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1. Introduction

In this work we study various aspects of the nature of the Hagedorn transition in

NCOS systems [1]. There are several bounds in string theory which are of a stringy

nature. The first is the string scale `s. It was suggested by the T -duality symmetry [2]

that it is the minimal scale one can probe in string theory; it seems however that

with Dp-branes one may access also smaller distances [3]. The second is the limiting

Hagedorn temperature, TH , reflecting an entropy whose leading term, at least for free

strings, is linear in the energy in any number of dimensions, corresponding to a gas of

highly excited, long strings [4]–[7]. The third one is the critical value of the electric

field applied on the brane [8]. It reflects from one point of view the speed of light as

a limiting velocity [9]. From another point of view it suggests that the draining of

the string tension by the electric field eventually leads to the formation of effectively

tensionless strings at the critical value of the electric field [10]. Each of these stop

signs attracts an effort to surmount it in hope of uncovering in the process some new

fundamental building blocks of matter. This type of wilsonian attitude had been

successful in the past. In particular the very same Hagedorn spectrum had provided,

in the QCD setting [11], a hint that the hadrons are composite objects, objects

which would disintegrate into their constituents once the Hagedorn temperature was
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approached. The analogous scenario for fundamental strings was set up in ref. [12],

although the precise nature of the ‘constituent phase’ lying beyond the Hagedorn

temperature remained mysterious (see [13] for new results in this direction), mostly

due to the specific difficulties brought by the presence of strong gravitational effects.

The string/black-hole correspondence principle [14, 15] can be used to address the

question of gravitational effects at a qualitative level [16]. In this picture the Hage-

dorn temperature is effectively the maximal temperature of the system: a Hagedorn

phase of long strings appears as a transient that matches at high energies and/or

coupling to black holes or black branes of negative specific heat, the Hagedorn tem-

perature being maximal because such black holes are colder the higher the energy.

Therefore, the question of the ‘string constituents’ appearing at very high energies

would depend on the appropriate holographic description of microscopic degrees of

freedom on the horizon of very large black holes. Such an scenario is actually realized

within the AdS/CFT correspondence [17, 18].

One has to keep in mind that the presence of real bounds may actually be a

signal that the wilsonian quest for an ultraviolet fixed point should be abandoned

in this case. However in the absence of an alternative we will continue the quest for

what lies beyond and/or instead of the long-string phase.

The NCOS systems were originally defined as certain limits of D-brane back-

grounds in the presence of a near-critical time-space noncommutative parameter.

That resulted in open strings that are essentially decoupled from gravity and whose

tension is much smaller than that of usual strings, two properties that make NCOS

systems ideal testing grounds for the above circle of ideas.

The thermodynamical properties of these systems have been discussed by various

authors [19]–[22]. Following these works we concentrate on the question of surpassing

the Hagedorn temperature: does one have a phase of long, highly excited strings as

the dominant physical states at energies high above the string scale and sufficiently

weak coupling. Actually, a conservative approach could be to note that the NCOS

system does have a microscopic description in terms of a bound state of Dp-branes

and F1-strings. From such a viewpoint one could expect a rather similar behaviour to

that of QCD, i.e. as the temperature approaches the critical one, the system would

begin to dissociate into its constituents exposing its bound-state nature. Such a

‘deconfinement’ was indeed found in [21]. We will study this dissociation in more

detail here, by subjecting it to both a canonical and a microcanonical analysis. The

results will turn out to be different and we try to reconcile them by drawing the

phase diagrams of these systems. We will find that, once again, by and large the

system evades a ‘real’ Hagedorn phase, that is the excitation of long open strings

is not attained. In the process we learn about some new features of the ionization

mechanism in NCOS systems.

In section 1 we will review in some detail the limiting procedure originally used

to define NCOS. One of its features is supposed to be that by appropriately taking
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a strong bulk string coupling limit one ends up with a weakly coupled NCOS. One

should bear in mind that open strings are not BPS states and thus the expectation for

a weakly coupled Hagedorn spectrum may be unwarranted for. Some useful formulae

are collected in this section.

In section 2 we study the thermodynamics of NCOS systems for dimension less

than six. The canonical and microcanonical analysis will lead to contradicting phys-

ical pictures. According to the canonical analysis the long strings are never excited;

as the temperature is increased an ionization process becomes possible. For a tem-

perature of the order of the noncommutative energy scale the system can be reliably

studied in weak coupling and it starts emitting the F1 constituents. This is essen-

tially the Hagedorn temperature of the bound state. The emission of a liberated rigid

string turns out to have several consequences: it raises the Hagedorn temperature of

the remaining bound state, it gently increases the NCOS coupling and it decreases

the effective volume of the remaining bound state, thus forming a barrier to ioniza-

tion for dimension larger than two. All in all, the ionization process dominates and

many F1s get liberated. We also touch upon a possibility that the ionization can

be reversed into a ‘recombination’. This turns out to be potentially possible only in

five dimensions, the case whose dual is called OM theory [23]. This behaviour will

eventually lead to a puzzle that will be discussed in section 2.2.

According to a microcanonical analysis something totally different will happen.

For any energy much larger than the string-scale energy, the typical states consist

of long open strings attaching to a non-ionized bound state. This result is obtained

once one allows long open strings to contend in the entropy competition.

In section 3 the problem of conflicting behaviours is subjected to a supergrav-

ity phase-diagram analysis, the result of which is that the microscopic bound state

picture is the correct one. Namely, the matching to supergravity phases via the cor-

respondence principle excludes a standard Hagedorn phase with linear scaling of the

entropy. The long open strings are only an effective description which breaks down

at a high enough energy. The Hagedorn transition is postponed time and again until

the supergravity picture becomes the effective one and the question of the Hagedorn

transition becomes mute.

1.1 Notation and conventions

In this section, which may be skipped in a first reading, we review the basic properties

of NCOS systems and fix our notation.

The (p + 1)-dimensional NCOS theory [1] is perturbatively defined in terms of

the open-string dynamics on a Dp-brane with an electric field background E , in the
critical limit 2πα′ E → 1 [8]. This limit is characterized by the emergence of nearly
tensionless open-string excitations. A convenient way of isolating these light strings

involves a zero-slope limit α′ → 0 in a model with anisotropic sigma-model metric.
We parametrize the anisotropy of the background metric in terms of anisotropic
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Regge-slope parameters, i.e. we write a world-sheet action:

SNCOS = −
1

4π

∫
Σ

(
ηµν

α′
∂Xµ∂Xν +

δij

α′⊥
∂X i∂Xj +

δab

α′⊥
∂Xa∂Xb

)
+ E

∮
∂Σ

X0∂X1 ,

(1.1)

where µ, ν = 0, 1, i, j = 2, . . . , p and a, b = p+1, . . . , 9. The electric field of modulus

E points along the X1 direction.
Following [24], the open-string dynamics is characterized by an effective open-

string metric

(Gopen)µν =
α′⊥
α′e
ηµν , (Gopen)ij = δij , (1.2)

together with an ‘electric’ noncommutativity parameter, [X0, X1] = i θe, and an

effective coupling Go, given by

θe = 2π
√
(α′e)2 − (α′)2, G2o = gs

√
α′

α′e
, (1.3)

where gs is the nominal string coupling in the bulk and α
′
e is the effective Regge-slope

parameter in the electric plane:

α′e =
α′

1− (2πα′E)2 . (1.4)

In many instances, it is useful to choose coordinates so that α′e = α
′
⊥, which makes

the effective open-string metric minkowskian. On the other hand, we will also discuss

situations where α′e/α
′
⊥ is not constant, so that we keep the most general notation

in the following, and distinguish between both Regge-slope parameters.

Denoting by ε = α′/α′e the ratio of effective and sigma-model tensions, the NCOS
limit is defined by ε→ 0 at fixed effective Regge slope α′e and fixed effective coupling
Go. Notice that this limit involves strong coupling in the asymptotic closed-string

background, since gs ∼ 1/
√
ε → ∞. However, the open strings on the brane should

remain weakly coupled provided Go � 1 and the world-volume dynamics essentially
decouples from the closed strings in the bulk, via a kinematical mechanism. This is

the main dynamical property of NCOS theories. It can be argued in perturbation

theory, modulo some assumptions, for p ≤ 6 cf. [1] (see, however [25]). At this point,
it is worth mentioning that the open strings on the D-brane background serving as a

definition of the NCOS system are not BPS states themselves. Since a (bulk) strong

coupling limit gs →∞ is implied, the reliability of the description in terms of NCOS
open strings is not completely guaranteed in all circumstances.

Keeping in mind all these warnings, we have a pure theory of open strings with

effective coupling Go and free spectrum given by the solution of

(Gopen)
αβpαpβ +M

2 = 0 , (1.5)
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where M2 is the open-string spectrum in the absence of an electric field. This results

in a dispersion relation

ωp =

√
p21 +

α′⊥
α′e
p2⊥ +

Nosc
α′e
, (1.6)

where p⊥ denotes the momentum in the world-volume directions X i, transverse to
the electric field, and Nosc is the string oscillator number, including possible world-

sheet zero-point energies.

With N parallel Dp-branes, the effective expansion parameter of NCOS pertur-

bation theory is the stringy ’t Hooft coupling:

λo = 2πG
2
oN . (1.7)

The low-energy spectrum is that ofN = 4 super–Yang-Mills theory with gauge group
U(N) and gauge coupling

g2e = (2π)
p−2G2o (α

′
e)
p−3
2 . (1.8)

Notice that the effective expansion parameter of the low-energy perturbation theory

is the dimensionless combination g2eN E
p−3, with E the typical energy scale. This

effective coupling matches λo at the string scale of the NCOS: E ∼ 1/
√
α′e.

On the other hand, according to (1.6), the high-energy asymptotics of the density

of states is controlled by the ‘electric’ Regge slope α′e:

ρ(ω) ∼ exp
(
ω

THe

)
, (1.9)

with THe the effective Hagedorn temperature. For type II strings one has

THe =
1√
8π2α′e

. (1.10)

This temperature also sets the scale of noncommutative effects in the NCOS theory.

