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Jérôme Martin†

Institut d’Astrophysique de Paris, 98 boulevard Arago, 75014 Paris, France

Alain Riazuelo‡
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We study quintessence models using low energy supergravity inspired from string theory. We consider
effective supergravity with two scalesmS , the string scale, andmPl , the Planck scale, and show that quintes-
sence naturally arises from a supersymmetry breaking hidden sector. As long as supersymmetry is broken by
the F-term of a Polonyi-like field coupled to the quintessence field in the Ka¨hler potential we find that the
Ratra-Peebles potential and its supergravity version are generic predictions. This requires that the string scale
decouples from the Planck scale,mS!mPl . In the context of supergravity, the potential possesses a minimum
induced by the supergravity corrections to the Ratra-Peebles potential at low redshifts. We study the physical
consequences of the presence of this minimum.
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I. INTRODUCTION

The cosmological constant problem is a long stand
problem in theoretical physics@1#. Although it first appeared
in the context of general relativity, it is now clear that th
problem is also deeply rooted in high energy physics. Th
exist several facts which explain this link. The first is t
observation that the zero-point energy of quantum fields
ing in our universe effectively acts as a bare cosmolog
constant of the Einstein equations. The total contribution t
we measure is therefore a combination of these two ter
Since a naive argument leads to a zero-point energy com
rable to the Planck energy, and since astrophysical obse
tions tell us that the contribution is of the order of the critic
energy density, an extraordinary cancellation is needed if
wishes to reconcile experiments with theories. A second
became more evident after the advent of supersymm
~SUSY! @2#. Indeed, in global SUSY, the zero-point energy
guaranteed to vanish@3#. This raises the hope of finding
mechanism where the cosmological constant would be
actly zero. However, this explanation fails because SU
has to be broken in order to explain the heavy masses o
superpartners. This means that the cosmological constan
to be at least of the order of the SUSY breaking scale, i.e
least of order 1TeV, a value which still requires a very a
curate fine-tuning. On the other hand, when gravity is ta
into account, leading to supergravity~SUGRA!, the funda-
mental state does not necessarily have a zero energy. In
case, when SUSY is broken, there is still the hope of find
a vanishing result. With the present state of the art, this
quires again a fine-tuning, and cannot be derived from
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fundamental principle. Therefore, the very small~vanish-
ing?! value of the cosmological constant remains a myste
The previous considerations led many people to believe
its value could be understood in the framework of the m
promising theory of high energy that was nowadays at d
posal: string theory@4#. It is widely believed that the only
natural outcome of string theory is that it must be zero@5#.
However, it is clear that we are far from being in a situati
where this theoretical prejudice can be convincingly jus
fied.

An explanation for this puzzling question has recently b
come even more necessary, since a combination of as
physical observations, including, among others, meas
ments of the Hubble diagram with type Ia supernovae@6#,
seem to indicate that a form of dark energy now domina
our universe; also see Refs.@7–13#. This has led to the idea
of quintessence. In this framework, the cosmological c
stant vanishes exactly, due to an as yet unknown mechan
and a scalar field is responsible for the acceleration of
expansion of the universe@14–18#. In the same manner a
for the vanishing cosmological constant, it seems likely t
the physical nature of this field can be understood within
framework of string theory, or at least within a framework
theories describing its low energy limit. In this paper, we w
adopt this point of view.

Let us now recall some of the main ingredients of
effective SUGRA description of string theory. The effectiv
action describes the low energy degrees of freedom wh
can be viewed as massless string excitations. By compu
string scattering amplitudes, one can build an order by or
perturbative expansion in the massless fields. This pertu
tive expansion possesses two characteristic scales: the s
scalemS , and the compactification radiusRc springing from
the necessary compactification from ten to four dimensio
These two scales can be combined to form the Planck s
mPl which naturally appears at string tree level and para
etrizes the SUGRA expansion. The effective Lagrangian
©2001 The American Physical Society05-1
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pears as a double series in the string scale and the Pl
scale. In the context of heterotic theory, both these scales
large and almost coincide. In new scenarios involving typ
strings andD branes there can be a decoupling regimemS

!mPl @19#. We will show that, in this context, the SUGR
potential introduced in Refs.@20,21# is a prediction of the
theory~for another SUGRA model of quintessence, see R
@22#!.

It is also of the utmost importance to understand wh
role SUSY breaking plays in the determination of the sha
of the quintessence potential. As already mentioned ab
particle physics experiments require that SUSY must be b
ken at a scale at least of the order of 1TeV. This is noto
ously difficult to achieve in explicit string models. Indee
such a breaking must arise from nonperturbative effe
which are often difficult to control. Despite the absence
convincing models of SUSY breaking, one can use a m
phenomenological approach and parametrize the SU
breaking sector byF terms responsible for the breaking@23#.
This is the approach we will follow. In particular, one usua
assumes that SUSY is broken byF terms of the dilatonSand
the moduli fieldsTi measuring the compactification scale
In new type I models one can also consider the blow
modes associated with fixed points of orbifolds@24#. This
breaking is supposed to occur in a hidden sector only gr
tationally coupled to the visible sector. At the SUGRA lev
one generally assumes that the cosmological constant
ishes, requiring that (S1S̄)2uFSu21( i 51

3 (Ti1T̄i)2uFTiu2

53m3/2
2 /k, wherem3/2 is the gravitino mass. This relation i

imposed in order to cancel large contributions when
breaking scale is of order of the a few TeV, a mere 60 ord
of magnitude larger than the critical density of the univer
In the context of quintessence we will reconsider the pre
ous relation and analyze contributions which lead to quin
sential potentials. In particular, and in order to comply w
the existence of an attractor for the quintessence field,
will have to consider that quintessence arises from a hid
sector. This guarantees that the very small mass of the q
tessence field does not lead to the existence of a long-ra
fifth force @25#. Moreover, we will see that quintessence c
be most easily achieved in a SUSY breaking sector. In or
to guarantee that the sparticle masses do not depend stro
on the quintessence field and therefore on the evolution
the universe, we find that the hidden sectors responsible
quintessence and the superpartner masses must differ.

This paper is organized as follows. In Sec. II, we quick
review how the effective SUGRA inspired from string theo
can be used to calculate the shape of the quintessence p
tial. The details could have been dropped in a paper inten
for high energy physicists, but we think that they are use
in order to render this paper self-consistent for a more g
eral audience. In Sec. III, we study the SUGRA model p
posed in Ref.@20# with mS.mPl , which leads to the so
called Ratra-Peebles potential@14# of Eq. ~1!. In particular,
we study the corrections to this model, and show that obs
able quantities like the equation of state parameter and
derivative are sensitive to these corrections. In Sec. IV,
study the generic shape of a potential arising from effec
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SUGRA where the assumptionmS.mPl has been relaxed
We prove that, at small redshifts, a generic form of the p
tential is precisely the one found in Refs.@20,21#. In addi-
tion, it is also established that the corrections no lon
modify the shape of the potential, which now really appe
as a prediction and not as the result of a particular mode
Sec. V, we study how SUSY breaking by moduli fields c
affect the form of the potential. Again, it is found that th
generic prediction is not changed. Finally, since the SUG
potentials generically possess a minimum, in Sec. VI
study the observational consequences of this fact. It is d
onstrated that the quintessence field oscillates at the bo
of its potential, but, depending on the precise depth of t
minimum, the field may or may not have begun its oscil
tions today. It is also shown that in this framework it
unlikely that the minimum of this potential can be put
zero.

II. MODEL BUILDING AND EFFECTIVE SUPERGRAVITY

One of the main advantages of the quintessence scen
is that the coincidence problem can be solved, i.e., it is
necessary to fine-tune the initial conditions at reheating
order to understand why the dark energy starts domina
the matter content of the Universe nowadays. This is due
the fact that for a potential with the shape@14#

V~Q!5
M41a

Qa
~1!

