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Abstract

One of the main challenges in the design of high-
energy colliders is the very high luminosity necessary to
provide significant event rates. This imposes strong
constraints to achieve and preserve beams of high
brightness, i.e. intensity to emittance ratio, all along the
injector chain.  Amongst the phenomena that can blow
up and even destroy the beam are transverse coherent
instabilities. Two methods are widely used to damp these
instabilities. The first one is Landau damping by non-
linearities. The second consists in using an electronic
feedback system. However, non-linearities are harmful
to single-particle motion due to resonance phenomena,
and powerful wideband feedback systems are expensive.
It is shown in this paper that linear coupling is a further
method that can be used to damp transverse coherent
instabilities. The theory of collective motion is outlined,
including the coupling of instability rise and damping
rates, chromaticity and Landau damping. Experimental
results obtained at the CERN PS are reported, which are
important for its role as LHC injector. Stabilisation by
coupling explains (at least in part) why existing high
intensity accelerators and colliders work best when
adjusted relatively close to a coupling resonance. This
method could be profitably used in the design of new
machines.

1  INTRODUCTION

Strong coupling between the transverse planes of a
particle beam leads to an “equipartition” of the
oscillation energy, including the instability growth rates
in the case of coherent instability. In the presence of a
frequency spread, there can also be a partition of Landau
damping for “optimum” coupling [1]. Linear coupling
can therefore become very effective for stabilisation
when a dissymmetry, e.g. in the frequency spreads or
coupling impedances, is present.

In Ref. [2], a formula for transverse coherent
instabilities in the presence of linear coupling (near the
coupling resonance lQQ

YX  � ) was given in the form
of a 4�4 determinant. In the case of mode coupling, this
formula takes into account the coupling between two
adjacent modes, m and m+1. The general two-
dimensional dispersion relation [3], including all the
head-tail modes, is given below. It is expressed in the

form of a determinant of infinite matrices, which have to
be truncated in practice.

The results in the absence/presence of linear coupling,
frequency spread and mode coupling have already been
treated in Ref. [2]. In the present paper, the general
formula is discussed in Section 2, and Section 3 is
devoted to the application for the case of the PS beam
for the future LHC [4].

2  THEORY

2.1  General 2D Dispersion Relation

In the presence of linear coupling (near the coupling
resonance lQQ

YX  � ), the stability of intense beams
can be discussed using the following infinite determinant

� � � �
� �

.0
4

ˆ

00

4
0

42

011
 

:

��'u�'
�� I

RlK
IIII

yx
y

y
x

x

ZZ
ZZ

(1)

Here, yx,
Z'  are matrices whose elements are given by

Eq. (2), 1
,
�

yxI  are matrices whose (inverse) elements are
given by Eqs. (9-10), and I  is the identity matrix.
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The elements of the “dispersion matrices” yxI ,  entering
into Eq. (1) are
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Notice that 
mx

I
,

 and 
my

I
,

 are the horizontal and vertical
dispersion integrals, 

cZ  is the coherent frequency to be
determined, � �yxx

ˆ,ˆZ  and � �yxy
ˆ,ˆZ  are the transverse

incoherent betatron frequencies of the particles, � �xf
x

ˆ
0

and � �yfy
ˆ

0
 are the uncorrelated distribution functions of

the incoherent betatron amplitudes, 
s

Z  is the synchrotron
frequency and ...,1,0,1..., � m  is the head-tail mode
number. Furthermore, � �lK

0
ˆ  is the lth Fourier coefficient

of the skew gradient � � � �xBpeK x ww // 00
, with e  the

elementary charge, 0p  the design momentum and 
xB

the horizontal magnetic field, R  is the average radius of
the machine, 0:  is the average revolution frequency of
the particles, 00,00,0 : yxyx QZ  are the unperturbed
betatron frequencies, yx

mm
,
,Z'  are the complex betatron

frequency shifts given by Sacherer’s formula [5],
1� j  is the imaginary unit, E  and J  are the

relativistic velocity and mass factors, � �S2/0: eNI bb

is the current in one bunch, 0m  is the proton rest mass,

bcL WE  is the total bunch length (in metres), yxZ ,  are
the coupling impedances, � � syx

yx
k mQk ZZ �:� 00,0

,  with
f�dd�f k , � � 00,0, /

,
: yxyx Q

yx
K[Z[  are the transverse

chromatic frequencies, with � �� �0,00,, // yxyxyx QppdQd [

the chromaticities, and 22 ��

� JJK tr  is the slippage factor.
In the case of coasting beams, Eq. (1) still applies with

m=0, the impedance removed from the summation and
the bunch length L equal to 2SR. The dispersion integrals
for a coasting beam are given by Eqs. (9-10) with m=0,
adding also the contribution of the momentum spread.
The incoherent betatron frequency spread around the
harmonic yx

rk ,  corresponding to the frequency rZ  of the
driving impedance is given by 0/

,
pp

yxr 'uu� KZZ [ .
Note that for head-tail instabilities below the mode-

coupling threshold, the momentum spread is not
effective for Landau damping since several synchrotron
periods occur during the instability rise-time, and on

average the spread is zero. In the case of mode coupling,
the momentum spread helps to stabilise the beam, and it
has thus to be taken into account in the dispersion
integral.