There is an equivalent ‘constituent picture’ for this system that is conceptually

useful. Namely, we can obtain the constant electric field E as a condensate of fun-
damental strings stretched along the X1 direction [26]. Therefore, we have a bound

state of N Dp-branes and n F1-strings. The density of F1-strings is determined in

terms of the electric field by the relation

n

V⊥
=
∂L(E)DBI
∂E , (1.11)

where LDBI is the Dirac-Born-Infeld lagrangian that controls the classical dynamics
of constant electric fields:

L(E)DBI = −N TDp
√
1− (2πα′E)2 , (1.12)
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with the Dp-brane tension given by:

TDp =
2π

gs (2π
√
α′ )2

(
2π
√
α′⊥
)p−1 . (1.13)

We find

n =
NV⊥(

2π
√
α′⊥
)p−1
gs

2πα′E√
1− (2πα′E)2

=
NV⊥(

2π
√
α′⊥
)p−1
gs
√
α′

√
α′e
√
1− ε . (1.14)

These formulae are exact, with the NCOS limit given by ε→ 0. An expression for n
in terms of just the effective parameters of the NCOS is:

n =
NV⊥(

2π
√
α′⊥
)p−1 1G2o

θe
2πα′e

=
NV⊥(

2π
√
α′⊥
)p−1 1G2o

√
1− ε . (1.15)

In all these relations, V⊥ denotes the coordinate volume in the X i directions. Namely,
if we identify periodically X i ≡ X i+L⊥, then V⊥ = (L⊥)p−1. Notice that, in general,
V⊥ does not represent a proper volume in the effective open-string metric, unless
α′e = α

′
⊥.

Equation (1.14) implies an approximate scaling

α′e ∝ n2 (1.16)

in the NCOS regime ε � 1, at fixed values of the sigma-model parameters. Analo-
gously, (1.15) gives G2o ∝ 1/n under the same conditions.
In the bound-state picture, the NCOS regime is characterized by the mass-

dominance of the F1-string component, i.e. the exact BPS formula for the mass

of the (N, n) bound state is:

M(N,n) =
√
M2N +M

2
n =Mn +

M2N
2Mn

+O(ε) , (1.17)

where MN = N LV⊥ TDp is the mass in Dp-branes and Mn = nL TF1 = nL/2πα′ is
the mass in F1-strings. Here, L denotes the coordinate length in the X1 direction.

Thus, in the NCOS limit

M(N,n) =
nL

2πα′
+
1

4πn

N2LV 2⊥
(4π2α′⊥)p−1g2sα′

+O(ε). (1.18)

This gives a simple formula for the binding energy of a single F1-string in the NCOS

limit with large n:

Ebinding = limNCOS
[
M(N,n−1) +M(0,1) −M(N,n)

]
=
L

4πα′e
(1 +O(1/n)) . (1.19)

Notice that the resulting binding energy is finite, in spite of the infinite stiffness of

the free F1-strings in the NCOS limit. It is interesting to look at the mass hierarchy
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of other BPS states in this limit. Since α′ → 0, the tension of any brane will diverge
in the limit, unless it is compensated by an appropriate power of gs. In particular,

Dq-branes stretched in directions orthogonal to the electric field have a mass

MDq =
2π Vq

gs (2π
√
α′)
(
2π
√
α′⊥
)q −→ 2π N Vq

λo
(
2π
√
α′⊥
)q √

α′e
, (1.20)

whereas a NS5-brane stretched along the electric field also survives with a mass

MNS5 =
2π V5

g2s(2π
√
α′)2

(
2π
√
α′⊥
)4 −→ 2πN2 V5

λ2o α
′
e

(
2π
√
α′⊥
)4 . (1.21)

2. Thermodynamics of NCOS theories

In this section we consider the thermodynamics of NCOS theories at weak NCOS

coupling Go � 1. We start by reviewing some established facts about thermal

ensembles of open strings in various dimensions. Then we review the ‘ionization

mechanism’ of ref. [21] that realizes the Hagedorn phase transition of this system in

the canonical ensemble. We also discuss various refinements of the ionization mech-

anism that are of some importance in the matching to strong-coupling descriptions

based on supergravity.

Next, we turn to the microcanonical ensemble and show that it is not equivalent

to the canonical ensemble. Namely, the ionization process does not occur in the

microcanonical ensemble. The high-energy regime of the theory, as inferred from the

free spectrum, is very similar to more standard open-string systems. At the end of

this section we will be left with an apparent contradiction.

2.1 Generalities of open-string thermodynamics

For a system of N parallel Dp-branes, the effective expansion parameter in pertur-

bation theory is the stringy ’t Hooft coupling λs = gsN , where gs is the closed-string

coupling. Thus, for large N with fixed and small λs we have weakly coupled open

strings with an ever weaker coupling to closed strings (in NCOS systems the claimed

decoupling between closed and open-string sectors does not require large N).

At energy densities much larger than the stringy energy density, controlled by

the string length scale `s, we expect the thermal ensemble to be dominated by highly

excited or long individual strings with density of states (1.9). The leading term of

the microcanonical entropy of such a system is

S(E)Hagedorn ≈
E

TH
, (2.1)

with TH ∼ 1/`s. This defines a thermal ensemble with constant temperature TH
and infinite specific heat. The precise character of the thermodynamics depends on
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the subleading corrections, that are sensitive to dimensionality and finite-size effects

[6, 27, 18, 16, 28]. Assuming that the space transverse to the Dp-brane is infinite (so

that it does not support open-string ‘winding modes’) the critical parameter is the

dimensionality of the D-brane. For p ≥ 5 the energy is shared by a large number
long strings and the microcanonical ensemble gives the same result as the canonical

ensemble, i.e. TH is a physical limiting temperature in the sense that it takes infinite

energy to reach it. The corrections to (2.1) make the specific heat positive. At

very large volumes V T pH � 1 one finds, in terms of the critical Hagedorn energy
EH ∼ N2 V T p+1H :

SDp ≈
E

TH
+ CpN

2 5− p
7− p V T

p
H

(
E

EH

) 7−p
5−p
, (2.2)

with two exceptions, the cases of D5- and D7-branes:

SD5 ≈
E

TH
− C5N2 V T 5H e−E/EH , SD7 ≈

E

TH
+ C7N

2 V T 7H log

(
E

EH

)
. (2.3)

In all cases, the specific heat is positive and the system is extensive.

On the other hand, for p < 5 most of the energy flows into a single long open

string [6] and the resulting entropy law is of the form

SDp ≈
E

TH
− Cp log

(
E

EH

)
, (2.4)

with non-extensive leading corrections turning the system into a negative specific

heat one. The Hagedorn temperature is non-limiting in the sense that one can reach

it with a finite energy density ofO(N2) in string units. Since the resulting long-string
system is thermodynamically unstable in infinite volume, this raises the possibility

of a phase transition into a different phase that would exist a higher temperatures.

Still, the entropy law (2.4) is perfectly acceptable as the logarithm of the density of

states for a finite-volume system. Thus, working in the microcanonical ensemble, at

finite total energy E, one may try to incorporate directly the interaction effects into

the long-string picture.

A consistent picture of the effects of interactions emerges using the string/black-

hole correspondence principle as generalized in [15]. The basic assumption here

is that highly excited, long open strings on the Dp-brane world-volume match the

properties of black-branes at sufficiently high energy or coupling. Although the cor-

respondence principle strictly applies to single-string states, it is expected to provide

a qualitative description of the multi-string gas within O(1) accuracy in the coeffi-
cients, provided we work in the microcanonical ensemble at finite total energy [16].

Highly non-extremal (or Schwarzschild) black p-branes have an entropy

Sblack ∼
E

TH

(
λ2s E

N2 EH

) 1
7−p
, (2.5)
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which matches the Hagedorn entropy at energies of order

Ematch ∼
N2

λ2s
EH . (2.6)

This point is intrinsically singled out because precisely at these energies the curvature

at the horizon of the black brane is O(1) in string units, i.e. stringy corrections to
the semiclassical background metric become of O(1) at this point. From the point
of view of the weak-coupling string perturbation theory, the correspondence point

is associated to the collapse of the long string due to self-gravity [29]. Thus, long-

string phases with a Hagedorn-type density of states are expected to match at strong

coupling to black-brane metrics of Schwarzschild type, i.e. with negative specific heat.

In this microcanonical picture, the Hagedorn temperature is approximately maximal

for all values of p, since it is approximately constant (to O(1) accuracy) within the
long-string regime and it is decreasing with the energy in the black-brane regime.

Notice that the matching (2.6) is trivialized in the strict large-N limit with fixed

λs. If we insist in decoupling the closed-string sector completely, both the standard

Hagedorn regime of long strings — starting at energies of O(N2), and the black-
brane regime run away to infinity. Closed-string decoupling in NCOS theories does

not require large N , but requires large volume instead.

This picture is markedly different from the one outlined in [21] for the case of

NCOS strings. The authors of [21] carry out a canonical analysis with the temper-

ature (rather than the total energy) as control parameter. It is found that NCOS

systems can surpass their Hagedorn temperature, THe, by dissociating into the ‘con-

stituents’, i.e. there is ionization of the (Dp, F1) bound state by F1-string emission.

In this process, the effective Hagedorn temperature self-tunes to the temperature of

the heat reservoir, so that the total energy density increases according to the rules

of the canonical ensemble, without ever exciting a significant number of long open

strings in the NCOS bound state. The choice between these two pictures is one of

the main themes of this work.

2.2 Canonical approach: thermal ionization of F1-strings

Let us now consider the bound system of N Dp branes and n F1-strings in the region

where the perturbative NCOS description is appropriate, i.e. one has constructed

a theory of open strings with an effective string length,
√
α′e, which is essentially

decoupled from closed strings and whose coupling, Go ∼ 1/
√
n, can be made small

for a large enough value of n. One may expect, based on the discussion of the

previous subsection that, precisely for p < 5 we can access the effective Hagedorn

temperature THe and even surpass it, probing the phase transition, i.e. for p < 5

the internal energy, as estimated from the free string approximation, is finite at the

Hagedorn temperature [18, 16].
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However these light strings are in a sense not elementary; they were constructed

by forming a bound state. When the system is heated up it has the option to

dissociate and ‘melt’ into its constituents. An estimate of the feasibility of this

melting is obtained by calculating the free energy of a single dissociated F1-string at

large n. For LT � 1 we have:

FF1 =
L

2πα′
− 2π LT 2 . (2.7)

The first term gives the static mass of the F1-stringM(0,1), and diverges in the NCOS

limit. This justifies considering the ejected F1-string as ‘rigid’, so that the free energy

from thermal fluctuations — the second term, comes from the massless ‘Goldstone

multiplet’, a vector multiplet in 1+ 1 dimensions.1 If we normalize the static energy

by the rest mass of the bound state we find

∆Fion ≈ Ebinding − 2π LT 2 ≈
L

4πα′e
− 2π LT 2 . (2.8)

The free energy of the bound state will be considered unchanged in this first estimate.