~typically!, the Klein-Gordon equation possesses a~scaling!
solution@26# which is an attractor, also referred as a ‘‘trac
ing solution’’ @17#. This means that, whatever the initial co
ditions are, in an allowed range encompassing more than
orders of magnitude, a given solution of the Klein-Gord
equation will always tend toward the attractor before t
present epoch. When the field is on tracks, it satisfies
equation@14,17#

d2V~Q!

dQ2
5

9

2
H2

a11

a
~12vQ

2 !, ~2!

whereH is the Hubble parameter, andvQ is the equation of
state parameter, i.e., the pressure to energy density rat
the scalar field. This is an important equation, becaus
allows to understand the different regimes undergone by
quintessence field during cosmic evolution. Therefore, it c
be used as a hint to which kind of physics must be used
order to build a realistic and successful model of quint
sence. Equation~2! has the following consequences. First,
implies that the mass of the quintessence field now is of
order ofH0.10243GeV. Such a small mass entails that d
rect couplings between the quintessence field and stan
model fields have to be extremely suppressed. This sugg
that the quintessence field belongs to a hidden sector of
theory in order to avoid direct couplings with the standa
model fields, which would result in the existence of a no
observed long-range interaction. Second, since the sec
derivative of the potential is approximatively given b
5-2



w
t,
r-
h
a

t,
gy
s
-

rk
el
i-

ica
a
b

tri

o
a

iffe
R
p
th
o
pa
n

nt
re

ve
ha

s
n
s
on

p

n
t

ia

of
l or
re

ting
ers.
e
rba-
of
tion
SY

he
ing,
s-
t to
s of
he
en-

f

ring

le.
in-

nge

ex-

m-

ss-
in-

QUINTESSENCE WITH TWO ENERGY SCALES PHYSICAL REVIEW D64 083505
.rQ /Q2 and since, when the field is about to dominate,
also haveH2.rQ /mPl

2 , we deduce that, at small redshif
Q.mPl . This means that supergravity effects will be impo
tant at small redshifts, for example for the calculation of t
numerical value of the equation of state. In addition, we c
also estimate the value of the scaleM in the potential. One
has

M.~rcmPl
a !1/(41a), ~3!

whererc is the critical energy density. Third, we know tha
initially, the value of the energy density of the dark ener
must be between the value of the background energy den
at reheating, i.e.,r reh.1061 GeV4, and the background en
ergy density today, i.e.,rc.10247 GeV4. Starting from this
range guarantees that the fieldQ will join the attractor before
now. This range for the initial energy density of the da
energy corresponds to very small values of the field its
Q!mPl . More precisely, if the field starts at rest, we in
tially have 102108/amPl<Q<mPl . Unless the field starts
with an energy density of the same order as today’s crit
density, this implies that supergravity effects are negligible
the beginning of the evolution, and that this epoch can
well described by means of a globally supersymme
theory.

Having identified the orders of magnitude of the value
the scalar field throughout the cosmic evolution, we c
study the physics which is necessary to describe these d
ent regimes. We are going to consider an effective SUG
theory and the constraints imposed by quintessence. In
ticular, as mentioned above, we assume explicitly that
quintessence field belongs to a hidden sector of the the
We assume that the effective action is a double series ex
sion in the Planck mass and in the string scale. The Pla
massmPl and the string scalemS area priori two indepen-
dent scales. The only experimental constraint is thatmS
.1TeV in order not to be in conflict with the measureme
performed by the accelerators. In heterotic string inspi
models it was often assumed thatmS.mPl , because of the
constraints on the perturbative unification scale. Howe
recently, models where the string scale is much lower t
the Planck scale were proposed@19#. Generically, these two
scales are linked by the equation

mPl
2 5mS

8V6 , ~4!

whereV6 is the volume of the six compactified dimension
The constraint thatmS.1TeV translates into a constraint o
the volumeV6,1014 GeV26. As mentioned above, it wa
recently shown that some of the compactified dimensi
can be large~in comparison to the Planck length! resulting in
a string scale much lower than the Planck scale. In this pa
for the moment, we leavemPl andmS free. We will discuss
the different cases later on.

Because of the large valueQ.mPl of the quintessence
field today, it appears that one would need a full understa
ing of the complete SUGRA action, i.e., one would need
take into account allQ/mPl , and Q/mS terms in the La-
grangian. As a result, one would expect that an appropr
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description of quintessence requires an understanding
nonperturbative effects either at the field theoretical leve
even at the string level. In the following we shall use a mo
modest approach, and remain within a perturbative set
where the Lagrangian is expanded in inverse mass pow
We will pay particular attention to the sensitivity of th
physical observables to the degree of the truncated pertu
tive series. In particular we will comment on the stability
the physical observables under a change of the trunca
degree. The only nonperturbative inputs will be the SU
breaking parameters.

Let us first consider the early universe evolution of t
quintessence field. Setting the initial conditions at reheat
after inflation, implies that for most of the time the quinte
sence field takes values which are negligible with respec
the Planck mass. We assume that the expectation value
the other fields are also negligible in comparison with t
Planck mass. This means that, in this context, the most g
eral Lagrangian is given by theN51 ~global! SUSY La-
grangian@i.e., theN51 SUGRA Lagrangian where terms o
orderO(mPl

21) are neglected#

L5E d4u K~F ik†e2gkVk,F ik!1E d2u@W~F ik!1H.c.#

1(
k
E d2u (

ab
f ab~F i l !@Wka

aWkba1H.c.#

1 (
kPU(1)

jkE d4u Vk . ~5!

Because of the possible large hierarchy between the st
scale and the Planck scale, the Ka¨hler potentialK and the
superpotentialW are now series in the inverse string sca
Let us now focus on the hidden sector containing the qu
tessence field. For simplicity, and since it does not cha
our general argument, we will takef ab(F

i l )5dab . Let us
describe this Lagrangian in more detail. In the previous
pression,F ik(xk,u,ū) is a chiral superfield andVk(x

k,u,ū)
is a vector superfield which can be written in terms of co
ponents as

F ik~xk,u,ū !5w ik~xk!1A2uc ik~xk!1u2Fik~xk!, ~6!

Vk~xk,u,ū !5(
a

F2usmūVkam~xk!1 iuuūl̄ka~xk!

2 i ū ūulka~xk!1
1

2
uuūūDka~xk!GTak

[(
a

VkaTak , ~7!

where the vector superfield has been written in the We
Zumino gauge. We assume that the above Lagrangian is
variant under the gauge groupG acting on thek indices of
the chiral superfields:

G5)
k

Gk3U~1!X . ~8!
5-3
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This gauge group might become strongly coupled and lea
SUSY breaking via gaugino condensation. In the previo
expressions,k is a group index, i.e.,Vk is the superfield
charged under the groupGk . Under this groupGk , many
chiral superfields can be charged. The indexi in F ik labels
the different superfields that are charged under the gr
labeled by the indexk. The matricesTak are the generator o
the gauge groupGk and the indexa runs from 1 to dim(Gk).
In the third term of the above Lagrangian,Wkaa is given by
Wkaa[2(1/4)D̄D̄e2VkaDaeVka, whereD is the supersym-
metric derivative. The extraU(1)X is an anomalous Abelian
factor associated with a Fayet-Iliopoulos term in the L
grangian in order to cancel the anomaly by the Gre
Schwarz mechanism@28#. In heterotic string theory there is
single anomalousU(1)X @29#. In type I string theories there
may be several anomalousU(1)’s depending on the geom
etry of the compactifying manifold@24#. The last term in the
Lagrangian represents the Fayet-Iliopoulos term wherejk is
a constant different for each group, provided that this gro
is U(1). A priori, the scale given by the Fayet-Iliopoulo
term is expected to be of the order of the string scale. Thi
the case in the heterotic string theory for the unique Fa
Iliopoulos term for the anomalousU(1)X . In type I string
theories the Fayet-Iliopoulos terms are associated wit
blowing up moduli of orbifold singularities in the compact
fication space. Their values parametrize a flat direction w
no potential, and are therefore left unfixed at the perturba
level of string theory.

