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We study quintessence models using low energy supergravity inspired from string theory. We consider
effective supergravity with two scalesg, the string scale, anohp,, the Planck scale, and show that quintes-
sence naturally arises from a supersymmetry breaking hidden sector. As long as supersymmetry is broken by
the F-term of a Polonyi-like field coupled to the quintessence field in thalétapotential we find that the
Ratra-Peebles potential and its supergravity version are generic predictions. This requires that the string scale
decouples from the Planck scateg<mp, . In the context of supergravity, the potential possesses a minimum
induced by the supergravity corrections to the Ratra-Peebles potential at low redshifts. We study the physical
consequences of the presence of this minimum.
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[. INTRODUCTION fundamental principle. Therefore, the very smalhnish-
ing?) value of the cosmological constant remains a mystery.
The cosmological constant problem is a long standingThe previous considerations Ie_d many people to believe that
problem in theoretical physidd]. Although it first appeared ItS value could be understood in the framework of the most
in the context of general relativity, it is now clear that this Promising theory of high energy that was nowadays at dis-

problem is also deeply rooted in high energy physics. Thefﬁgﬁ;uséﬂ?gomgog?[gﬁ:,tg":’hvev('f:;“(s l?{ﬁgf\i’teﬁ“tg?tbtehiﬁoﬁly
ing in our universe effectively acts as a bare cosmologic .here this theoretical prejudice can be convincingly justi-
g y gicay;

constant of the Einstein equations'. The total contribution that = 5, explanation for this puzzling question has recently be-
we measure is therefore a combination of these two termgome even more necessary, since a combination of astro-
Since a naive argument leads to a zero-point energy Comp@hysical observations, including, among others, measure-
rable to the Planck energy, and since astrophysical observgnents of the Hubble diagram with type la supernoj@k
tions tell us that the contribution is of the order of the critical seem to indicate that a form of dark energy now dominates
energy density, an extraordinary cancellation is needed if ongur universe; also see Refg—13. This has led to the idea
wishes to reconcile experiments with theories. A second facsf quintessence. In this framework, the cosmological con-
became more evident after the advent of supersymmetrgtant vanishes exactly, due to an as yet unknown mechanism,
(SUSY) [2]. Indeed, in global SUSY, the zero-point energy isand a scalar field is responsible for the acceleration of the
guaranteed to vanisf8]. This raises the hope of finding a expansion of the univerdd4—1§. In the same manner as
mechanism where the cosmological constant would be exor the vanishing cosmological constant, it seems likely that
actly zero. However, this explanation fails because SUSYhe physical nature of this field can be understood within the
has to be broken in order to explain the heavy masses of thigamework of string theory, or at least within a framework of
superpartners. This means that the cosmological constant higories describing its low energy limit. In this paper, we will
to be at least of the order of the SUSY breaking scale, i.e., aidopt this point of view.
least of order 1TeV, a value which still requires a very ac- Let us now recall some of the main ingredients of an
curate fine-tuning. On the other hand, when gravity is takereffective SUGRA description of string theory. The effective
into account, leading to supergravi(UGRA), the funda- action describes the low energy degrees of freedom which
mental state does not necessarily have a zero energy. In thedn be viewed as massless string excitations. By computing
case, when SUSY is broken, there is still the hope of findingstring scattering amplitudes, one can build an order by order
a vanishing result. With the present state of the art, this reperturbative expansion in the massless fields. This perturba-
quires again a fine-tuning, and cannot be derived from aive expansion possesses two characteristic scales: the string

scalemg, and the compactification radil, springing from

the necessary compactification from ten to four dimensions.

*Email address: Philippe.Brax@cern.ch These two scales can be combined to form the Planck scale
"Email address: jmartin@iap.fr mp; which naturally appears at string tree level and param-
*Email address: Alain.Riazuelo@obspm.fr etrizes the SUGRA expansion. The effective Lagrangian ap-
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pears as a double series in the string scale and the Plan&UGRA where the assumptians=mp, has been relaxed.
scale. In the context of heterotic theory, both these scales ak&/e prove that, at small redshifts, a generic form of the po-
large and almost coincide. In new scenarios involving type ltential is precisely the one found in Ref0,21]. In addi-
strings andD branes there can be a decoupling regimg  tion, it is also established that the corrections no longer
<mp, [19]. We will show that, in this context, the SUGRA modify the shape of the potential, which now really appears
potential introduced in Ref§20,21 is a prediction of the @s a prediction and not as the resul_t of a particulgr_model. In
theory (for another SUGRA model of quintessence, see RefS€C. V. we study how SUSY breaking by moduli fields can
[22]). affect_the for_m_ of _the potential. Again, it is found that the
It is also of the utmost importance to understand whichdeneric prediction is not changed. Finally, since the SUGRA

role SUSY breaking plays in the determination of the shapepOtentials generically possess a minimum, in Sec. VI we

of the quintessence potential. As already mentioned aboVétudy the observational consequences of this fact. It is dem-

. : . . onstrated that the quintessence field oscillates at the bottom
particle physics experiments require that SUSY must be bro-f its potential but. depending on the precise depth of this
ken at a scale at least of the order of 1TeV. This is notori- b ; Ol Cep g P b

- : . - . minimum, the field may or may not have begun its oscilla-
ously difficult t.o achieve n explicit string models_. Indeed, tions today. It is also shown that in this framework it is
such a breaking must arise from nonperturbative EﬁeCtﬁnlikely that the minimum of this potential can be put to

which are often difficult to control. Despite the absence of,q .4

convincing models of SUSY breaking, one can use a more

phenomenological approach and parametrize the SUSY \iopgL BUILDING AND EFFECTIVE SUPERGRAVITY
breaking sector b¥ terms responsible for the breakif2g].

This is the approach we will follow. In particular, one usually ~ One of the main advantages of the quintessence scenario
assumes that SUSY is broken Byterms of the dilatorsand  is that the coincidence problem can be solved, i.e., it is not
the moduli fieldsT' measuring the compactification scales. Neécessary to fine-tune the initial conditions at reheating in
In new type | models one can also consider the blowugPrder to understand why the dark energy starts dominating
modes associated with fixed points of orbifoli1]. This the matter content of the Universe nowadays. This is due to
breaking is supposed to occur in a hidden sector only gravithe fact that for a potential with the shajief]

tationally coupled to the visible sector. At the SUGRA level

one generally assumes that the cosmological constant van- V(Q)=
ishes, requiring that §+9S)?|Fg?+3=2 (T'+T)2?|Fi|? Q*
=3m3,,/ k, wherems,, is the gravitino mass. This relation is ] ] ] )
imposed in order to cancel large contributions when thdtypically), the Klein-Gordon equation possesseealing
breaking scale is of order of the a few TeV, a mere 60 order§olution[26] which is an attractor, also referred as a “track-
of magnitude larger than the critical density of the universeind solution”[17]. This means that, whatever the initial con-

In the context of quintessence we will reconsider the previditions are, in an allowed range encompassing more than 100
ous relation and analyze contributions which lead to quintesorders of magnitude, a given solution of the Klein-Gordon
sential potentials. In particular, and in order to comply with€duation will always tend toward the attractor before the
the existence of an attractor for the quintessence field, wBresent epoch. When the field is on tracks, it satisfies the
will have to consider that quintessence arises from a hiddefduation[14,17]

sector. This guarantees that the very small mass of the quin- )

tessence field does not lead to the existence of a long-range d*v(Q) _ 9 H2 atl 1— wé) @)

