~ - 1 K{K{v, 1.11440.089  0.959 +0.130  0.960 £0.091  0.976 £ 0.111
= =7 K Kty, 1.01140.039  1.025+0.052  0.999 +£0.036  0.975 & 0.046
= = 1Ko, 1.0144+0.051 0.978 +0.044 1.032+£0.030 0.963 & 0.040
77 = 1 70y, 1.033 +0.063  1.035+0.081 1.012 £0.056 1.020 £ 0.071
= = 1 n'KE(2n%)v, 1.168 +£0.092 1.019 +0.079  1.025 4 0.057  0.994 + 0.073
= — 7w~ n0KZ (other)v, 0.994 +0.061 0.978 £0.053 0.987 £0.036  0.990 + 0.045
7= — - 7On(other)v, 0.957 £0.072  0.977 £0.087 0.962 +0.060 1.004 & 0.077
T~ = (n7K) v, 0.965 +0.037  0.975+0.032 0.981 £0.022 0.984 4 0.027
= - K K%, 1.0144+0.040 0.993 +0.069 1.010 +0.048 1.032 = 0.060
= = K K%(2x0)v, 1.0674+0.076  1.073 £0.131  1.091 +0.088 1.032 £ 0.118
7= — K~ K% (other)v, 0.996 + 0.049  0.968 £0.082 1.011 £0.055 1.027 £ 0.070
T~ = K* - K-, 0.988 +0.023 1.011+0.029 1.024 £0.020 1.010 & 0.026
= > K* 5 1Ky, 0.997 £ 0.024  0.989 £0.030 0.973 £0.021  0.996 & 0.026
= = K* » 7 K2(2rO), 1.059 +0.044 1.050 +0.055 1.031 £0.039  1.085 =+ 0.048
7= = K* = n~ K2 (other)v, 1.003 4 0.027  0.951 +0.035 0.992 +£0.024  0.977 £ 0.031
= 7 KYK2(2n0)v, 1.0434+0.122 1.043+£0.162 1.053+0.109 0.982 + 0.136
= — 7~ KYKY (other)v- 0.942 4 0.077  1.005+0.101  0.954 +0.070  0.948 + 0.090
= = = K§(2n?)KS(270) v, 0.920 +0.369 1.267 £0.392 1.021 40.322  1.032 4 0.417
7= = nK§(2n%)KS (other)v, 1.00540.136  1.037 £0.170  0.924 £0.135 1.085 =+ 0.166
7~ — 7~ KY(other)K3(other)v,  0.906 4 0.125 0.964 +-0.184 0.914+0.120  0.750 + 0.177

Table D.2: The bias factors for all decay modes in each Monte Carlo sample. The
errors shown are statistical.

Table D.3: The bias factors for the decay modes measured in this analysis.