Thus, it is the vanishing of the single-string free energy which determines the critical

temperature above which the system may ‘ionize’:

Tcritical =
1√
8π2α′e

= THe , (2.9)

precisely the effective Hagedorn temperature of the NCOS (1.10). Notice that,

strictly speaking, the ionization of F1-strings is only possible for finite L. In this

situation there is no complete decoupling from the closed-string sector [25], the emis-

sion of wound F1-strings described here being a good example. On the other hand,

we essentially postpone the study of finite-size effects to a future publication [30].

Throughout this paper, we keep only the leading, extensive form of all thermody-

namic expressions in the large-volume limit.

The critical ionization temperature was fixed by field-theoretic dynamics. As

pointed out in [21], the ionization has the effect of increasing slightly the Hagedorn

temperature of the strings attached to the remaining bound state. This occurs be-

cause the relation between α′e and n at fixed values of the bulk moduli is α
′
e ∼ n2.

Thus as n decreases so does α′e, which in turn leads to an increase of THe, i.e. the
more fundamental strings dissociate, the more the effective Hagedorn temperature

rises. After ejecting one F1, α′e decreases and the effective Hagedorn temperature
THe of the remaining (N, n − 1) bound state rises accordingly. As the temperature
T reaches the new threshold a second F1 is ejected and so on. If we take large n

1Rigid F1-strings that have been ejected from the bound state are called ‘long strings’ in [21].

We use ‘rigid’ in order to avoid confusion with the long (highly excited) open strings on the bound

state.

10



J
H
E
P
0
6
(
2
0
0
1
)
0
2
9

we can view the process as a continuous discharge of F1-strings, in such a way that

the system at a given point is a (N, n′) bound state, plus n − n′ F1-strings, and
one can regard the bound state as always sitting at its effective Hagedorn temper-

ature, THe(n
′) > THe(n). Thus the ionization process postpones the transition of

the ‘real’ Hagedorn temperature, which continuously self-tunes to the temperature

of the canonical ensemble. Like a mirage oasis in the desert, the Hagedorn transition

continuously receeds as it is approached. The dominant configurations are not those

of the long open strings and, although the energy is above the string scale, these

configurations do not get activated.

Let us set α′e = α
′
⊥ before the leakage begins, so that the open-string metric

is minkowskian for the (N, n) bound state, and denote TH its effective Hagedorn

temperature:

TH ≡ THe(n) =
1√
8π2α′⊥

. (2.10)

Then at any other point we have

α′e
α′⊥
=

(
n′

n

)2
=

(
TH
T

)2
. (2.11)

In terms of the ionization fraction x ≡ n′/n and normalized temperature t = T/TH ,
we find

x(t) =
1

t
, for t > 1 , (2.12)

whereas x(t) = 1 for t < 1, i.e. before ionization starts.

It is also important to notice that the NCOS coupling of the remaining bound

state also becomes temperature-dependent, since G2o ∝ 1/n. We find for the ’t Hooft
coupling:

λo(t) = λo t , (2.13)

with λo the ’t Hooft coupling of the initial (N, n) system. Therefore, the F1-emission

process rises the coupling of the ‘ionized’ NCOS system linearly with the temperature.

At temperatures of order

Tstrong ∼
TH

λo
, (2.14)

or ionization fraction xstrong ∼ λ2o, the Dp-brane system should become strongly
coupled. It will turn out that the Horowitz-Polchinski (HP) correspondence line to

supergravity is

λo ∼
1

t2
(2.15)

universally for t � 1. Therefore, in the weak-coupling regime λo(t) < 1/t � 1 for
any temperature large enough, and one must always change variables to supergravity

before hitting the limit (2.14).
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A thermal barrier to ionization for d > 2. In fact, it is not only the Hagedorn

temperature that is shifted during F1-ionization. As follows from (1.6), each of

the momentum modes p⊥ in the commutative directions get their effective metric
rescaled by α′e/α

′
⊥. In describing the thermodynamics as a function of termperature,

it is convenient to maintain the definition of ‘temperature’ unchanged. In our case,

we measure energies with respect to the time-like Killing vector ∂/∂X0. Notice that

X0 measures proper time in the open-string metric of the (N, n) bound state, but

this is no longer true after some F1-strings have been ejected. Thus, in writing the

thermodynamic functions of the general (N, n′) NCOS theory, we have to take into
account the effective rescaling of the metric in (1.6), i.e. they are given by those of

a normal string theory with Regge slope α′e and living in a box of smaller effective
volume

Veff = LV⊥

(
α′e
α′⊥

) p−1
2

= LV⊥

(
n′

n

)p−1
. (2.16)

The main consequence of this effective renormalization of the volume is that it

significantly affects the free energy of the bound state in the ionization process. This

in turn results in the generation of an effective thermal barrier to the activation of

the ionization process.

The entropy density of the bound state in the vicinity of the Hagedorn tempera-

ture is of O(N2) in string units. This is the entropy that comes out of matching the
massless-dominated and long-string dominated entropy formulas at the Hagedorn

temperature:

Smassless = N
2 Cp V T

p , (2.17)

with Cp a function of λo that is approximately constant at weak coupling:

Cp =
8(p+ 1)Vol(Sp−1)

(2π)p

(
2− 1
2p

)
Γ(p) ζ(p+ 1) +O(λo) , (2.18)

and

Slong = cs
E

THe
(2.19)

with cs = 1 +O(λo). Thus, we shall write

Fbs(x) = −N2 C Veff T p+1 +M(N,n′) = −N2 C V⊥ LT p+1 xp−1 +M(N,n′) (2.20)

for the free energy of the bound state in the vicinity of T ≈ THe. We account for the
uncertainty of matching effects by the freedom of choosing the constant C up to an

O(1) factor, to leading order in the weak-coupling expansion.
Adding the free energy of the n− n′ ejected F1-strings:

FF1 = −2π LT 2 (n− n′) +M(0,n−n′) = −2π LT 2 n (1− x) +M(0,n−n′) , (2.21)

12
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and normalizing by the mass of the initial bound stateM(N,n), we find for the function

f(x, t) ≡ F (x, T )−M(N,n)
2πLT 2n

=
1− x
xt2

− λoK (xt)p−1 + x− 1 , (2.22)

where K is a positive constant of O(1), and we have used the exact expression for
the binding energy of n− n′ F1-strings in the NCOS limit:

Mx ≡ limNCOS
[
M(N,n′) +M(0,n−n′) −M(N,n)

]
=

N2LV 2⊥
4π(4π2α′⊥)p−1 g2sα′

(
1

n′
− 1
n

)
= 2π LT 2H n

1− x
x
. (2.23)

In order to determine the equilibrium value of x we minimize (2.22) with respect

to the ionization fraction x at fixed temperature T > TH , i.e. we seek local minima,

characterized by ∂xf(x, t) = 0:

(p− 1)K (λot) (xt)p − (xt)2 + 1 = 0 . (2.24)

This is equivalent to the equality of chemical potentials:

µbs − µF1 =
∂Fbs

∂n′
− ∂FF1
∂n′

= 0 (2.25)

that expresses canonical equilibrium at a fixed temperature.

Using (2.24) we can solve for the leading coupling correction to the ionization

fraction x(t). First, we need to assume that the bound state remains weakly coupled

at t � 1. Since λo(t) ≈ λo · t to leading order, this condition allows us to seek the
large t solution of (2.24) by perturbing the free solution. One finds

x(t) =
1

t
+ (p− 1)K λo +O(λ2o) , (2.26)

It is interesting that this is a positive shift, in agreement with the general idea that

the volume-shrinking effect tends to inhibit the ionization.

Plugging x = 1 in (2.24) we find the free-energy gap in ionizing the first F1-

string:

∆Fion = (µF1 − µbs)x=1 = 2π LT 2H
(
1− t2 + (p− 1)K λo tp+1

)
, (2.27)

which shows the temperature barrier for ionization, proportional to λoT
p+1. The

critical ionization temperature corresponds to the vanishing of this free-energy gap.

Close to the Hagedorn temperature T ≈ TH , one finds

Tcritical = TH

(
1 +
1

2
(p− 1)Kλo +O(λ2o)

)
. (2.28)

Again, this is a positive shift, so that indeed the volume effect inhibits the ionization

to some extent. One may wonder if this positive shift of the critical temperature is
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not bringing in the physics of long strings. However, the effect is only significant for

λo ≈ 1. Within the weak-coupling regime, we expect that the shift is superseded by
the matching uncertainties involved in the parametrization (2.20).

An expression equivalent to (2.27) was derived for p = 3 using the supergravity

description in [22]. In the last section of the paper we extend (2.27) to the NCOS

supergravity regime for general values of p. The weak-coupling calculation leading to

the thermal barrier (2.27) also applies to the ionization of D1-strings in a (D3,D1)

bound state, in the low-energy limit that defines noncommutative N = 4 Super
Yang-Mills theory [31, 24]. In fact, it is the S-dual of our calculation. The effective

open-string metric of the noncommutative field theory is Gij = δij α
′
e/α

′
⊥, by the

standard action of S-duality on the formulas of section 1.1, which results in the same

volume-shrinking effect. The rest of the ingredients are also present: the free energies

on the bound state and the ejected D1-strings are saturated by massless fields and

the gap for D1-string ionization is the S-dual of the gap for F1-string ionization. The

final result is an expression for thermal free energy barrier valid for g2N � 1, with
g the Yang-Mills coupling:

(∆F )ion = −2πLT 2 +
πL

θg2
+ 4πCNLθT 4 , (2.29)

where θ is the noncommutativity parameter of the Yang-Mills theory and the con-

stant

C ≡ 30Vol(S
2)

(2π)2
ζ(4) .