Once the Ka¨hler functionK and the superpotentialW of
the hidden sector are given, the Lagrangian@Eq. ~5!# is com-
pletely fixed. In particular, the scalar potential can be cal
lated. It contains two contributions: one comes from theF
terms and the other comes from theD terms. Explicitly, the
potential is given by

V5VF1VD5KĀBFĀ†FB1
1

2 (
ka

DkaDka ~9!

in the low energy limit. In the previous expression, we intr
duced a collective indexA[( ik). The metricKĀB and the
field FA can be expressed as

KĀB5
] 2K

] wA†] wB
, FA52KB̄A

] W†

] w B̄†
, ~10!

respectively, and theD term is given by

Dka52
jk

2
2(

i
gk

] K

] w ik†
Tkaw

ik†. ~11!

In the last equation, we have assumed that the gauge g
considered isU(1); otherwise the expression would be th
same except that the Fayet-Iliopoulos term would not
present.

We now assume that SUSY is not broken by theD terms.
This implies that^Dka&50. If k corresponds to a grou
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which is U(1), this means that one~or many! of the scalar
fields acquire a nonvanishing vacuum expectation value,
cording to

jk522(
i

gkK ] K

] w ik†
Tkaw

ik†L , kPU~1!. ~12!

The generatorsTka give the charges of the fields under th
consideredU(1). Typically, one expectŝw ik&.Ajk. This
means that theU(1) gauge symmetries are broken at th
scale. In the heterotic case this fixes the breaking at
Grand Unification Theory scale, while in the type I mode
the breaking scale is not specified as it is a modulus.
conclude that theD part of the scalar potential vanishes, i.e

VD50. ~13!

The nonzero contributions to the potential come from theF
terms.

The previous considerations are valid at very high re
shift. However, at small redshift, one needs to take into
count the effects of SUGRA, since the values of the quint
sence field are not negligible compared to the Planck m
In SUGRA, the form of the scalar potential is modified, a
reads

V5
1

k2
eG~GAGA23!1VD , ~14!

wherek58p/mPl
2 andG[kK1 ln(k3uWu2). In the previous

expression,GA is defined by

GA[
] G

] wA
5k

] K

] wA
1

1

W

] W

] wA
, ~15!

GĀ[
] G

] w Ā†
5k

] K

] w Ā†
1

1

W†

] W†

] w Ā†
, ~16!

and the indices are raised and lowered with the help of
following metric:

GĀB[
] 2G

] w Ā†] wB
5kKĀB . ~17!

The other terms inG cancel out because the superpotentia
a holomorphic function.A priori, this potential is no longer
positive definite. In particular, there is a negative contrib
tion coming from the superpotential.

Let us come to grips with the quintessence potential m
precisely. According to the previous discussion, we only
cus our attention to theF part of the scalar potential. A firs
attempt to derive the Ratra-Peebles potential@Eq. ~1!# from
first principles was made in Ref.@27# and then in Refs.
@20,21#. In order to see clearly the difference between t
approach and the approach advocated in the present p
we first quickly review the results obtained in Refs.@20,21#.
Then we will study in detail new properties of the mod
presented in Ref.@21#. We will argue that these new prope
5-4
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QUINTESSENCE WITH TWO ENERGY SCALES PHYSICAL REVIEW D64 083505
ties are in fact a problem, and we will see how, generica
they can be avoided in the context of theories with two d
ferent scales.

III. A SUGRA MODEL LEADING
TO THE RATRA-PEEBLES POTENTIAL

In the model presented in Refs.@20,21#, it is assumed tha
mS.mPl . Contrary to the strategy used in Sec. IV, which
to see which kind of potential is obtained from a gene
theory, the idea utilized in Refs.@20,21# was to study the
required properties of the theory such that the desired po
tial ~typically the Ratra-Peebles potential! is the result of the
calculations described above. Below, we improve the pres
tation of the model of Refs.@20,21#, in particular we describe
it in a language closer to high energy physics than the
used in Refs.@20,21#.

We assume that there are three sectors in the theory.
of them is the observable sector where all the known p
ticles and their superpartners live and the two other sec
are hidden. The first hidden sector is the ‘‘quintessence
tor’’ already mentioned above, where the quintessence fi
lives. The second one is the ‘‘broken sector,’’ introduc
such that SUSY should be broken in a satisfactory man
We have seen previously that, generically, due to the p
ence of a Fayet-Iliopoulos term and to the vanishing of
potential coming form theD terms, at least one scalar fie
acquires a nonvanishing vacuum expectation value. Le
call this fieldZ. Thus we havêZ&Þ0. This field belongs to
the quintessence sector. In addition, this sector is require
contain a fieldY such that̂ ]YW&Þ0. This field is similar to
a Polonyi field @30#, although we do not assume that th
superpotential is linear in this field. We also assume t
]YW, i.e., FY in global SUSY, does not depend onQ. The
Kähler potential and the superpotential of Refs.@20,21# have
the forms

K5
1

mPl
2p

uYu2~QQ̄!p1K̂~ uYu4, . . . ,FQ ,Fbro,Fobs!, ~18!

W5YZ21ŴQ~FQ!1Wbro~Fbro!1Wobs~Fobs!, ~19!

whereFQ , Fbro, andFobs denote superfields in the quinte
sence, broken, and observable sectors respectively.Wbro and
Wobs are the superpotentials in the broken and observa
sectors. WQ[YZ21Ŵ(FQ) is the superpotential in the
quintessence sector. We have^WQ&5^Wobs&50 but ^Wbro&
Þ0. The condition^WQ&50 guarantees that the SUGR
quintessence potential is positive definite. Then, in the c
text of global SUSY, the scalar potential isV(Q)
5mPl

2puFYu2/Q2p, i.e., the Ratra-Peebles potential. We s
that a crucial point in the argument is the vanishing of
term uYu2 in the series defining the Ka¨hler potential. Al-
though this concerns only one term in the complete ser
this should probably be considered as an unwanted fi
tuning, since there is no fundamental reason to expect
this term must be absent in a generic theory. In additi
sinceM41a.rcmPl

a , one has
08350
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uFYu25^Z2&2.rc , ~20!

which fixes the scale at which SUSY is broken in the qu
tessence sector. We see that this scale is very small in c
parison with the ‘‘natural scale’’ of SUSY breaking, i.e
.1TeV.

Actually, this is the main motivation for introducing tw
hidden sectors. It is convenient to break SUSY in a hidd
sector since, from a phenomenological point of view,
seems difficult to break SUSY in the observable sector.
deed, for example, a spontaneous breaking mechanism in
observable sector like the O’Raifeartaigh mechanism@31#
would not lead to a spectrum in accordance with the c
straints on the masses of the superpartners. Conversely,
hidden sector contains a Polonyi fieldP ~not the same as the
one contained in the quintessence sector, see above! such
that ^FP&5mSB

2 and if the cosmological constant problem
assumed to be solved~as it is always the case when on
discusses quintessence, see the introduction! then mSB

2

.m3/2mPl , wherem3/2 is the gravitino mass. This will give a
mass of orderm3/2 to the superpartners. Since we expe
m3/2.1TeV, this implies mSB.1010 GeV and ^FP&
.1020 GeV2, a value far fromFY . Therefore, it is necessar
that the observable sector should be different from the b
ken sector in order to have a correct spectrum, and it is a
necessary that the quintessence sector should be diffe
from the broken sector in order to have a value formSB of
the correct order of magnitude. In addition, the quintesse
sector cannot be the observable sector, since this would
ply the presence of a long range fifth force not seen in
data. In order to obtain the potential which is valid not on
at the beginning of the evolution but everywhere, we need
insert the Ka¨hler potential and superpotential given in Eq
~18! and ~19! in the equation giving the scalar potential
SUGRA@Eq. ~14!#. We find that the only contributions which
lead to non-vanishing terms in the scalar potential are