4+ a

@

fifth force [25]. Moreover, we will see that quintessence can dQ? 2
be most easily achieved in a SUSY breaking sector. In order
to guarantee that the sparticle masses do not depend stronglfereH is the Hubble parameter, and, is the equation of
on the quintessence field and therefore on the evolution oftate parameter, i.e., the pressure to energy density ratio of
the universe, we find that the hidden sectors responsible fahe scalar field. This is an important equation, because it
quintessence and the superpartner masses must differ.  allows to understand the different regimes undergone by the
This paper is organized as follows. In Sec. Il, we quickly quintessence field during cosmic evolution. Therefore, it can
review how the effective SUGRA inspired from string theory be used as a hint to which kind of physics must be used in
can be used to calculate the shape of the quintessence potemeer to build a realistic and successful model of quintes-
tial. The details could have been dropped in a paper intendesence. Equatiof2) has the following consequences. First, it
for high energy physicists, but we think that they are usefuimplies that the mass of the quintessence field now is of the
in order to render this paper self-consistent for a more generder of Hy=10 *3GeV. Such a small mass entails that di-
eral audience. In Sec. Ill, we study the SUGRA model pro-rect couplings between the quintessence field and standard
posed in Ref[20] with mg=mp;, which leads to the so- model fields have to be extremely suppressed. This suggests
called Ratra-Peebles potent[d4] of Eq. (1). In particular, that the quintessence field belongs to a hidden sector of the
we study the corrections to this model, and show that obsentheory in order to avoid direct couplings with the standard
able quantities like the equation of state parameter and its1odel fields, which would result in the existence of a non-
derivative are sensitive to these corrections. In Sec. IV, webserved long-range interaction. Second, since the second
study the generic shape of a potential arising from effectivederivative of the potential is approximatively given by

083505-2



QUINTESSENCE WITH TWO ENERGY SCALES PHYSICAL REVIEW b4 083505

=po/Q? and since, when the field is about to dominate, wedescription of quintessence requires an understanding of
also haveszpQ/mﬁ,l, we deduce that, at small redshift, nonperturbative effects either at the field theoretical level or

. . . . even at the string level. In the following we shall use a more
Q=mp, . This means that supergravity effects will be impor- modest approach, and remain within a perturbative settin
tant at small redshifts, for example for the calculation of the pp ’ P 9

numerical value of the equation of state. In addition, we carfVNere the Lagrangian is expanded in inverse mass powers.
also estimate the value of the scalkin the potential. One We will pay particular attention to the sensitivity of the
has physical observables to the degree of the truncated perturba-

tive series. In particular we will comment on the stability of
M =(pmg,) Y4+ (3)  the physical observables under a change of the truncation
degree. The only nonperturbative inputs will be the SUSY

wherep, is the critical energy density. Third, we know that, breaking parameters.

initially, the value of the energy density of the dark energy Let us first consider the early universe evolution of the
must be between the value of the background energy densiguintessence field. Setting the initial conditions at reheating,
at reheating, i-e-Preh: 100! Ge\/‘" and the background en- after inflation, |mplles that for most of the time the quintes-
ergy density today, i.ep.=10"*" GeV*. Starting from this sence field takes values which are negligible with respect to
range guarantees that the fi€dwill join the attractor before the Planck mass. We assume that the expectation values of
now. This range for the initial energy density of the darkthe other fields are also negligible in comparison with the
energy corresponds to very small values of the field itselfPlanck mass. This means that, in this context, the most gen-
Q<mp,. More precisely, if the field starts at rest, we ini- eral Lagrangian is given by thi=1 (globa) SUSY La-
tially have 10 1%#m, <Q<mp,. Unless the field starts grangianfi.e., theN=1 SUGRA Lagrangian where terms of
with an energy density of the same order as today’s criticaprderO(mg;") are neglecteld

density, this implies that supergravity effects are negligible at

the beginning of the evolution, and that this epoch can be EZJ d%e K(q)ikTeZQka,q)ik)J,-f d2o[W(d™*)+H.c.]

well described by means of a globally supersymmetric

theory.

Having identified the orders of magnitude of the value of > f d20 > fap(P1)[ Wia* Wi+ H.C1

the scalar field throughout the cosmic evolution, we can K ab

study the physics which is necessary to describe these differ-

ent regimes. We are going to consider an effective SUGRA + E & | d*oVvy. (5)
theory and the constraints imposed by quintessence. In par- keU(1)

ticular, as mentioned above, we assume explicitly that thgso .5 ise of the possible large hierarchy between the string

quintessence field belongs to a hidden sector of the theor)écale and the Planck scale, théhier potentialk and the
We assume that the effective action is a double series expa%- ’

ion in the Planck din th X | he PI uperpotentialW are now series in the inverse string scale.
sion in the Planck mass and in the string scale. The Plancget g now focus on the hidden sector containing the quin-
massmp,; and the string scaleng area priori two indepen-

; o tessence field. For simplicity, and since it does not change
dent scales. The only experimental constraint is tmat

: , ntal our general argument, we will takig,,(®")=6,,. Let us
>1TeV in order not to be in conflict with the measurementsyaqcribe this Lagrangian in more detail. In the previous ex-

erformed by the accelerators. In heterotic string inspired . Krok n oy . ) o o
%odels it wa)é often assumed thag=mp, becauseg of tr?e _pressmn,CD"‘(x ’0!9) IS a chiral superﬂ_eld "’!”Vk(x .0,9)
constraints on the perturbative unification scale. Howeverjsoievr(:'t(;tzlrssupemeId which can be written in terms of com-
recently, models where the string scale is much lower that‘?

T e hostea} Geneal Mese 0.k, = )+ BOW ) 46,

m2,=m3V, (4) Vi(X5,6,0)= ; — 00" OV (5, (X) +1 000N 5(X¥)

whereVy is the volume of the six compactified dimensions. L 1

The constraint thaing™> 1TeV translates into a constraint on —1000N(X)+ 56000Dka(xK) Tak

the volumeVg<10'* GeV ©. As mentioned above, it was

recently shown that some of the compactified dimensions

can be largéin comparison to the Planck lengttesulting in =2 ViaTaks ()

a string scale much lower than the Planck scale. In this paper, 2

for the moment, we leavenp; andmg free. We will discuss  where the vector superfield has been written in the Wess-

the different cases later on. Zumino gauge. We assume that the above Lagrangian is in-
Because of the large valu@=mp, of the quintessence variant under the gauge group acting on thek indices of

field today, it appears that one would need a full understandthe chiral superfields:

ing of the complete SUGRA action, i.e., one would need to

take into account alQ/mp,, and Q/mg terms in the La- _

grangian. As a result, one would expect that an appropriate G l_k[ GexU)x. ®

083505-3



PHILIPPE BRAX, JROME MARTIN, AND ALAIN RIAZUELO PHYSICAL REVIEW D 64 083505

This gauge group might become strongly coupled and lead tavhich is U(1), this means that onéor many of the scalar
SUSY breaking via gaugino condensation. In the previousields acquire a nonvanishing vacuum expectation value, ac-
expressionsk is a group index, i.e.V\ is the superfield cording to

charged under the grou@,. Under this groupG,, many

chiral superfields can be charged. The indém ®'¥ labels K ikt

the different superfields that are charged under the group §k=—2§i: Yk mTka‘P . keU(D). (12
labeled by the indek. The matrices,, are the generator of ®

the gauge groufs, and the indexaruns from 1 to dimGy).  The generatord,, give the charges of the fields under the
In the third term of the above Lagrangiaiy,, is given by  consideredU(1). Typically, one expects ¢'*)= \£,. This
Wyao=—(1/4)DDe VkaD ,eVka, whereD is the supersym- means that théJ(1) gauge symmetries are broken at that
metric derivative. The extrbl(1)y is an anomalous Abelian scale. In the heterotic case this fixes the breaking at the
factor associated with a Fayet-lliopoulos term in the La-Grand Unification Theory scale, while in the type | models
grangian in order to cancel the anomaly by the Greenthe breaking scale is not specified as it is a modulus. We
Schwarz mechanisfi28]. In heterotic string theory there is a conclude that th® part of the scalar potential vanishes, i.e.,
single anomalou8)(1)x [29]. In type | string theories there

may be several anomalol(1)’s depending on the geom- Vp=0. (13

etry of the compactifying mamfol@Zt_l]. The last term in '.{he The nonzero contributions to the potential come from Ehe
Lagrangian represents the Fayet-lliopoulos term whkigris terms

a constant different for each group, provided that this group The previous considerations are valid at very high red-

is U(1). A priori, the scale given by the Fayet—lhopouloslshift_ However, at small redshift, one needs to take into ac-

term is expected to be of the order of the string scale. This IS ount the effects of SUGRA. since the values of the quintes-
the case in the heterotic string theory for the unique Fayet: ’