As expected, the result is the S-dual of (2.27) for p = 3 and coincides with the

supergravity calculation of ref. [22]. It shows that there is no D1-string ionization in

the weakly-coupled noncommutative Yang-Mills theory at finite temperature.

F1-string dominance versus recombination. The most important consequence

of the effective volume is to render the entropy of the bound-state effectively two-

dimensional deep inside the ionization phase. Assuming that ionization takes place

at T � TH , so that x(t) ≈ 1/t, we have

Sbs = N
2CV⊥LT pxp−1 ∼ N2V⊥LT p−1H T . (2.30)

Since the entropy in ionized material is

SF1 = 4π (n− n′)LT ≈ 4πLn(T − TH) = 2
p−4
2 π2N2V⊥LT

p−1
H

T − TH
λo

, (2.31)

we get dominance of F1-component for sufficiently weak coupling:

λo . 1−
TH
T
, (2.32)
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or λo . 1 for t� 1. Notice that this is the balance line of the two-dimensional system.
Therefore, we find that the entropy becomes F1-dominated roughly at the same

temperature, independently of the dimension of the NCOS, showing rather sharply

how all NCOS theories are effectively two-dimensional in the ionization regime. We

stress that the volume-shrinking effect is crucial in obtaining this universality of the

onset of F1-string domination.

This result suggests that the supergravity matching of the ionized bound state

is essentially governed by the 1 + 1 dimensional theory on the world-volume of the

F1-strings, i.e. by the matrix-string phase [32]. Thus, one can anticipate that the

supergravity matching line is

λo ∼
1

t2
, (2.33)

universally, for all values of p < 5.

The previous considerations are based on the equilibrium configuration x(t) ≈
1/t for t � 1. Notice, however, that the free-energy gap for emission of the first
F1-string (2.27) can also vanish at t� 1, i.e. there is a second solution of (2.24) at
x = 1 of the form

λo ∼
1

tp−1
. (2.34)

Thus, it is possible that the ionization process is reversed and ‘recombination’ of

the F1-strings occurs precisely for λo t
p−1 � 1. Physically, we can understand this

critical line by the matching of the entropy in massless fields on the un-ionized bound

state, given by formula (2.30) with x = 1, and the entropy in ionized F1-strings, given

by (2.31).

For p ≥ 3, such recombination can take place with a small effective coupling on
the bound state λo(t) = λot� 1. Actually, the weak-coupling analysis is only valid
below the supergravity correspondence line λot

2 ∼ 1, so that for p = 3 the issue must
be studied within the supergravity description [22]. On the other hand, for p = 4

the large hierarchy of couplings 1/t3 � λo � 1/t2 � 1 appears to correspond to a
weakly-coupled ‘recombined’ NCOS bound state.

To be more precise, we can study the global shape of the function f(x, t) in the

interval x ∈ [0, 1]. Notice that, at x = 1, the derivative ∂xf(1, t) changes sign for
λo ∼ t1−p and is large and negative for λo � t1−p. The value of f(1, t) ≈ −λo tp−1 is
smaller than the value at the local minimum, fmin ∼ −1, precisely when λo tp−1 � 1.
Thus, the ionization fraction at the local minimum x(t) ≈ 1/t is only metastable for
λo t

p−1 � 1, as expected. For p = 4 the absolute minimum of the free energy is at
x = 1 in the region 1/t3 � λo � 1/t2, clearly inside the weak-coupling domain.
For λo t

p−1 ∼ 1 the system described by these thermodynamic functions under-
goes a first-order phase transition whereby islands of the original bound state with

x = 1 nucleate and grow inside the medium at x(t) ≈ 1/t. During the nucleation
process, the free energy as a function of x is given by the convex envolvent of the

function appearing in (2.22). From the macroscopic point of view, working at fixed

15



J
H
E
P
0
6
(
2
0
0
1
)
0
2
9

values of bulk parameters, the nucleation process is described by the emergence of

inhomogeneities of the electric field. Relating E and n via eq. (1.14), the recombi-
nation is nothing but the growth of inhomogeneities with maximal electric field in a

medium with electric field appropriate to the F1-string density nx.

The possibility of weak-coupling recombination for p = 4 raises a puzzle in re-

lation to the supergravity matching. In the intermediate regime (TH/T )
3 � λo �

(TH/T )
2 the entropy is dominated by five-dimensional massless fields, which give

much too large an entropy at the correspondence line. As we will see in the next

section, the analysis of the supergravity solutions strongly suggest that the corre-

spondence line is given by (2.33) and that the system must be dominated by ionized

F1-strings at that temperature. Hence, if recombination takes place, the supergravity

correspondence line coincides with a first-order phase transition with enormous latent

heat ∆Q ∼ T (Sbs−SF1) ∼ TSbs ∼ EH/λ5/2o . In such a situation, the correspondence
principle itself loses much of its predictive power. Of course, it is possible that our

estimates of the thermodynamic functions are wrong due to some unknown infrared

divergences that are specially strong for d = 5 (see [48] for related phenomena in a

slightly different context).

Another possibility is that our assumptions on the effective quenching of long

open strings are wrong. In particular, the ansatz for the free energy in (2.20) was only

justified in the close vicinity of the effective Hagedorn temperature of the bound state.

The peculiar features of the function f(x) that are responsible for recombination at

x = 1 become effective for temperatures much larger than the equivalent Hagedorn

temperature of the bound state with x = 1. Thus, the assumption that only massless

fields enter the dynamics may be wrong very far from equilibrium. In the next

section we show that long open strings effectively wash out the recombination first-

order phase transition. However, such an scenario fails the test of the supergravity

matching for any value of p. Thus, we are left with a genuine puzzle for p = 4. All

this being said, any outcome may give some hint at the induced behaviour of the

OM system.

2.3 Microcanonical analysis: no F1-string ionization

Having discussed the canonical ensemble along the lines of ref. [21] we now turn to

the microcanonical analysis. The canonical ensemble was assumed to be dominated

by massless degrees of freedom, and this assumption yields a consistent picture with

positive specific heat. Therefore, one may expect that the microcanonical treatment

should simply vindicate this picture. On the other hand, if NCOS systems bear some

similarity to standard Dp-branes with p < 5, long open strings should dominate the

microcanonical ensemble because they have the highest density of states. In this

section we confirm this dicotomy.

Our main hypothesis is that the coupling λo is sufficiently small, so that the

system is well approximated by non-interacting components: massless excitations
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on the ejected F1-strings and string excitations on the (Dp, F1) bound state. In

addition, the string excitations on the bound state are divided into massless modes

and long open strings. The total energy is

E = Es + Eg + Ef +Mx , (2.35)

where Es denotes the energy in long open strings attached to the bound state, Eg
refers to the energy in the form of massless excitations on the (p + 1)-dimensional

world-volume of the bound state, Ef is the energy in collective modes of the ejected

fundamental strings, and Mx is the energy gap for ejection of these F1-strings, as

in (2.23).

We approximate the entropy as a non-interacting mixture

S(E) = Ss(Es) + Sg(Eg) + Sf(Ef ) . (2.36)

Here, Ss is the entropy in long strings, for which we assume the Hagedorn form

Ss = cs
√
8π2α′eEs = cs x

Es
TH
, (2.37)

where cs = 1+O(λo). In the following we absorb cs into the definition of TH . Next,
the entropy in massless fields on the Dp-brane is

Sg = N
2C ′Veff

(
Eg

N2C ′Veff

) p
p+1

= x
p−1
p+1N2C ′V

(
Eg

N2C ′V

) p
p+1

, (2.38)

with C ′ an O(1) constant. Finally, the entropy in collective modes of F1-strings is

Sf =
√
8π(n− n′)LEf =

√
8πn(1− x)LEf . (2.39)

With these ingredients we are ready to study the balance. Let us start with the

original bound state with x = 1 at low energies. The energy gap for ionizing the first

F1-string is of order

Eion = 2πLT
2
H . (2.40)

The energy for exciting any long open strings on the bound state is of order TH .

Since we essentially neglect finite-size effects in this paper, we have LTH � 1 and
thus Eion � TH , i.e. when the ionization becomes possible, there is enough energy
to excite long strings in the system and all channels of (2.35) are open.

The origin of the threshold Eion is the discreteness of the ionization fraction

x = n′/n, with step 1/n. Thus, we consider E � Eion so that we can approximate x
by a continuous variable. Then, for a given total energy E, there is a minimum value

of x compatible with the splitting (2.35). It corresponds to using up all the available

energy in ionizing a maximal number of F1-strings that remain at zero temperature,

i.e. E =Mx. Using the explicit form of Mx in (2.23) we find

xm =
nEion
E + nEion

. (2.41)
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Let us now assume some fixed ionization fraction x > xm and consider an energy

large enough to have all channels in thermal equilibrium. If the total entropy has a

local maximum, it corresponds to the equilibrium condition that the microcanonical

temperatures
1

Ti
=
∂Si

∂Ei

are equal for all components. In particular, equal to the temperature of long strings,

given by Ts = TH/x. From the equations Tg = Tf = Ts we obtain the values of Eg
and Ef as a function of x:

Eg =
Egc

x2
, Ef = Efc

1− x
x2
, (2.42)

where the ‘critical energies’ are given by

Egc ≡
(
p

p+ 1

)p+1
N2C ′V T p+1H ≈ EH , Efc ≡ 2πnLT 2H ≈

EH
λo
� EH , (2.43)

where we have used the expression for n in terms of the ’t Hooft coupling and the

weak-coupling condition λo � 1. Thus, the energy in massless gases, either on

the Dp-brane world-volume or on the F1-strings, attains a fixed value for a given

ionization fraction. This means that for sufficiently large total energy E, at fixed x,

most of the energy is in long strings

Es = E − Ef − Eg −Mx , (2.44)

which grows linearly with E. This is the expected behaviour, and it should not

be significantly affected by the addition of logarithmic corrections to the Hagedorn

spectrum.