GȲY5kKȲY , FY[2
] W

] Y
2kWKYÞ0, ~21!

where W stands for the total superpotential.1 The vacuum
expectation value of the last term is in fact justFY5
2]W/]Y. This is due to the vanishing of the Polonyi-lik
field ^Y&50 and the quadratic dependence of the Ka¨hler
potential onY. Finally, we arrive at a positive definite expre
sion

V5ekKKYȲ^Z2&2, ~22!

where we have used the fact that theD terms are not modi-
fied in SUGRA and that, as a consequence,^VD&50. The
main difference comes from the exponential factor wh
represents the SUGRA corrections. However, we do not h
yet reached our main goal because the kinetic term ofQ is
still nonstandard. Indeed, since we are now in a regi

1Throughout the paper the auxiliaryF fields are given byF
5ekK/2F, whereF is defined by the second equation of Eqs.~21!.
5-5
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whereQ.mPl , we can no longer neglect the higher ord
terms in Eqs.~18! and ~19!, and thusKQQ̄Þ1. The Kähler
potential evaluated at the minimum of the potential for t
matter fields reads

K~Q,^Y&,^Z&,^w ik&!5K̂~Q,^Z&,^w ik&!

5 (
n51

`
c2n

mPl
2(n21)

Q2n, ~23!

where we have fixed the other hidden sector fields to th
vev. This means that the coefficientsc2n are functions of̂ Z&.
In a regime whereQ!mPl , only the first term will be im-
portant, and leads to a canonical kinetic term for quint
sence~with c251). Therefore, the potential obtained in th
context of global SUSY is not modified by a redefinition
the field. Closer to the Planck scale the contributions fr
the other terms become non-negligible. To deal with t
problem, we define a new scalar fieldQ̃ such that

dQ̃5A2KQQ̄dQ⇒Q̃5E dQA2KQQ̄[ f ~Q!, ~24!

where the functionf (Q) has been obtained by quadratur
The field Q̃ has a standard kinetic term. ExpressingQ

5 f 21(Q̃), we obtain the SUGRA potential

V~Q̃!5ekK[ f 21(Q̃)] ^Z2&2

@ f 21~Q̃!#2p
. ~25!

A priori, any functionf (Q) is allowed. WhenQ!mPl , the
form of the functionf is irrelevant, since we know from th
previous SUSY considerations that the potential will be
the formV(Q)}Q22p. If the Kähler function is just given by
K5QQ̄, then the kinetic terms are standard, and we reco
the SUGRA quintessence potential already studied in R
@20#:

V~Q̃!5ekQ̃2/2
^Z2&2mPl

2p

Q̃2p
. ~26!

The physical consequences of the SUGRA corrections
numerous, and the potential given by Eq.~26! was studied in
detail in Refs.@20,21,32#. There, it was shown that thes
corrections lead to a better agreement with the curre
available data. In particular, the equation of state param
is now given byvQ.20.82, a value closest to21 than in
the usual quintessence models. The calculation of the C
mic Microwave Background~CMB! multipoles in presence
of SUGRA quintessence also show that the theoretical
dictions are consistent with the most recent data, in partic
the MAXIMA-1 data @32,33#. On the other hand, it is clea
that we have assumed that theQ kinetic terms are canonica
If this hypothesis is not fulfilled, potential~26! is modified
and we see that the form of the potential above stron
depends on the Ka¨hler potential.

Let us study how the scalar potential is modified wh
more terms in the Ka¨hler potential are taken into account.
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particular, one would like to know whether the observab
~for example, the equation of state parameter! are strongly
dependent on the higher terms in series~23!. Therefore, in
order to have a more accurate description of the true Ka¨hler
potential, it is interesting to take into account one more te
and to choose

K5uQu21a
uQu4

mPl
2

, ~27!

where a is a new free parameter, leading to the followin
exact functionf (Q):

Q̃5
1

A2
FQA114a

Q2

mPl
2

1
mPl

2Aa
lnS 2Aa

Q

mPl
1A114a

Q2

mPl
2 D G . ~28!

Unfortunately, this function cannot be inverted exactly. Ho
ever for our purpose, it is sufficient to find the correct
potential at leading order in the expansion inQ/mPl . One
finds

V~Q!5
M412p

S Q2a
Q3

3mPl
2 D 2p expFk

2 S Q22a
Q4

6mPl
2 D G . ~29!

Some examples of this potential are plotted in Fig. 1.

FIG. 1. Comparison between Ratra-Peebles and SUGRA po
tials. The Ratra-Peebles potential@Eq. ~1!, solid line# is simply an
inverse power law and always decreases. The standard SU
potential@Eq. ~26!, long-dashed line# possesses an exponential co
rection which dominates when the field takes values close to
Planck mass. The other SUGRA potential we have considere
Eq. ~29! is plotted for a5100 ~short-dashed line!, a510 ~dotted
line!, and a521 ~dot-dashed line!. All the curves were plotted
with a52p56 and normalized so that the quintessence field ha
density parameterVQ50.7 today, which roughly corresponds to p
the minimum of the potential atrc . In addition, with crosses we
have indicated the position of the quintessence field today. It is c
that the field has almost reached the minimum of its potential in
~SUGRA! cases.
5-6
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Let us now study how the corrections described above
affect the global evolution. In particular, as mentioned abo
one would like to know whether observable quantities
significantly modified by the new terms that we have cons
ered in the series defining the Ka¨hler potential. An interest-
ing way to distinguish between these various models ob
vationally is to look at the behavior of the quintessence fi
equation of state. It can be shown@34# that, provided one
knows both the matter density of the Universe as well as
curvature, one can both recover the quintessence equatio
state parametervQ , as well as its derivative today by study
ing the luminosity distance vs redshift relation, for examp
with supernovae type Ia. The parametervQ can be approxi-
mated at low redshift by

vQ.v01zv1 , ~30!

and bothv0 andv1 can be recovered, at least in principl
with good data. In the case described by Eq.~29!, for posi-
tive values ofa, the potential has a steeper part aroundQ
5A3/amPl because it diverges. Therefore the potential p
sesses a minimum beforeQ5A3/amPl . As already stated
the field has reached the usual tracking regime at earlier
~which corresponds to small values ofQ); therefore, it
reaches its minimum sooner in the case of largea. As a
consequence, the quintessence field behaves more rapid
a cosmological constant than in the standard SUGRA c
and of course than in the Ratra-Peebles case. This ca
seen explicitly by looking at the position of the quintessen
field on its potential~see Fig. 1!, or by plottingvQ and its
derivative today as a function ofa ~see Fig. 2!. Note, how-
ever, that, strictly speaking, at the end of the evolution,
the terms in the expansion off 21(Q) should be taken into
account sinceQ/mPl.1. Therefore, the present calculatio
can only give a hint of what happens when the correction
the Kähler potential are fully considered. For negative valu
of a, the potential does not diverge but grow faster beca
of the higher argument of the exponential part. Therefore
for the a.0 case, the minimum of the potential occurs
lower values ofQ, and the field behaves more rapidly like
cosmological constant.