I los t for th lous (1 In t | stri sence field are not negligible compared to the Planck mass.
lopoulos term for the anomalo (D)x- In ype 1 stning SUGRA, the form of the scalar potential is modified, and
theories the Fayet-lliopoulos terms are associated with

blowing up moduli of orbifold singularities in the compacti- ads
fication space. Their values parametrize a flat direction with 1
no potential, and are therefore left unfixed at the perturbative V= _zeG(GAGA_3)+VDi (14)
level of string theory. K

Once the Kaler functionK and the superpotentidV of ) an 2 )
the hidden sector are given, the Lagrandieig. (5)] is com- ~ Wherex=8m/mg; andG=«K+ In(«’W). In the previous
pletely fixed. In particular, the scalar potential can be calcuexpressionG, is defined by
lated. It contains two contributions: one comes from Ehe

terms and the other comes from tBeterms. Explicitly, the _dG K 1 IW

potential is given by Ga= P “3 oA W s (19
A 1 G aK 1 aw'

V=Ve+Vp=KagFA'F®+ 2 > DiDia  (9) Ga= =kt — (16)
ka (9 (PAT a ()DAT WT (9 (PAT

in the low energy limit. In the previous expression, we intro-and the indices are raised and lowered with the help of the
duced a collective indeXA=(ik). The metricKag and the following metric:

field F5 can be expressed as
Ga; 7" K (17
=———"——=KKaB-
92K T B gprtgeB B
Kag=——r—, F =-K® , (10)
9 A9 B 9 Bt

The other terms s cancel out because the superpotential is
a holomorphic functionA priori, this potential is no longer
respectively, and th® term is given by positive definite. In particular, there is a negative contribu-
tion coming from the superpotential.
& aK Let us come to grips with the quintessence potential more
_ k ikt K . . . .
Dya=— 5—2 gk—ikTTkacp' . (11)  precisely. According to the previous discussion, we only fo-
! de cus our attention to the part of the scalar potential. A first
attempt to derive the Ratra-Peebles potenta. (1)] from
In the last equation, we have assumed that the gauge grotipst principles was made in Ref27] and then in Refs.
considered idJ(1); otherwise the expression would be the [20,21]. In order to see clearly the difference between this
same except that the Fayet-lliopoulos term would not beapproach and the approach advocated in the present paper,
present. we first quickly review the results obtained in R€f20,21].
We now assume that SUSY is not broken by théerms.  Then we will study in detail new properties of the model
This implies that(D,,)=0. If k corresponds to a group presented in Ref21]. We will argue that these new proper-
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ties are in fact a problem, and we will see how, generically, ||:Y|2:<22>2:pc, (20)
they can be avoided in the context of theories with two dif-
ferent scales. which fixes the scale at which SUSY is broken in the quin-
tessence sector. We see that this scale is very small in com-
1. A SUGRA MODEL LEADING parison with the “natural scale” of SUSY breaking, i.e.,
TO THE RATRA-PEEBLES POTENTIAL =1TeV.
Actually, this is the main motivation for introducing two
In the model presented in Ref@0,21, it is assumed that hidden sectors. It is convenient to break SUSY in a hidden

ms=mp,. Contrary to the strategy used in Sec. IV, which is S€ctor since, from a phenomenological point of view, it
to see which kind of potential is obtained from a genericS€ems difficult to break SUSY in the observable sector. In-

theory, the idea utilized in Ref§20,21 was to study the deed, for example, a spontaneous breaking mechanism in the
required properties of the theory such that the desired poterfPservable sector like the O'Raifeartaigh mechan(s]
tial (typically the Ratra-Peebles potenjid the result of the Would not lead to a spectrum in accordance with the con-
calculations described above. Below, we improve the presersiraints on the masses of the superpartners. Conversely, if the
tation of the model of Ref§20,21], in particular we describe hidden sector contains a Polonyi figkinot the same as the
it in a language closer to high energy physics than the on8N€ contained in the quintessence sector, see alsmah
used in Refs[20,21]. that (Fp)=mgg and if the cosmological constant problem is
We assume that there are three sectors in the theory. O@ssumed to be solve@s it is always the case when one
of them is the observable sector where all the known pardiscusses quintessence, see the introdugtitien m3g
ticles and their superpartners live and the two other sectors MzMp, Wherems, is the gravitino mass. This will give a
are hidden. The first hidden sector is the “quintessence sed¢nass of ordemg, to the superpartners. Since we expect
tor” already mentioned above, where the quintessence fielths,=1TeV, this implies mgg= 10'°GeV and (Fp)
lives. The second one is the “broken sector,” introduced=10?° Ge\?, a value far fronF. . Therefore, it is necessary
such that SUSY should be broken in a satisfactory mannethat the observable sector should be different from the bro-
We have seen previously that, generically, due to the presken sector in order to have a correct spectrum, and it is also
ence of a Fayet-lliopoulos term and to the vanishing of thenecessary that the quintessence sector should be different
potential coming form thé® terms, at least one scalar field from the broken sector in order to have a value finyg of
acquires a nonvanishing vacuum expectation value. Let uthe correct order of magnitude. In addition, the quintessence
call this fieldZ. Thus we havéZ)+ 0. This field belongs to sector cannot be the observable sector, since this would im-
the quintessence sector. In addition, this sector is required tly the presence of a long range fifth force not seen in the
contain a fieldY such that dyW)# 0. This field is similar to  data. In order to obtain the potential which is valid not only
a Polonyi field[30], although we do not assume that the at the beginning of the evolution but everywhere, we need to
superpotential is linear in this field. We also assume thatnsert the Kaler potential and superpotential given in Egs.
dyW, i.e., Fy in global SUSY, does not depend @ The (18) and (19 in the equation giving the scalar potential in
Kahler potential and the superpotential of R¢R0,21 have ~ SUGRA[EQ.(14)]. We find that the only contributions which
the forms lead to non-vanishing terms in the scalar potential are

1 o R AL
K=—IYI2QQP+K(Y[* ... 2o, Poro, Popd, (18) Gyv=xKyy, Fy=-—3—«WKy#0, (2]
Pl

_ where W stands for the total superpotenttalhe vacuum
W=Y Z%+Wq(Pq) +Whro Ppro) + Wond Pobs (19 expectation value of the last term is in fact just=
—JWI/dY. This is due to the vanishing of the Polonyi-like
field (Y)=0 and the quadratic dependence of thehlkéa
e%otential onY. Finally, we arrive at a positive definite expres-
on

where®q, @y, and®,sdenote superfields in the quintes-
sence, broken, and observable sectors respectigly.and
W,,s are the superpotentials in the broken and observabl

sectors.WQEY22+\7V(<I>Q) is the superpotential in the -

quintessence sector. We ha{M/q)=(Wy,9 =0 but (W) V=eKKYY(Z2)2, (22)