On the other hand, the energy stored in anything but long strings,

E − Es =
Egc

x2
+ Efc

1− x2
x2

, (2.45)

is a monotonically decreasing function of x. Thus, for a fixed total energy E, there

is a minimum value of the ionization fraction that is compatible with having excited

long open strings. We find this value by setting Es = 0:

xs =

√
Egc + Efc
E + Efc

≈ √xm . (2.46)

Since xs < 1 only for E > EH , we see that below this threshold the long strings are

absent form the thermodynamic balance for all values of x.

More generally, this is also true in the window xm < x < xs: the effective

Hagedorn temperature of the bound state is larger than the actual microcanonical
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temperature, and the long-string channel is closed, so that the balance in this region

is between massless Yang-Mills fields on the bound state and the ejected F1-strings,

i.e. exactly the system treated canonically in the previous subsection.

Introducing the temperature as a function of x by the equation

E = E(x, T (x)) , (2.47)

with the energy function

E(x, T ) =

(
p

p+ 1

)p+1
N2C ′V T p+1xp−1 + 2πnLT 2(1− x) + 2πnLT 2H

1− x
x
, (2.48)

the boundary conditions are that the system is at the onset of long-string excitation

for x = xs, and totally dominated by binding energy for x = xm, i.e. T (xs) = TH/xs
and T (xm) = 0. Since long open strings are absent for xm < x < xs, we have

T (x) < TH/x throughout this range.

The problem of maximizing the entropy function

S(x,E) ≡ S(x, T (x)) =
(
p

p+ 1

)p
N2C ′V T pxp−1 + 4πnLT (1− x) , (2.49)

with fixed total energy is related to the problem solved in the previous section, where

we discussed the minimization of the free energy F (x, T ) at fixed temperature. A

simple manipulation of Legendre transforms shows that

dS(x)

dx
= − 1
T
∂xF (x, T ) . (2.50)

Therefore, the graph of S(x) is qualitatively similar to the graph of F (x, T ), when

drawn upside down. In particular, the local maximum of S(x) is at x = xs. The

recombination effect discussed before is also visible. One finds that for sufficiently

strong coupling

λo >

(
EH

E

) p−1
p+1

(2.51)

the entropy function develops a global maximum at x = 1. However, in the micro-

canonical ensemble with long strings, it is clear that this analysis only applies to the

interval xm < x < xs. Thus, the recombination appears as a completely spurious

phenomenon, superseeded by the emergence of long strings in the region x > xs.

We can summarize the physics of the region xm < x < xs by starting at the

lower end, with the system at zero temperature and maximal ionization compatible

with the given total energy. In order to increase the entropy while keeping the total

energy constant, we must increase x and excite massless fields on the bound state

and the F1-strings. This process continues until the long strings can be excited on

the bound state at x = xs.
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It remains now to consider the region x > xs where all components are active.

The most probable configurations at fixed x give entropies:

Sg(x) = Sgc
1

x
,

Sf(x) = Sfc
1− x
x
,

Ss(x) =
x

TH

(
E − Egc

1

x2
− Efc

1− x
x2
−Mx

)
, (2.52)

where the critical entropies are given by

Sgc ≡
(
p

p+ 1

)p
N2C ′V T pH , Sfc ≡ 4πnLTH . (2.53)

Adding all the terms up we find

S(x) = x

(
E + Efc
TH

)
− Sfc −

1

x

(
Fgc + Ffc
TH

)
, (2.54)

where we have defined the critical free energies in the obvious fashion Fc = Ec−THSc.
In the interval 0 < x < 1, the function S(x) is monotonically increasing around

x = 1 (notice that both Ffc and Fgc are strictly negative). It attains a minimum at

x− =

√
|Fgc + Ffc|
E + Efc

, (2.55)

and it grows without bound towards x = 0. By direct inspection one finds that

x− . xs , (2.56)

which means that S(x) is monotonically increasing in the interval xs < x < 1.

Therefore, the system continues gaining entropy by increasing x beyond xs. The

global maximum lies at x = 1.

This analysis shows that the F1-ionization does not take place in the weakly-

coupled microcanonical ensemble once we allow the long open strings as effective

degrees of freedom. The result is smooth in the dimension of the Dp-brane and only

depends on the weak-coupling assumptions. According to this result, the typical

string configurations will be those of long strings.

A possible interpretation The lack of F1-ionization in the microcanonical analy-

sis is intuitively natural. Even if the system can dissociate and remain with possitive

specific heat, the entropy gain in exciting the long open strings is so large that this

is by far the most probable configuration at finite and large total energy.

As mentioned in the introduction, it is not uncommon that phases with Hagedorn

behaviour and negative specific heat are simply not seen in the canonical ensemble.
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A good example of such a behaviour is the thermodynamics of N = 4 SYM theory on
S3 with radius R, as obtained via the AdS/CFT correspondence. In the canonical

ensemble at large N , the vacuum-dominated thermodynamics jumps to a plasma

phase at temperatures of O(1/R). In terms of the AdS supergravity picture, this
corresponds to the Hawking-Page transition, i.e. the formation of an AdS black hole

with positive specific heat and horizon radius comparable to the curvature radius of

the AdS space [33, 17].

On the other hand, the microcanonical analysis reveals two more phases that

appear as clear transients for large values of the ’t Hooft coupling λ � 1, and are
associated to finite-size effects in the gauge theory [34, 35, 36]. In the AdS picture

they are related to the emergence of long closed strings at energy densities larger

than the type IIB string scale. A Hagedorn spectrum of long closed strings with

entropy

SHagedorn ∼ `sE ∼
RE

λ1/4

matches at the lower energy end, of order ER ∼ λ5/2, to a massless graviton gas
with entropy

Sgas ∼ (RE)9/10 .

At higher energies of order ER ∼ N2λ−7/4 the long strings match to ten-dimensional
Schwarzschild black holes, fully localized in the AdS5×S5 background, with entropy

SSchwarzschild ∼ N−2/7(RE)8/7 .

Finally, the small black holes delocalize in the S5 and merge with the large AdS black

hole at energies of order ER ∼ N2.
Thus, the long-string phase and the Schwarzschild black-hole phase of AdS5×S5

are bounded transients with negative specific heat that are not seen at all in the

canonical ensemble, which jumps directly from the graviton gas to the large AdS

black hole. It could seem natural to suspect that an analogous phenomenon would

explain the long-string phase at the NCOS Hagedorn temperature TH that is borne

out by the microcanonical analysis in this section, i.e. if the long NCOS strings

are true effective degrees of freedom competing for the entropy at very high energy

densities, then there should be appropriate black-hole phases to match them at strong

coupling.

The likelihood of having such transients in NCOS systems is a priori small.

First order phase transitions identified in a canonical analysis manifest themselves

as transient behaviour in the microcanonical analysis of the same system. The latent

heat inherent in the first-order transition is correlated with the energy range over

which the transient structure emerges in the microcanonical ensemble and viceversa;

the transient behaviour in the microcanonical ensemble implies a first-order transition

in the canonical system. Thus, the existence of transient long-string phases would
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suggest a first-order phase transition in the NCOS system. However, ref [21] gives

strong arguments that the phase transition in the NCOS is essentially of second order.

It is thus unlikely that the phase of long strings in this section can find its place in a

transient. All this brings us to the study of the supergravity phase diagrams for these

systems, as an arbitror on the fate of Hagedorn NCOS strings. If the corresponding

black-hole metrics are not found, we would conclude that the long open strings are

not appropriate degrees of freedom at high energy densities.

3. Phase diagrams

In this section we survey the phase diagrams of NCOS systems, constructed using

the qualitative methods of [15]. Our main interest is to study the nature of the

physics around the Hagedorn transition of the NCOS theories. However, in some

cases it is instructive to look at the complete phase diagram including nonpertur-

bative S-duality transitions. One such case is the four-dimensional NCOS theory,

related by S-duality to a noncommutative Yang-Mills theory. We will use this sys-

tem as a detailed example to carry the discussion through, and quote at the end the

appropriate generalization to other dimensionalities. Various pieces of the discussion

have appeared already in the literature cf. [19, 20, 22]

We show that supergravity considerations essentially leave no room for a manifest

NCOS Hagedorn regime at weak coupling, in the sense of long-string domination

with characteristic temperature TH ∼ 1/
√
α′e. In order to keep in sight all possible

transient phases, we study the gravitational thermodynamics both in the canonical

and microcanonical ensembles, and we also consider ‘near NCOS’ limits, in an attemp

to make contact with the results known for pure Dp-branes.

3.1 The phase diagram of 3 + 1 dimensional NCOS

The four-dimensional theory arises as the NCOS limit of a bound state (D3N ,F1n).

Under type IIB S-duality, the bound state transforms into (D3N ,D1n) and the NCOS

limit is mapped to the low-energy limit that defines U(N) SYM with space-space

noncommutativity (NCYM). The S-duality relations at the level of closed-string

parameters: g̃s = 1/gs and α
′
⊥ = gsα

′ induce the corresponding mapping of open-
string parameters.

We choose α′⊥ = α
′
e throughout this section, so that the open-string metrics on

both sides of the duality are given by the Minkowski metric. Then, the Yang-Mills

coupling of the NCYM theory is g2 = 2π/G2o. In terms of the ’t Hooft coupling

λ ≡ g2N :

λ =
(2πN)2

λo
. (3.1)
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The noncommutativity parameter θ of the NCYM theory is given by

θ =
NV⊥
2πn

= 2πα′⊥G
2
o . (3.2)

A useful relation valid in the NCOS limit is [37]:

2πθe = g
2θ , (3.3)

explicitly relating the noncommutativity parameters on both sides of the S-duality.

Thus, in drawing the phase diagram of the four-dimensional NCOS theory, the

candidate phases are the U(N) NCYM theory with space-space noncommutativity,

its supergravity dual (with and without a nearly extremal black hole) and the re-

spective S-dual configurations. That is the open-string theory which is time-space

noncommutative in the NCOS limit as well as the S-dual gravitational configurations.

We will draw the boundaries separating the different phases. A special property of

the four-dimensional case is that all of the supergravity and weakly-coupled YM

‘phases’ have a common functional form for the entropy as a function of temperature

or energy. For high enough energies it is that of a four-dimensional field theory of

massless particles. Therefore, it will be of no wonder that there is no room for a phase

in which the entropy is stringy, i.e. linear in energy. This will indeed turn out to be

the case. This dramatic failure at a naive matching of Hagedorn thermodynamics

motivates in part our choice of the four-dimensional case as the specific example to

carry out the discussion.