Signal Channel

Bias Factor

T = X Ky,
T — W’KOI/T
T — W*KO > 17%,
77 = KK > 07%;,

0.991 £ 0.007
0.986 £ 0.009

0.995 £+ 0.015
0.999 £+ 0.015
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Decay Mode -1.0% -0.5% Nominal +0.5% +1.0%
TT — e Vevs 1.007 £ 0.003  1.007 £ 0.003  1.007 £ 0.003  1.007 £0.003  1.006 & 0.003
R T 77 0.984 +£0.003 0.985+0.003 0.985+0.003 0.986 +0.003 0.986 & 0.003
T s TTur 0.992 £0.004 0.992+0.004 0.992+0.004 0.992 4+0.004  0.992 + 0.004
= = 1 70, 1.019 £0.002 1.018 +£0.002 1.018 £0.002 1.018 £0.002 1.018 =& 0.002
T~ s ratnTy, 0.988 +£0.004 0.988 +0.004 0.988 +0.004 0.988 +-0.004  0.987 4 0.004
= = 1 21%, 1.011 £ 0.004 1.011+0.004 1.011 +0.004 1.011+0.004 1.011 =+ 0.004
T~ =K v, 0.996 £0.016  0.996 +0.016  0.996 +0.016  0.996 - 0.016  0.996 & 0.016
= st a0, 0.965 +0.006  0.965 + 0.006 0.964 +0.006 0.964 +0.006  0.964 + 0.006
7= — 7371, 1.003 £0.011  1.004 +0.011  1.003 £0.011 1.004 +0.011  1.003 4 0.011
T~ = 3n 27ty 0.780 £0.054 0.780 £0.054 0.779 £0.054 0.779 +0.054  0.779 & 0.054
= = 3n 2nt 00, 0.800 +0.103  0.800 +0.103  0.799 +0.103 0.799 +0.103  0.799 & 0.103
= s r atr 270, 0.935 £0.021  0.935+0.021 0.934 £0.021  0.934 4+0.021  0.934 4 0.021
7~ > r ntn 370, 0.933 £0.041 0.932+0.041 0.934 £0.041 0.934 +0.041  0.934 4 0.041
= = K 210, 1.035 +£0.047  1.035 4+ 0.047 1.035+0.047 1.034 +0.047 1.032 4 0.047
77 = K"K97m0u, 0.956 £0.053  0.955+0.053 0.957 £ 0.053 0.957 +0.053  0.956 & 0.053
7~ = K K%(270)n00, 0.949 £0.102 0.948 £0.102 0.955+0.102 0.954 4+0.102  0.954 4 0.102
= — K~KS(other)r%v, 0.975 £0.065 0.975+0.065 0.975+0.065 0.97540.065 0.974 + 0.065
77 = 7702y, 0.992 £0.052  0.992 +£0.052 0.991 +0.052 0.991 4+0.052  0.991 4 0.052
7= = 770370, 0.959 £0.058  0.958 +0.058 0.960 & 0.058  0.960 4-0.058  0.960 & 0.058
= — 1 K{K{v, 0.966 £0.091  0.966 +0.091 0.960 +0.091 0.960 4+ 0.091  0.960 & 0.091
77 - 7 K Ktu, 1.000 +0.036  1.000 +0.036  0.999 +0.036  0.999 +0.036  0.998 & 0.036
= =1 K%, 1.032 £0.030 1.0324+0.030 1.032+0.030 1.031 +£0.030 1.032 =+ 0.030
= = 110, 1.012 £ 0.056  1.01240.056 1.012+0.056 1.011 +£0.056 1.011 + 0.056
= = 1K (2n0)v, 1.026 +£0.057  1.026 £ 0.057  1.025 +£0.057 1.025 £0.057 1.025 4 0.057
7= — n~ nKS(other)v, 0.987 £0.036  0.987 +0.036 0.987+0.036 0.986 +-0.036  0.986 + 0.036
7= — m~70n(other)v, 0.962 £0.060 0.962 +0.060 0.962+0.060 0.964 +0.060 0.963 & 0.060
T~ = (77K) v, 0.981 £0.022 0.981 +£0.022 0.981+0.022 0.981 40.022  0.982 4 0.022
T~ - K Kovu, 1.011 4+ 0.048 1.011+0.048 1.010 +0.048 1.010 £0.048 1.010 & 0.048
= = K~K%(©2nr0)v, 1.092 +0.088 1.091 +0.088 1.091 +0.088 1.091 +0.088 1.090 + 0.088
7= — K~ K% (other)v, 1.012 £ 0.055 1.0114+0.055 1.011+0.055 1.011+0.055 1.010 & 0.055
T~ = K* - K 7100, 1.023 £0.020  1.024+0.020 1.024 £0.020 1.024 £0.020 1.024 £ 0.020
77 5 K* 5 1 Ko, 0.973 £0.021  0.973+£0.021 0.973+£0.021 0.9724+0.021  0.972 4 0.021
= = K* = - K2(2nO)v, 1.032 £0.039  1.031+£0.039 1.031+0.039 1.031+£0.039 1.030 & 0.039
7= = K* = n~KS(other)y;  0.993+0.024  0.992+0.024 0.992+0.024  0.992 +0.024  0.991 + 0.024
= = " KYKZ(2nO) v, 1.054 £0.109  1.054 +£0.109 1.053 £0.109 1.053 £0.109 1.053 & 0.109
7= = - KYK(other)v, 0.954 £0.070  0.954+0.070 0.954+0.070 0.954 4+0.070  0.953 & 0.070
= = - K§(2r%)K3(27%)r,  1.0224+0.322 1.021+0.322 1.021+0.322 1.021 +£0.322  1.020 + 0.322
7= = - K§(2n%)KS (other)r, 0.925+0.135 0.925+0.135 0.924£0.135 0.924 £0.135  0.924 £0.135
7~ — n~ K%(other)K%(other)v, 0.915 +0.120  0.915+0.120  0.914£0.120 0.914 +£0.120  0.914 +0.120