2.2  Situation in the Absence of both Frequency
Spread and Mode Coupling

In the absence of linear coupling, the determinant of
Eq. (1) is the product of the two one-dimensional
determinants, each of which equals zero. Below the
mode-coupling threshold, each mode m can be treated
separately, and the following dispersion equations are
obtained, x

mmmxI ,
1
, Z' 
�  and y

mmmyI ,
1
, Z' 
� . In the absence of

Landau damping, the stability condition for the mth
mode is Im ( yx

mm
,
,Z' ) � 0, where Im ( ) stands for

imaginary part.
In the presence of linear coupling, but without

frequency spread and below the mode-coupling
threshold, Eq. (1) leads to the following necessary
condition for stability of the mth mode,

,0eqeq d�
m

y

m

x VV (11)

where m
yxV ,eq = ¡ Im ( yx

mm
,
,Z' ) are the transverse instability

growth rates. If Eq. (11) is true, it is possible to stabilise
this mode by increasing the skew gradient and/or by
working closer to the coupling resonance lQQ

YX  � .
The stabilising values of the modulus of the lth Fourier
coefficient of the skew gradient are given by
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where � � 0,eq0,0, /:� 
m

yxyxYX UQ Z  are the horizontal and
vertical coherent tunes in the presence of wake fields
( m

yxU
,eq = Re ( yx

mm
,
,Z' ), where Re ( ) stands for real part),

but in the absence of coupling. Furthermore, in the case
of coupled-bunch instabilities of M bunches,

Mknk yx c� ,  in Eq. (3) with f�dcd�f k , and the
coupled-bunch mode numbers are related by lnn yx � .

Notice that, when Eq. (11) is verified, it is verified for
“any” intensity.

 3  EXPERIMENTS
The plot of the transverse single-bunch head-tail

instability growth rates as functions of the head-tail
mode number is represented in Fig. 1(a) for the PS beam
for LHC [6]. In fact the initial scheme has been
modified [4] and slightly different parameters are now



used to cope with instabilities. The theory, based on the
above model (considering both resistive-wall and broad-
band impedances), predicts horizontal single-bunch
instabilities with the most critical head-tail mode number
|m|=6. To test the validity of the one-dimensional theory,
the skew quadrupole current was set to have the
minimum of linear coupling between the transverse
planes, which turned out to be A33.0|skewI , due to the
“natural” coupling present in the PS (see Fig. 1(b) where

� �0ˆ
00

KK  ). In this situation, a head-tail instability
develops, and in accordance with theory the mode |m|=6
is observed (see Fig. 2, showing 6 nodes).

Figure 1: (a) Transverse single-bunch head-tail
instability growth rates vs. head-tail mode number for
the PS nominal beam for the future LHC, in the absence
of coupling. (b) Modulus of the normalised skew
gradient, as deduced from tune separation
measurements, vs. skew quadrupole current for the PS at
1 GeV kinetic energy.

Figure 2: 'R signal from a radial beam-position monitor
during 20 consecutive turns, in the PS with minimum
coupling. Time scale: 20 ns/div.

The beam losses due to this instability are shown in
Fig. 3(a). One notes that the beam from the PSBooster
(PSB) is injected into the PS in 2 batches of 3 bunches
each, to overcome space charge effects in the PSB [4].
The drawback of this filling scheme is that the first batch
has to wait 1.2 s at 1.4 GeV kinetic energy, and during
that time about 2/3 of the beam is lost due to the above
instability, if no counter measures are taken.

From Fig. 1(a), one can deduce that Eq. (11) is
verified for each mode, and that it will therefore be
possible to stabilise the beam by linear coupling. The
fact that the mode |m|=6 is unstable in the horizontal
plane and stable in the vertical one, is due to the
different natural chromaticities ( 9.0� x[  and 3.1� y[ ).
In the presence of coupling, the transfer of instability
growth rate is essentially here a chromaticity sharing [7].

Setting a skew quadrupole current of about –0.4 A, with
the working point ( 22.6 XQ , 25.6 YQ ), the instability
is damped without any loss (see Fig. 3(b)). Furthermore,
this method is reproducible and no emittance blow-up
has been measured.

Figure 3: Intensity of the PS ring (in units of 1010

protons) vs. time (in ms). (a) Without linear coupling,
i.e. A33.0|skewI . (b) With a linear coupling
corresponding to A4.0�|skewI , and a working point
( 22.6 XQ , 25.6 YQ ).

 4  CONCLUSION
A general formula for the transverse coherent

instabilities in the presence of linear coupling has been
given. The beneficial effect due to the transfer of the
head-tail instability growth rates, which critically depend
on chromaticities, has then been emphasised. This result
has been verified experimentally on the PS beam for the
future LHC, where a head-tail instability |m|=6 is
damped using linear coupling, in agreement with theory.
This method can be profitably used in the design of new
machines, to find optimum values for the transverse
tunes, the skew quadrupole and octupole currents, and
the chromaticities.
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