The main conclusions that we can draw from the previo
analysis are the following. In the context of effectiv
SUGRA, there exists a Ka¨hler function and a superpotentia
which lead to a class of model described by Eq.~25!. How-
ever, these models depend on specific assumptions fo
superpotential and Ka¨hler functions. If more generic term
are considered in the series defining the Ka¨hler potential,
then some sensitivity of the observables to the form of
Kähler potential within this class of models is found, but
long as the potential possesses a minimum aroundQ
.mPl , the main features of the SUGRA potential of Re
@20,21# are preserved. Having identified the main advanta
and drawbacks of the approach followed in Refs.@20,21#, we
now turn to a different method where some of the previo
shortcomings can be avoided.
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IV. A GENERIC APPROACH TO QUINTESSENCE
WITH TWO SCALES

In this section, which constitutes the core of this paper,
adopt a different approach compared to that of Sec. III. Si
a priori there is no reason to consider thatmS andmPl are of
the same order of magnitude, we do not make this artific
assumption. As a consequence, we consider thatmS can have
any value provided, of course, that it is smaller than
Planck mass,mS!mPl . Then, the strategy is as follows: in
stead of trying to find the Ka¨hler potential and the superpo
tential which leads to the Ratra-Peebles potential as in R
@20,21#, we will try to see which kind of potential arises from
a generic Ka¨hler potential and superpotential, i.e., witho
any fine-tuning of their shape. We still assume that there
three sectors in the theory, two of them being hidden.
first investigate this question in the context of global SUS
i.e., when the value of the quintessence field is small in co
parison to the Planck mass, which is the case just after
heating where the initial conditions are set. We assume
the Kähler potential is a nonsingular series asQ goes to zero.
Let us expand the Ka¨hler potential focusing on the couplin
between the quintessence fieldQ andY, the Polonyi field in
the quintessence sector. One has

K~Y,Q, . . . !5uYu21uYu2(
p51

pmax 1

mS
2p

~QQ̄!p1K̂~••• !,

~31!

FIG. 2. Effect of a modification to the quintessence poten
@Eq. ~29!# on today’s evolution of the quintessence equation of st
~solid line!. The three values ofa plotted in Fig. 1 are represente
with crosses~the casea521 is near the intersection with the shor
dashed line and the two others are nearv0→21, v1→0). As
explained in the text, almost any value ofa helps the quintessenc
field to mimic a cosmological constant (v0→21, v1→0). In ad-
dition, we have plotted the dependence ona of the Ratra-Peebles
~long-dashed line! and SUGRA~short-dashed line! potentials. For
the two curves,a varies from!1 ~left! to @1 ~right!. The fact that
the field roughly behaves as a cosmological constant for low va
of a comes from the fact that the potential is flatter and theref
the field stops more rapidly when it begins to dominate~even in the
tracking regime, 11vQ}a; see Ref.@18#!. Conversely, for high
values ofa, the field tends to mimic the behavior of the backgrou
fluids. On these two curves, values ofa52, 4, 8, and 16 are
represented with crosses. The dependence ona of the SUGRA
potential is much less important than in the Ratra-Peebles case
5-7
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where K̂ parametrizes the rest of the expansion~but of
course needs not to be equal to the one introduced pr
ously!. This expression should be compared with Eqs.~18!
and ~19!. This time the termuYu2 is present, since we hav
not assumed anything about the series defining the Ka¨hler
potential. The key point is that we have only included ter
sensitive to the string scale and not the Planck scale beca
in the limit of global SUSY, this one is sent to infinity an
therefore the corresponding terms vanish. We have only
sumed that the series can be expressed as a polynomi
this is not the case then a whole knowledge of nonpertu
tive string theory is required. However, truncating the wh
series at the orderpmax would require a dynamical explana
tion which cannot be provided unless in a particular mod
For this reason we will study the dependence of the phys
observables on the degree of the polynomial.

Let us calculate the corresponding scalar potential~as-
suming that the quintessence field is real!. The only term
coming from the Ka¨hler function which gives a contribution
to the potential is given by

KȲY5
1

11 (
p51

pmax

Q2p/mS
2p

, ~32!

from which we deduce that

V~Q!5
uFYu2

11 (
p51

pmax

Q2p/mS
2p

. ~33!

Let us study this class of potentials in more detail. Typica
they have the shape represented in Fig. 3. Whatever the
cise form of the series, for values of the field such thatQ
!mS the potential is almost flat since the constant term
dominates in Eq.~33!. This means that we no longer have
divergence of the potential at smallQ. When the field be-

FIG. 3. Different examples of potentials given by Eq.~33!. The
four curves represent potentialsV(Q)5uFYu2/@11(Q/mS)pmax#
~solid line! and V(Q)5uFYu2/@11(Q/mS)pmin1(Q/mS)pmax#, with
pmax512 and pmin52 ~long-dashed line!, pmin56 ~short-dashed
line!, andpmin510 ~dotted line!.
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comes of the order of the string scale,Q.mS , the precise
form of the series matters. But this is true only in a limite
region, and one expects that this will not affect the glob
behavior of quintessence. In the region whereQ@mS , only
the term (Q/mS)2pmax is important, and the potential reduce
to

V~Q!.
uFYu2mS

2pmax

Q2pmax
, ~34!

i.e., we recover a Ratra-Peebles potential, and again the
tailed form of the series does not matter. This region cor
sponds to the straight line in Fig. 3~the slope of which is
212, sincepmax56 was chosen for this plot!. Since the
tracking behavior essentially depends on the behavior of
field at late times, i.e., before it reaches the Planck mass,
attractor properties of the standard Ratra-Peebles pote
still hold in this case, as we have checked numerica
Therefore, the modifications in the potential at lowQ do not
matter as long asmS is not too large~typically, mS must be
;2 orders of magnitude smaller than the Planck mass;
bound is even relaxed for high values ofa). Such a behavior
was already remarked upon in another context when we c
sidered the quantum corrections to the Ratra-Peebles po
tial @21#. Note, however, the explicit dependence on the
gree pmax. This has important observable consequenc
Indeed, it appears that potential~34! leads to an equation o
statev0 which exhibits a strong dependence onpmax. This is
less true for the derivative of the equation of statev1, as can
be seen from Fig. 2~dashed line!. However we shall see tha
this problem is far less serious when SUGRA corrections
included, in which case the values of (v0 ,v1) accumulate
numerically around (20.8,0.45) in the largepmax regime
~Fig. 2, dotted line!. This is an interesting indication that th
physical observables are stable with respect to variation
the truncation degree.

Another important consequence is that the SUSY bre
ing scale is now given by

uFYu2.rcS mPl

mS
D a

, ~35!

wherea[2pmax. For mPl5mS one recovers the usual resu
given in Eq.~20!. However, the important point is that in th
present framework,mPl andmS do not need to be the same
which has the important consequence that now the SU
breaking scale in the quintessence sector decouples from
critical energy density. Let us show a few orders of mag
tude. In particular, one would like to fix the SUSY breakin
scale in the quintessence sector to the same value as
SUSY breaking scale in the broken sector, i.e.,^FP&
.1020 GeV. This would be one step toward an identificati
between the quintessence sector and the broken sector,
leaving only one hidden sector. This strategy will be pursu
in Sec. V. Fixing uFYu.1020 GeV2 and writing mS
5102xmPl , we find thatx.67/a. We see that the string
scale varies between the TeV scale and the Planck mas
a.3. It is auspicious that to maintain a low value of th
5-8
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QUINTESSENCE WITH TWO ENERGY SCALES PHYSICAL REVIEW D64 083505
SUSY breaking scale in the quintessence sector in the l
a limit, we need to take values ofmS which are closer and
closer to the Planck scale. As already stated, as long asmS is
a few orders of magnitude smaller than the Planck mass,
has no significant influence of the evolution of the quint
sence field today. The previous results follow from the dir
coupling between one fieldQ and the SUSY breaking fieldY,
and does not require any fine-tuning. In particular, the pr
ence of an inverse power law only requires that one can t
the perturbative expansion of the Lagrangian, i.e., one d
not need to know the whole power series.

We now need to take into account the SUGRA corr
tions. As in Sec. III, the form of the potential is given by th
positive definite expressionV5ekKKYȲ^]YW&2, where again
we have used the fact that theD terms are not modified in
SUGRA. The Ka¨hler potential evaluated at the minimum
the potential for the matter fields is a series in 1/mS , and
reads

K~Q,^w ik&!5 (
n51

nmax c2n

mS
2(n21) ~QQ̄!n, ~36!

where we have fixed the other hidden sector fields to th
vacuum expectation values. This equation is similar to
~23!. Note, however, that we have only kept the domina
1/mS terms. If mS.mPl we only need to substitutemPl for
mS in the expansion. The kinetic term ofQ is not normalized.
To deal with this problem, as previously, we define a n
scalar field according to Eq.~24! ~of course, now, the func
tion f needs not to be the same!. This leads to the potential

V~Q̃!5ekK[ f 21(Q̃)] ^]YW&2

11 (
p51

pmax

@ f 21~Q̃!#2p/mS
2p

. ~37!