#0. The condition(Wy)=0 guarantees that the SUGRA

quintessence potential is positive definite. Then, in the conwhere we have used the fact that thderms are not modi-
text of global SUSY, the scalar potential i¥(Q)  fied in SUGRA and that, as a consequen@é,)=0. The
=mZ}|Fy|?/Q?, i.e., the Ratra-Peebles potential. We seemain difference comes from the exponential factor which
that a crucial point in the argument is the vanishing of therepresents the SUGRA corrections. However, we do not have
term |Y|? in the series defining the Kiter potential. Al-  yet reached our main goal because the kinetic terr® as
though this concerns only one term in the complete seriesstill nonstandard. Indeed, since we are now in a regime
this should probably be considered as an unwanted fine-

tuning, since there is no fundamental reason to expect that——

this term must be absent in a generiC theory. In addition, 1Throughout the paper the auxiliary fields are given byF
sinceM**@=p.mg2 , one has =e“X2F whereF is defined by the second equation of E¢l).
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whereQ=mp,, we can no longer neglect the higher order 10710
terms in Eqs(18) and (19), and thusKog# 1. The Kanler
potential evaluated at the minimum of the potential for the
matter fields reads

K(Q.(Y).(Z),(¢™))=K(Q.(Z).(¢™))

©

C2
=2 2(Inil)Q2”, (23

n=1 Mp

V(Q) (GeV?)

where we have fixed the other hidden sector fields to their
vev. This means that the coefficients, are functions ofZ). 103 102 e 100 10"

In a regime wherdQ<mp,, only the first term will be im- Q (Planck units)

portant, and leads to a canonical kinetic term for quintes-

sence(with c,=1). Therefore, the potential obtained in the  FIG. 1. Comparison between Ratra-Peebles and SUGRA poten-
context of global SUSY is not modified by a redefinition of tials. The Ratra-Peebles potentj&g. (1), solid ling] is simply an

the field. Closer to the Planck scale the contributions frorinverse power law and always decreases. The standard SUGRA

the other terms become non-negligible. To deal with thisPotential[Eq. (26), long-dashed linpossesses an exponential cor-
problem, we define a new scalar fiéiﬂsuch that rection which dominates when the field takes values close to the

Planck mass. The other SUGRA potential we have considered in
Eq. (29 is plotted fora=100 (short-dashed line a=10 (dotted

dQ= \/ZKdiQzézf dQV2Kqo=f(Q), (24) line), anda=—1 (dot-dashed ling All the curves were plotted
with a=2p=6 and normalized so that the quintessence field has a

density paramete® o= 0.7 today, which roughly corresponds to put

] ~ o . the minimum of the potential gi.. In addition, with crosses we

The field Q has a standard kinetic term. Expressi@)  have indicated the position of the quintessence field today. It is clear

=f~1(Q), we obtain the SUGRA potential that the field has almost reached the minimum of its potential in all

(SUGRA) cases.
<ZZ>2
W' particular, one would Iik_e to know whether the observables
(for example, the equation of state parametae strongly
A priori, any functionf(Q) is allowed. WherQ<mp,, the ~ dependent on the higher terms in seris). Therefo_(e, in
form of the functionf is irrelevant, since we know from the order to have a more accurate description of the truieléta
previous SUSY considerations that the potential will be ofpotential, it is interesting to take into account one more term,
the formV(Q)=Q ~2P. If the Kahler function is just given by ~and to choose

K=QQ, then the kinetic terms are standard, and we recover

where the functionf(Q) has been obtained by quadrature.

V('Q):eKK[f‘l(é)l (25)

4
the .SUGRA quintessence potential already studied in Ref. K=|Q|?+ a@, (27)
[20]: ma,

(ZZ>2m$,p wherea is a new free parameter, leading to the following

V(D) =exQ72 (26)  exact functionf(Q):

Q%

2
The physical consequences of the SUGRA corrections are 0= L Q 1+4aQ_
numerous, and the potential given by E26) was studied in 2 m%,l
detail in Refs.[20,21,33. There, it was shown that these
corrections lead to a better agreement with the currently Mp, \/_ Q Q?
available data. In particular, the equation of state parameter + 2\/5"' 2va m_PI+ 1+4am_2
is now given bywo=—0.82, a value closest te 1 than in P
the usual quintessence models. The calculation of the Cogynfortunately, this function cannot be inverted exactly. How-

mic Microwave BackgroundCMB) multipoles in presence ever for our purpose, it is sufficient to find the corrected

of SUGRA quintessence also show that the theoretical pregotential at leading order in the expansion@img,. One
dictions are consistent with the most recent data, in particulaginds

the MAXIMA-1 data[32,33. On the other hand, it is clear

(28)

that we have assumed that tQekinetic terms are canonical. M4+2p K Q4

If this hypothesis is not fulfilled, potentidR6) is modified V(Q)= 3 % &X 5 ( Qz—a—z) . (29
and we see that the form of the potential above strongly Q-a Q 6mp,
depends on the Kaer potential. 3m3,

Let us study how the scalar potential is modified when
more terms in the Kialer potential are taken into account. In Some examples of this potential are plotted in Fig. 1.
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Let us now study how the corrections described above can
affect the global evolution. In particular, as mentioned above,
one would like to know whether observable quantities are
significantly modified by the new terms that we have consid-
ered in the series defining the Kar potential. An interest-
ing way to distinguish between these various models obser-
vationally is to look at the behavior of the quintessence field
equation of state. It can be shoW&4] that, provided one
knows both the matter density of the Universe as well as its
curvature, one can both recover the quintessence equation of
state parametang, as well as its derivative today by study- 0.2 s s s s
ing the luminosity distance vs redshift relation, for example -1 0.8 0.6 0.4 -0.2 0
with supernovae type la. The parameig can be approxi- ®o
mated at low redshift by

' SUGRA', variable a
Ratra-Peebles ----------
SUGRA - 7

@4

FIG. 2. Effect of a modification to the quintessence potential
[Eqg. (29)] on today's evolution of the quintessence equation of state
(solid ling). The three values dd plotted in Fig. 1 are represented

wo=wgtZwy, (30 with crossegthe casea= —1 is near the intersection with the short-
dashed line and the two others are neg— —1, w;—0). As
explained in the text, almost any value ahelps the quintessence
and bothw, and w, can be recovered, at least in principle, field to mimic a cosmological constani¢— -1, w;—0). In ad-

with good data. In the case described by E29), for posi- dition, we have plotted the dependence @mf the Ratra-Peebles
tive values ofa, the potential has a steeper part aro@d (long-dashed lineand SUGRA(short-dashed linepotentials. For

the two curvesg varies from<1 (left) to >1 (right). The fact that

= V3/ame, because it diverges. Therefore the potential POSthe field roughly behaves as a cosmological constant for low values