Table D.4: The bias factors for Monte Carlo 1560 with the centre-of-mass energy
varied by up to +1%. The errors shown are statistical.
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Appendix E

Error on an inverse matrix

The inverse of the efficiency matrix is used to extract the branching ratios. Conse-
quently, the uncertainty on each of the inverse matrix elements is needed to evaluate
the systematic errors on the branching ratios. These uncertainties are evaluated from
the known uncertainties of the efficiency matrix using the following method [65].
Often the errors of an inverted matrix are estimated by ignoring the off-diagonal el-
ements of the covariance matrix. This is the correct procedure only if the quantities
involved are independent of each other.

If one considers a nonsingular matrix [e] with elements €;; + 0;; then
[e][e] ' =1 (E.1)

where [¢]™! is the inverse matrix with elements ¢;;' 0,1 and L is the unitary matrix.
ij

Taking the derivative of both sides of this equation yields
Slelle] ™ + [e)[e] ™" = [0] (E.2)

or

5t = — (e 3lel[d ) (E:3)
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Thus the uncertainty on each element of [¢] * (o.-1) is given by
ij

o ]? = |[e21] 8leqs] e ]| (E.4)

€ij ia
where the ¢;; are all uncorrelated and the sum is over repeated indices unless otherwise

noted. Substituting d[e.s] = [0ap] into equation E.4 gives

2

(o] = [l6a'] (o0 e 1]

(E.5)
This equation is a reasonable approximation but is incorrect. It neglects any correla-
tions between the elements of the inverse efficiency matrix, which can be significant.
The following calculation shows how equation E.5 can be modified to include the
off-diagonal elements of the inverse efficiency matrix.

It is always possible to write the inverse of a matrix in terms of its cofactors
divided by the determinant, in which each element of an inverse matrix has elements

of the original matrix in common. Thus the inverse matrix elements are correlated.

As above, consider a matrix [¢] with elements ¢;; and in the most general case

. . . -1 .
covariances denoted by cov(esp,€s). The inverse matrix elements ¢, in general,
have covariances cov(e, 5, €, ), which can be written as,

1 1\ _ 1 -1 -1 _—1 _
COV(€a3y € ) = €ai €55 €ar, €1 COV (€3, €R1).- (E.6)

The full derivation is given in [65]. If there are no correlations between the elements

of the efficiency matrix then
COV(Eija €rl) = [Uij]Q(;ik(;jla (E.7)
with no summation over repeated indices. Hence the full set of covariances of € ! is

given by

op €ar ) = (leai e ]) [o3]” ([ej51l€51) (E-8)

cov(e
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where there is no sum over repeated indices inside the parenthesis. Consequently, the

variance of an element of the inverse efficiency matrix is written as

(Tap]” = cov(€ap, €0y ) = [€ai ] 'lowi]’ €551 (E-9)

Equation E.9 gives the expression for the uncertainty on element e;jl in terms of the

~! and the original uncertainties of the matrix [e].

elements of the inverse matrix [e]
Note that each term of equation E.9 is squared before making the sum whereas in

equation E.5 the sum is done first.
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