The previous equation gives the generic prediction for a
theory which can be effectively described by SUGRA w
two scales. Note that takingmPl→`, this reduces to the
globally supersymmetric result, as expected. Now we
deduce the form of the potential in the three different
gimes, and study how it is affected by the particular form
the theory. First, we note that it does not depend on
superpotential: it is sufficient to have^]YW&Þ0, i.e., a Polo-
nyi field in the quintessence sector. WhenQ!mS then Q̃

5A2Q and V(Q̃).^]YW&2. The potential no longer blows
up. In this regime, it does not depend on the details of se
~31! or ~36!. For Q.mS all the terms in the expansion pla
a role, and the precise shape of the potential cannot be
termined unless a specific model is given. But again we
pect that we will not affect the cosmological observab
since they are determined in a regime whereQ5mPl@mS .
For largeQ the highest power is only required. As we a
interested in theQ.mPl regime we conclude that

KQQ̄5nmax
2 c2nmax

~QQ̄!nmax21

mS
2(nmax21) ~38!
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⇒Q̃5A2c2nmax

Qnmax

mS
nmax21 , ~39!

leading to

V~Q̃!5Aek(Q̃2/2) ^]YW&2

Q̃2pmax/nmax
, ~40!

whereA5(A2cnmax
mS)

2pmax/nmax. Note that the coefficients

arrange themselves such thatkQ̃2/2 appears in the potentia
without any additional multiplicative factor in the argume
of the exponential. We can identifya[2pmax/nmax. There-
fore, in this regime, we recover the SUGRA quintessen
potential which now appears as a generic property of
effective SUGRA theory with two scales. Now the degrees
the truncated seriesnmax and pmax play competing roles. In
particular, three natural behaviors can occur. In the first
a goes to zero. This is physically disfavored, as this wo
require that̂ ]YW&2 converge to the critical energy densi
rc. Similarly a can go to infinity, with the need formS to be
closer and closer to the Planck scale. Finally,a can remain
finite. In this case we do not need to fine-tune the SU
breaking scale. The point is that the observables do not
pend very much ona[2pmax/nmax. Indeed, a large range o
values ofa lead to the same CMB spectrum and the sa
dependence of the equation of state at small redshifts~see
Fig. 2, dotted line, and Ref.@32#!. It is remarkable that from
an a priori very complicated theory, we end up with th
conclusion that observables like (v0 ,v1) are uniquely deter-
mined by potential~40!. Since typically, we expect that th
coefficient cnmax

is of order 1, we deduce that the SUS
breaking scale is again given by relation~35!. In order to
justify that the previous considerations really lead to a s
cessful and realistic model for quintessence, we need
study the process of SUSY breaking in more detail.

V. SUPERSYMMETRY BREAKING

In the previous sections we have seen that it is neces
to assume three different sectors, two of them being hidd
In this section, we thoroughly analyze the consequence
SUSY breaking, both from cosmological and particle phys
points of view.

A. Spontaneous vs explicit supersymmetry breaking

A first study of SUSY breaking in the context of quinte
sence was made in an interesting paper by Kolda and L
@35#. There, the authors pinpointed a possible incompatibi
between quintessence and SUSY. Indeed the expansio
Eq. ~5! comprises the two terms

KYȲuFYu21WYFY1W̄ȲFȲ. ~41!

Assuming that SUSY is brokenexplicitly by FY leads to a
polynomial expansion of the scalar potential inQ when using
the general Taylor expansion ofKYȲ. Fortunately, in
SUGRA one must consider SUSY as a local gauge the
wich cannot be broken explicitly, as the electroweak symm
5-9
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try which is not broken by putting an explicit gauge symm
try breaking mass in the Lagrangian. SUSY is brokenspon-
taneouslyby the nonvanishing vev ofF terms obtained by
solving the equations of motion. This leads to a super-Hi
mechanism, where the would-be massless Goldstone ferm
is eaten by the gravitino which becomes massive@37#. As the
F terms are auxiliary field terms with no kinetic terms, o
can solve Eq.~41! algebraically to give

FY52KYȲW̄Ȳ , ~42!

leading to the potential investigated in the previous sectio
It is apt that an intrinsic feature of SUGRA prevents this ty
of quintessential difficulty.

B. Moduli supersymmetry breaking

We have seen that a quintessence potential can be
tained in a hidden~quintessence! sector. On the other hand
we have assumed that SUSY was broken in another hid
sector. Therefore, one may wonder whether it would not
possible to consider only one hidden sector where SUS
broken and, at the same time, to which the quintessence
belongs. In this section, we will include the effects due
otherF terms, and study the modifications that they impo
on the potential. In particular we suppose that these are
single Kähler moduli T and the dilaton fieldS where the
superfields T and S belong to the unique~postulated!
‘‘broken-quintessence’’ hidden sector. Because of SU
breaking the potential will have the form

Vbro~Q!5V~Q!1ekK~KTT̄uFTu21KSS̄uFSu2!1uDu2

23m3/2
2 /k1Vadd, ~43!

where the potentialV(Q) is the quintessence potential o
tained previously. TheD terms are independent ofQ, as this
is a neutral field. The gravitino massm3/2 is nonzero due to
the breaking of SUSY. The last termVadd springs from the
visible sector, and gives large contributions to the cosmolo
cal constant. This is the cosmological constant proble
Vbro(Q) contains huge constant terms which,a priori, domi-
nate all the other contributions. TheFS and FT auxiliary
fields are given by

FS,T52]S,TW2k~]S,TK !W, ~44!

and depend on the nonperturbative corrections to the su
potential which are responsible for the breaking of SUS
There is a strong dependence ofFT and FS on the Kähler
potential. To go further we need to return to Eq.~31!, and to
be more specific about the forms of the functionK̂. We take
a generic form of the Ka¨hler function as

K̂5
1

k
@23 ln~T1T̄!2 ln~S1S̄!#

1mS
2(

pqk
dpqk~S1S̄!2p~T1T̄!2qS QQ̄

mS
2 D k

, ~45!
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where we assume that this is a polynomial inQQ̄ ~the coef-
ficientsdpqk are just the coefficients of the polynomial!. Only
inverse powers ofmS were taken into account, as order b
order inQ the inverse powers ofmPl are suppressed. Com
puting the derivative with respect toSandT leads to a poly-
nomial dependence onQ of FS andFT . This implies that the
SUSY breaking scale varies during the evolution of the u
verse, and therefore the sparticle masses become stro
time dependent. Indeed, the mass matrix of the scalars
pends explicitly on theF terms,

mAB̄
2

5ekKS k

3
KAB̄KCD̄2RAB̄CD̄DFCF̄D̄, ~46!

where the second term involves the Riemann tensor dedu
from the Kähler potential. It is easy to see that a polynom
dependence onQ for FS and FT leads to a polynomial de
pendence onQ of the masses fromKTT̄FTF̄T̄ andKSS̄FSF̄S̄ .
At large Q this behaves like (Q/mS)

2kmax, wherekmax is the
dominant term in Eq.~45!.

To avoid this we must conclude that the quintessence fi
decouples from the SUSY breaking sector:

dpqk50, kÞ0. ~47!

On the whole we find that the SUSY breaking sector and
quintessence sector must be separate.

Coming back to Eq.~43!, there is a negative contributio
from the gravitino mass:

m3/25kekK/2^W&. ~48!

Combining with theFS and FT terms, this leads to the fol
lowing term in the potentialVbro:

ekK~KTT̄uFTu21KSS̄uFSu223k^W&2!. ~49!