sesses a minimum befo@=\3/amp,. As already stated, of o comes from the fact that the potential is flatter and therefore
the field has reached the usual tracking regime at earlier timge field stops more rapidly when it begins to domin@een in the
(which corresponds to small values @J); therefore, it tracking regime, ¥ wo>a; see Ref[18]). Conversely, for high
reaches its minimum sooner in the case of laageAs a  values ofa, the field tends to mimic the behavior of the background
consequence, the quintessence field behaves more rapidly figds. On these two curves, values at=2, 4, 8, and 16 are
a cosmological constant than in the standard SUGRA case¢gpresented with crosses. The dependencevoof the SUGRA
and of course than in the Ratra-Peebles case. This can Ipetential is much less important than in the Ratra-Peebles case.
seen explicitly by ]ooking a_\t the position of.the quintes§ence IV. A GENERIC APPROACH TO QUINTESSENCE
flelq on its potentialsee F|g. 1, or by pl_ottmg wg and its WITH TWO SCALES
derivative today as a function @f (see Fig. 2. Note, how-
ever, that, strictly speaking, at the end of the evolution, all In this section, which constitutes the core of this paper, we
the terms in the expansion ¢f *(Q) should be taken into adopt a different approach compared to that of Sec. lll. Since
account since)/mp,=1. Therefore, the present calculation @ priori there is no reason to consider tinag andmg, are of
can only give a hint of what happens when the corrections ithe same order of magnitude, we do not make this artificial
the Kzhler potential are fully considered. For negative values2Ssumption. As a consequence, we considentiyatan have
of a, the potential does not diverge but grow faster becaus@ny value provided, of course, that it is smaller than the
of the higher argument of the exponential part. Therefore, aBlanck massms<mp, . Then, the strategy is as follows: in-
for the a>0 case, the minimum of the potential occurs atStead of trying to find the Kaler potential and the superpo-
lower values ofQ, and the field behaves more rapidly like a tential which leads to the Ratra-Peebles potential as in Refs.
cosmological constant. [20,21], we \_/_viII try to see which kind of potential arises from
The main conclusions that we can draw from the previoust generic Kaler potential and superpotential, i.e., without
analysis are the following. In the context of effective @ny fine-tuning of their shape. We still assume that there are
SUGRA, there exists a Kaer function and a superpotential three sectors in the theory, two of them being hidden. We
which lead to a class of model described by E2f). How- f|rst investigate this question in the context o_f global SUSY,
ever, these models depend on specific assumptions for thé. when the value of the quintessence field is small in com-
superpotential and Keer functions. If more generic terms Parison to the Planck mass, which is the case just after re-
are considered in the series defining théhléa potential, ~heating where th_e |_n|t|al con_dltlons are set. We assume that
then some sensitivity of the observables to the form of théhe Kehler potential is a nonsingular series@goes to zero.
Kahler potential within this class of models is found, but asLet us expand the Kder potential focusing on the coupling
~mp,, the main features of the SUGRA potential of Refs. the quintessence sector. One has
[20,21] are preserved. Having identified the main advantages Pmax 1
and drawbacks of the approach followed in R¢24,21, we: K(Y,Q, ...)=|Y]2+]Y]Z> —=(QQP+K(- ),
now turn to a different method where some of the previous p=1mg’
shortcomings can be avoided. (3D
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10! . comes of the order of the string scal@=mg, the precise
form of the series matters. But this is true only in a limited
10° region, and one expects that this will not affect the global
) behavior of quintessence. In the region wh@= mg, only
5 107 the term Q/mg)?Pmaxis important, and the potential reduces
£ 102} ©
g 2,:2P
= 403l |Fy|“mg max
g V(Q)= QP (34)
10% |
105 , i.e., we recover a Ratra-Peebles potential, and again the de-
10° tailed form of the series does not matter. This region corre-
Qimg sponds to the straight line in Fig. (e slope of which is

—12, sincepma—=6 was chosen for this plpt Since the
FIG. 3. Different examples of potentials given by E§3). The  tracking behavior essentially depends on the behavior of the
four curves represent pgtentlaM(QF|Fv|2/[1+(Q/ mg)Pma]  field atlate times i.e., before it reaches the Planck mass, the
(solid ling) and V(Q) =|Fy|*/[ 1+ (Q/mg)Prn+(Q/mg)Pm=], with  4yractor properties of the standard Ratra-Peebles potential
Prax=12 and prin=2 (long-dashed ling pmin=6 (short-dashed g4\ holg in this case, as we have checked numerically.
line), andpp,=10 (dotted ling. Therefore, the modifications in the potential at I@do not
N _ _ matter as long amg is not too largetypically, mg must be
where K parametrizes the rest of the expansint of  —2 orders of magnitude smaller than the Planck mass; this
course needs not to be equal to the one introduced previsound is even relaxed for high valuescf. Such a behavior
ously. This expression should be compared with EA8)  \yas already remarked upon in another context when we con-
and (19). This time the tern]Y|® is present, since we have sjdered the quantum corrections to the Ratra-Peebles poten-
not assumed anything about the series defining theléfa ja) [21]. Note, however, the explicit dependence on the de-
potential. The key point is that we have only included terMsyree p,.. This has important observable consequences.
sensitive to the string scale and not the Planck scale becaug@deed, it appears that potenti@4) leads to an equation of
in the limit of global SUSY, this one is sent to infinity and statew, which exhibits a strong dependencemy,. This is
therefore the corresponding terms vanish. We have only aass true for the derivative of the equation of state as can
sumed that the series can be expressed as a polynomial. 4§ seen from Fig. 2dashed ling However we shall see that
this is not the case then a whole knowledge of nonperturbans problem is far less serious when SUGRA corrections are
tive string theory is required. However, truncating the wholejnc|yded, in which case the values abd, »;) accumulate
s_eries at the ordgu,,.x Wou_ld require a _onnamiC_aI explana- numerically around {0.8,0.45) in the large,,,x regime
tion which cannot be provided unless in a particular model(rig 2 dotted ling This is an interesting indication that the
For this reason we will study the dependence of the physicgy,ysical observables are stable with respect to variations of
observables on the degree of the polynomial. the truncation degree.
Let us calculate the corresponding scalar poteriat Another important consequence is that the SUSY break-
suming that the quintessence field is jedlhe only term ing scale is now given by
coming from the Kaler function which gives a contribution
to the potential is given by

(39

Mpy | “
mg/) ’

Fol=p
1

YY_
K™= Pmax

, 32
1+ 2 QZp/mép (32 vv.here.aEmeax. Formp;=mg one recovers 'thel usual result
=4 given in Eq.(20). However, the important point is that in the
present frameworknp, andmg do not need to be the same,
from which we deduce that which has the important consequence that now the SUSY
breaking scale in the quintessence sector decouples from the
IFy|2 critical energy density. Let us show a few orders of magni-
(33)  tude. In particular, one would like to fix the SUSY breaking
scale in the quintessence sector to the same value as the
SUSY breaking scale in the broken sector, i.€5p)
=10%° GeV. This would be one step toward an identification
Let us study this class of potentials in more detail. Typically,between the quintessence sector and the broken sector, thus
they have the shape represented in Fig. 3. Whatever the preaving only one hidden sector. This strategy will be pursued
cise form of the series, for values of the field such t@at in Sec. V. Fixing |Fy|=10°GeV? and writing mg
<mg the potential is almost flat since the constant term 1=10 *mp,, we find thatx=67/a. We see that the string
dominates in Eq(33). This means that we no longer have a scale varies between the TeV scale and the Planck mass for
divergence of the potential at sm&). When the field be- «>3. It is auspicious that to maintain a low value of the

V(Q)=

Pmax

1+ >, Q%*/m¥P
p=1
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SUSY breaking scale in the quintessence sector in the large ~ Q"max
a limit, we need to take values @hg which are closer and =Q=12Con  —HT (39
closer to the Planck scale. As already stated, as lomgsds m
a few orders of magnitude smaller than the Planck mass, thil%ading to
has no significant influence of the evolution of the quintes-
sence field today. The previous results follow from the direct ~ ~
coupling between one fiel@ and the SUSY breaking fiel, V(Q)=Ae Q72
and does not require any fine-tuning. In particular, the pres-
ence of an inverse power law only requires that one can tru —( e ) 2Pmax/n -
the perturbative expansion of the Lagrangian, i.e., one do§é/hereA—( ZC“mame) Prmex riax' Note that the coefficients
not need to know the whole power series. arrange themselves such thaD?/2 appears in the potential,
We now need to take into account the SUGRA correc-without any additional multiplicative factor in the argument
tions. As in Sec. lIl, the form of the potential is given by the of the exponential. We can identity=2pax/Nmax. There-
positive definite expressiovi=e<KKYY(4,W)2, where again fore, in this _regime, we recover the SUC_—:-RA quintessence
we have used the fact that tieterms are not modified in Potential which now appears as a generic property of any
SUGRA. The Kaler potential evaluated at the minimum of effective SUGRA theory with two scales. Now the degrees of

the potential for the matter fields is a series inm/ and (€ fruncated series;, and pma play competing roles. In

(yW)?