The phase diagram is expressed in a two-dimensional plane whose coordinates

are a ’t Hooft coupling and a running energy, u, respectively. It will be useful to

describe the system once in terms of the U(N) SYM ’t Hooft coupling λ ≡ g2N and
once in terms of the (stringy) ’t Hooft coupling of the NCOS theory, λo = 2πG

2
oN .

We do not discuss finite-size effects in this paper, so that we only consider the leading

thermodynamic behaviour in the limit of large world-volumes.

We start from the region of weak coupling of the NCYM theory, parametrized

by the infrared ’t Hooft coupling λ and the (perturbative) noncommutativity length

scale
√
θ. For very small λ and very small energies the system is well described as

an ordinary U(N) SYM gauge theory, as the system is not yet sensitive to the its

non-commuting character. This lasts as long as the energy u is smaller than 1/
√
θ.

Above this energy, for the same small value of the coupling, the system should be

sensitive to the noncommutativity of space.

As the ’t Hooft coupling increases to λ ≈ 1, the perturbative gauge-theory picture
starts to crack. At large enough values of N the supergravity description becomes

the appropriate one. The large-N master field of the theory can be described via the

AdS/CFT correspondence in terms of type IIB strings on the background [38, 39]:

1

R2
(ds2)NCYM = u

2
(
−dt2 + dy2 + f(u)dx2

)
+
du2

u2
+ dΩ25 , (3.4)
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B =
1

θ
(aθu)

4f(u), e2φ̃ =

(
λ

2πN

)2
f(u) , (3.5)

where the nontrivial profile function is

f(u) =
1

1 + (aθu)4
, (3.6)

and the curvature radius of the AdS5 × S5 geometry at the infrared u → 0 is R4 =
4πG̃sN(α̃

′)2 = 2λ(α̃′)2. The coordinates are chosen so that u measures the field-
theory energy scale, i.e. a black-hole solution has a horizon at u0 ∼ T , with T
the Hawking temperature (the physical temperature of the gauge-theory dual). On

the supergravity side the important scale from the physical point of view is the

noncommutativity length, aθ, which is related to the noncommutativity parameter θ

through a certain dressing by powers of the ’t Hooft coupling:

(aθ)
4 = λ

θ2

2π2
. (3.7)

The onset of noncommutative effects is at the energy scale u ∼ 1/
√
θ for weak cou-

pling. In the supergravity background, effects of the magnetic field become important

around the line uaθ ∼ 1, or
λ ∼ 1

θ2u4
. (3.8)

The curvature of the supergravity solution in string units turns out to be of

O(α′/R2) times a bounded factor depending on (aθu) and of O(1). Thus the master-
field description in terms of supergravity ceases to be reliable at the Horowitz-

Polchinski (HP) transition, that point/line in parameter space where the curvature

becomes of O(1) in string units. This actually occurs for λ ∼ 1, coinciding with the
line which serves as the boundary for the onset of the breakdown of the perturbative

picture. At λ < 1 we must use perturbative techniques in the analysis, whereas for

λ > 1 we can use the metric (3.4).

The above supergravity description is valid as long as the closed-string coupling

itself is small. At sufficiently large coupling, λ ∼ N the local value of the closed-
string coupling constant is of order one, exp(φ̃) = O(1). This defines a crossover
line

λ ∼ N for aθu� 1 , and λ ∼ N2θ2u4 , for aθu� 1 , (3.9)

to a description based on the S-dual background with φ̃→ φ = −φ̃ and metric

1

R2o
(ds2)NCOS =

1√
f(u)

[
u2
(
−dt2 + dy2 + f(u)dx2

)
+
du2

u2
+ dΩ25

]
(3.10)

with R4o = 4πG
2
oN(α

′
e)
2. The deep infrared of this metric describes again AdS5 × S5

with radius of curvature Ro. This is in agreement with the expected S-duality of
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low-energy U(N) SYM theory. Incidentally, we note that Ro = aθ. This embodies

the fact that noncommutative effects of the NCOS theory are tied to the string scale√
α′e [40, 1, 41]. On the other hand, in the high-energy regime uRo � 1, where the
noncommutativity effects are most evident, the metric (3.10) is asymptotic to that

of smeared F1-strings [19].

Roughly speaking, we can characterize the metric (3.10) of the (D3, F1) bound

state as dominated by the D3 component in the low-energy regime, and dominated

by the F1 component in the high-energy regime. The crossover is at energies of

O(1/Ro).
Our main interest is the matching of the metric (3.10) to perturbative NCOS

at a sufficiently weak NCOS coupling. The corresponding HP transition could be

considered ‘S-dual’ of the already discussed HP transition to perturbative NCYM.

In discussing the S-dual HP transition, we remark that the S-dual metric (3.10) is

globally conformally related to (3.4):

(ds2)NCOS =
α′e
α̃′
e−φ̃(ds2)NCYM . (3.11)

Since the Ricci curvature of the NCYM metric is of order λ−1/2 in string units, the HP
transition to the weak-coupling NCOS is given by (under conformal transformations

the Ricci tensor is ‘contravariant’):

eφ̃√
λ
∼ 1 , or λ ∼ N2

(
1 + (aθu)

4
)
. (3.12)

This gives the expected λ ∼ N2 at uaθ � 1, or λo ∼ 1 in terms of the NCOS ’t
Hooft coupling. On the other hand, it gives a condition asymptotically independent

of the NCYM coupling as uaθ � 1, namely

u ∼ 1√
θN
. (3.13)

This means that the extreme ultraviolet regime in the NCOS region is well described

by supergravity. The behaviour is to be contrasted with that at weak coupling, where

the transition between the supergravity and the gauge pictures occurs at essentially

the same coupling for all energies. At the large coupling end the transition line is not

only energy-dependent, for energies larger than 1/
√
θN there is no transition. The

supergravity picture continues to be appropriate no matter how large the coupling

is. At lower energies a transition occurs back to a field theory. For very low energies

this field theory is the one S-dual to the U(N) gauge theory of weak coupling.

In NCOS variables, the HP transition line (3.13) is given by

λo ∼
1

θeu2
. (3.14)

25



J
H
E
P
0
6
(
2
0
0
1
)
0
2
9

On the other hand, the noncommutative crossover in the supergravity regime, uaθ =

uRo ∼ 1, is expressed in NCOS variables as

λo ∼
1

θ2eu
4
. (3.15)

This curve intersects the NCOS correspondence line (3.14) at the energy scale u ∼
1/
√
θe =

√
N/λθ. This is the energy scale at which the NCOS theory should start

showing stringy features. We will see shortly that this energy is much lower than

that at which the supergravity picture takes over, but it actually coincides with the

expected Hagedorn temperature of the NCOS system: TH ∼ 1/
√
θe. It is the exact

nature of this supposedly Hagedorn temperature that we are exploring.

No place for a truly Hagedorn phase. At finite temperature the previous

metrics get the usual black-hole generalization with horizon radius r0 = u0/R
2:

dt2 → hdt2 , dr2 → dr
2

h
, h = 1−

(r0
r

)4
,

and the previous phase diagram becomes a thermodynamic phase diagram with u0 ∼
T . This is correct as long as the specific heat is positive. Otherwise we would have

had to reinterpret u0 in terms of the total energy of the system. Such a problem

would occur if the NCOS underwent a Hagedorn transition to a regime dominated

by long open strings, with entropy:

SHag ∼
√
θeE , (3.16)

and approximately constant Hagedorn temperature TH ∼ 1/
√
θe. This would have

to occur precisely at the onset of noncommutative effects in the NCOS, i.e. along the

line

T ∼ 1√
θe
∼ TH . (3.17)

Therefore, in the full NCOS region with λo � 1 and

TH � T �
TH√
λo
, (3.18)

we should expect a Hagedorn phase of long-string domination, which would be con-

strained to match to supergravity at the upper limit. The enormous disparity of the

upper and lower temperature limits in (3.18) when λo � 1 shows that the physics of
this region of parameter space cannot be described in terms of a standard Hagedorn

regime, since long-string dominance (3.16) always leads to approximately constant

temperature.

Another way of phrasing the problem is to recognize that the thermodynamics

is field-theoretical throughout all the rest of the phase diagram. For example the
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entropy in the large-N approximation is of the form (we assume LT, LV⊥T 3 � 1)

S ∼ N2V⊥LT 3 ∼ N2V⊥L
(
E

N2V⊥L

)3/4
, (3.19)

either in perturbative SYM phases or in the supergravity phases. This follows from

the conformality of the low-energy limits in both perturbative SYM and supergrav-

ity descritions, together with the fact that noncommutative effects in the thermody-

namic functions do not show up at the planar O(N2) level [39, 42, 43, 44]. On the
other hand, the matching of this entropy law to the Hagedorn one (3.16) is already

determined to be at the noncommutativity line (3.17), which describes the transi-

tion from the ordinary low energy U(N) SYM to NCOS. Although the estimates are

rather crude and could be off by numerical coefficients, there is no evidence that they

should involve functions of λo.

Thus it does not seem possible to have a ‘truly Hagedorn’ behaviour in an NCOS

regime matching the supergravity part. By ‘truly Hagedorn’ we mean one in which

the linear dependence of the entropy on the energy is activated and manifest. It could

in principle be that somewhere deep inside the NCOS region there is a ‘Hagedorn

enclave’, but we do not know what would be its surrounding physics. The ‘Hagedorn

crisis’ is then the failure of the entropy matching at the upper limit of (3.18).

In hindsight, the ‘Hagedorn crisis’ described here was to be expected, in view

of the thermodynamic properties of the supergravity description. Namely the cor-

responding black branes have positive specific heat. On the other hand, all known

examples of HP transition between a Hagedorn phase of long (open or closed) strings

match to black geometries of the Schwarzschild type, and in particular with systems

which have negative specific heat. Thus, it would actually be odd from the point

of view of the HP correspondence principle to find a phase of weakly-coupled long

strings matching onto a near extremal black-hole geometry.