In the early Universe this is a cosmological constant, as
term in brackets is a constant. AsQ increases the exponentia
corrections become relevant. So this term acts as a slo
varying cosmological constant. Moreover, we can expec
large contributionVadd.mW

4 from the visible sector. Both
contributions should be large compared to the critical den
of the Universe. Nevertheless there is a strong constr
springing from the existence of an attractor. The attrac
condition @Eq. ~2!# should be compatible with the require
ment that the total potential reproducesVLrc . It can easily
be seen that, if the slowly varying and constant contributio
are much larger than the critical density, then the attrac
disappears. Consequently we shall assume that the extra
stant and slowly varying pieces in the potential vanish a
gether. This is another manifestation of the fact that it
necessary to assume that the cosmological constant pro
is solved before considering the quintessence hypothesi
the context of quintessence, the relevant question is whe
the dynamicalpart of the potential after SUSY breaking
modified. In particular, this leads to the requirement that
contributions from the visible sector and the broken sec
must vanish independently, i.e.,
5-10



f t

se

h

b
i

e
o

s
e

th
ea

r
o

low

e
n a

pat-
en

eric
s is
tial.
ntial
ay
e of
his

at

s

ua-

is

x-

al

it is
of

gion
of

a-

QUINTESSENCE WITH TWO ENERGY SCALES PHYSICAL REVIEW D64 083505
Vadd50, KTT̄uFTu21KSS̄uFSu253k^W&2. ~50!

The second of these constraints is the usual fine-tuning o
SUSY breaking sector.

Let us now consider the contribution to the scalar mas
due to the Polonyi fieldY,

S k

3
KAB̄2RAB̄YȲKYȲDV~Q!, ~51!

which is negligible now due to the smallness ofV(Q). The
scalars receive a mass from theFS and FT terms, which
reads@38,39#

mAB̄
2

5m3/2
2 KAB̄2ekK~RAB̄SS̄F

SF̄S̄1RAB̄TT̄FTF̄T̄!. ~52!

Note that the sparticle masses will have a universal reds
dependence coming from exponential factor in Eq.~48!. This
dependence is only relevant in the recent past. It would
interesting to study the associated phenomenology. There
final constraint springing from the gauginos masses@38,39#,

ma5
Ak

2
ekKFI] I ln ga

22 , ~53!

wherega is the gauge coupling of theath gauge group. To
leading order one can expand

ga
225S1S̄1bAk~Y1Ȳ!, ~54!

where we have included a dependence onY. This is what
happens in type I models if the Polonyi field can be identifi
with the blowing up moduli. Nevertheless the presence
KYȲ implies that theFY contribution is negligible. So we
find that that the masses of sparticles do not depend onFY .
This allows for independent supersymmetry mechanism
the ‘‘broken’’ and ‘‘quintessence’’ sectors. In particular th
mechanism of Sec. III, where

FY
25^Z2&25S mPl

mS
D a

rc , ~55!

is viable. Phenomenologically we should impose that
corresponding Fayet-Iliopoulos term is larger than the w
scale. This leads to

mS

mPl
<S rc

mW
4 D 1/a

, ~56!

which is reasonable as soon asa.3. We can even go furthe
by noticing that the Fayet-Iliopoulos term is of the order
the string scale. Imposing thatFY5mS

2 leads to

rc5
mS

41a

mPl
a

. ~57!
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In new type I string scenarios the string scale can be as
as the TeV region. In that case this leads toa54. This de-
terminespmax52 for a flat Kähler potential inQ. The rela-
tion

rc
1/45

mS
2

mPl
~58!

was advocated in Ref.@40# to obtain a natural solution to th
coincidence problem. We find that it can be embedded i
SUGRA description of quintessence with two scales.

In conclusion we have seen that quintessence is com
ible with SUSY breaking, and should belong to a hidd
sector different from the hidden broken sector.

VI. INFLUENCE OF A MINIMUM
IN THE QUINTESSENCE POTENTIAL

From the above considerations, it seems that a gen
consequence of taking into account high energy physic
the presence of a minimum in the quintessence poten
This differs from the Ratra-Peebles case, where the pote
is monotonic and goes to zero at infinity. Therefore, one m
wonder what the physical consequences of the presenc
this minimum are. The purpose of this section is to study t
question.

A. Oscillations of the quintessence field

The SUGRA potential possesses a minimum located
Qmin5Aa/k1/25O(mPl); see Fig. 1. Thus,a priori, this
could modify the final evolution of the field. Therefore, let u
expand the field around the minimum; we write

Q̄5Aa1q̄, ~59!

where Q̄[k1/2Q is dimensionless and whereq̄ is a small
quantity. If we neglect the quadratic order, the Einstein eq
tion readsH25H0

25(k/3)V(Aa) which implies thata(t)
5a0eHt. On the other hand, the Klein-Gordon equation
given by

q̈̄13H0q̇̄16H0
2q̄50. ~60!

The solution to this equation is given by the following e
pression:

q̄~ t !} expF S 2
3

2
6 i

A15

2 DH0tG . ~61!

This solution is oscillatory with a damping term proportion
to a23/2. The period of the oscillations is equal to.H0

21,
i.e., is equal to the age of the Universe today. Therefore,
clear that no oscillation took place until now since the age
the Universe is the time already necessary to reach the re
where the oscillations could occur. Conversely, the future
the Universe will be different in comparison with the Ratr
Peebles potential case. Numerically, for the casea511, the
redshifts at which the field stops arez520.65,20.92,
20.98, etc. The first redshift corresponds toa/a0;2.85, i.e.,
5-11
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to a time where the scale factor is 2.85 larger than today~see
Fig. 4!. This is of course independent of the initial conditio
provided that we are initially in the allowed range.

It is of course possible that some oscillations occur bef
today, but this is not easy. The main reason is that the q
tessence field rolls rather slowly toward the bottom of
potential, so that the quintessence density parameterVQ is
almost equal to 1 at the time where the field stops for the
time ~as can be seen in Fig. 4!. Another possibility is thatVQ
is of order unity at early time. In this case, the field is in
tially very small, and correspondingly its energy density
large. Then, the field is in a ‘‘fast-roll’’ regime, i.e.,vQ.1,
and is not slowed down enough by the expansion. It th
goes through~still in a fast-roll regime! its minimum, and is
stopped by the very steep exponential growth of the poten
at largeQ. Such a behavior does not affect the behavior

FIG. 4. Overall evolution of the quintessence field. We start a
redshift ofz5107 with a quintessence field initially at rest (vQ→
21, short-dashed line! and subdominant (VQ→0, long-dashed
line!. Then the field joins the attractor aroundz.104. It remains on
this attractor as long as it is subdominant, i.e.,VQ!1. When it
starts to dominate, it gradually behaves as a cosmological con
(vQ→21 again aroundz.0). Then the field experiences som
damped oscillations around its minimum~solid line!. The behavior
of the parametervQ can be studied by looking at the variablecQ

2

[ ṗQ / ṙQ ~dotted line!, which diverges whenvQ reaches21 @this
occurs initially and whenQ(t) reaches an extremum#.

FIG. 5. Dependence of the mass scaleM with the minimum of
the potentialXmin . The numerical computation gives a very goo
agreement with the estimate of Eq.~63!.
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the quintessence field today, but can leave some imprint
the high frequency part of the primordial gravitational wa
spectrum~see, e.g., Ref.@36#!.

B. Amplitude of the minimum

Let us now study the influence of a pure cosmologi
constant term in the quintessence potential. We would like
know whether we can change the value of the minimum a
in particular, whether it is possible to put it to zero. Ther
fore, we take a SUGRA potential to which we add a const
term

V~Q!5ekQ2/2
M41a

Qa
1~Xmin21!Vmin. ~62!