QZPmax/”max’

(40)

reads particular, three natural behaviors can occur. In the first one
a goes to zero. This is physically disfavored, as this would
Mmax require that{3yW)? converge to the critical energy density
K(Q(e"N=2 %(QQ)“, (36)  pc- Similarly & can go to infinity, with the need fans to be
n=1mg closer and closer to the Planck scale. Finadlycan remain

finite. In this case we do not need to fine-tune the SUSY
where we have fixed the other hidden sector fields to theibreaking scale. The point is that the observables do not de-
vacuum expectation values. This equation is similar to Egpend very much o=2p,.,/Nmax- INdeed, a large range of
(23). Note, however, that we have only kept the dominantvalues ofa lead to the same CMB spectrum and the same
1/mg terms. Ifmg=mp, we only need to substitutep, for  dependence of the equation of state at small redstsie
mg in the expansion. The kinetic term §fis not normalized.  Fig. 2, dotted line, and Ref32)). It is remarkable that from
To deal with this problem, as previously, we define a newan a priori very complicated theory, we end up with the
scalar field according to E@24) (of course, now, the func- conclusion that observables like§,w;) are uniquely deter-
tion f needs not to be the sajndhis leads to the potential mined by potential40). Since typically, we expect that the
coefficient Ch, is of order 1, we deduce that the SUSY

V(Q):eKK[f_l(é)] (ayW)? 37) breaking scale is again given by relati¢d5). In order to
Pmax ~ ' justify that the previous considerations really lead to a suc-
1+ El [f~4Q)1*/mgP cessful and realistic model for quintessence, we need to
=

study the process of SUSY breaking in more detail.

The previous equation gives the generic prediction for any
theory which can be effectively described by SUGRA with
two scales. Note that takingip;—<, this reduces to the In the previous sections we have seen that it is necessary
globally supersymmetric result, as expected. Now we camo assume three different sectors, two of them being hidden.
deduce the form of the potential in the three different re-In this section, we thoroughly analyze the consequences of

gimes, and study how it is affected by the particular form ofSUSY breaking, both from cosmological and particle physics
the theory. First, we note that it does not depend on thoints of view.

superpotential: it is sufficient to haye,W)#0, i.e., a Polo-
nyi field in the quintessence sector. Whé&n<mg then (~Q A. Spontaneous vs explicit supersymmetry breaking

=2Q and V(Q)=(dyW)?. The potential no longer blows A first study of SUSY breaking in the context of quintes-
up. In this regime, it does not depenq on the deta|l§ of seriegence was made in an interesting paper by Kolda and Lyth
(31) or (36). For Q=mj all the terms in the expansion play [35]. There, the authors pinpointed a possible incompatibility

a role, and the precise shape of the potential cannot be dggtween quintessence and SUSY. Indeed the expansion of
termined unless a specific model is given. But again we exgq. (5) comprises the two terms

pect that we will not affect the cosmological observables

V. SUPERSYMMETRY BREAKING

since they are determined in a regime wh@e mp;>mg. KyvFY|2+WyFY+ W?FY. (42)
For largeQ the highest power is only required. As we are
interested in th&=mp, regime we conclude that Assuming that SUSY is brokeexplicitly by Fy leads to a
polynomial expansion of the scalar potentialQrwhen using
, (Qa)nmax—l the general Taylor expansion dokyy. Fortunately, in
KQQ= Nmalan,— 2(mac ) (38)  SUGRA one must consider SUSY as a local gauge theory
Mg wich cannot be broken explicitly, as the electroweak symme-
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try which is not broken by putting an explicit gauge symme-\here we assume that this is a polynomiatd® (the coef-

try breaking mass in the Lagrangian. SUSY is brokgon- ficientsd, are just the coefficients of the polynomjiaDnly
taneouslyby the nonvanishing vev of terms obtained by jnyerse powers ofg were taken into account, as order by
solving the equations of motion. This leads to a super-Higggrder inQ the inverse powers ahp, are suppressed. Com-
mechanism, where the would-be massless Goldstone fermigi\;ting the derivative with respect ®andT leads to a poly-

is eaten by the gravitino which becomes mas$8ig. As the  nomial dependence d@ of Fs andF+. This implies that the

F terms are auxiliary field terms with no kinetic terms, one sysy preaking scale varies during the evolution of the uni-

can solve Eq(41) algebraically to give verse, and therefore the sparticle masses become strongly
v e time dependent. Indeed, the mass matrix of the scalars de-
F'=-K"'Wy, (42)  pends explicitly on thé= terms,

leading to the potential investigated in the previous sections. 5 K[ =5
It is apt that an intrinsic feature of SUGRA prevents this type mMyg=€""| 3KasKco—Rasco | FF, (46)
of quintessential difficulty.

where the second term involves the Riemann tensor deduced
B. Moduli supersymmetry breaking from the Kéhler potential. It is easy to see that a polynomial

We have seen that a quintessence potential can be Oggpendence oR for Fs andFr leads o & polyngmmide—
tained in a hidderiquintessendesector. On the other hand, Pendence o of the masses frorK "F1F7 andK>¥ ¢Fs.
we have assumed that SUSY was broken in another hiddeft large Q this behaves like @/mg)*max wherekpay is the
sector. Therefore, one may wonder whether it would not bglominant term in Eq(45).
possible to consider only one hidden sector where SUSY is To avoid this we must conclude that the quintessence field
broken and, at the same time, to which the quintessence fieecouples from the SUSY breaking sector:
belongs. In this section, we will include the effects due to
otherF terms, and study the modifications that they impose dpq=0, k#0. (47)
on the potential. In particular we suppose that these are t
single Kanler moduli T and the dilaton fieldS where the X
superfields T and S belong to the unique(postulatey ~ duintessence sector must be separate. L
“broken-quintessence” hidden sector. Because of SUSY. Coming ba_c_k to Eq(43), there is a negative contribution
breaking the potential will have the form from the gravitino mass:

h
Sn the whole we find that the SUSY breaking sector and the

Voro Q) =V(Q) + &K (KTT|F1[2+ KSIF ¢[?) +|D| Mgp= ke““HW). (48)

—3m3,/ k+Vaga, (43  Combining with theFs andFy terms, this leads to the fol-
lowing term in the potentiaV/,,,:

where the potentiaV/(Q) is the quintessence potential ob- _ _
tained previously. Th® terms are independent f, as this e (KTT|F1|?+KSJF ¢~ 3k(W)?). (49)
is a neutral field. The gravitino mass;,, is nonzero due to
the breaking of SUSY. The last terf,y springs from the In the early Universe this is a cosmological constant, as the
visible sector, and gives large contributions to the cosmologiterm in brackets is a constant. &sincreases the exponential
cal constant. This is the cosmological constant probleme€orrections become relevant. So this term acts as a slowly

Viro(Q) contains huge constant terms whiehpriori, domi-  varying cosmological constant. Moreover, we can expect a
nate all the other contributions. THes and F; auxiliary ~ large contributionVq~my, from the visible sector. Both

fields are given by contributions should be large compared to the critical density

of the Universe. Nevertheless there is a strong constraint

Fs1=—0dsTW— k(dstK)W, (44  springing from the existence of an attractor. The attractor

condition [Eq. (2)] should be compatible with the require-
and depend on the nonperturbative corrections to the supement that the total potential reproduc@s p.. It can easily
potential which are responsible for the breaking of SUSY.be seen that, if the slowly varying and constant contributions
There is a strong dependence Bf and F5 on the Kdler are much larger than the critical density, then the attractor
potential. To go further we need to return to E81), and to  disappears. Consequently we shall assume that the extra con-
be more specific about the forms of the functibnWe take ~ Stant and slowly varying pieces in the potential vanish alto-
a generic form of the Kaler function as gether. This is another manifestation of the fact that it is
necessary to assume that the cosmological constant problem
1 _ _ is solved before considering the quintessence hypothesis. In
K= ;[—3 IN(T+T)— In(S+9)] the context of quintessence, the relevant question is whether
the dynamicalpart of the potential after SUSY breaking is
k modified. In particular, this leads to the requirement that the
—2) , (45  contributions from the visible sector and the broken sector
ms must vanish independently, i.e.,

+m2Y, dpg S+S) P(T+T) 9
pak
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V=0, KT?“:T|2+KS§FS|2:3K<W>2. (50) In new type | s;ring scenarios the ;tring scale can _be as low
as the TeV region. In that case this leadsate 4. This de-

The second of these constraints is the usual fine-tuning of th{@rmi”eSpmaxzz for a flat Kenler potential inQ. The rela-
ion

SUSY breaking sector.