This crisis is solved with the help of a new phase of the string theory [21]. A phase

in which the electric field is diminished by dynamically ionizing away fundamental

strings off the bound state of D3-branes and F1-strings defining the NCOS. This is

natural in view of the properties of the metric (3.10), as pointed out in [19], i.e. it is

asymptotic to that of smeared F1-strings at large u.

The ionization of F1-strings replaces the long open-string dominance of the Hage-

dorn regime and it matches smoothly the supergravity regime at the appropriate

temperature. According to (2.31) and (2.32), if the entropy of the ‘stringy NCOS’

phase is dominated by ionized F1-strings at λo � 1, we have

Sionized ∼ nLT ∼
N2V⊥L
θeλo

T . (3.20)

This entropy law matches (3.19) precisely along the required HP transition line:

λo ∼
1

θeu2
∼
(
TH

T

)2
. (3.21)
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θ
T

YM  gas

NCYM  gas

T

N
2

1

NCYM sugra

λ

YM

gas

AdS

AdS

NCOS sugra

N

Matrix

Figure 1: The four-dimensional phase diagram in NCYM variables. Full lines denote

crossovers based on the correspondence principle. The dashed line is the S-duality transi-

tion. The dotted lines denote the onset of noncommutative effects and Tθ ≡ 1/
√
θ.

There is no sign of negative specific heat metrics in the supergravity phases, and

indeed the natural matching to a system of free F1-strings indicates that the whole

phase diagram can be studied within the canonical ensemble. These results are

summarized in figures 1 and 2, where the phase of F1-string ionization is termed

‘matrix’, since it corresponds to the thermodynamics of matrix strings [32].

In the next subsection we pause to resurrect the long open strings by considering

a very small but non-vanishing value of α′. By this we show that, although such
dregrees of freedom seem to be forbidden at TH = 1/

√
θe, they are not a priori

discriminated against by such a type of analysis.

3.2 Regularizing the NCOS theory

According to our discussion in the preceding section, the absence of appropriate

supergravity matching of Hagedorn phases is related to the absence of metrics with

negative specific heat. These appear naturally in the case of Dp-branes without F1-

string charge. It is then interesting to consider a ‘near NCOS’ theory, defined by

introducing a finite, albeit large hierachy between the Regge slope parameters α′ and
α′e. By considering the ‘regularized NCOS’ theory at finite α

′, we hope to see negative
specific heat phases arising at sufficiently high energy. The thermodynamics of these

phases can be studied in the microcanonical ensemble, as a function of the total
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AdS
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T
H
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N

N
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Matrix

Figure 2: The four-dimensional phase diagram in NCOS variables. The conventions for

the transition lines are the same as in figure 1. The notations ‘F1 sugra’ and ‘D1 sugra’

refer to the fact that the corresponding metrics are well approximated by those of smeared

one-branes.

energy of the system, with the temperature as a derived quantity. Alternatively, we

can use the horizon radius r0 or the energy variable u0 = r0/R
2 as a control parameter

of the microcanonical description. In the region of positive specific heat, u0 ∼ T ,
whereas we have T ∼ 1/r0 in the region of negative specific heat (the Schwarzschild
regime).

As emphasized in section 1, phases with negative specific heat can be invisible

in the canonical ensemble, and yet reappear in the microcanonical analysis. By

studying the ‘almost NCOS’ theory with small but finite ratio α′/α′e, we intend to
see how the NCOS theory fits in the more general dynamics of the full (D3, F1)

bound state, including all the phases that show up in the microcanonical analysis of

the supergravity backgrounds. We find a consistent phase diagram with no place for

a long-string phase with effective Hagedorn temperature TH ∼ 1/
√
θe.

From the point of view of the supergravity solutions, keeping a finite α′ implies
considering the full (D3, D1) bound-state metric asymptotic to flat ten-dimensional

space:

ds2 =
1√
H

(
−hdt2 + dy2 + f

t2θ
dx2
)
+
√
H

(
dr2

h
+ r2dΩ25

)
, (3.22)
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with dilaton and NS-background:

e2φ̃ = g̃2sf , 2πα̃′B =
f

H
, (3.23)

and profile functions

H = 1 +
r40 sinh

2 α

r4
, h = 1− r

4
0

r4
, f−1 = c2θ +

s2θ
H
, (3.24)

and

tθ ≡
θ

2πα̃′
, cθ ≡

1√
1 + t2θ

, sθ ≡
tθ√
1 + t2θ

.

The parameter sinhα is fixed in terms of the charge radius of the extremal solution:

r40
2
sinh 2α =

g̃sN

cθ

(2π
√
α̃′)4

Vol(S5)
= R4 = 2λ(α̃′)2 . (3.25)

With these conventions, the NCOS limit is obtained by tθ → ∞ and α̃′ → 0 with
G̃s = g̃s/cθ fixed, without any further rescalings of the metric. Also, we set the

usual r = R2u to write the metric in terms of a radial coordinate with dimensions of

energy. In this limit, the combination f/t2θ → f̂ , and the noncommutativity length
scale arises as t4θR

4 → a4θ = R4o.
We want to calculate the boundary line where the specific heat becomes infinite.

This corresponds to the critical point beyond which the thermodynamics becomes

Schwarzschild-like with negative specific heat. The formula for the inverse tempera-

ture β = 1/T as a function of the Schwarzschild radius is

β =
1

π
r0 coshα . (3.26)

We want to localize the turning point dβ/dr0 = 0. The dependence of sinhα on r0
may be determined by taking the derivative of (3.25):

d sinhα

dr0
= − 2
r0

sinh 2α

coshα+ sinh2 α
.

Inserting this back into the equation for dβ/dr0 = 0, we find a critical value

(sinhα)critical = O(1), which leads to (r0)critical ∼ R. As expected, the crossover
to the branch with negative specific heat occurs when the Schwarzschild radius is

comparable to the charge radius, or

u0 ∼ T ∼
1

R
. (3.27)

Since R4 ∼ (α̃′)2λ, this line is

λ ∼
(
T̃H

T

)4
, (3.28)
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where we have defined the Hagedorn temperature of the ‘magnetic’ string theory:

T̃H ≡
1√
8π2α̃′

. (3.29)

In NCOS variables it reads

λo ∼
(
THTα′

T 2

)2
, where Tα′ ≡

1√
8π2α′

. (3.30)

In any set of variables, the important conclusion is that this line hits the NCOS

correspondence line (3.21) at a temperature Tα′ . Therefore, once we keep α
′ finite

and do not take the strict NCOS limit, we find that the matching of the NCOS phase

to supergravity necessarily involves some matching to negative specific heat metrics.

This suggests that the NCOS phase is actually bounded at very weak NCOS coupling

and high temperature by a more or less standard Hagedorn phase with a Hagedorn

temperature given by Tα′ . The ’t Hooft coupling of the NCOS at this point is the

maximum value compatible with a Hagedorn phase. It is given by

(λo)max ∼
(
TH

Tα′

)2
=
α′

α′e
= ε

and goes to zero in the NCOS limit.

The significance of the temperature Tα′ from the point of view of the microscopic

NCOS theory and the ionization mechanism of [21] is clear from equation (1.14).

Namely, the effective Hagedorn temperature of the bound state rises as the system

loses F1-charge. This process continues until all the electric field is depleated E = 0,
which implies α′ = α′e, so that the effective Hagedorn temperature at the end of the
‘ionization’ process is Tα′ . Beyond this point the system cannot escape the formation

of long open strings and Tα′ is a standard maximal temperature of a Hagedorn phase

with negative specific heat.

A further check of the scenario comes from considering the curvature threshold.

In gauge-theory variables, the Ricci curvature in string units at the horizon in the

deep Schwarzschild regime is of order α̃′/r20. Thus, the Ricci curvature of the NCOS
metric in the same regime is

α′e (Ricci)NCOS ∼
α′e
α̃′

(
α̃′

α′e
eφ̃
)
· α̃′ (Ricci)NCYM ∼ g̃s

α̃′

r20
∼ α

′

r20
, (3.31)

where we have used (3.11) and eφ̃ ∼ g̃s in the asymptotically flat region. On the other
hand, the Hawking temperature of such a Schwarzschild brane scales like T ∼ 1/r0.
Demanding the curvature to be of O(1) in string units gives a matching temperature
for the correspondence line:

Tmatch ∼
1

r0
∼ 1√
α′
∼ Tα′ . (3.32)

31



J
H
E
P
0
6
(
2
0
0
1
)
0
2
9

λο

Τ α , uT H

1

N

N2

NCYM
gas

AdS

AdS

D1 sugra

F1 sugra

Hag

Hag

Black D3−brane
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Figure 3: The phase diagram of the full (D3,F1) bound state in λo versus the radial

energy variable u, including the maximum temperature line that appears when the NCOS

decoupling is not complete. To the right of the thick line one finds true Hagedorn phases

or black-brane phases with negative specific heat. In the exact NCOS limit Tα′ →∞ and
this thick line is pushed to infinite energies. The region of large energies u > TH and low

NCOS coupling (below the dashed S-duality line) has universal features, independent of

the Dp-brane dimension.

Thus, the natural temperature of whatever phase matches the negative specific heat

patch is Tα′ . This lends further support to the idea that Tα′ is the Hagedorn tem-

perature of the true phase of long open strings surviving in the high-energy corner.

We collect the detailed structure of the ‘almost NCOS’ theory in figure 3.

Incidentally, it is interesting to note that (3.31) is exactly the same curve as

(3.14), when written in terms of the running energy variable u = r/R2. Namely (3.31)

is the continuation of (3.14) past u ∼ Tα′ . This makes the absence of a Hagedorn
phase at T < Tα′ rather dramatic, since we are supposed to match the same curve

on both sides. This is a very specific property of smeared F1-string metrics, i.e. they

have a stringy curvature threshold just like that of a Schwarzschild brane, and yet

their thermodynamics is like that of a near-extremal brane.

3.3 Generalization to Dp-branes with p < 5

Our discussion of the various supergravity phase diagrams can be readily generalized
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to p ≤ 5 using the results of [19]. We avoid discussing the case p = 5 which has
special features. The same qualitative behaviour as in the four-dimensional case is

observed, provided we are sufficiently near the NCOS regime.