In this expressionVmin is the value of the potential at it
minimum, i.e., forQ5Aa/k andXmin>0 a free parameter
Xmin50 corresponds to a vanishing minimum, andXmin51
reduces the above potential to the standard SUGRA po
tial. We would like to emphasize that there is no fine-tuni
of the location of the minimum; it follows directly from the
shape of the potential~and is of course independent of th
constantM ). The fact that the field is today near the min
mum of the potential follows directly from the fact that, b
cause of the presence of the attractor, the field is today of
order of the Planck mass, which also turns out to be
location of the minimum of the potential. Again, no fine
tuning is required to have this property which arises natura
in SUGRA quintessence.

Let us start with the case where the minimum is not ze
The presence of a constant term can influence the shap
the potential and the value of the constantM, as explained
below. Let us start with the constantM. In all the cases
presented here, as mentioned above, the constantM is found
numerically by requiring thatVQ50.7 today. In all the case
of interest, the quintessence equation of state is such

a

nt

FIG. 6. Shape of the quintessence potential for various value
Xmin . The potentials were normalized so thatVQ50.7 today, which
roughly corresponds to requiring that the minimum of the poten
is equal to the critical density today. Note the presence of a bro
flat region for high values ofXmin , and a deep and narrow depre
sion for small values ofXmin . These features have a large impo
tance on the evolution of the quintessence field today.
5-12
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21<vQ<0 today. This means that a significant part of t
energy density of the field is determined by its potential
ergy. In presence of the additional constant term, this imp
that the constantM is no longer given by Eq.~3!, but rather
by

M.S rcmPl
a

Xmin
D 1/(41a)

. ~63!

This is what we can check on Fig. 5. Knowing how to d
termineM, we can now turn to the shape of the potential. F
large values ofXmin , there is a large region where the pote
tial is almost flat. This means that when the quintesse
field enters this region, it behaves very quickly as a cosm
logical constant. Conversely, small values ofXmin produce a
deep and narrow ‘‘hole’’ in the potential in which the fie

FIG. 7. Evolution of the quintessence field equation of st
parameter for several values ofXmin . The field starts at a moder
ately high redshift (z.100) from its attractor value~which means
vQ.20.25 fora56 here!, and subsequently starts to behave a
cosmological constant as its energy density dominates~we have
takenVQ50.7 today!. As explained in the text, large values ofXmin

all lead to essentially the same behavior, whereas low values ofXmin

cause the field to oscillate.

FIG. 8. Today’s value of the quintessence equation of state
rameterv0 and its derivativev1 for several values ofXmin . The
crosses represent the values ofXmin used in Fig. 7~same color
code!. Note that for low values ofXmin , the oscillations of the field
are quite rapid, and therefore, the equation of state parameter i
very well approximated byv;v01zv1, even for a relatively short
interval of the redshift.
08350
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oscillates when it falls into it. These two cases are rep
sented in Fig. 6. The addition of a constant term must h
some observable consequences today. This is what we
check in Fig. 7, where we plot the value ofvQ as a function
of the redshift. As expected, large values ofXmin do not
significantly differ from theXmin51 case, except that th
equation of state parameterv goes faster to21 ~the poten-
tial is less steep!. Conversely, the oscillations for small va
ues ofXmin are clearly observable. This is due to the fact th
in this case, Eq.~60! reads

q̈̄13H0q̇̄16
H0

2

Xmin
q̄50, ~64!

so that the frequency of the oscillations can be arbitra
large. Then if we plot the values of (v0 ,v1) for several
values of Xmin , the oscillations of the field translate int
ellipses in the (v0 ,v1) plane; see Fig. 8.

Finally, we would like to stress some important propert
of the dynamic of the quintessence field in the case o
vanishing value ofXmin , i.e., when one tries to set the po
tential to zero. A decreasing value ofXmin leads to an in-
creasing number of oscillations experienced by the quin
sence field before today; see Eq.~64!. Numerically, this
translates into a very weird behavior of the functionvQ(z)
as Xmin goes to 0; see Fig. 9. Now, in the vicinity of th
minimum of the potential, the potential has a quadra
shape. Therefore, this leads to an equipartition between
kinetic energy and the potential energy, and therefore to
average equation of state parametervQ equal to 0, a well-
known behavior of the inflaton field at the end of inflatio
@41#.2 In this case, the equation of state of the field is exac
the same as the one of ordinary matter. As a consequence
ratio betweenVQ and Vm becomes a constant. This mea
that

2This point can in principle be evaded if we suppose that
potential behaves like (Q2Qmin)

b, with 0,b,2, but this seems to
be an unlikely possibility in the case presented here.

e

a

a-

not

FIG. 9. Evolution of the equation of state parametervQ as a
function of the redshift for Xmin51 ~solid! and Xmin51025

~dashed!. For such a low value ofXmin , only for a small redshift
can one see the decay ofvQ toward 21, as indicated by the de
creasing envelope of the curve.
5-13
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the value ofVQ today is approximatively given by the valu
of VQ when the field started its oscillations, denotedVQ

osc in
what follows. Then, the relevant question is: canVQ

osc be
equal to~say! 0.7? The answer to this question depends
the physical reason which causes the field to leave the at
tor. A priori, two situations can be envisaged. First, the fie
leaves the attractor because it has not yet reached~or felt! the
minimum and it starts to dominate. This is what happens
the Ratra-Peebles case~for which there is no minimum!. Sec-
ond, conversely, it has not yet started to dominate but
field ‘‘feels’’ the presence of a minimum. In the second ca
by definition we haveVQ

osc!1, and the answer to the que
tion above is ‘‘no.’’ Therefore, only the first situation remain
a possibility. Let us study this situation in more detail.
particular, one may wonder whether it can really happen
the field dominates before encountering the minimum. T
field dominates whenQ5Qend, defined by the condition
rQ.rm /x, where x is an arbitrary number. A reasonab
value forx is, for example,x510. Using the equation of the
attractor @see Eq.~2!#, it is easy to establish thatkQend

2

5a(a12)/@3(x11)#. On the other hand, we havekQmin
2

5a. Therefore ifa.3(x11)22, thenQend,Qmin , and we
are in the desired situation. However, this is not so simp
because the width of the hole, denoted here asd(kQ2), mat-
ters. We are in a good position only ifk(Qmin

2 2Qend
2 )

.d(kQ2); otherwise we cannot say that the field does
feel the minimum of its potential. It is not totally trivial to
calculate the width of the potential, which is not symmet
with respect toQmin . A fair estimate is given by the differ
ence betweenQmin and the value ofQ, such that the SUGRA
potential becomes different from the Ratra-Peebles~RP! po-
tential, i.e., forQ such thatuVSUGRA(Q)/VRP(Q)u.y, where
y is an arbitrary number~for example,y50.1). This gives a
width equal tod(kQ2)5a22 ln(y11). Of course, the com
parison depends on the precise values ofx and y, but for
reasonable values one reaches the conclusion that the w
of the potential is always of the same order of magnitude
,

7
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the differenceQmin2Qend. Therefore, even ifQend,Qmin ,
we will obtain VQ

osc!1. As a consequence, the energy de
sity of the quintessence field cannot dominate, and ther
no possibility of reaching a value ofVQ50.7 today if the
minimum is put to zero.

VII. CONCLUSIONS

In this paper, we have studied the model building probl
of quintessence in the context of SUGRA viewed as the l
energy limit of string theory. In this context, the theory
described by two scales: the Planck scale and the st
scale.A priori, there is no reason to assume that these
scales are equal. If indeed the string scale decouples from
Planck scale, we have shown that the SUGRA quintesse
potential arises naturally in this framework. In addition,
was demonstrated that the potential is stable against co
tions in the Kähler potential and if SUSY breaking is take
into account. A generic property of the SUGRA quintessen
potentials is the presence of a minimum. We have shown
the field today is always close to this minimum. This requir
no fine-tuning, and is due to the fact that the minimum tu
out to be of the order of the Planck mass, the value that
field has when it leaves the attractor, at small redshifts.
have also demonstrated that the minimum of the poten
cannot be put to zero while keepingVQ to a value of the
order of the critical energy density today.
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