Let us now consider the contribution to the scalar masses m2
due to the Polonyi field, p;}"‘:—s (58)
Mp)
x K ag— RagyvK Y V(Q), (51)  was advocated in Ref40] to obtain a natural solution to the
3 coincidence problem. We find that it can be embedded in a
SUGRA description of quintessence with two scales.
which is negligible now due to the smallness\(fQ). The In conclusion we have seen that quintessence is compat-
scalars receive a mass from the and F; terms, which  jple with SUSY breaking, and should belong to a hidden
reads[38,39 sector different from the hidden broken sector.
M 5=m3,Kag— €“(RagsF FS+RagriF 'F1). (52) VI. INFLUENCE OF A MINIMUM
AB 3/2"NAB ABS ABTT .

IN THE QUINTESSENCE POTENTIAL
Note that the sparticle masses will have a universal redshift
dependence coming from exponential factor in &@@). This
dependence is only relevant in the recent past. It would b
interesting to study the associated phenomenology. There is
final constraint springing from the gauginos mags%39,

From the above considerations, it seems that a generic
onsequence of taking into account high energy physics is
%_‘e presence of a minimum in the quintessence potential.
is differs from the Ratra-Peebles case, where the potential

is monotonic and goes to zero at infinity. Therefore, one may
wonder what the physical consequences of the presence of

maZTeKKFIaI Ing;?2, (53  this minimum are. The purpose of this section is to study this
question.
whereg, is the gauge coupling of thath gauge group. To A. Oscillations of the quintessence field

leading order one can expand ) o
The SUGRA potential possesses a minimum located at

Qmin=Va/k?>=0(mp)); see Fig. 1. Thusa priori, this
could modify the final evolution of the field. Therefore, let us
expand the field around the minimum; we write

0. 2=S+S+BVk(Y+Y), (54)

where we have included a dependenceYorThis is what
happens in type | models if the Polonyi field can be identified O=1Jata
with the blowing up moduli. Nevertheless the presence of Q Va 9 (59

KYY implies that theF, contribution is negligible. So we \here Q=«2Q is dimensionless and wherg is a small
find that that the masses of sparticles do not depenBlyan  quantity. If we neglect the quadratic order, the Einstein equa-
This allows for independent supersymmetry mechanisms ifion readsH2=H2=(«x/3)V(\/a) which implies thata(t)

the “bro_ken” and “quintessence” sectors. In particular the =a,e™t. On the other hand, the Klein-Gordon equation is
mechanism of Sec. Ill, where given by

m a e . 20
F$=<22>2=(WP|> o, 55 4+ 3Hoq+ 6H2q=0. (60)
S
The solution to this equation is given by the following ex-
is viable. Phenomenologically we should impose that thePression:
corresponding Fayet-lliopoulos term is larger than the weak

le. This leads t — 3 V15

scale. This leads to q(t)e ex[{(_ii'T Hot|. (61)
m 1/
S ( p_z> , (56) This solution is oscillatory with a damping term proportional
Mp | my to a~%2. The period of the oscillations is equal teH, !,

i.e., is equal to the age of the Universe today. Therefore, it is
which is reasonable as soon@s 3. We can even go further clear that no oscillation took place until now since the age of
by noticing that the Fayet-lliopoulos term is of the order of the Universe is the time already necessary to reach the region

the string scale. Imposing thEty:mé leads to where the oscillations could occur. Conversely, the future of
the Universe will be different in comparison with the Ratra-
mé*“ Peebles potential case. Numerically, for the casell, the
pe= . (57)  redshifts at which the field stops am= —0.65-0.92,
Mp —0.98, etc. The first redshift correspondsat@,~ 2.85, i.e.,
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FIG. 4. Overall evolution of the quintessence field. We start at a
redshift ofz=10" with a quintessence field initially at restg—
—1, short-dashed lineand subdominant {{5—0, long-dashed

FIG. 6. Shape of the quintessence potential for various values of
Xmin- The potentials were normalized so tlixg= 0.7 today, which

] e W ) roughly corresponds to requiring that the minimum of the potential
line). Then the field joins the attractor aroure 10°. It remains on is equal to the critical density today. Note the presence of a broad,

this attractor as long as it is subdominant, i@q<1. When it g region for high values oX,,,,, and a deep and narrow depres-
starts to dominate, it gradually behaves as a cosmological constagi,, for small values oK. These features have a large impor-

(wg——1 again aroundz=0). Then the field experiences some 506 on the evolution of the quintessence field today.
damped oscillations around its minimuisolid line). The behavior

of the parametetng can be studied by looking at the variahﬂé
=po/pq (dotted ling, which diverges whem,, reaches—1 [this
occurs initially and wherQ(t) reaches an extremum

the quintessence field today, but can leave some imprints in
the high frequency part of the primordial gravitational wave
spectrum(see, e.g., Ref.36]).

to a time where the scale factor is 2.85 larger than tddag

Fig. 4). This is of course independent of the initial conditions

provided that we are initially in the allowed range. Let us now study the influence of a pure cosmological
It is of course possible that some oscillations occur beforeonstant term in the quintessence potential. We would like to

today, but this is not easy. The main reason is that the quirknow whether we can change the value of the minimum and,

tessence field rolls rather slowly toward the bottom of itsin particular, whether it is possible to put it to zero. There-

potential, so that the quintessence density paranfetgis  fore, we take a SUGRA potential to which we add a constant

almost equal to 1 at the time where the field stops for the firsterm

time (as can be seen in Fig).4Another possibility is tha€)

is of order unity at early time. In this case, the field is ini- 2, M

tially very small, and correspondingly its energy density is V(Q)=er@7?

P . . Q“

large. Then, the field is in a “fast-roll” regime, i.eqq=1,

and is not S'OV.VGQ' down enough' by'the expansion. It. therl‘n this expressionV,,;, is the value of the potential at its

goes througlistill in a fast-roll regime its minimum, and is - .

stopped by the very steep exponential growth of the potenti?'n'mum' i.e., forQ=alk andXn,=0 a free parameter.

; ; in=0 corresponds to a vanishing minimum, axg;,=1
at largeQ. Such a behavior does not affect the behavior of "min . in
geQ. Su . . reduces the above potential to the standard SUGRA poten-

tial. We would like to emphasize that there is no fine-tuning
of the location of the minimum; it follows directly from the
shape of the potentidbnd is of course independent of the
constantM). The fact that the field is today near the mini-
mum of the potential follows directly from the fact that, be-
cause of the presence of the attractor, the field is today of the
order of the Planck mass, which also turns out to be the
location of the minimum of the potential. Again, no fine-
tuning is required to have this property which arises naturally
in SUGRA quintessence.