At low energies the Dp component of the bound state dominates the physics

and the supergravity backgrounds are well approximated by those of near-extremal

Dp-brane metrics, dual to ordinary SYM in p + 1 dimensions (cf. [45]), with HP

transition line

λo ∼
(
T

TH

)3−p
, for T � TH . (3.33)

The full (DpN ,F1n) bound-state metrics are characterized by a length scale Ro, the

charge radius, given by

R7−po =
(2π)6−p

(7− p) Vol(S8−p)λo(α
′
e)
7−p
2 . (3.34)

This scale also marks the onset of noncommutative dynamics or, in other words,

the influence of the F1-string component of the bound state. For temperatures

TRo � 1 the supergravity solution is approximated by that of F1-strings, smeared
over the (p − 1)-dimensional ‘transverse’ volume V⊥. Therefore, the HP transition
line for T � TH is ‘universal’ in the sense that it does not depend on the Dp-brane
dimensionality:

λo ∼
(
TH

T

)2
, for T � TH . (3.35)

In addition, the classical thermodynamics of black-hole metrics is insensitive to the

crossing of the charge radius by the horizon, i.e. the smeared F1-solutions exactly

give the thermodynamic functions of pure Dp-branes.

Therefore, the peculiar situation exposed in the example of the D3-brane gen-

eralizes to other dimensionalities. The large-N thermodynamics of the supergravity

phase is equivalent to that of ordinary SYM theory, i.e. the noncommutativity scale

α′e does not enter, except for setting the scale of the gauge coupling. What is very
surprising is that this includes the region with temperatures larger than the Hage-

dorn temperature. On the other hand, the HP correspondence line for large curvature

corrections is controlled by the approximate smeared F1-string metrics for T � TH .
And this threshold is characteristic of two-dimensional physics, universal with respect

to the Dp-brane dimensionality.

Thus, the same puzzle of the matching of Hagedorn long-strings remains for gen-

eral values of p. The F1-ionization picture is naturally borne out as the right solution,

provided the weak-coupling NCOS entropy is dominated by the F1-component at the

supergravity matching line, a property that was argued in section 1.
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At stronger coupling, the above supergravity description of the NCOS systems

undergoes an S-duality transition. At low temperatures, the curve is

λo ∼ N
2(5−p)
7−p

(
T

TH

)3−p
, for T � TH , (3.36)

whereas at high temperatures, the transition occurs around the line

λo ∼ N
5−p
6−p

(
TH

T

) 7−p
6−p
, for T � TH . (3.37)

Beyond these boundaries, the phase diagram of the NCOS systems is strongly de-

pendent on the dimensionality.

The ‘almost NCOS’ versions, with finite ratio α′/α′e, show similar features to
the four-dimensional case. The NCOS phase consistent with the mechanism of F1-

string ionization ends at temperature Tα′ , giving rise to a true Hagedorn phase of

long open strings on the Dp-brane. This matches the metric of Schwarzschild black-

branes along the same curve (3.35), when written in microcanonical variables. The

critical line where the canonical ensemble breaks down in the supergravity picture is

λo ∼
T 5−pα′ T

2
H

T 7−p
. (3.38)

No F1-string ionization in the supergravity regime. It is interesting to de-

termine the thermal barrier for F1-string ionization in the supergravity regime for

general values of p. Such a computation would shed light on the correct picture

for the ionized F1-strings in transverse dimensions, namely whether they should be

considered as totally spread in the transverse dimensions to the Dp-brane, or rather

clumping in a ‘halo’ in the proximity of the Dp-brane bound state. Since we claim

that the ionized bound state together with the F1-strings matches to the supergravity

solution of smeared F1-strings, it would be odd to find that the supergravity solu-

tion is unstable against F1-string discharge. We find that indeed the supergravity

solutions at finite temperature are stable and the ionized F1-strings at weak coupling

should be viewed as a ‘cloud’ that falls behind the black-brane horizon, matching to

the smeared F1-strings dissolved in the supergravity solution. It is also interesting,

in view of our discussion of the possible recombination effect for p = 4, to determine

possible qualitative differences as a function of the NCOS dimensionality.

We would like to compute the free energy gap by emission of a single F1-string.

It can be calculated by lowering a probe F1-brane to the horizon and computing its

world-volume action. This was done in [22] for the S-dual four-dimensional case.

Alternatively, we can use the results of [19] for the chemical potential of the super-

gravity solution:

µbs =
L

2πα′
sin θ̂ tanh α̂ . (3.39)
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where θ̂ is the control parameter of the NCOS limit, so that cos2 θ̂ = α′/α′e, and α̂ is
the rapidity angle controlling the departure from extremality, i.e.

1

2
sinh 2α̂ cos2 θ̂ =

(
7− p
4π
TRo

) 2(p−7)
5−p
. (3.40)

We can use this equation to solve for α̂ in the NCOS limit and obtain

µbs =
L

2πα′
− 2πLT 2H

(
1 +K ′(λot7−p)

2
5−p
)
, (3.41)

with K ′ some O(1) constant. The liberated F1-strings at infinity have chemical
potential

µF1 =
L

2πα′
− 2πLT 2 . (3.42)

Thus, the supergravity analog of (2.27) is

∆Fion = µF1 − µbs = 2πLT 2H
(
1 +K ′

(
λot
7−p) 2

5−p − t2
)
. (3.43)

We see that interaction effects tend to suppress the ionization process also in the

supergravity regime. In fact, for t � 1, we have µbs − µF1 < 0 for all λo � 1/t2,
i.e. there is no ionization throughout all the supergravity regime. On the other

hand, the instability for F1-string emission appears precisely for λo in the order of

magnitude of the HP line λo . 1/t2.
Therefore, the F1-strings ionized in the weak-coupling regime should be thought

as a ‘halo’ of the bound-state that falls behind the horizon of the black-brane at the

supergravity matching. This computation also shows that no special phenomenon

occurs in the supergravity regime for p = 4. Thus, the matching to supergravity

disfavours the possibility of having a recombination of the (D4, F1) bound state.

4. Conclusions

We have shown from several points of view that it is most likely that NCOS systems

with d < 5 resort to their microscopic constituent picture as the temperature is raised

towards a triple temperature: a temperature where noncommutative effects become

important, where a Hagedorn transition may take place, and where the ionization

process starts becoming operative.

Even if long open strings on the NCOS bound state give the highest density of

states in the high-energy regime, consistency with the correspondence principle of [15]

forces upon us the ionization picture drawn from the canonical ensemble analysis,

where the nominal Hagedorn temperature is surpassed without ever exciting a signif-

icant number of long open strings. In this picture, the entropy is carried by massless

excitations and soon becomes dominated by two-dimensional fields, which in turn

35



J
H
E
P
0
6
(
2
0
0
1
)
0
2
9

satisfy the appropriate matching to the supergravity description. The case d = 5

is special because a first-order phase transition stops the ionization of F1-strings

within the weak-coupling regime, so that the canonical ensemble has no graceful

exit into the supergravity regime. If for some unknown reason the long open strings

were activated precisely at d = 5, they would erase the first-order phase transition

but stop ionization anyway, so that the system still fails the correct matching to

supergravity. Hence, the tension between the correspondence principle and our pic-

tures of the weak-coupling dynamics leaves us with a genuine puzzle for the case of

five-dimensional NCOS theories.

The possibility that long open strings dominate the thermodynamics in a tran-

sient regime that is invisible in the canonical ensemble (in analogy with the case of

AdS thermodynamics) is unlikely since the required strong-coupling phases in the

gravity picture are not found.

In systems containing extended objects and only nonlocal observables, it may

well be that there are cases when a transition between a microcanonical ensemble

and a canonical one is very complex. This does not seem to occur in the AdS/CFT

case, but perhaps it occurs for NCOS. In such a case one could imagine that the mi-

crocanonical and canonical ensembles somehow sample totally disconnected regions

of configuration space at very high energy. Namely, forcing the temperature to be

above Hagedorn T > TH constrains the system to proceed through the ionization

mechanism, because configurations with long strings that maximize the entropy nec-

essarily have T ≈ TH . In principle, it is possible that the system has two different
high-energy limits, with totally different behaviour depending on whether we impose

canonical or microcanonical boundary conditions in the thermal ensemble. Accord-

ing to this ad hoc picture, the phase of long open strings with entropy S ≈ E/TH
would extend to arbitrarily high energies, i.e. it would resemble the transient picture

considered above, but with the return to the positive specific heat behaviour only

occuring at infinite energy.

We find also this escape hatch unlikely on the basis of particular examples where

the NCOS system is S-dual to ordinary field theories. One such example is the two-

dimensional case, where the NCOS theory based on the (N, n) bound state is S-dual

to ordinary U(n) SYM with N units of electric flux [46, 23]. Another example in four

dimensions is that of rational NCOS theories. Namely, working in finite commutative

volume V⊥ we have a finite number, n, of F1-strings melted in the bound state. Then
this theory is S-dual to NCYM with rational dimensionless theta parameter

Θ ≡ 2πθ
V⊥
=
N

n
. (4.1)

With relatively prime N and n, this theory is in turn the Morita-dual of ordinary

U(n) SYM with some units of ’t Hooft magnetic flux [31, 47, 24], living on a smaller

volume LV⊥/n2. In this representation, it is clear that the extreme high-energy
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asymptotics of this theory cannot be of Hagedorn type, independently of whether we

use the canonical or the microcanonical thermal ensembles. Although this argument

does not exclude the possibility of a transient regime of Hagedorn density of states,

it does exclude the exotic possibility noted above where the long-string phase would

extend to infinite energies.

Based on these considerations, we conclude that weakly coupled, gravity free,

long-string picture is not microscopic but only effective. Its validity seems to melt

away near the potential Hagedorn transition. At this point we are remainded of the

fact that open NCOS strings are not BPS objects. Since the NCOS limit involves

gs → ∞, the general validity of our parametrization of the NCOS dynamics can
be called into question in extreme situations. The thermodynamics at Hagedorn

temperatures seems to be one of these situations.

One may be tempted to turn the argument around and say that this picture is

what would occur in the case of small but finite coupling in all string theories. In

any case, the model we have analysed is an explicit example of constituent ‘decon-

finement’.
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