Let us start with the case where the minimum is not zero.
The presence of a constant term can influence the shape of
the potential and the value of the constatas explained
below. Let us start with the constaM. In all the cases

FIG. 5. Dependence of the mass sdslavith the minimum of ~ presented here, as mentioned above, the constasifound
the potentialX,,. The numerical computation gives a very good numerically by requiring thafl,=0.7 today. In all the cases
agreement with the estimate of H§3). of interest, the quintessence equation of state is such that

B. Amplitude of the minimum

44+

+ (Xmin_ 1)Vmin- (62)

6 A Numerical calculation
3.6x107 A Analytic estimate - 1

3.2x108 |

M (GeV)

2.8x10° |

0 0.2 0.4 0.6 0.8 1
Xmin
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Xonin = 100
Xmin =10
Ximin = 1 (standard SUGRA)
X = 0.1
y - Xpin=0.01 ,
10 103 102 10" 10°
1/(1+2) 1(1+2)

FIG. 7. Evolution of the quintessence field equation of state FiG. 9. Evolution of the equation of state parameigy as a
parameter for several values ¥f,,. The field starts at a moder- fynction of the redshift forX,,=1 (solid and X,,=105

ately high redshift £=100) from its attractor valuéwhich means (dashedl For such a low value oX,,,, only for a small redshift

w@=—0.25 fora=6 herg, and subsequently starts to behave as acan one see the decay of, toward —1, as indicated by the de-
cosmological constant as its energy density dominates have  creasing envelope of the curve.

taken{)o=0.7 today. As explained in the text, large valuesXf;,
all lead to essentially the same behavior, whereas low valukgspf  oscillates when it falls into it. These two cases are repre-
cause the field to oscillate. sented in Fig. 6. The addition of a constant term must have
some observable consequences today. This is what we can
—1=<wq=0 today. This means that a significant part of thecheck in Fig. 7, where we plot the value @f, as a function
energy density of the field is determined by its potential enyf the redshift. As expected, large values Xf;, do not
ergy. In presence of the additional constant term, this impliegjgnificantly differ from theX,;;=1 case, except that the
that the constani¥l is no longer given by Eq(3), but rather  equation of state parameter goes faster to- 1 (the poten-

by tial is less steep Conversely, the oscillations for small val-
a\ U(4+a) ues ofX i, are clearly observable. This is due to the fact that
M 2<Pcmp|> (63) in this case, Eq(60) reads
Xmin 2
- . 86—
This is what we can check on Fig. 5. Knowing how to de- q+3Hoq+65—0q=0, (64)
min

termineM, we can now turn to the shape of the potential. For
large values oK, there is a large region where the poten-so that the frequency of the oscillations can be arbitrarily
tial is almost flat. This means that when the quintessencgarge. Then if we plot the values ofwg,w,) for several
field enters this region, it behaves very quickly as a cosmoyalues of X,,,, the oscillations of the field translate into
logical constant. Conversely, small valuesXfi, produce a ellipses in the {,,w,) plane; see Fig. 8.
deep and narrow “hole” in the potential in which the field  Finally, we would like to stress some important properties
of the dynamic of the quintessence field in the case of a
vanishing value ofX,,,, i.e., when one tries to set the po-
tential to zero. A decreasing value &, leads to an in-
creasing number of oscillations experienced by the quintes-
sence field before today; see E@4). Numerically, this
translates into a very weird behavior of the functieg(z)
as Xmin goes to 0; see Fig. 9. Now, in the vicinity of the
minimum of the potential, the potential has a quadratic
shape. Therefore, this leads to an equipartition between the
kinetic energy and the potential energy, and therefore to an
average equation of state parametgy equal to 0, a well-
known behavior of the inflaton field at the end of inflation
[41].2 In this case, the equation of state of the field is exactly
the same as the one of ordinary matter. As a consequence, the
FIG. 8. Today's value of the quintessence equation of state patatio between(l and (1, becomes a constant. This means
rameterwy and its derivativew, for several values oK,,. The that
crosses represent the values Xy, used in Fig. 7(same color
code. Note that for low values oK,,,, the oscillations of the field
are quite rapid, and therefore, the equation of state parameter is nofThis point can in principle be evaded if we suppose that the
very well approximated by~ wy+ zw,, even for a relatively short  potential behaves like— Q) ?, with 0<8<2, but this seems to
interval of the redshift. be an unlikely possibility in the case presented here.

4
3 L
2

4
o

-1 -0.98 -0.96 -0.94 -0.92 -0.9 -0.88 -0.86 -0.84
[25)
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the value of()q today is approximatively given by the value the differenceQ n— Qeng- Therefore, even iQend<Qmin.

of Qo when the field started its oscillations, denofeffin  we will obtain Q%<1. As a consequence, the energy den-
what follows. Then, the relevant question is: c@%° be  sity of the quintessence field cannot dominate, and there is
equal to(say 0.7? The answer to this question depends omo possibility of reaching a value d2,=0.7 today if the

the physical reason which causes the field to leave the attraginimum is put to zero.

tor. A priori, two situations can be envisaged. First, the field

leaves the attractor because it has not yet rea@refelt) the VII. CONCLUSIONS
minimum and it starts to dominate. This is what happens in ) ) o
the Ratra-Peebles cader which there is no minimumn Sec- In this paper, we have studied the model building problem

ond, conversely, it has not yet started to dominate but th€f quintessence in the context of SUGRA viewed as the low
field “feels” the presence of a minimum. In the second case&nergy limit of string theory. In this context, the theory is
by definition we have)3%<1, and the answer to the ques- described by two scales: the Planck scale and the string
tion above is “no.” Therefore, only the first situation remains SCale.A priori, there is no reason to assume that these two
a possibility. Let us study this situation in more detail. In Scales are equal. If indeed the string scale decouples from the
particular, one may wonder whether it can really happen thaPlanck scale, we have shown that the SUGRA quintessence
the field dominates before encountering the minimum. Théotential arises naturally in this framework. In addition, it
field dominates wherQ=Q,,4, defined by the conditon Was demonstrated that the potential is stable against correc-
po=pm/X, Wherex is an arbitrary number. A reasonable tions in the Kaler poFentlaI and if SUSY breaklng_ is taken
value forx is, for examplex= 10. Using the equation of the NtO account. A generic property of the SUGRA quintessence
attractor [see Eq.(2)], it is easy to establish thatQ? potentials is the presence of a minimum. We have shown that
_ a(a+2)/[3(x+.1)] ’ On the other hand. we havnghd the field today is always close to this minimum. This requires
— . Therefore ifa>3.(x+1)—2 thenQ d’<Q and"\;\'/'é no fine-tuning, and is due to the fact that the minimum turns
= . , en min »

are in the desired situation. However, this is not so simpIeOUt to be of the order of the Planck mass, the value that the

. field has when it leaves the attractor, at small redshifts. We
2 _ l
because the W'.dth of the hole, q§n0ted he-ré(aquz ). n21at have also demonstrated that the minimum of the potential
ters. We are in a good position only &(Qmin— Qand

> 5(kQ?); .o'therwise we cannot say.that the field qus nol;g?g:ro gfbtieplé:itﬁgafeerr?eg?Iﬁei;es?t?,lfgga;? a value of the
feel the minimum of its potential. It is not totally trivial to

calculate the width of the potential, which is not symmetric
with respect toQ,,i,. A fair estimate is given by the differ-
ence betwee®,,, and the value of), such that the SUGRA Section VI of this paper was motivated by numerous in-
potential becomes different from the Ratra-PeeliRi3 po-  teresting questions asked by Karim Benabed, Francis Ber-
tential, i.e., forQ such thafVgygra(Q)/Vre(Q)|=Y, where  nardeau, and Pierre Bitray. It is a pleasure to thank them

y is an arbitrary numbeffor example,y=0.1). This gives a for very useful exchanges and comments. We also thank
width equal tos(«kQ?) = a—2 In(y+1). Of course, the com- Pierre Binéruy and Stephane Lavignac for a careful reading
parison depends on the precise valuesxaindy, but for  of the manuscript. A.R. is funded by EC—Research Training
reasonable values one reaches the conclusion that the widietwork CMBNET (contract number HPRN-CT-2000-

of the potential is always of the same order of magnitude a0124.
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